Privacy Tools for Sharing Research Data (NSF CNS-1237235)

Chen, Yiling, Or Sheffet, and Salil Vadhan. “Privacy games.” ACM Transactions on Economics and Computation 8, no. 2 (2020): Article 9. Publisher's VersionAbstract

Version History: 

Previously published as: Yiling Chen, Or Sheffet, and Salil Vadhan. Privacy games. In Proceedings of the 10th International Conference on Web and Internet Economics (WINE ‘14), volume 8877 of Lecture Notes in Computer Science, pages 371–385. Springer-Verlag, 14–17 December 2014. (WINE Publisher's Version linked here:; PDF attached as WINE2014.

The problem of analyzing the effect of privacy concerns on the behavior of selfish utility-maximizing agents has received much attention lately. Privacy concerns are often modeled by altering the utility functions of agents to consider also their privacy loss. Such privacy aware agents prefer to take a randomized strategy even in very simple games in which non-privacy aware agents play pure strategies. In some cases, the behavior of privacy aware agents follows the framework of Randomized Response, a well-known mechanism that preserves differential privacy. 

Our work is aimed at better understanding the behavior of agents in settings where their privacy concerns are explicitly given. We consider a toy setting where agent A, in an attempt to discover the secret type of agent B, offers B a gift that one type of B agent likes and the other type dislikes. As opposed to previous works, B's incentive to keep her type a secret isn't the result of "hardwiring" B's utility function to consider privacy, but rather takes the form of a payment between B and A. We investigate three different types of payment functions and analyze B's behavior in each of the resulting games. As we show, under some payments, B's behavior is very different than the behavior of agents with hardwired privacy concerns and might even be deterministic. Under a different payment we show that B's BNE strategy does fall into the framework of Randomized Response.

ArXiv 2014.pdf WINE 2014.pdf TEAC 2020.pdf
Balcer, Victor, and Salil Vadhan. “Differential privacy on finite computers.” Journal of Privacy and Confidentiality 9, no. 2 (2019). Publisher's VersionAbstract

Version History: 

Also presented at TPDP 2017; preliminary version posted as arXiv:1709.05396 [cs.DS].

2018: Published in Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in Informatics (LIPIcs), pp 43:1-43:21.

We consider the problem of designing and analyzing differentially private algorithms that can be implemented on discrete models of computation in strict polynomial time, motivated by known attacks on floating point implementations of real-arithmetic differentially private algorithms (Mironov, CCS 2012) and the potential for timing attacks on expected polynomial-time algorithms. As a case study, we examine the basic problem of approximating the histogram of a categorical dataset over a possibly large data universe \(X\). The classic Laplace Mechanism (Dwork, McSherry, Nissim, Smith, TCC 2006 and J. Privacy & Confidentiality 2017) does not satisfy our requirements, as it is based on real arithmetic, and natural discrete analogues, such as the Geometric Mechanism (Ghosh, Roughgarden, Sundarajan, STOC 2009 and SICOMP 2012), take time at least linear in \(|X|\), which can be exponential in the bit length of the input.

In this paper, we provide strict polynomial-time discrete algorithms for approximate histograms whose simultaneous accuracy (the maximum error over all bins) matches that of the Laplace Mechanism up to constant factors, while retaining the same (pure) differential privacy guarantee. One of our algorithms produces a sparse histogram as output. Its “per-bin accuracy” (the error on individual bins) is worse than that of the Laplace Mechanism by a factor of \(\log |X|\), but we prove a lower bound showing that this is necessary for any algorithm that produces a sparse histogram. A second algorithm avoids this lower bound, and matches the per-bin accuracy of the Laplace Mechanism, by producing a compact and efficiently computable representation of a dense histogram; it is based on an \((n + 1)\)-wise independent implementation of an appropriately clamped version of the Discrete Geometric Mechanism.

JPC2019.pdf ITCS2018.pdf ArXiv2018.pdf
Bun, Mark, Jonathan Ullman, and Salil Vadhan. “Fingerprinting codes and the price of approximate differential privacy.” SIAM Journal on Computing, Special Issue on STOC '14 47, no. 5 (2018): 1888-1938. Publisher's VersionAbstract

Version HistorySpecial Issue on STOC ‘14. Preliminary versions in STOC ‘14 and arXiv:1311.3158 [cs.CR].

We show new information-theoretic lower bounds on the sample complexity of (ε, δ)- differentially private algorithms that accurately answer large sets of counting queries. A counting query on a database \(D ∈ (\{0, 1\}^d)^n\) has the form “What fraction of the individual records in the database satisfy the property \(q\)?” We show that in order to answer an arbitrary set \(Q\) of \(\gg d/ \alpha^2\) counting queries on \(D\) to within error \(±α\) it is necessary that \(n ≥ \tilde{Ω}(\sqrt{d} \log |Q|/α^2ε)\). This bound is optimal up to polylogarithmic factors, as demonstrated by the private multiplicative weights algorithm (Hardt and Rothblum, FOCS’10). In particular, our lower bound is the first to show that the sample complexity required for accuracy and (ε, δ)-differential privacy is asymptotically larger than what is required merely for accuracy, which is \(O(\log |Q|/α^2 )\). In addition, we show that our lower bound holds for the specific case of \(k\)-way marginal queries (where \(|Q| = 2^k \binom{d}{k}\) ) when \(\alpha\) is not too small compared to d (e.g., when \(\alpha\) is any fixed constant). Our results rely on the existence of short fingerprinting codes (Boneh and Shaw, CRYPTO’95; Tardos, STOC’03), which we show are closely connected to the sample complexity of differentially private data release. We also give a new method for combining certain types of sample-complexity lower bounds into stronger lower bounds.

ArXiv2018.pdf STOC2014.pdf SIAM2018.pdf
Murtagh, Jack, and Salil Vadhan. “The complexity of computing the optimal composition of differential privacy.” Theory of Computing 14 (2018): 1-35. Publisher's VersionAbstract

Version History: Full version posted on CoRR, abs/1507.03113, July 2015Additional version published in Proceedings of the 13th IACR Theory of Cryptography Conference (TCC '16-A)

In the study of differential privacy, composition theorems (starting with the original paper of Dwork, McSherry, Nissim, and Smith (TCC '06)) bound the degradation of privacy when composing several differentially private algorithms. Kairouz, Oh, and Viswanath (ICML '15) showed how to compute the optimal bound for composing \(k\) arbitrary (\(\epsilon\),\(\delta\))- differentially private algorithms. We characterize the optimal composition for the more general case of \(k\) arbitrary (\(\epsilon_1\) , \(\delta_1\) ), . . . , (\(\epsilon_k\) , \(\delta_k\) )-differentially private algorithms where the privacy parameters may differ for each algorithm in the composition. We show that computing the optimal composition in general is \(\#\)P-complete. Since computing optimal composition exactly is infeasible (unless FP\(=\)\(\#\)P), we give an approximation algorithm that computes the composition to arbitrary accuracy in polynomial time. The algorithm is a modification of Dyer’s dynamic programming approach to approximately counting solutions to knapsack problems (STOC '03).

ArXiv2016.pdf TCC2016-A.pdf TOC2018.pdf
Karwa, Vishesh, and Salil Vadhan. “Finite sample differentially private confidence intervals.” In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in Informatics (LIPIcs), 44:1-44:9. Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. ITCS, 2018. Publisher's VersionAbstract

Version History: Also presented at TPDP 2017. Preliminary version posted as arXiv:1711.03908 [cs.CR].

We study the problem of estimating finite sample confidence intervals of the mean of a normal population under the constraint of differential privacy. We consider both the known and unknown variance cases and construct differentially private algorithms to estimate confidence intervals. Crucially, our algorithms guarantee a finite sample coverage, as opposed to an asymptotic coverage. Unlike most previous differentially private algorithms, we do not require the domain of the samples to be bounded. We also prove lower bounds on the expected size of any differentially private confidence set showing that our the parameters are optimal up to polylogarithmic factors.

ITCS2018.pdf ArXiv2017.pdf
Murtagh, Jack, Kathryn Taylor, George Kellaris, and Salil P. Vadhan. “Usable differential privacy: A case study with PSI.” arXiv, 2018, 1809.04103 [cs.CR]. ArXiv VersionAbstract

Version History: v1, 11 September 2018

Differential privacy is a promising framework for addressing the privacy concerns in sharing sensitive datasets for others to analyze. However differential privacy is a highly technical area and current deployments often require experts to write code, tune parameters, and optimize the trade-off between the privacy and accuracy of statistical releases. For differential privacy to achieve its potential for wide impact, it is important to design usable systems that enable differential privacy to be used by ordinary data owners and analysts. PSI is a tool that was designed for this purpose, allowing researchers to release useful differentially private statistical information about their datasets without being experts in computer science, statistics, or privacy. We conducted a thorough usability study of PSI to test whether it accomplishes its goal of usability by non-experts. The usability test illuminated which features of PSI are most user-friendly and prompted us to improve aspects of the tool that caused confusion. The test also highlighted some general principles and lessons for designing usable systems for differential privacy, which we discuss in depth.

Vadhan, Salil. “The Complexity of Differential Privacy.” In Tutorials on the Foundations of Cryptography, 347-450. Springer, Yehuda Lindell, ed. 2017. Publisher's VersionAbstract

Version History: 

August 2016: Manuscript v1 (see files attached)

March 2017: Manuscript v2 (see files attached); Errata

April 2017: Published Version (in Tutorials on the Foundations of Cryptography; see Publisher's Version link and also SPRINGER 2017.PDF, below) 


Differential privacy is a theoretical framework for ensuring the privacy of individual-level data when performing statistical analysis of privacy-sensitive datasets. This tutorial provides an introduction to and overview of differential privacy, with the goal of conveying its deep connections to a variety of other topics in computational complexity, cryptography, and theoretical computer science at large. This tutorial is written in celebration of Oded Goldreich’s 60th birthday, starting from notes taken during a minicourse given by the author and Kunal Talwar at the 26th McGill Invitational Workshop on Computational Complexity [1].


SPRINGER 2017.pdf ERRATA 2017.pdf MANUSCRIPT 2017.pdf MANUSCRIPT 2016.pdf
Nissim, Kobbi, Aaron Bembenek, Alexandra Wood, Mark Bun, Marco Gaboardi, Urs Gasser, David O'Brien, Thomas Steinke, and Salil Vadhan. “Bridging the gap between computer science and legal approaches to privacy.” Harvard Journal of Law & Technology 31, no. 2 (2017). Publisher's VersionAbstract

Version History: Workshopped at PLSC (Privacy Law Scholars Conference) ‘16.


The analysis and release of statistical data about individuals and groups of individuals carries inherent privacy risks, and these risks have been conceptualized in different ways within the fields of law and computer science. For instance, many information privacy laws adopt notions of privacy risk that are sector- or context-specific, such as in the case of laws that protect from disclosure certain types of information contained within health, educational, or financial records. In addition, many privacy laws refer to specific techniques, such as deidentification, that are designed to address a subset of possible attacks on privacy. In doing so, many legal standards for privacy protection rely on individual organizations to make case-by-case determinations regarding concepts such as the identifiability of the types of information they hold. These regulatory approaches are intended to be flexible, allowing organizations to (1) implement a variety of specific privacy measures that are appropriate given their varying institutional policies and needs, (2) adapt to evolving best practices, and (3) address a range of privacy-related harms. However, in the absence of clear thresholds and detailed guidance on making case-specific determinations, flexibility in the interpretation and application of such standards also creates uncertainty for practitioners and often results in ad hoc, heuristic processes. This uncertainty may pose a barrier to the adoption of new technologies that depend on unambiguous privacy requirements. It can also lead organizations to implement measures that fall short of protecting against the full range of data privacy risks.

Altman, Micah, Alexandra Wood, David R. O'Brien, Salil Vadhan, and Urs Gasser. “Towards a modern approach to a privacy-aware government data releases.” Berkeley Technology Law Journal 30, no. 3 (2016): 1967-2072. Publisher's VersionAbstract
Governments are under increasing pressure to publicly release collected data in order to promote transparency, accountability, and innovation. Because much of the data they release pertains to individuals, agencies rely on various standards and interventions to protect privacy interests while supporting a range of beneficial uses of the data. However, there are growing concerns among privacy scholars, policymakers, and the public that these approaches are incomplete, inconsistent, and difficult to navigate. To identify gaps in current practice, this Article reviews data released in response to freedom of information and Privacy Act requests, traditional public and vital records, official statistics, and e-government and open government initiatives. It finds that agencies lack formal guidance for implementing privacy interventions in specific cases. Most agencies address privacy by withholding or redacting records that contain directly or indirectly identifying information based on an ad hoc balancing of interests, and different government actors sometimes treat similar privacy risks vastly differently. These observations demonstrate the need for a more systematic approach to privacy analysis and also suggest a new way forward. In response to these concerns, this Article proposes a framework for a modern privacy analysis informed by recent advances in data privacy from disciplines such as computer science, statistics, and law. Modeled on an information security approach, this framework characterizes and distinguishes between privacy controls, threats, vulnerabilities, and utility. When developing a data release mechanism, policymakers should specify the desired data uses and expected benefits, examine each stage of the data lifecycle to identify privacy threats and vulnerabilities, and select controls for each lifecycle stage that are consistent with the uses, threats, and vulnerabilities at that stage. This Article sketches the contours of this analytical framework, populates selected portions of its contents, and illustrates how it can inform the selection of privacy controls by discussing its application to two real-world examples of government data releases.
Nissim, Kobbi, Uri Stemmer, and Salil Vadhan. “Locating a small cluster privately.” In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS ‘16), 413-427. ACM, 2016. Publisher's VersionAbstract

Version HistoryFull version posted as arXiv:1604.05590 [cs.DS].

We present a new algorithm for locating a small cluster of points with differential privacy [Dwork, McSherry, Nissim, and Smith, 2006]. Our algorithm has implications to private data exploration, clustering, and removal of outliers. Furthermore, we use it to significantly relax the requirements of the sample and aggregate technique [Nissim, Raskhodnikova, and Smith, 2007], which allows compiling of “off the shelf” (non-private) analyses into analyses that preserve differential privacy.

PODS2016.pdf ArXiv2017.pdf
Gaboardi, Marco, Hyun Woo Lim, Ryan Rogers, and Salil Vadhan. “Differentially private chi-squared hypothesis testing: Goodness of fit and independence testing.” In M. Balcan and K. Weinberger, editors, Proceedings of the 33rd International Conference on Machine Learning (ICML ‘16). 2111-2120, 2016. Publisher's VersionAbstract

Version History: Preliminary version posted as arXiv:1602.03090.

Hypothesis testing is a useful statistical tool in determining whether a given model should be rejected based on a sample from the population. Sample data may contain sensitive information about individuals, such as medical information. Thus it is important to design statistical tests that guarantee the privacy of subjects in the data. In this work, we study hypothesis testing subject to differential privacy, specifically chi-squared tests for goodness of fit for multinomial data and independence between two categorical variables.

We propose new tests for goodness of fit and independence testing that like the classical versions can be used to determine whether a given model should be rejected or not, and that additionally can ensure differential privacy. We give both Monte Carlo based hypothesis tests as well as hypothesis tests that more closely follow the classical chi-squared goodness of fit test and the Pearson chi-squared test for independence. Crucially, our tests account for the distribution of the noise that is injected to ensure privacy in determining significance.

We show that these tests can be used to achieve desired significance levels, in sharp contrast to direct applications of classical tests to differentially private contingency tables which can result in wildly varying significance levels. Moreover, we study the statistical power of these tests. We empirically show that to achieve the same level of power as the classical non-private tests our new tests need only a relatively modest increase in sample size.

ICML2016.pdf ArXiv2016.pdf
Rogers, Ryan, Aaron Roth, Jonathan Ullman, and Salil Vadhan. “Privacy odometers and filters: Pay-as-you-go composition.” In Advances in Neural Information Processing Systems 29 (NIPS `16). 1921-1929, 2016. Publisher's VersionAbstract

Version History: Full version posted as

In this paper we initiate the study of adaptive composition in differential privacy when the length of the composition, and the privacy parameters themselves can be chosen adaptively, as a function of the outcome of previously run analyses. This case is much more delicate than the setting covered by existing composition theorems, in which the algorithms themselves can be chosen adaptively, but the privacy parameters must be fixed up front. Indeed, it isn’t even clear how to define differential privacy in the adaptive parameter setting. We proceed by defining two objects which cover the two main use cases of composition theorems. A privacy filter is a stopping time rule that allows an analyst to halt a computation before his pre-specified privacy budget is exceeded. A privacy odometer allows the analyst to track realized privacy loss as he goes, without needing to pre-specify a privacy budget. We show that unlike the case in which privacy parameters are fixed, in the adaptive parameter setting, these two use cases are distinct. We show that there exist privacy filters with bounds comparable (up to constants) with existing pri- vacy composition theorems. We also give a privacy odometer that nearly matches non-adaptive private composition theorems, but is sometimes worse by a small asymptotic factor. Moreover, we show that this is inherent, and that any valid privacy odometer in the adaptive parameter setting must lose this factor, which shows a formal separation between the filter and odometer use-cases.

ArXiv2016.pdf NIPS2016.pdf
Bun, Mark, Yi-Hsiu Chen, and Salil Vadhan. “Separating computational and statistical differential privacy in the client-server model.” In Martin Hirt and Adam D. Smith, editors, Proceedings of the 14th IACR Theory of Cryptography Conference (TCC `16-B). Lecture Notes in Computer Science. Springer Verlag, 31 October-3 November, 2016. Publisher's VersionAbstract

Version History: Full version posted on Cryptology ePrint Archive, Report 2016/820.

Differential privacy is a mathematical definition of privacy for statistical data analysis. It guarantees that any (possibly adversarial) data analyst is unable to learn too much information that is specific to an individual. Mironov et al. (CRYPTO 2009) proposed several computa- tional relaxations of differential privacy (CDP), which relax this guarantee to hold only against computationally bounded adversaries. Their work and subsequent work showed that CDP can yield substantial accuracy improvements in various multiparty privacy problems. However, these works left open whether such improvements are possible in the traditional client-server model of data analysis. In fact, Groce, Katz and Yerukhimovich (TCC 2011) showed that, in this setting, it is impossible to take advantage of CDP for many natural statistical tasks.

Our main result shows that, assuming the existence of sub-exponentially secure one-way functions and 2-message witness indistinguishable proofs (zaps) for NP, that there is in fact a computational task in the client-server model that can be efficiently performed with CDP, but is infeasible to perform with information-theoretic differential privacy.

TCC 16-B.pdf
Chen, Yiling, Stephen Chong, Ian A. Kash, Tal Moran, and Salil P. Vadhan. “Truthful mechanisms for agents that value privacy.ACM Transactions on Economics and Computation 4, no. 3 (2016). Publisher's VersionAbstract
Recent work has constructed economic mechanisms that are both truthful and differentially private. In these mechanisms, privacy is treated separately from truthfulness; it is not incorporated in players’ utility functions (and doing so has been shown to lead to nontruthfulness in some cases). In this work, we propose a new, general way of modeling privacy in players’ utility functions. Specifically, we only assume that if an outcome o has the property that any report of player i would have led to o with approximately the same probability, then o has a small privacy cost to player i. We give three mechanisms that are truthful with respect to our modeling of privacy: for an election between two candidates, for a discrete version of the facility location problem, and for a general social choice problem with discrete utilities (via a VCG-like mechanism). As the number n of players increases, the social welfare achieved by our mechanisms approaches optimal (as a fraction of n). Preliminary version on arXiv (2011).
ACM-Transactions2016.pdf ACM-ElectronicCommerce2013.pdf
O'Brien, David, Jonathan Ullman, Micah Altman, Urs Gasser, Michael Bar-Sinai, Kobbi Nissim, Salil Vadhan, Michael Wojcik, and Alexandra Wood. “Integrating approaches to privacy across the research lifecycle: When is information purely public?Berkman Center Research Publication No. 2015-7, 2015, March. Publisher's VersionAbstract

Version History: Available at SSRN:

On September 24-25, 2013, the Privacy Tools for Sharing Research Data project at Harvard University held a workshop titled "Integrating Approaches to Privacy across the Research Data Lifecycle." Over forty leading experts in computer science, statistics, law, policy, and social science research convened to discuss the state of the art in data privacy research. The resulting conversations centered on the emerging tools and approaches from the participants’ various disciplines and how they should be integrated in the context of real-world use cases that involve the management of confidential research data. 

Researchers are increasingly obtaining data from social networking websites, publicly-placed sensors, government records and other public sources. Much of this information appears public, at least to first impressions, and it is capable of being used in research for a wide variety of purposes with seemingly minimal legal restrictions. The insights about human behaviors we may gain from research that uses this data are promising. However, members of the research community are questioning the ethics of these practices, and at the heart of the matter are some difficult questions about the boundaries between public and private information. This workshop report, the second in a series, identifies selected questions and explores issues around the meaning of “public” in the context of using data about individuals for research purposes. 


Bun, Mark, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. “Differentially private release and learning of threshold functions.” In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS ‘15). IEEE, 2015. Publisher's VersionAbstract

Version HistoryFull version posted as arXiv:1504.07553.

We prove new upper and lower bounds on the sample complexity of \((\varepsilon, \delta)\) differentially private algorithms for releasing approximate answers to threshold functions. A threshold function \(c_x\) over a totally ordered domain \(X\) evaluates to \(c_x(y)=1 \) if \(y \leq {x}\), and evaluates to \(0\) otherwise. We give the first nontrivial lower bound for releasing thresholds with \((\varepsilon, \delta)\) differential privacy, showing that the task is impossible over an infinite domain \(X\), and moreover requires sample complexity \(n \geq \Omega(\log^* |X|)\), which grows with the size of the domain. Inspired by the techniques used to prove this lower bound, we give an algorithm for releasing thresholds with \(n ≤ 2^{(1+o(1)) \log^∗|X|}\) samples. This improves the previous best upper bound of \(8^{(1+o(1)) \log^∗ |X|}\)(Beimel et al., RANDOM ’13).

Our sample complexity upper and lower bounds also apply to the tasks of learning distri- butions with respect to Kolmogorov distance and of properly PAC learning thresholds with differential privacy. The lower bound gives the first separation between the sample complexity of properly learning a concept class with \((\varepsilon, \delta)\) differential privacy and learning without privacy. For properly learning thresholds in \(\ell\) dimensions, this lower bound extends to \(n ≥ Ω(\ell·\log^∗ |X|)\).

To obtain our results, we give reductions in both directions from releasing and properly learning thresholds and the simpler interior point problem. Given a database \(D\) of elements from \(X\), the interior point problem asks for an element between the smallest and largest elements in \(D\). We introduce new recursive constructions for bounding the sample complexity of the interior point problem, as well as further reductions and techniques for proving impossibility results for other basic problems in differential privacy.

ArXiv2015.pdf IEEE2015.pdf
Dwork, Cynthia, Adam Smith, Thomas Steinke, Jonathan Ullman, and Salil Vadhan. “Robust traceability from trace amounts.” In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS ‘15), 650-669. IEEE, 2015. Publisher's VersionAbstract

The privacy risks inherent in the release of a large number of summary statistics were illustrated by Homer et al. (PLoS Genetics, 2008), who considered the case of 1-way marginals of SNP allele frequencies obtained in a genome-wide association study: Given a large number of minor allele frequencies from a case group of individuals diagnosed with a particular disease, together with the genomic data of a single target individual and statistics from a sizable reference dataset independently drawn from the same population, an attacker can determine with high confidence whether or not the target is in the case group.

In this work we describe and analyze a simple attack that succeeds even if the summary statistics are significantly distorted, whether due to measurement error or noise intentionally introduced to protect privacy. Our attack only requires that the vector of distorted summary statistics is close to the vector of true marginals in \(\ell_1 \)norm. Moreover, the reference pool required by previous attacks can be replaced by a single sample drawn from the underlying population.

The new attack, which is not specific to genomics and which handles Gaussian as well as Bernouilli data, significantly generalizes recent lower bounds on the noise needed to ensure differential privacy (Bun, Ullman, and Vadhan, STOC 2014; Steinke and Ullman, 2015), obviating the need for the attacker to control the exact distribution of the data.

Wood, Alexandra, David O'Brien, Micah Altman, Alan Karr, Urs Gasser, Michael Bar-Sinai, Kobbi Nissim, Jonathan Ullman, Salil Vadhan, and Michael Wojcik. “Integrating approaches to privacy across the research lifecycle: Long-term longitudinal studies.” Berkman Center Research Publication No. 2014-12, 2014, July. Publisher's VersionAbstract

Version History: Available at SSRN:


On September 24-25, 2013, the Privacy Tools for Sharing Research Data project at Harvard University held a workshop titled "Integrating Approaches to Privacy across the Research Data Lifecycle." Over forty leading experts in computer science, statistics, law, policy, and social science research convened to discuss the state of the art in data privacy research. The resulting conversations centered on the emerging tools and approaches from the participants’ various disciplines and how they should be integrated in the context of real-world use cases that involve the management of confidential research data. 

This workshop report, the first in a series, provides an overview of the long-term longitudinal study use case. Long-term longitudinal studies collect, at multiple points over a long period of time, highly-specific and often sensitive data describing the health, socioeconomic, or behavioral characteristics of human subjects. The value of such studies lies in part in their ability to link a set of behaviors and changes to each individual, but these factors tend to make the combination of observable characteristics associated with each subject unique and potentially identifiable. 

Using the research information lifecycle as a framework, this report discusses the defining features of long-term longitudinal studies and the associated challenges for researchers tasked with collecting and analyzing such data while protecting the privacy of human subjects. It also describes the disclosure risks and common legal and technical approaches currently used to manage confidentiality in longitudinal data. Finally, it identifies urgent problems and areas for future research to advance the integration of various methods for preserving confidentiality in research data.

Rothblum, Guy N., Salil Vadhan, and Avi Wigderson. “Interactive proofs of proximity: delegating computation in sublinear time.” In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC ‘13), 793-802. New York, NY: ACM, 2013. Publisher's VersionAbstract

We study interactive proofs with sublinear-time verifiers. These proof systems can be used to ensure approximate correctness for the results of computations delegated to an untrusted server. Following the literature on property testing, we seek proof systems where with high probability the verifier accepts every input in the language, and rejects every input that is far from the language. The verifier’s query complexity (and computation complexity), as well as the communication, should all be sublinear. We call such a proof system an Interactive Proof of Proximity (IPP).

  • On the positive side, our main result is that all languages in \(\mathcal{NC}\) have Interactive Proofs of Proximity with roughly \(\sqrt{n}\) query and communication and complexities, and \(\mathrm{polylog} (n)\) communication rounds.

    This is achieved by identifying a natural language, membership in an affine subspace (for a structured class of subspaces), that is complete for constructing interactive proofs of proximity, and providing efficient protocols for it. In building an IPP for this complete language, we show a tradeoff between the query and communication complexity and the number of rounds. For example, we give a 2-round protocol with roughly \(n^{3/4}\) queries and communication.

  • On the negative side, we show that there exist natural languages in \(\mathcal{NC}^1\), for which the sum of queries and communication in any constant-round interactive proof of proximity must be polynomially related to n. In particular, for any 2-round protocol, the sum of queries and communication must be at least \(\tilde{\Omega}(\sqrt{n})\).

  • Finally, we construct much better IPPs for specific functions, such as bipartiteness on random or well-mixing graphs, and the majority function. The query complexities of these protocols are provably better (by exponential or polynomial factors) than what is possible in the standard property testing model, i.e. without a prover.