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Abstract

In this paper we initiate the study of adaptive composition in differential privacy when
the length of the composition, and the privacy parameters themselves can be chosen adap-
tively, as a function of the outcome of previously run analyses. This case is much more
delicate than the setting covered by existing composition theorems, in which the algorithms
themselves can be chosen adaptively, but the privacy parameters must be fixed up front.
Indeed, it isn’t even clear how to define differential privacy in the adaptive parameter setting.
We proceed by defining two objects which cover the two main use cases of composition
theorems. A privacy filter is a stopping time rule that allows an analyst to halt a computation
before his pre-specified privacy budget is exceeded. A privacy odometer allows the analyst to
track realized privacy loss as he goes, without needing to pre-specify a privacy budget. We
show that unlike the case in which privacy parameters are fixed, in the adaptive parameter
setting, these two use cases are distinct. We show that there exist privacy filters with bounds
comparable (up to constants) with existing privacy composition theorems. We also give
a privacy odometer that nearly matches non-adaptive private composition theorems, but
is sometimes worse by a small asymptotic factor. Moreover, we show that this is inherent,
and that any valid privacy odometer in the adaptive parameter setting must lose this factor,
which shows a formal separation between the filter and odometer use-cases.
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1 Introduction

Differential privacy [DMNS06] is a stability condition on a randomized algorithm, designed to
guarantee individual-level privacy during data analysis. Informally, an algorithm is differentially
private if any pair of close inputs map to similar probability distributions over outputs, where
similarity is measured by two parameters ε and δ. Informally, ε measures the amount of privacy
and δ measures the failure probability that the privacy loss is much worse than ε. A signature
property of differential privacy is that it is preserved under composition—combining many
differentially private subroutines into a single algorithm preserves differential privacy and
the privacy parameters degrade gracefully. Composability is essential for both privacy and
for algorithm design. Since differential privacy is composable, we can design a sophisticated
algorithm and prove that it is private without having to reason directly about its output
distribution. Instead, we can rely on the differential privacy of the basic building blocks and
derive a privacy bound on the whole algorithm using the composition rules.

The composition theorem for differential privacy is very strong, and holds even if the
choice of which differentially private subroutine to run is adaptive—that is, the choice of the
next algorithm may depend on the output of previous algorithms. This property is essential
in algorithm design, but also more generally in modeling unstructured sequences of data
analyses that might be run by a human data analyst, or even by many data analysts on the
same data set, while only loosely coordinating with one another. Even setting aside privacy,
it can be very challenging to analyze the statistical properties of general adaptive procedures
for analyzing a dataset, and the fact that adaptively chosen differentially private algorithms
compose has recently been used to give strong guarantees of statistical validity for adaptive data
analysis [DFH+15, BNS+16].

However, all the known composition theorems for differential privacy [DMNS06, DKM+06,
DRV10, KOV15, MV16] have an important and generally overlooked caveat. Although the
choice of the next subroutine in the composition may be adaptive, the number of subroutines
called and choice of the privacy parameters ε and δ for each subroutine must be fixed in advance.
Indeed, it is not even clear how to define differential privacy if the privacy parameters are not
fixed in advance. This is generally acceptable when designing a single algorithm (that has
a worst-case analysis), since in any case worst-case eventualities need to be anticipated and
budgeted for in order to prove a theorem. However, it is not acceptable when modeling the
unstructured adaptivity of a data analyst, who may not know ahead of time (before seeing the
results of intermediate analyses) what he wants to do with the data. When controlling privacy
loss across multiple data analysts, the problem is even worse.

As a simple stylized example, suppose that A is some algorithm (possibly modeling a
human data analyst) for selecting statistical queries1 as a function of the answers to previously
selected queries. It is known that for any one statistical query q and any data set x, releasing
the perturbed answer â = q(x) +Z where Z ∼ Lap(1/ε) is a Laplace random variable, ensures
(ε,0)-differential privacy. Composition theorems allow us to reason about the composition of k
such operations, where the queries can be chosen adaptively by A, as in the following simple
program.

Example1(x):
For i = 1 to k:

1A statistical query is parameterized by a predicate φ, and asks “how many elements of the dataset satisfy φ?”
Changing a single element of the dataset can change the answer to the statistical query by at most 1.
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Let qi =A(â1, . . . , âi−1) and let âi = qi(x) + Lap(1/ε).
Output (â1, . . . , âk).

The “basic” composition theorem [DMNS06] asserts that Example1 is (εk,0)-differentially
private. The “advanced” composition theorem [DRV10] gives a more sophisticated bound
and asserts that (provided that ε is sufficiently small), the algorithm satisfies (ε

√
8k ln(1/δ),δ)-

differential privacy for any δ > 0. There is even an “optimal” composition theorem [KOV15]
too complicated to describe here. These analyses crucially assume that both the number of
iterations k and the parameter ε are fixed up front, even though it allows for the queries qi to be
adaptively chosen.2

Now consider a similar example where the number of iterations is not fixed up front, but
actually depends on the answers to previous queries. This is a special case of a more general
setting where the privacy parameter εi in every round may be chosen adaptively—halting in
our example is equivalent to setting εi = 0 in all future rounds.

Example2(x, τ):
Let i← 1, â1← q1(x) + Lap(1/ε).
While âi ≤ τ :

Let i← i + 1, qi =A(â1, . . . , âi−1), and let âi = qi(x) + Lap(1/ε).
Output (â1, . . . , âi).

Example2 cannot be said to be differentially private ex ante for any non-trivial fixed values of
ε and δ, because the computation might run for an arbitrarily long time and privacy may degrade
indefinitely. What can we say about privacy after we run the algorithm? If the algorithm/data-
analyst happens to stop after k rounds, can we apply the composition theorem ex post to conclude
that it is (εk,0)- and (ε

√
8k log(1/δ),0)-differentially private, as we could if the algorithm were

constrained to always run for at most k rounds?
In this paper, we study the composition properties of differential privacy when everything—

the choice of algorithms, the number of rounds, and the privacy parameters in each round—may
be adaptively chosen. We show that this setting is much more delicate than the settings covered
by previously known composition theorems, but that these sorts of ex post privacy bounds do
hold with only a small (but in some cases unavoidable) loss over the standard setting.

1.1 Our Results

We give a formal framework for reasoning about the adaptive composition of differentially
private algorithms when the privacy parameters themselves can be chosen adaptively. When
the parameters are chosen non-adaptively, a composition theorem gives a high probability bound
on the worst case privacy loss that results from the output of an algorithm. In the adaptive
parameter setting, it no longer makes sense to have fixed bounds on the privacy loss. Instead,
we propose two kinds of primitives capturing two natural use cases for composition theorems:

1. A privacy odometer takes as input a global failure parameter δg . After every round i in the
composition of differentially private algorithms, the odometer outputs a number τi that
may depend on the realized privacy parameters εi ,δi in the previous rounds. The privacy

2The same analysis holds for hetereogeneous parameters (ε1, . . . , εk) are used in each round as long as they are all
fixed in advance. For basic composition εk is replaced with

∑k
i=1 εi and for advanced composition ε

√
k is replaced

with
√∑k

i=1 ε
2
i .
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odometer guarantees that with probability 1− δg , for every round i, τi is an upper bound
on the privacy loss in round i.

2. A privacy filter is a way to cut off access to the dataset when the privacy loss is too large. It
takes as input a global privacy “budget” (εg ,δg ). After every round, it either outputs CONT
(“continue”) or HALT depending on the privacy parameters from the previous rounds. The
privacy filter guarantees that with probability 1−δg , it will output HALT before the privacy
loss exceeds εg . When used, it guarantees that the resulting interaction is (εg ,δg )-DP.

A tempting heuristic is to take the realized privacy parameters ε1,δ1, . . . , εi ,δi and apply
one of the existing composition theorems to those parameters, using that value as a privacy
odometer or implementing a privacy filter by halting when getting a value that exceeds the
global budget. However this heuristic does not necessarily give valid bounds.

We first prove that the heuristic does work for the basic composition theorem [DMNS06] in
which the parameters εi and δi add up. We prove that summing the realized privacy parameters
yields both a valid privacy odometer and filter.

However, as we show, the heuristic breaks for the advanced composition theorem [DRV10].
However, we give a valid privacy filter that gives the same asymptotic bound as the advanced
composition theorem, albeit with worse constants. On the other hand, we show that, in some
parameter regimes, the asymptotic bounds given by our privacy filter cannot be achieved by
a privacy odometer. This result gives a formal separation between the two models when the
parameters may be chosen adaptively, which does not exist when the privacy parameters are
fixed. Finally, we give a valid privacy odometer with a bound that is only slightly worse
asymptotically than the bound that the advanced composition theorem would give if it were
used (improperly) as a heuristic. Our bound is worse by a factor that is never larger than√

loglog(n) (here, n is the size of the dataset) and for some parameter regimes is only a constant.

2 Privacy Preliminaries

Differential privacy is defined based on the following notion of similarity between two distribu-
tions.

Definition 2.1 (Indistinguishable). Two random variables X and Y taking values from domain
D are (ε,δ)-indistinguishable, denoted as X ≈ε,δ Y , if ∀S ⊆ D,

P [X ∈ S] ≤ eεP [Y ∈ S] + δ and P [Y ∈ S] ≤ eεP [X ∈ S] + δ.

There is a slight variant of indistinguishability, called point-wise indistinguishability, which is
nearly equivalent, but will be the more convenient notion for the generalizations we give in this
paper.

Definition 2.2 (Point-wise Indistinguishable). Two random variables X and Y taking values
from D are (ε,δ)-point-wise indistinguishable if with probability at least 1− δ over either a ∼ X
or a ∼ Y , we have ∣∣∣∣∣∣log

(
P [X = a]
P [Y = a]

)∣∣∣∣∣∣ ≤ ε.
Lemma 2.3 ([KS14]). Let X and Y be two random variables taking values from D. If X and Y are
(ε,δ)-point-wise indistinguishable, then X ≈ε,δ Y . Also, if X ≈ε,δ Y then X and Y are

(
2ε, 2δ

eεε

)
-point-

wise indistinguishable.
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We say two databases x,x′ ∈ X n are neighboring if they differ in at most one entry, i.e. if there
exists an index i ∈ [n] such that x−i = x′−i . We can now state differential privacy in terms of
indistinguishability.

Definition 2.4 (Differential Privacy [DMNS06]). A randomized algorithmM : X n → Y with
arbitrary output range Y is (ε,δ)-differentially private (DP) if for every pair of neighboring
databases x,x′:

M(x) ≈ε,δM(x′).

We then define the privacy loss LossM(a;x,x′) for outcome a ∈ Y and neighboring datasets
x,x′ ∈ X n as

LossM(a;x,x′) = log
(
P [M(x) = a]
P [M(x′) = a]

)
.

We note that if we can bound LossM(a;x,x′) for any neighboring datasets x,x′ with high prob-
ability over a ∼ M(x), then Theorem 2.3 tells us that M is differentially private. Moreover,
Theorem 2.3 also implies that this approach is without loss of generality (up to a small differ-
ence in the parameters). Thus, our composition theorems will focus on bounding the privacy
loss with high probability.

A useful property of differential privacy is that it is preserved under post-processing without
degrading the parameters:

Theorem 2.5 (Post-Processing [DMNS06]). LetM : X n→Y be (ε,δ)-DP and f : Y → Y ′ be any
randomized algorithm. Then f ◦M : X n→Y ′ is (ε,δ)-DP.

We next recall a useful characterization from [KOV15]: any differentially private algorithm
can be written as the post-processing of a simple, canonical algorithm which is a generalization
of randomized response.

Definition 2.6. For any ε,δ ≥ 0, we define the randomized response algorithm RRε,δ : {0,1} →
{0,>,⊥,1} as

P

[
RRε,δ(0) = 0

]
= δ P

[
RRε,δ(1) = 0

]
= 0

P

[
RRε,δ(0) =>

]
= (1− δ) eε

1+eε P

[
RRε,δ(1) =>

]
= (1− δ) 1

1+eε

P

[
RRε,δ(0) =⊥

]
= (1− δ) eε

1+eε P

[
RRε,δ(1) =⊥

]
= (1− δ) 1

1+eε

P

[
RRε,δ(0) = 1

]
= 0 P

[
RRε,δ(1) = 1

]
= δ

When δ = 0, we will simply write the algorithm RRε,δ as RRε.

Kairouz, Oh, and Viswanath [KOV15] show that any (ε,δ)–DP algorithm can be viewed as a
post-processing of the output of RRε,δ for an appropriately chosen input.

Theorem 2.7 ([KOV15], see also [MV16]). For every (ε,δ)-DP algorithmM and for all neighboring
databases x0 and x1, there exists a randomized algorithm T where T (RRε,δ(b)) is identically distributed
toM(xb) for b ∈ {0,1}.

This theorem will be useful in our analyses, because it allows us to without loss of generality
analyze compositions of these simple algorithms RRε,δ with varying privacy parameters.
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We now define the adaptive composition of differentially private algorithms in the setting
introduced by [DRV10] and then extended to heterogenous privacy parameters in [MV16], in
which all of the privacy parameters are fixed prior to the start of the computation. The following
“composition game” is an abstract model of composition in which an adversary can adaptively
select between neighboring datasets at each round, as well as a differentially private algorithm
to run at each round – both choices can be a function of the realized outcomes of all previous
rounds. However, crucially, the adversary must select at each round an algorithm that satisfies
the privacy parameters which have been fixed ahead of time – the choice of parameters cannot
itself be a function of the realized outcomes of previous rounds. We define this model of
interaction formally in Algorithm 1 where the output is the view of the adversary A which
includes any random coins she uses RA and the outcomes A1, · · · ,Ak of every round.

Algorithm 1 FixedParamComp(A,E = (E1, · · · ,Ek),b), where A is a randomized algorithm,
E1, · · · ,Ek are classes of randomized algorithms, and b ∈ {0,1}.

Select coin tosses RbA for A uniformly at random.
for i = 1, · · · , k do
A =A(RbA,A

b
1, · · · ,A

b
i−1) gives neighboring datasets xi,0,xi,1, andMi ∈ Ei

A receives Abi =Mi(xi,b)
return view V b = (RbA,A

b
1, · · · ,A

b
k)

Definition 2.8 (Adaptive Composition [DRV10], [MV16]). We say that the sequence of privacy
parameters ε1, · · · , εk ≥ 0, δ1, · · · ,δk ∈ [0,1) satisfies (εg ,δg )-differential privacy under adaptive
composition if for every adversary A, and E = (E1, · · · ,Ek) where Ei is the class of (εi ,δi)-DP
algorithms, we have FixedParamComp(A,E , ·) is (εg ,δg )-DP in its last argument, i.e. V 0 ≈εg ,δg V

1.

We first state a basic composition theorem which shows that the adaptive composition
satisfies differential privacy where “the parameters just add up.”

Theorem 2.9 (Basic Composition [DMNS06], [DKM+06]). The sequence ε1, · · · , εk and δ1, · · ·δk
satisfies (εg ,δg )-differential privacy under adaptive composition where

εg =
k∑
i=1

εi , and δg =
k∑
i=1

δi .

We now state the advanced composition bound from [DRV10] which gives a quadratic
improvement to the basic composition bound.

Theorem 2.10 (Advanced Composition). For any δ̂ > 0, the sequence ε1, · · · , εk and δ1, · · ·δk where
ε = εi and δ = δi for all i ∈ [k] satisfies (εg ,δg )-differential privacy under adaptive composition where

εg = ε (eε − 1)k + ε
√

2k log(1/δ̂), and δg = kδ+ δ̂.
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This theorem can be easily generalized to hold for values of εi that are not all equal (as done
in [KOV15]). However, this is not as all-encompassing as it would appear at first blush, because
this straightforward generalization would not allow for the values of εi and δi to be chosen
adaptively by the data analyst. Indeed,the definition of differential privacy itself (Definition
2.4) does not straightforwardly extend to this case. The remainder of this paper is devoted to
laying out a framework in which we can sensibly talk about the privacy parameters εi and δi
being chosen adaptively by the data analyst, and to prove composition theorems (including an
analogue of Theorem 2.10) in this model.

3 Composition with Adaptively Chosen Parameters

We now introduce the model of composition with adaptive parameter selection, and define
privacy in this setting.

3.1 Definition

We want to model composition as in the previous section, but allow the adversary the ability to
also choose the privacy parameters (εi ,δi) as a function of previous rounds of interaction. We
will define the view of the interaction, similar to the view in FixedParamComp, to be the tuple
that includes A’s random coin tosses RA and the outcomes A = (A1, · · · ,Ak) of the algorithms she
chose. Formally, we define an adaptively chosen privacy parameter composition game in Algorithm 2
which takes as input an adversary A, a number of rounds of interaction k,3 and an experiment
parameter b ∈ {0,1}.

Algorithm 2 AdaptParamComp(A, k,b)

Select coin tosses RbA for A uniformly at random.
for i = 1, · · · , k do
A =A(RbA,A

b
1, · · · ,A

b
i−1) gives neighboring xi,0,xi,1, parameters (εi ,δi),Mi that is (εi ,δi)-DP

A receives Abi =Mi(xi,b)
return view V b = (RbA,A

b
1, · · · ,A

b
k)

We then define the privacy loss with respect to AdaptParamComp(A, k,b) in the following
way for a fixed view v = (r,a) where r represents the random coin tosses of A and we write
v<i = (r,a1, · · · , ai−1):

Loss(v) = log

P
[
V 0 = v

]
P

[
V 1 = v

] =
k∑
i=1

log

P
[
Mi(xi,0) = vi |v<i

]
P

[
Mi(xi,1) = vi |v<i

] def=
k∑
i=1

Lossi(v≤i). (1)

Note that the privacy parameters (εi ,δi) depend on the previous outcomes that A receives.
We will frequently shorten our notation εt = εt(v<t) and δt = δt(v<t) when the outcome is
understood.

3Note that in the adaptive parameter composition game, the adversary has the option of effectively stopping the
composition early at some round k′ < k by simply setting εi = δi = 0 for all rounds i > k′ . Hence, the parameter k will
not appear in our composition theorems the way it does when privacy parameters are fixed. This means that we can
effectively take k to be infinite. For technical reasons, it is simpler to have a finite parameter k, but the reader should
imagine it as being an enormous number(say the number of atoms in the universe) so as not to put any constraint at
all on the number of rounds of interaction with the adversary.
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It no longer makes sense to claim that the privacy loss of the adaptive parameter composition
experiment is bounded by any fixed constant, because the privacy parameters (with which we
would presumably want to use to bound the privacy loss) are themselves random variables.
Instead, we define two objects which can be used by a data analyst to control the privacy loss of
an adaptive composition of algorithms.

The first object, which we call a privacy odometer will be parameterized by one global
parameter δg and will provide a running real valued output that will, with probability 1− δg ,
upper bound the privacy loss at each round of any adaptive composition in terms of the realized
values of εi and δi selected at each round.

Definition 3.1 (Privacy Odometer). A function COMPδg : R2k
≥0→R∪{∞} is a valid privacy odometer

if for all adversaries in AdaptParamComp(A, k,b), with probability at most δg over v ∼ V 0:

|Loss(v)| > COMPδg (ε1,δ1, · · · , εk ,δk) .

The second object, which we call a privacy filter, is a stopping time rule. It takes two global
parameters (εg ,δg ) and will at each round either output CONT or HALT. Its guarantee is that with
probability 1− δg , it will output HALT if the privacy loss has exceeded εg .

Definition 3.2 (Privacy Filter). A function COMPεg ,δg : R2k
≥0→ {HALT,CONT} is a valid privacy filter

for εg ,δg ≥ 0 if for all adversariesA in AdaptParamComp(A, k,b), the following “bad event” occurs
with probability at most δg when v ∼ V 0:

|Loss(v)| > εg and COMPεg ,δg (ε1,δ1, · · · , εk ,δk) = CONT.

We note two things about the usage of these objects. First, a valid privacy odometer
can be used to provide a running upper bound on the privacy loss at each intermediate
round: the privacy loss at round k′ < k must with high probability be upper bounded by
COMPδg (ε1,δ1, . . . , εk′ ,δk′ ,0,0, . . . ,0,0) – i.e. the bound that results by setting all future privacy pa-
rameters to 0. This is because setting all future privacy parameters to zero is equivalent
to stopping the computation at round k′, and is a feasible choice for the adaptive adver-
sary A. Second, a privacy filter can be used to guarantee that with high probability, the
stated privacy budget εg is never exceeded – the data analyst at each round k′ simply queries
COMPεg ,δg (ε1,δ1, . . . , εk′ ,δk′ ,0,0, . . . ,0,0) before she runs algorithm k′, and runs it only if the filter
returns CONT. Again, this is guaranteed because the continuation is a feasible choice of the
adversary, and the guarantees of both a filter and an odometer are quantified over all adversaries.
We give the formal description of this interaction where A uses the privacy filter in Algorithm 3.

From the way we have defined a valid privacy filter, we have the following proposition:

Proposition 3.3. If COMPεg ,δg is a valid privacy filter then the views V 0
F and V 1

F of the adversary

from PrivacyFilterComp
(
A, k,b;COMPεg ,δg

)
with b = 0 and b = 1 respectively, are (εg ,δg )-point-wise

indistinguishable and hence V 0
F ≈εg ,δg V

1
F .

3.2 Focusing on Randomized Response

In [KOV15, MV16] Theorem 2.7 was used to show that for ordinary composition (Theorem 2.8),
it suffices to analyze the composition of randomized response. In this section, we show some-
thing similar for privacy odometers and filters. Specifically, we show that we can simulate

9



Algorithm 3 PrivacyFilterComp(A, k,b;COMPεg ,δg )

Select coin tosses RbA for A uniformly at random.
for i = 1, · · · , k do
A =A(RbA,A

b
1, · · · ,A

b
i−1) gives neighboring xi,0,xi,1, (εi ,δi), andMi that is (εi ,δi)-DP

if COMPεg ,δg (ε1,δ1, · · · , εi ,δi ,0,0, · · · ,0,0) = HALT then
Ai , · · · ,Ak =⊥
BREAK

else
A receives Abi =Mi(xi,b)

return view V bF = (RbA,A
b
1, · · · ,A

b
k)

AdaptParamComp(A, k,b) by defining a new adversary that chooses the differentially private
algorithmMi of adversary A, but uses the randomized response algorithm from Theorem 2.6
each round along with a post-processing function, which together determine the distribution
forMi .

In Algorithm 4, we define the new composition game SimulatedComp (A, k,b) with adver-
sary A that outputs the view W b, which includes the internal randomness RbA of A with the
randomized response outcomes Zb = (Zb1 , · · · ,Z

b
k ). From Theorem 2.7, we know that we can

simulate any (ε,δ)-DP algorithm as a randomized post-processing function T on top of RRε,δ.
Thus given the outcomes prior to round i, A selectsMi , which is equivalent to selecting a post-
processing function Ti . Note that we can simulate Ti as a deterministic function Pi with access
to random coins RbSIMi , i.e. Pi

(
RRεi ,δi (b);RbSIMi

)
∼ Ti

(
RRεi ,δi (b)

)
. We then include the random coins

RbSIM =
(
RbSIM1

, · · · ,RbSIMk
)

in the view of adversary A in SimulatedComp(A, k,b). From the view

W b =
(
RbA,RSIM,Z

b
1 , · · · ,Z

b
k

)
, A would be able to reconstruct the privacy parameters selected each

round along with algorithmsM1, · · · ,Mk used, which would also determine the post-processing
functions P1, · · · , Pk .

Algorithm 4 SimulatedComp(A, k,b)

Select coin tosses RbA for A uniformly at random.
for i = 1, · · · , k do
A =A

(
RbA,Y

b
1 , · · · ,Y

b
i−1

)
gives neighboring xi,0,xi,1, parameters (εi ,δi),Mi that is (εi ,δi)-DP.

Let Pi be a deterministic post-processing function, such that

Pi
(
RRεi ,δi (b);RbSIMi

)
∼Mi

(
xi,b

)
(2)

for uniformly random RbSIMi .
Compute Zbi = RRεi ,δi (b) and Y bi = Pi(Z

b
i ;RbSIMi ).

A receives Y bi .
return view W b = (RbA,R

b
SIM,Z

b
1 , · · · ,Z

b
k ), where RbSIM =

(
RbSIM1

, · · · ,RbSIMk
)
.
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From the way that we have defined Pi in (2), for each fixed value of the internal randomness
of A, the view of AdaptParamComp(A, k,b) is distributed identically to a post-processing of the
view W b from SimulatedComp(A, k,b).

Lemma 3.4. For every adversary A, the deterministic function P defined as

P
(
RbA,R

b
SIM,Z

b
1 , · · · ,Z

b
k

)
=

(
RbA, P1(Zb1 ;RbSIM1

), · · · , Pk(Zbk ;RbSIMk )
)

(3)

ensures that P (SimulatedComp(A, k,b)) and AdaptParamComp (A, k,b) are identically distributed.

Since RbA is the first argument of both random variables, they are also identically distributed
conditioned on any fixed value of RbA. This point-wise equivalence for every value of the
internal randomness allows us to without loss of generality analyze deterministic adversaries
and post-processing functions of SimulatedComp(A, k,b) in order to reason about the view of
AdaptParamComp(A, k,b). Because the randomness is fixed, for clarity, we will omit the random
coins RbA from the view of both composition games for the rest of the analysis.

We will now show that it is sufficient to prove bounds in which εi may be adaptively
chosen at each round, and in which {δi} ≡ 0 uniformly. We do this by giving a generic way
to extend a bound in the δi = 0 case to a bound that holds when the δi may be non-zero.
Define a slight modification of Algorithm 4 called ˜SimulatedComp(A, k,b) which is the same
as SimulatedComp(A, k,b) except that it computes Z̃bi = RRεi (b) (where δi = 0) and sets Ỹ bi =
Pi

(
Z̃bi ;RbSIMi

)
. We then define the final view of the adversary A in ˜SimulatedComp(A, k,b) as W̃ b

where
W̃ b =

(
RbSIM, Z̃

b
1 , · · · , Z̃

b
k

)
and Ṽ b =

(
Ỹ b1 , · · · , Ỹ

b
k

)
= P

(
W̃ b

)
(4)

for P (·) given in (3). We then say that C̃OMPδg (also C̃OMPεg ,δg ) is a valid privacy odometer (filter)
when {δi} ≡ 0 if over all deterministic adversaries A in ˜SimulatedComp(A, k,b) the condition in
Theorem 3.1 (Theorem 3.2) holds with probability at most δg over ṽ ∼ P

(
W̃ b

)
except now the

privacy loss is given as

L̃oss(ṽ) = log

P
[
Ṽ 0 = ṽ

]
P

[
Ṽ 1 = ṽ

] =
k∑
i=1

log

P
[
Pi

(
RRεi (0);R0

SIMi

)
= ṽi |ṽ<i

]
P

[
Pi

(
RRεi (1);R1

SIMi

)
= ṽi |ṽ<i

] def=
k∑
i=1

L̃ossi(ṽ≤i). (5)

The following result gives the connection between valid privacy odometers and filters in the
modified game ˜SimulatedComp(A, k,b) with the original definitions given in Theorems 3.1
and 3.2.

Lemma 3.5. If C̃OMPδg is a valid privacy odometer when {δi} ≡ 0, then for every δ′g ≥ 0, COMPδg+δ′g is
a valid privacy odometer where

COMPδg+δ′g (ε1,δ1, · · · , εk ,δk) =
{
∞ if

∑k
i=1 δi > δ

′
g

C̃OMPδg (ε1,0, · · · , εk ,0) otherwise
.

If C̃OMPεg ,δg is a valid privacy filter when {δi} ≡ 0, then for every δ′g ≥ 0, COMPεg ,δg+δ′g is a valid privacy
filter where

COMPεg ,δg+δ′g (ε1,δ1, · · · , εk ,δk) =
{

HALT if
∑k
i=1 δi > δ

′
g

C̃OMPεg ,δg (ε1,0, · · · , εk ,0) otherwise
.

11



Proof. LetW = (RSIM,Z1, · · · ,Zk) be the view ofA in SimulatedComp(A, k,0) and W̃ = (RSIM, Z̃1, · · · , Z̃k)
be her view in ˜SimulatedComp(A,k,0) (where {δi} ≡ 0). We will also write the view of AdaptParamComp(A, k,0)
as V = (A1, · · · ,Ak) and the post-processing functions of A as Pi from (2). As in (3), we will use
the notation P (W ) =

(
P1(Z1;RSIMi

), · · · , Pk(Zk ;RSIMi
)
)

and similarly for Ṽ = P (W̃ ). Recall that from
Theorem 3.4 that we know V ∼ P (W ), even if A were randomized.

Consider the following method of sampling from RRε,δ: first select outcome z̃ from RRε(0),
then with probability 1−δ set z = z̃ – otherwise set z = 0. Note that this samples from the correct
distribution for RRε,δ(0). We can thus couple draws from RRε(0) and RRε,δ(0), so for our setting
we write the coupled random variable as: V = (V ,Ṽ ).

We then define the following sets:

F = {(w = (r,z), w̃ = (r, z̃)) : ∃t ∈ [k] s.t. zt , z̃t} , Gt =

v :
t∑
i=1

δi(v<i) ≤ δ′g

 ,
Ft = {(w = (r,z), w̃ = (r, z̃)) : zt , z̃t and zi = z̃i ∀i < t} , H =

{
v : |L̃oss(v)| ≥ C̃OMPδg (ε1,0, · · · , εk ,0)

}
.

We then want to show that we can bound the privacy loss with high probability. Specifically,

P

V

|Loss(V )| ≥ C̃OMPδg (ε1,0, · · · , εk ,0) ∧
k∑
t=1

δt ≤ δ′g

 ≤ δg + δ′g .

where each εi is a function of the outputs of the prefix Ṽ<i of the full view Ṽ from ˜SimulatedComp(A, k,0).
We now show that the quantity that we want to bound can be written as the probability of the
coupled random variables V and W =

(
W,W̃

)
being contained in the sets that we defined above.

P

V∼(P (W ),P (W̃ ))

|Loss(V )| ≥ C̃OMPδg (ε1,0, · · · , εk ,0) ∧
k∑
t=1

δt ≤ δ′g


≤ P [(W ∈ F ∧ V ∈ Gk) ∨ (V ∈ H ∧ W < F )]

≤ P [W ∈ F ∧ V ∈ Gk] +P

[
Ṽ ∈ H

]
≤ P [W ∈ F ∧ V ∈ Gk] + δg (6)

Note, that if
∑k
i=1 δi(v<i) ≤ δg then we must have

∑t
i=1 δi(v<i) ≤ δg for each t < k, so that Gk ⊆ Gt.

We then use the fact that {Ft : t ∈ [k]} forms a partition of F , i.e. F =
⋃k
t=1Ft and Fi ∩Fj = ∅ for

i , j, to obtain the following:

P [W ∈ F ∧ V ∈ Gk] =
k∑
t=1

P [W ∈ Ft ∧ V ∈ Gk] ≤
k∑
t=1

P [W ∈ Ft ∧ V ∈ Gt] .

Further, if we have w = (w = (r,z), w̃ = (r.̃z)) ∈ Ft then we have δi(P<i(w<i)) = δi(P<i(w̃<i)) for
i < t where P<i(w<i) = (P1(z1;r1), · · · , Pi−1(zi−1;ri−1)) and similarly for P<i(w̃<i). This gives us the

12



following relation

k∑
t=1

P [W ∈ Ft ∧ V ∈ Gt]

≤
k∑
t=1

P

[
W ∈ Ft ∧ Ṽ ∈ Gt

]
=

k∑
t=1

∑
ṽ∈Gt

P

[
Ṽ = ṽ

]
P [W ∈ Ft |ṽ]

≤
k∑
t=1

∑
ṽ∈Gt

P

[
Ṽ = ṽ

]
δt(ṽ<t).

We now switch the order of summation to obtain our result

k∑
t=1

∑
ṽ∈Gt

P

[
Ṽ = ṽ

]
δt(ṽ<t) =

∑
ṽ

P

[
Ṽ = ṽ

] ∑
t:
∑t
i=1 δi (ṽ<i )≤δ′g

δt(ṽ<t) ≤
∑
ṽ

P

[
Ṽ = ṽ

]
δ′g = δ′g . (7)

We then combine this with (6) to prove our first statement for the privacy odometer.
Using the same notation as above, we now move to proving the statement for the privacy

filter. It suffices to prove the following:

P

V∼(P (W ),P (W̃ ))

[
|Loss(V )| ≥ εg ∧ V ∈ Gk ∧ C̃OMPεg ,δg (ε1,0, · · · , εk ,0) = CONT

]
≤ δg + δ′g .

We now define a slight variant of H from above:

Hεg =
{
v :

∣∣∣L̃oss(v)
∣∣∣ ≥ εg} .

Similar to what we showed in (6) for the privacy odometer, we have

P

V

[
|Loss(V )| ≥ εg ∧ V ∈ Gk ∧ C̃OMPεg ,δg (ε1,0, · · · , εk ,0) = CONT

]
≤ P

V∼(P (W ),P (W̃ ))

[(
(W ∈ F ∧V ∈ Gk)∨ (V ∈ Hεg ∧W < F )

)
∧ C̃OMPεg ,δg (ε1,0, · · · , εk ,0) = CONT

]
≤ P [W ∈ F ∧ V ∈ Gk] +P

[
Ṽ ∈ Hεg ∧ C̃OMPεg ,δg (ε1,0, · · · , εk ,0) = CONT

]
≤ P [W ∈ F ∧ V ∈ Gk] + δg

≤ δ′g + δg

where the last inequality follows from (6) and (7).

3.3 Basic Composition

We first give an adaptive parameter version of the basic composition in Theorem 2.9.
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Theorem 3.6. For every δg ≥ 0, COMPδg is a valid privacy odometer where

COMPδg+δ′g (ε1,δ1, · · · , εk ,δk) =
{
∞ if

∑k
i=1 δi > δ

′
g∑k

i=1 εi otherwise
.

Additionally, for any εg ,δg ≥ 0, COMPεg ,δg is a valid privacy filter where

COMPεg ,δg (ε1,δ1, · · · , εk ,δk) =
{

HALT if
∑k
i=1 δi > δ

′
g or

∑k
i=1 εi > εg

CONT otherwise
.

Proof. We use Theorems 3.4 and 3.5 so that we need to only reason about any deterministic ad-
versary in ˜SimulatedComp(A, k,b). We know that (ε,0)-DP is closed under post-processing from
Theorem 2.5, so that for any (randomized) post-processing function T , we have T (RRε(0)) ≈ε,0
T (RRε(1)) and by Theorem 2.3 we know that T (RRε(0)) and T (RRε(1)) are (ε,0)-point-wise in-
distinguishable for any post-processing function T . The proof then follows simply from
the definition of (pure) differential privacy, so for all possible views ṽ of the adversary in
P
(

˜SimulatedComp(A, k,b)
)
:

∣∣∣L̃oss(ṽ)
∣∣∣ ≤ k∑

i=1

∣∣∣∣∣∣∣log

P
[
Pi

(
RRεi (0);R0

SIMi

)
= ṽi |ṽ<i

]
P

[
Pi

(
RRεi (1);R1

SIMi

)
= ṽi |ṽ<i

]
∣∣∣∣∣∣∣ ≤

k∑
i=1

εi(ṽ<i)

where we explicitly write the dependence of the choice of εi by A at round i on the view from
the previous rounds as εi(ṽ<i)

4 Concentration Preliminaries

We give a useful concentration bound that will be pivotal in proving an improved valid privacy
odometer and filter from that given in Theorem 3.6. We first present a concentration bound for
self normalized processes.

Lemma 4.1 (Corollary 2.2 in [dlPKLL04]). If A and B > 0 are two random variables such that

E

[
exp

(
λA− λ

2

2
B2

)]
≤ 1 (8)

for all λ ∈R, then for all δ ≤ 1/e, β > 0 we have

P

|A| ≥
√

(B2 + β)
(
2 + log

(
B2

β
+ 1

))
log(1/δ)

 ≤ δ.
To put this bound into context, suppose that B is a constant and we apply the bound with

β = B2. Then the bound simplifies to

P

[
|A| ≥O

(
B
√

log(1/δ)
)]
≤ δ,
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which is just a standard concentration inequality for any subgaussian random variable A with
standard deviation B.

We will apply Theorem 4.1 to random variables coming from martingales defined from the
privacy loss functions. To set this up, we present some notation: let (Ω,F ,P) be a probability
triple where ∅ = F0 ⊆ F1 ⊆ · · · ⊆ F is an increasing sequence of σ -algebras. Let Xi be a real-valued
Fi-measurable random variable, such that E [Xi |Fi−1] = 0 a.s. for each i. We then consider the
martingale where

M0 = 0 Mk =
k∑
i=1

Xi , ∀k ≥ 1. (9)

We then use the following result which gives us a pair of random variables to which we can
apply Theorem 4.1.

Lemma 4.2 (Lemma 2.4 in [vdG02]). For Mk defined in (9), if there exists two random variables
Ci < Di that are Fi−1-measurable for i ≥ 1

Ci ≤ Xi ≤Di a.s. ∀i ≥ 1.

and we define Uk as

U2
0 = 0, U2

k =
k∑
i=1

(Di −Ci)2 , ∀k ≥ 1 (10)

then

exp
[
λMk −

λ2

8
U2
k

]
is a supermartingale for all λ ∈R.

We then obtain the following result from combining Theorem 4.1 with Theorem 4.2.

Theorem 4.3. Let Mk be defined as in (9) and satisfy the hypotheses of Theorem 4.2. Then for every
fixed k ≥ 1, β > 0 and δ ≤ 1/e, we have

P

|Mk | ≥

√U2
k

4
+ β

2 + log

U2
k

4β
+ 1

 log(1/δ)

 ≤ δ
Given Theorem 3.5, we will focus on finding a valid privacy odometer and filter when

{δi} ≡ 0. Our analysis will then depend on the privacy loss L̃oss(Ṽ ) from (5) where Ṽ is the view
of the adversary in ˜SimulatedComp(A, k,0). We then focus on the following martingale in our
analysis:

M̃k =
k∑
i=1

(
L̃ossi(Ṽ≤i)− µ̃i

)
where µ̃i = E

[
L̃ossi(Ṽ≤i)

∣∣∣Ṽ<i ] . (11)

We can then bound the conditional expectation µ̃i with the following result from [DR16] that
improves on an earlier result from [DRV10] by a factor of 2.

Lemma 4.4 ([DR16]). For µ̃i defined in (11), we have µ̃i ≤ εi (eεi − 1) /2.
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5 Advanced Composition for Privacy Filters

We next show that we can essentially get the same asymptotic bound as Theorem 2.10 for the
privacy filter setting using the bound in Theorem 4.3 for the martingale given in (11).

Theorem 5.1. We define K as the following

K
def
=

k∑
j=1

εj

(
eεj − 1

2

)
+

√√√
2

 k∑
i=1

ε2
i +

ε2
g

28.04 · log(1/δg )


1 +

1
2

log

28.04 · log(1/δg )
∑k
i=1 ε

2
i

ε2
g

+ 1


 log(2/δg ).

(12)
COMPεg ,δg is a valid privacy filter for δg ∈ (0,1/e) and εg > 0 where

COMPεg ,δg (ε1,δ1, · · · , εk ,δk) =
{

HALT if
∑k
i=1 δi > δg /2 or K > εg

CONT otherwise
.

Note that if we have
∑k
i=1 ε

2
i = O

(
1/ log(1/δg )

)
and set εg = Θ

(√∑k
i=1 ε

2
i log(1/δg )

)
in (12),

we are then getting the same asymptotic bound on the privacy loss as in [KOV15] and in
Theorem 2.10 for the case when εi = ε for i ∈ [k]. If kε2 ≤ 1

8log(1/δg ) , then Theorem 2.10 gives

a bound on the privacy loss of ε
√

8k log(1/δg ). Note that there may be better choices for the

constant 28.04 that we divide ε2
g by in (12), but for the case when εg = ε

√
8k log(1/δg ) and εi = ε

for every i ∈ [n], it is nearly optimal.

Proof of Theorem 5.1. Note that Theorem 3.5 allows us to concentrate on showing that we can
find an optimal privacy filter when {δi} ≡ 0. We then focus on the martingale M̃k given in (11).
In order to apply Theorem 4.3 we set the lower bound for M̃i to be Ci = (−εi − µ̃i) and upper
bound to be Di = (εi − µ̃i) in order to compute U2

k from (10). We then have for the martingale in
(11) that

U2
k = 4

k∑
i=1

ε2
i .

We can then directly apply Theorem 4.3 to get the following for β =
(

εg√
28.04·log(1/δg )

)2

> 0

with probability at least 1− δg /2

|M̃k | ≤

√√√
2

 k∑
i=1

ε2
i +

ε2
g

28.04 · log(1/δg )


1 +

1
2

log

28.04 · log(1/δg )
∑k
i=1 ε

2
i

ε2
g

+ 1


 log(2/δg ).

We can then obtain a bound on the privacy loss with probability at least 1− δg /2 over ṽ ∼ Ṽ 0

∣∣∣L̃oss(ṽ)
∣∣∣ ≤ k∑

i=1

µ̃i +

√√√
2

 k∑
i=1

ε2
i +

ε2
g

28.04 · log(1/δg )


1 +

1
2

log

28.04 · log(1/δg )
∑k
i=1 ε

2
i

ε2
g

+ 1


 log(2/δg )

≤
k∑
i=1

εi (e
εi − 1) +

√√√
2

 k∑
i=1

ε2
i +

ε2
g

28.04 · log(1/δg )


1 +

1
2

log

28.04 · log(1/δg )
∑k
i=1 ε

2
i

ε2
g

+ 1


 log(2/δg ).
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6 Advanced Composition for Privacy Odometers

One might hope to achieve the same sort of bound on the privacy loss from Theorem 2.10 when
the privacy parameters may be chosen adversarially. However we show that this cannot be
the case for any valid privacy odometer. In particular, even if an adversary selects the same

privacy parameter ε = o(
√

log(log(n)/δg )/k) each round but can adaptively select a time to stop

interacting with AdaptParamComp (which is a restricted special case of the power of the general
adversary – stopping is equivalent to setting all future εi ,δi = 0), then we show that there

can be no valid privacy odometer achieving a bound of o(ε
√
k log

(
log(n)/δg

)
). This gives a

separation between the achievable bounds for a valid privacy odometers and filters. But for
privacy applications, it is worth noting that δg is typically set to be (much) smaller than 1/n, in
which case this gap disappears (since log(log(n)/δg ) = (1 + o(1)) log(1/δg ) ).

Theorem 6.1. For any δg ∈ (0,O(1)) there is no valid COMPδg privacy odometer where

COMPδg (ε1,0, · · · , εk ,0) =
k∑
i=1

εi

(
eεi − 1
eεi + 1

)
+ o


√√√

k∑
i=1

ε2
i log(log(n)/δg )

 (13)

In order to prove Theorem 6.1, we use the following anti-concentration bound for a sum of
random variables.

Lemma 6.2 (Lemma 8.1 in [LT91]). Let X1, · · · ,Xk be a sequence of mean zero i.i.d. random variables
such that |X1| < a and σ2 = E

[
X2

1

]
. For every α > 0 there exists two positive constants Cα and cα such

that for every x satisfying
√
kσCα ≤ x ≤ cα kσ

2

a we have

P

 k∑
i=1

Xi ≥ x

 ≥ exp
[
−(1 +α)

x2

2kσ2

]

For γ ∈ [1/2,1), we define the random variables ξi ∈ {−1,1} where

P [ξi = 1] = γ P [ξi = −1] = 1−γ. (14)

Note that E [ξi]
def= µ = 2γ − 1 and V [ξi]

def= σ2 = 1−µ2. We then consider the sequence of i.i.d.
random variables X1, · · · ,Xn where Xi = (ξi −E [ξi]). We denote the sum of Xi as

Mn =
n∑
i=1

Xi . (15)

We then apply Theorem 6.2 to prove an anti-concentration bound for the martingale given
above.

Lemma 6.3 (Anti-Concentration). Consider the partial sums Mt defined in (15) for t ∈ [n]. There

exists a constant C such that for all δ ∈ (0,O(1)) and n >Ω

(
log(1/δ) ·

(1+µ
σ

)2
)

we have

P

[
∃t ∈ [n] s.t. Mt ≥ Cσ

√
t log(log(n)/δ)

]
≥ δ.
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Proof. By Theorem 6.2, we know that there exists constants C1,C2,C3 and large N such that for

all m > N ·
(1+µ
σ

)2
and x ∈

[
1,C3

√
m σ

1+µ

]
, we have

P

 m∑
i=1

Xi ≥ C1
√
mσx

 ≥ e−C2x
2
.

Rather than consider every possible t ∈ [n], we consider j ∈
{
mδ,m

2
δ, · · · ,m

blogmδ (n)c
δ

}
where

mδ ∈N and mδ > m log(1/δ). We then have for a constant C that

P

[
∃t ∈ [n] s.t. Mt ≥ Cσ

√
t log(1/δ)

]
≥ P

[
∃j ∈

[
blogmδ

(n)c
]

s.t. M
m
j
δ
≥ Cσ

√
m
j
δ log(1/δ)

]

=

blogmδ (n)c∑
j=1

P

[
M
m
j
δ
≥ Cσ

√
m
j
δ log(1/δ)

∣∣∣∣∣Mm`
δ
≤ Cσ

√
m`δ log(1/δ) ∀` < j

]

≥
blogmδ (n)c∑

j=1

P

[
M
m
j
δ
≥ Cσ

(√
m
j
δ log(1/δ) +

√
m
j−1
δ log(1/δ)

)]

=

blogmδ (n)c∑
j=1

P

[
M
m
j
δ
≥ Cσ

(
1 + 1/

√
mδ

)√
m
j
δ log(1/δ)

]

≥
blogmδ (n)c∑

j=1

P

[
M
m
j
δ
≥ 2Cσ

√
m
j
δ log(1/δ)

]

Thus, we set C = C1

2
√
C2

and then for any δ such that
√
C2 <

√
log(1/δ) < C3

√
C2
√
mδ

σ
1+µ , we have

P

[
∃t ∈ [n] s.t. Mt ≥ Cσ

√
t log(1/δ)

]
≥ blogmδ

(n)cδ.

Algorithm 5 Stopping Time Adversary Aε,δ with constant C
for i = 1, · · · , k do
Aε,δ =Aε,δ(C,Y1,··· ,Yi−1) gives datasets {0,1}, parameter (ε,0) and RRε to AdaptParamComp.
Aε,δ receives Yi ∈ {>,⊥}.
if Yi => then
Xi = ε

else
Xi = −ε

if
∑i
j=1

(
Xj − ε e

ε−1
eε+1

)
≥ C

(
ε
√
t log(log(n)/δ)

)
, then

εi+1, · · ·εk = 0
BREAK

We next use Theorem 6.3 to prove that we cannot have a bound like Theorem 2.10 in the
adaptive privacy parameter setting, which uses the stopping time adversary given in Algorithm 5.
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Proof of Theorem 6.1. Consider the stopping time adversary Aε,δg from Algorithm 5 for a con-
stant C that we will determine in the proof. Let the number of rounds k = n and ε = 1/n.
In order to use Theorem 6.3 we define γ = eε

1+eε from (14). Because we let ε depend on n,

we have µ ≡ µn = e1/n−1
e1/n+1 = O(1/n) and σ ≡ σn = 1 − µ2

n = 1 −O(1/n2) which gives 1+µn
σn

= Θ(1).
We then relate the martingale in (15) with the privacy loss for this particular adversary in
AdaptParamComp(Aε,δg ,n,0) with view V who sets Xt = ±ε each round,

t∑
j=1

(
Xj −

µn
n

)
=

1
n
Mt ∀t ∈ [n].

Hence, at any round t if Aε,δg finds that

1
n
Mt ≥ C

(1
n

√
t log(log(n)/δg )

)
(16)

then she will set all future εi = 0 for i > t. To find the probability that (16) holds in any round
t ∈ [n] we use Theorem 6.3 with the constant C from the lemma statement to say that (16) occurs
with probability at least δg .

Assume that COMPεg is a valid privacy odometer and (13) holds. We then know that with

probability at least 1− δg over v ∼ V b where V b is the view for AdaptParamComp(A1/n,δg ,n,b)

|Loss(v)| ≤ COMPδg (ε1,0, · · · , εk ,0)

=⇒

∣∣∣∣∣∣∣
t∑
i=1

Lossi(v≤i)

∣∣∣∣∣∣∣ = t ·
µn
n

+ o

1
n

√
t log

(
log(n)
δg

) ∀t ∈ [n]

But this is a contradiction given that the bound in (16) at any round t ∈ [n] occurs with probabil-
ity at least δg .

We now utilize the bound from Theorem 4.3 to obtain a concentration bound on the privacy
loss.

Lemma 6.4. COMPδg is a valid privacy odometer for δg ∈ (0,1/e) where COMPδg (ε1,δ1, · · · , εk ,δk) =∞
if

∑k
i=1 δi > δg /2 and otherwise for any β > 0,

COMPδg (ε1,δ1, · · · , εk ,δk) =
k∑
j=1

εj (eεj − 1) /2 +

√√√
2

 k∑
i=1

ε2
i + β


1 +

1
2

log

∑k
i=1 ε

2
i

β
+ 1

 log(2/δg ).

Proof. We will follow a similar argument as in Theorem 5.1 where we use the same martingale
M̃k from (11). We can then directly apply Theorem 4.3 to get the following for any β > 0 with
probability at least 1− δg /2

∣∣∣M̃k

∣∣∣ ≤
√√√

2

 k∑
i=1

ε2
i + β


1 +

1
2

log

∑k
i=1 ε

2
i

β
+ 1

 log(2/δg )
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We next need to determine what value of β > 0 to choose in the above result. If we were to
set β =

∑k
i=1 ε

2
i , then we would get asymptotically close to the same bound as in Theorem 2.10,

however, the εi are random variables, and their realizations cannot be used in setting β; further,
we know from Theorem 6.1 that such a bound cannot hold in this setting.

We now give our main positive result for privacy odometers, which is similar to our privacy
filter in Theorem 5.1 except that δg is replaced by δg / log(n), as is necessary from Theorem 6.1.
Note that the bound incurs an additive 1/n2 loss to the

∑
i ε

2
i term that is present without

privacy. In any reasonable setting of parameters, this translates to at most a constant-factor
multiplicative loss, because there is no utility running any differentially private algorithm with
εi <

1
10n (indeed, this implies that the output distributions on any two inputs are at statistical

distance at most eεi ·n · δi + 1− e−εin < 1.2δi + 0.1, and hence the output is essentially independent
of the input).

Theorem 6.5 (Advanced Privacy Odometer). COMPδg is a valid privacy odometer for δg ∈ (0,1/e)

where COMPδg (ε1,δ1, · · · , εk ,δk) =∞ if
∑k
i=1 δi > δg /2, otherwise if

∑k
i=1 ε

2
i ∈ [1/n2,1] then

COMPδg (ε1,δ1, · · · , εk ,δk) =
k∑
i=1

εi

(
eεi − 1

2

)
+ 2

√√√
k∑
i=1

ε2
i

(
1 + log

(√
3
))

log(4log2(n)/δg ). (17)

and if
∑k
i=1 ε

2
i < [1/n2,1] then COMPδg (ε1,δ1, · · · , εk ,δk) is equal to

k∑
i=1

εi

(
eεi − 1

2

)
+

√√√
2

1/n2 +
k∑
i=1

ε2
i


1 +

1
2

log

1 +n2
k∑
i=1

ε2
i


 log(4log2(n))/δg ). (18)

Proof. We again focus on a valid privacy odometer for {δi} ≡ 0 and the martingale M̃k from

Equation (11). We then discretize the choices of β ∈ Dn
def= {1/n2,2/n2,4/n2, · · · ,1/2,1} in Theo-

rem 6.4, and then take a union bound over all β ∈ Dn to say that for the martingale M̃k in (11)
the following holds with probability at least 1− δg simultaneously over all β ∈ Dn

|M̃k | ≤

√√√
2

 k∑
i=1

ε2
i + β


1 +

1
2

log

∑k
i=1 ε

2
i

β
+ 1

 log(2log2(n2)/δg ).

Thus, for each realization
∑k
i=1 ε

2
i ∈ [1/n2,1], we can select β to be the largest value in Dn that is

just below
∑k
i=1 ε

2
i , i.e. 1 ≤

∑k
i=1 ε

2
i

β ≤ 2. This then gives the following bound with probability at

least 1− δg /2 when
∑k
i=1 ε

2
i ∈ [1/n2,1],

|M̃k | ≤
k∑
j=1

√√√
2

2
k∑
i=1

ε2
i

(1 +
1
2

log(2 + 1)
)

log(4log2(n)/δg ).

For the bound given in (18), we set β = 1/n2. Hence, we would have with probability at least
1− δg /2 when

∑k
i=1 ε

2
i < [1/n2,1],

|M̃k | ≤
k∑
j=1

√√√
2

1/n2 +
k∑
i=1

ε2
i


1 +

1
2

log

1 +n2
k∑
i=1

ε2
i


 log(4log2(n)/δg ).
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In the above theorem, we only allow privacy parameters such that
∑k
i=1 ε

2
i ∈ [1/n2,1]. This

assumption is not too restrictive, since the output of a single (� 1/n)-differentially private
algorithm is nearly independent of its input. More generally, we can replace 1/n2 with an
arbitrary “granularity parameter” γ and require that

∑k
i=1 ε

2
i ∈ [γ,1]. When doing so, log2(n2)/δg

in (17) will be replaced with log2(1/γ)/δg . For example, we could require that ε1 ≥ δg , in which
case we can choose γ = δ2

g , which would not affect our bound substantially.
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