
Differentially Private Release and Learning of Threshold Functions∗

Mark Bun† Kobbi Nissim‡ Uri Stemmer§ Salil Vadhan¶

Abstract

We prove new upper and lower bounds on the sample complexity of (ε, δ) differentially private

algorithms for releasing approximate answers to threshold functions. A threshold function cx over a

totally ordered domain X evaluates to cx(y) = 1 if y ≤ x, and evaluates to 0 otherwise. We give the

first nontrivial lower bound for releasing thresholds with (ε, δ) differential privacy, showing that the task

is impossible over an infinite domain X , and moreover requires sample complexity n ≥ Ω(log∗ |X|),
which grows with the size of the domain. Inspired by the techniques used to prove this lower bound, we

give an algorithm for releasing thresholds with n ≤ 2(1+o(1)) log∗ |X| samples. This improves the previous

best upper bound of 8(1+o(1)) log∗ |X| (Beimel et al., RANDOM ’13).

Our sample complexity upper and lower bounds also apply to the tasks of learning distributions with

respect to Kolmogorov distance and of properly PAC learning thresholds with differential privacy. The

lower bound gives the first separation between the sample complexity of properly learning a concept

class with (ε, δ) differential privacy and learning without privacy. For properly learning thresholds in �
dimensions, this lower bound extends to n ≥ Ω(� · log∗ |X|).

To obtain our results, we give reductions in both directions from releasing and properly learning

thresholds and the simpler interior point problem. Given a database D of elements from X , the interior

point problem asks for an element between the smallest and largest elements in D. We introduce new

recursive constructions for bounding the sample complexity of the interior point problem, as well as

further reductions and techniques for proving impossibility results for other basic problems in differential

privacy.
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I. INTRODUCTION

The line of work on differential privacy [19] is aimed at enabling useful statistical analyses on privacy-

sensitive data while providing strong privacy protections for individual-level information. Privacy is

achieved in differentially private algorithms through randomization and the introduction of “noise” to

obscure the effect of each individual, and thus differentially private algorithms can be less accurate than

their non-private analogues. Nevertheless, by now a rich literature has shown that many data analysis
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tasks of interest are compatible with differential privacy, and generally the loss in accuracy vanishes as

the number n of individuals tends to infinity. However, in many cases, there is still is a price of privacy

hidden in these asymptotics — in the rate at which the loss in accuracy vanishes, and in how large n
needs to be to start getting accurate results at all (the “sample complexity”).

In this paper, we consider the price of privacy for three very basic types of computations involving

threshold functions: query release, distribution learning with respect to Kolmogorov distance, and (proper)

PAC learning. In all cases, we show for the first time that accomplishing these tasks with differential

privacy is impossible when the data universe is infinite (e.g. N or [0, 1]) and in fact that the sample

complexity must grow with the size |X| of the data universe: n = Ω(log∗ |X|), which is tantalizingly

close to the previous upper bound of n = 2O(log∗ |X|) [4]. We also provide simpler and somewhat improved

upper bounds for these problems, reductions between these problems and other natural problems, as well

as additional techniques that allow us to prove impossibility results for infinite domains even when the

sample complexity does not need to grow with the domain size (e.g. for PAC learning of point functions

with “pure” differential privacy).

A. Differential Privacy

We recall the definition of differential privacy. We think of a dataset as consisting of n rows from

a data universe X , where each row corresponds to one individual. Differential privacy requires that no

individual’s data has a significant effect on the distribution of what we output.

Definition I.1. A randomized algorithm M : Xn → Y is (ε, δ) differentially private if for every two

datasets x, x′ ∈ Xn that differ on one row, and every set T ⊆ Y , we have

Pr[M(x) ∈ T ] ≤ eε · Pr[M(x′) ∈ T ] + δ.

The original definition from [19] had δ = 0, and is sometimes referred to as pure differential privacy.

However, a number of subsequent works have shown that allowing a small (but negligible) value of

δ, referred to as approximate differential privacy, can provide substantial accuracy gains over pure

differential privacy [18], [27], [22], [15], [4].

The common setting of parameters is to take ε to be a small constant and δ to be negligible in n (or

a given security parameter). To simplify our exposition, we fix ε = 0.1 and δ = 1/nlogn throughout the

introduction (but precise dependencies on these parameters are given in the main body).

B. Private Query Release

Given a set Q of queries q : Xn → R, the query release problem for Q is to output accurate answers

to all queries in Q. That is, we want a differentially private algorithm M : Xn → R
|Q| such that for every

dataset D ∈ Xn, with high probability over y ←M(D), we have |yq − q(D)| ≤ α for all q ∈ Q, where

α is an error parameter. (For simplicity, we will treat α as a small constant throughout this introduction,

e.g. α = 0.01.)

A special case of interest is the case where Q consists of counting queries. In this case, we are given a

set Q of predicates q : X → {0, 1} on individual rows, and then extend them to databases by averaging.

That is, q(D) = 1
n

∑n
i=1 q(Di) counts the fraction of individuals in the database that satisfy predicate q.

The query release problem for counting queries is one of the most widely studied problems in

differential privacy. Early work on differential privacy implies that for every family of counting queries

Q, the query release problem for Q has “sample complexity” at most Õ(
√|Q|) [16], [21], [6], [19].

That is, there is an n0 = Õ(
√|Q|) such that for all n ≥ n0, there is a differentially private mechanism

M : Xn → R
Q that solves the query release problem for Q with error at most α = 0.01.
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Remarkably, Blum, Ligett, and Roth [7] showed that if the data universe X is finite, then the sample

complexity grows much more slowly with |Q| — indeed the query release problem for Q has sample

complexity at most O(log |Q| · log |X|). Hardt and Rothblum [26] improved this bound to Õ(log |Q| ·√
log |X|), which was recently shown to be optimal for some families Q [9].

However, for specific query families of interest, the sample complexity can be significantly smaller.

In particular, consider the family of point functions over X , which is the family {qx}x∈X where qx(y)
is 1 iff y = x, and the family of threshold functions over a totally ordered set X , where qx(y) is 1 iff

y ≤ x. The query release problems for these families correspond to the very natural tasks of producing

�∞ approximations to the histogram and to the cumulative distribution function of the empirical data

distribution, respectively. For point functions, Beimel, Nissim, and Stemmer [4] showed that the sample

complexity has no dependence on |X| (or |Q|, since |Q| = |X| for these families). In the case of threshold

functions, they showed that it has at most a very mild dependence, namely 2O(log∗ |X|).
However, the following basic questions remained open: Are there differentially private algorithms for

releasing threshold functions over an infinite data universe (such as N or [0, 1])? If not, does the sample

complexity for releasing threshold functions grow with the size |X| of the data universe?

We resolve these questions:

Theorem I.2. The sample complexity of releasing threshold functions over a data universe X with
differential privacy is at least Ω(log∗ |X|). In particular, there is no differentially private algorithm for
releasing threshold functions over an infinite data universe.

In addition, inspired by the ideas in our lower bound, we present a simplification of the algorithm

of [4] and improve the sample complexity to 2(1+o(1)) log∗ |X| (from roughly 8log
∗ |X|). Our algorithm is

also computationally efficient, running in time nearly linear in the bit-representation of its input database.

Closing the gap between the lower bound of ≈ log∗ |X| and the upper bound of ≈ 2log
∗ |X| remains an

intriguing open problem.

We remark that in the case of pure differential privacy (δ = 0), a sample complexity lower bound of

n = Ω(log |X|) for releasing points and thresholds follows from a standard “packing argument” [27], [2].

For point functions, this is matched by the standard “Laplace mechanism” [19]. For threshold functions,

a matching upper bound was recently obtained [31], building on a construction of [20]. We note that

these algorithms have a slightly better dependence on the accuracy parameter α than our algorithm (linear

rather than nearly linear in 1/α). In general, while packing arguments often yield tight lower bounds for

pure differential privacy, they often fail badly for approximate differential privacy, for which much less

is known.

There is also a beautiful line of work on characterizing the �2-accuracy (rather than �∞-accuracy, which

we consider in this work) achievable for query release in terms of other measures of the “complexity”

of the family Q (such as “hereditary discrepancy”) [27], [5], [29], [30]. However, the characterizations

given in these works are tight only up to factors of poly(log |X|, log |Q|) and thus do not give good

estimates of the sample complexity (which is at most (log |X|)(log |Q|) even for pure differential privacy,

as mentioned above).

C. Private Distribution Learning

A fundamental problem in statistics is distribution learning, which is the task of learning an unknown

distribution D given i.i.d. samples from it. The query release problem for threshold functions is closely

related to the problem of learning an arbitrary distribution D on X up to small error in Kolmogorov

(or CDF) distance: Given n i.i.d. samples xi ←R D, the goal of a distribution learner is to produce a

CDF F : X → [0, 1] such that |F (x) − FD(x)| ≤ α for all x ∈ X , where α is an accuracy parameter.
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While closeness in Kolmogorov distance is a relatively weak measure of closeness for distributions, under

various structural assumptions (e.g. the two distributions have probability mass functions that cross in a

constant number of locations), it implies closeness in the much stronger notion of total variation distance.

Other works have developed additional techniques that use weak hypotheses learned under Kolmogorov

distance to test and learn distributions under total variation distance (e.g. [13], [12], [14]).

The Dvoretzky-Kiefer-Wolfowitz inequality [17] gives a probabilistic bound on the Kolmogorov dis-

tance between a distribution and the empirical distribution of i.i.d. samples. It implies that without privacy,

any distribution over X can be learned to within arbitrarily small constant error via the empirical CDF

of O(1) samples. On the other hand, we show that with approximate differential privacy, distribution

learning instead requires sample complexity that grows with the size of the domain:

Theorem I.3. The sample complexity of learning arbitrary distributions on a totally ordered domain X
with differential privacy is at least Ω(log∗ |X|).

We prove Theorem I.3 by showing that the problem of distribution learning with respect to Kolmogorov

distance with differential privacy is essentially equivalent to query release for threshold functions. Indeed,

query release of threshold functions amounts to approximating the empirical distribution of a dataset with

respect to Kolmogorov distance. Approximating the empirical distribution is of course trivial without

privacy (since we are given it as input), but with privacy, it turns out to have essentially the same sample

complexity as the usual distribution learning problem from i.i.d. samples.

More generally, query release for a family Q of counting queries is equivalent to distribution learning

with respect to the distance measure dQ(D,D′) = supq∈Q |E[q(D)]−E[q(D′)]|. This perspective relates

other lower bounds for query release problems to lower bounds for natural distribution learning problems.

For instance, Bun, Ullman, and Vadhan [9] gave a sample complexity lower bound of Ω̃(
√
d) for privately

releasing the 1-way marginals (i.e. attribute means) of a database over the set of binary strings {0, 1}d.

Their lower bound also applies to the problem of privately learning, up to �∞-error, the parameters

(p1, . . . , pd) of a product of d Bernoulli distributions Bern(p1), . . . ,Bern(pd). Non-privately, the sample

complexity of this problem is only Θ(log d).

D. Private PAC Learning

Kasiviswanathan et al. [28] defined private PAC learning as a combination of probably approximately

correct (PAC) learning [32] and differential privacy. Recall that a PAC learning algorithm takes some

number n of labeled examples (xi, c(xi)) ∈ X×{0, 1} where the xi’s are i.i.d. samples of an arbitrary and

unknown distribution on a data universe X and c : X → {0, 1} is an unknown concept from some concept

class C. The goal of the learning algorithm is to output a hypothesis h : X → {0, 1} that approximates c
well on the unknown distribution. We are interested in PAC learning algorithms L : (X ×{0, 1})n → H
that are also differentially private. Here H is the hypothesis class; if H ⊆ C, then L is called a proper
learner.

As with query release and distribution learning, a natural problem is to characterize the sample
complexity — the minimum number n of samples necessary in order to achieve differentially private

PAC learning for a given concept class C. Without privacy, it is well-known that the sample complexity

of (both proper and improper) PAC learning is proportional to the Vapnik–Chervonenkis (VC) dimension

of the class C [33], [8], [24]. In the initial work on differentially private learning, Kasiviswanathan et

al. [28] showed that O(log |C|) labeled examples suffice for privately learning any concept class C.1

The VC dimension of a concept class C is always at most log |C|, but is significantly lower for many

1As with the query release discussion, we omit the dependency on all parameters except for |C|, |X| and VC(C).
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interesting classes. Hence, the results of [28] left open the possibility that the sample complexity of

private learning may be significantly higher than that of non-private learning.

In the case of pure differential privacy (δ = 0), this gap in the sample complexity was shown to

be unavoidable in general. Beimel, Kasiviswanathan, and Nissim [2] considered the concept class C
of point functions over a data universe X , which have VC dimension 1 and hence can be (properly)

learned without privacy with O(1) samples. In contrast, they showed that proper PAC learning with pure

differential privacy requires sample complexity Ω(log |X|) = Ω(log |C|). Chaudhuri and Hsu [10] showed

a similar result for the class C of threshold functions, which also has VC dimension 1. Specifically, they

showed that when the domain is X = [0, 1], the class of threshold functions cannot be properly PAC

learned with pure differential privacy. Feldman and Xiao [25] further showed that this separation holds

even for improper learning over finite domains — PAC learning thresholds with pure differential privacy

requires sample complexity Ω(log |X|) = Ω(log |C|).
For approximate differential privacy (δ > 0), however, it was still open whether there is an asymptotic

gap between the sample complexity of private learning and non-private PAC learning. Indeed, Beimel

et al. [4] showed that point functions can be properly learned with approximate differential privacy

using O(1) samples (i.e. with no dependence on |X|). For threshold functions, they exhibited a proper

learner with sample complexity 2O(log∗ |X|), but it was conceivable that the sample complexity could also

be reduced to O(1). Moreover, Chaudhuri et al. [11] gave sample complexity upper bounds based on

properties of the data distribution that do not depend explicitly on |X|.
We prove, however, that the sample complexity of proper PAC learning with approximate differential

privacy can be asymptotically larger than the VC dimension:

Theorem I.4. The sample complexity of properly learning threshold functions over a data universe X
with differential privacy is at least Ω(log∗ |X|).

This lower bound extends to the concept class of �-dimensional thresholds. An �-dimensional threshold

function, defined over the domain X�, is a conjunction of � threshold functions, each defined on one

component of the domain. This shows that our separation between the sample complexity of private and

non-private learning applies to concept classes of every VC dimension.

Theorem I.5. For every finite, totally ordered X and � ∈ N, the sample complexity of properly learning
the class C of �-dimensional threshold functions on X� with differential privacy is at least Ω(�·log∗ |X|) =
Ω(VC(C) · log∗ |X|).

Based on these results, it would be interesting to fully characterize the difference between the sample

complexity of proper non-private learners and of proper learners with (approximate) differential privacy.

Furthermore, our results still leave open the possibility that improper PAC learning with (approximate)

differential privacy has sample complexity O(VC(C)). We consider this to be an important question for

future work.

We also present a new result on the improper learning of point functions with pure differential privacy

over countably infinite domains. Beimel et al. [2], [3] showed that for finite data universes X , the sample

complexity of improperly learning point functions with pure differential privacy does not grow with

|X|. They also gave a mechanism for learning point functions over countably infinite domains (e.g.

X = N), but the outputs of their mechanism do not have a finite description length (and hence cannot

be implemented by an algorithm). We prove that this is inherent:

Theorem I.6. For every infinite domain X , countable hypothesis space H , and n ∈ N, there is no (even
improper) PAC learner L : (X ×{0, 1})n → H for point functions over X that satisfies pure differential
privacy.
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E. Techniques

Our results for query release and proper learning of threshold functions are obtained by analyzing the

sample complexity of a related but simpler problem, which we call the interior-point problem. Here we

want a mechanism M : Xn → X (for a totally ordered data universe X) such that for every database

D ∈ Xn, with high probability we have miniDi ≤M(D) ≤ maxiDi. We give reductions showing that

the sample complexity of this problem is equivalent to the other ones we study:

Theorem I.7. Over every totally ordered data universe X , the following four problems have the same
sample complexity (up to constant factors) under differential privacy: (1) The interior-point problem,
(2) Query release for threshold functions, (3) Distribution learning with respect to Kolmogorov distance,
and (4) Proper PAC learning of threshold functions.

Thus we obtain our lower bounds and our simplified and improved upper bounds for query release

and proper learning by proving such bounds for the interior-point problem, such as:

Theorem I.8. The sample complexity for solving the interior-point problem over a data universe X with
differential privacy is Ω(log∗ |X|).

Note that for every fixed distribution D over X there exists a simple differentially private algorithm for

solving the interior-point problem (w.h.p.) over databases sampled i.i.d. from D — simply output a point

z s.t. Prx∼D[x ≥ z] = 1/2. Hence, in order to prove Theorem I.8, we show a (correlated) distribution D
over databases of size n ≈ log∗ |X| on which privately solving the interior-point problem is impossible.

The construction is recursive: we use a hard distribution over databases of size (n − 1) over a data

universe of size logarithmic in |X| to construct the hard distribution over databases of size n over X .

By another reduction to the interior-point problem, we show an impossibility result for the following

undominated-point problem:

Theorem I.9. For every n ∈ N, there does not exist a differentially private mechanism M : Nn → N

with the property that for every dataset D ∈ N
n, with high probability M(D) ≥ miniDi.

Note that for the above problem, one cannot hope to construct a single distribution over databases

that every private mechanism fails on. The reason is that for any such distribution D, and any desired

failure probability β, there is some number K for which PrD∼D[maxD > K] ≤ β, and hence that the

mechanism that always outputs K solves the problem. Hence, given a mechanism M we must tailor a

hard distribution DM. We use a similar mechanism-dependent approach to prove Theorem I.6.

II. THE INTERIOR POINT PROBLEM

A. Definition

In this work we exhibit a close connection between the problems of privately learning and releasing

threshold queries, distribution learning, and solving the interior point problem as defined below.

Definition II.1. An algorithm A : Xn → X solves the interior point problem on X with error probability

β if for every D ∈ Xn,

Pr[minD ≤ A(D) ≤ maxD] ≥ 1− β,

where the probability is taken over the coins of A. The sample complexity of the algorithm A is the

database size n.

We call a solution x with minD ≤ x ≤ maxD an interior point of D. Note that x need not be a

member of the database D.
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B. Lower and Upper Bounds

We now prove our lower bound on the sample complexity of private algorithms for solving the interior

point problem.

Theorem II.2. Fix any constant 0 < ε < 1/4. Let δ(n) ≤ 1/(50n2). Then for every positive integer
n, solving the interior point problem on X with probability at least 3/4 and with (ε, δ(n))-differential
privacy requires sample complexity n ≥ Ω(log∗ |X|).

Our choice of δ = O(1/n2) is unimportant; any monotonically non-increasing convergent series will

do. To prove the theorem, we inductively construct a sequence of database distributions {Dn} supported

on data universes [S(n)] (for S(n+1) = 2Õ(S(n))) over which any differentially private mechanism using

n samples must fail to solve the interior point problem. Given a hard distribution Dn over n elements

(x1, x2, . . . , xn) from [S(n)], we construct a hard distribution Dn+1 over elements (y0, y1, . . . , yn) from

[S(n + 1)] by setting y0 to be a random number, and letting each other yi agree with y0 on the xi
most significant digits. We then show that if y is the output of any differentially private interior point

mechanism on (y0, . . . , yn), then with high probability, y agrees with y0 on at least minxi entries and

at most maxxi entries. Thus, a private mechanism for solving the interior point problem on Dn+1 can

be used to construct a private mechanism for Dn, and so Dn+1 must also be a hard distribution.

The inductive lemma we prove depends on a number of parameters we now define. Fix 1
4 > ε, β > 0.

Let δ(n) be any positive non-increasing sequence for which

Pn � eε

eε + 1
+ (eε + 1)

n∑
j=1

δ(j) ≤ 1− β

for every n. In particular, it suffices that

∞∑
n=1

δ(n) ≤
1
3 − β

eε + 1
.

Let b(n) = 1/δ(n) and define the function S recursively by

S(1) = 2 and S(n+ 1) = b(n)S(n).

Lemma II.3. For every positive integer n, there exists a distribution Dn over databases D ∈ [S(n)]n =
{0, 1, . . . , S(n)− 1}n such that for every (ε, δ(n))-differentially private mechanism M,

Pr[minD ≤M(D) ≤ maxD] ≤ Pn,

where the probability is taken over D ←R Dn and the coins of M.

In this section, we give a direct proof of the lemma and in the full version of this paper, we show

how the lemma follows from the construction of a new combinatorial object we call an “interior point

fingerprinting code.” This is a variant on traditional fingerprinting codes, which have been used recently

to show nearly optimal lower bounds for other problems in approximate differential privacy [9], [23],

[1].

Proof: The proof is by induction on n. We first argue that the claim holds for n = 1 by letting

D1 be uniform over the singleton databases (0) and (1). To that end let x←R D1 and note that for any

(ε, δ(1))-differentially private mechanism M0 : {0, 1} → {0, 1} it holds that

Pr[M0(x) = x] ≤ eε Pr[M0(x̄) = x] + δ(1) = eε(1− Pr[M0(x) = x]) + δ(1),

giving the desired bound on Pr[M0(x) = x].
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Now inductively suppose we have a distribution Dn that satisfies the claim. We construct a distribution

Dn+1 on databases (y0, y1, . . . , yn) ∈ [S(n+ 1)]n+1 that is sampled as follows:

• Sample (x1, . . . , xn)←R Dn.

• Sample a uniformly random y0 ←R [S(n + 1)]. We write the base b(n) representation of y0 as

y
(1)
0 y

(2)
0 . . . y

(S(n))
0 .

• For each i = 1, . . . , n let yi be a base b(n) number (written y
(1)
i y

(2)
i . . . y

(S(n))
i ) that agrees with the

base b(n) representation of y0 on the first xi digits and contains a random sample from [b(n)] in

every index thereafter.

Suppose for the sake of contradiction that there were an (ε, δ(n + 1))-differentially private mechanism

M̂ that could solve the interior point problem on Dn+1 with probability greater than Pn+1. We use M̂
to construct the following private mechanism M for solving the interior point problem on Dn, giving

the desired contradiction:

Algorithm 1 M(D)

Input: Database D = (x1, . . . , xn) ∈ [S(n)]n

1) Construct D̂ = (y0, . . . , yn) by sampling from Dn+1, but starting with the database D. That is,

sample y0 uniformly at random and set every other yi to be a random base b(n) string that agrees

with y0 on the first xi digits.

2) Compute y ←R M̂(D̂).
3) Return the length of the longest prefix of y (in base b(n) notation) that agrees with y0.

The mechanism M is also (ε, δ(n+1))-differentially private, since for all pairs of adjacent databases

D ∼ D′ and every T ⊆ [S(n)],

Pr[M(D) ∈ T ] = E
y0←R[S(n+1)]

Pr[M̂(D̂) ∈ T̂ | y0]

≤ E
y0←R[S(n+1)]

(eε Pr[M̂(D̂′) ∈ T̂ | y0] + δ(n+ 1)) since D̂ ∼ D̂′ for fixed y0

= eε Pr[M(D′) ∈ T ] + δ(n+ 1),

where T̂ is the set of y that agree with y0 in exactly the first x entries for some x ∈ T .

Now we argue that M solves the interior point problem on Dn with probability greater than Pn.

First we show that x ≥ minD with probability greater than Pn+1. Observe that by construction, all

the elements of D̂ agree in at least the first minD digits, and hence so does any interior point of D̂.

Therefore, if M′ succeeds in outputting an interior point y of D̂, then y must in particular agree with

y0 in at least minD digits, so x ≥ minD.

Now we use the privacy that M̂ provides to y0 to show that x ≤ maxD except with probability at

most eε/b(n) + δ(n+ 1). Fix a database D. Let w = maxD, and fix all the randomness of M but the

(w+1)st entry of y0 (note that since w = maxD, this fixes y1, . . . , yn). Since the (w+1)st entry of y0
is still a uniformly random element of [b(n)], the privately produced entry yw+1 should not be able to do

much better than randomly guessing y
(w+1)
0 . Formally, for each z ∈ [b(n)], let D̂z denote the database

D̂ with y
(w+1)
0 set to z and everything else fixed as above. Then by the differential privacy of M̂,
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Pr
z∈[b(n)]

[M̂(D̂z)
w+1 = z] =

1

b(n)

∑
z∈[b(n)]

Pr[M̂(D̂z)
w+1 = z]

≤ 1

b(n)

∑
z∈[b(n)]

E
z′←R[b(n)]

[
eε Pr[M̂(D̂z′)w+1 = z] + δ(n+ 1)

]

≤ eε

b(n)
+ δ(n+ 1),

where all probabilities are also taken over the coins of M̂. Thus x ≤ maxD except with probability at

most eε/b(n) + δ(n+ 1). By a union bound, minD ≤ x ≤ maxD with probability greater than

Pn+1 −
(

eε

b(n)
+ δ(n+ 1)

)
≥ Pn.

This gives the desired contradiction.

The proof of Theorem II.2 follows by estimating the S(n) guaranteed by Lemma II.3, and appears

in the full version of this work. Using similar ideas, we also prove the following upper bound on the

sample complexity of solving the interior point problem.

Theorem II.4. Let β, ε, δ > 0 and let X be a finite totally ordered domain. There is an (ε, δ)-differentially
private algorithm for solving the interior point problem on X with failure probability β and sample
complexity n = 18500

ε · 2log∗ |X| · log∗(|X|) · ln(4 log∗ |X|
βεδ ).

Our algorithm for the interior point problem is inspired by the lower bound Section II-B, and in a sense

reverses its recursive construction. We remark that our algorithm is computationally efficient, running in

time O(n · log |X|), which is linear in the bit-representation of the input database. Here we only present

the main ideas of the construction. See the full version of this paper for full details.

Proof idea: Consider an input database S = (x1, . . . , xn) ∈ Xn. Our goal is to design a private

algorithm whose output is a point x ∈ X between the minimal and the maximal points in S. To that

end, suppose we have paired random elements in S, and constructed a database S′ = (z1, . . . , zn/2) s.t.

every zi is the length of the longest common prefix of one random pair (xj , x�).
Now assume that (by recursion) we have identified a number z s.t. min{zi} ≤ z ≤ max{zi}. Moreover,

let us assume that there are in fact several elements zi in S′ s.t. zi ≥ z. This is easily achieved by, e.g.,

excluding the largest elements from S′ when applying the recursion. Therefore the number z is s.t. (1)

there is at least one pair of input elements that agree on a prefix of length at most z; and (2) there are

several (say k) pairs that agree on a prefix of length at least z.

Although each of these k pairs may agree on a different prefix of length z, we show that because the

pairing was random, w.h.p. there still exists a string of length (z + 1) that is a prefix of “many” of the

inputs xi. This prefix is “stable” in the sense that even if we were to change one of the input elements,

there would still be “enough” xi’s that agree with it. Hence, (using stability arguments) we can privately

identify a prefix L of length (z + 1) which is the prefix of at least one input element, say xi∗ .

For σ ∈ {0, 1}, let Lσ ∈ X denote the prefix L padded with appearances of σ (e.g., L1 = L◦111 . . . 1).

Note that L0 ≤ xi∗ ≤ L1. Now recall that there are two input elements, say xi1 ≤ xi2 , that agree on

a prefix of length at most z. Hence, as L is of length z+1, we have that either xi1 ≤ L0 ≤ xi∗ or

xi∗ ≤ L1 ≤ xi2 . In any case, we have privately identified two numbers (L0 and L1) s.t. at least one of

them is an interior point. Choosing a good output among these two can be done privately using standard

techniques.
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III. EQUIVALENCES WITH THE INTERIOR POINT PROBLEM

We show that under (ε, δ)-differential privacy the interior point problem is equivalent with each of

the following three problems: (1) Query release for threshold functions, (2) Distribution learning with

respect to Kolmogorov distance, and (3) Proper PAC learning of threshold functions. Hence, our bounds

from Section II-B translate to new bounds on the sample complexity of those three problems. Here we

only state the equivalences; see the full version of the paper for more details.

A. Private Release of Thresholds vs. the Interior Point Problem

We show that the problems of privately releasing thresholds and solving the interior point problem are

equivalent.

Theorem III.1. Let X be a totally ordered domain. Then,
1) If there exists an (ε, δ)-differentially private algorithm that is able to release threshold queries on

X with (α, β)-accuracy and sample complexity n/(8α), then there is an (ε, δ)-differentially private
algorithm that solves the interior point problem on X with error β and sample complexity n.

2) If there exists an (ε, δ)-differentially private algorithm solving the interior point problem on X with
error αβ/24 and sample complexity m, then there is a (5ε, (1+eε)δ)-differentially private algorithm
for releasing threshold queries with (α, β)-accuracy and sample complexity

n = max

{
6m

α
,
25 log(24/β) log2.5(6/α)

αε

}
.

For the first direction, observe that an algorithm for releasing thresholds could easily be used for

solving the interior point problem. More formally, suppose A is a private (α, β)-accurate algorithm for

releasing thresholds over X for databases of size n
8α . Define A′ on databases of size n to pad the database

with an equal number of min{X} and max{X} entries, and run A on the result. We can now return

any point t for which the approximate answer to the query ct is (12 ± α) on the (padded) database.

For proving the second direction of the equivalence, we reduce the problem of releasing thresholds

to a combination of solving the interior point problem, and of releasing thresholds on a much smaller

data universe. The idea of the reduction is to create noisy partitions of the input database into O(1/α)
blocks of size roughly αn/3. We then solve the interior point problem on each of these blocks, and

think of the results as representatives for each block. By answering threshold queries on just the set of

representatives, we can well-approximate all threshold queries. Moreover, since there are only O(1/α)
representatives, we can use the results of [20] in order to incur only polylog(1/α) error for these

answers. This reduction furthermore preserves computational efficiency, requiring O(1/α) invocations of

the interior point algorithm on a subset of its input database, plus time needed to sort the input database

and run the Õ(1/α)-time algorithm of [20].

B. Releasing Thresholds vs. Distribution Learning

Query release and distribution learning are very similar tasks: A distribution learner can be viewed as

an algorithm for query release with small error w.r.t. the underlying distribution (rather than the fixed

input database). We show that the two tasks are equivalent under differential privacy.

Theorem III.2. Let Q be a collection of counting queries over a domain X .
1) If there exists an (ε, δ)-differentially private algorithm for releasing Q with (α, β)-accuracy and

sample complexity n ≥ 256VC(Q) ln(48/αβ)/α2, then there is an (ε, δ)-differentially private
(3α, 2β)-accurate distribution learner w.r.t. Q with sample complexity n.
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2) If there exists an (ε, δ)-differentially private (α, β)-accurate distribution learner w.r.t. Q with sample
complexity n, then there is an (ε, δ)-differentially private query release algorithm for Q with (α, β)-
accuracy and sample complexity 9n.

The first direction follows from a standard generalization bound, showing that if a given database

D contains (enough) i.i.d. samples from a distribution D, then (w.h.p.) accuracy with respect to D
implies accuracy with respect to D. We remark that the sample complexity lower bound on n required

to apply item 1 of Theorem III.2 does not substantially restrict its applicability: It is known that an

(ε, δ)-differentially private algorithm for releasing Q always requires sample complexity Ω(VC(Q)/αε)
anyway [7].

For the second direction of the equivalence, we note that a distribution learner must perform well on

the uniform distribution on the rows of any fixed database, and thus must be useful for releasing accurate

answers for queries on such a database. Thus if we have a distribution learner A, the mechanism Ã
that samples m rows (with replacement) from its input database D ∈ (X × {0, 1})n and runs A on

the result should output accurate answers for queries with respect to D. The random sampling has two

competing effects on privacy. On one hand, the possibility that an individual is sampled multiple times

incurs additional privacy loss. On the other hand, if n > m, then a “secrecy-of-the-sample” argument

shows that random sampling actually improves privacy, since any individual is unlikely to have their data

affect the computation at all. We show that if n is only a constant factor larger than m, these two effects

offset, and the resulting mechanism is still differentially private.

C. Private Learning of Thresholds vs. the Interior Point Problem

We show that with differential privacy, there is a Θ(1/α) multiplicative relationship between the sample

complexities of properly PAC learning thresholds with (α, β)-accuracy and of solving the interior point

problem with error probability Θ(β). Specifically, we show

Theorem III.3. Let X be a totally ordered domain. Then,
1) If there exists an (ε, δ)-differentially private algorithm solving the interior point problem on X

with error probability β and sample complexity n, then there is a (2ε, (1 + eε)δ)-differentially
private (2α, 2β)-accurate proper PAC learner for threshold functions over X with sample complexity
max

{
n
2α ,

4 log(2/β)
α

}
.

2) If there exists an (ε, δ)-differentially private (α, β)-accurate proper PAC learner for thresholds over
X with sample complexity n, then there is a (2ε, (1 + eε)δ)-differentially private algorithm that
solves the interior point problem on X with error β and sample complexity 27αn.

We show this equivalence in two phases. In the first, we show a Θ(1/α) relationship between the sample

complexity of solving the interior point problem and the sample complexity of identifying an α-consistent

hypothesis for every fixed input database. We then use generalization and resampling arguments to show

that with privacy, this latter task is equivalent to learning with samples from a distribution.

IV. THRESHOLDS IN HIGH DIMENSION

In the full version of this work, we show that the bound of Ω(log∗ |X|) on the sample complexity of

private proper-learners for THRESHX extends to conjunctions of � independent threshold functions in �
dimensions. We show that every private proper-learner for this class requires a sample of Ω(� · log∗ |X|)
elements. This also yields a similar lower bound for the task of query release, as in general an algorithm

for query release can be used to construct a private learner.

The significance of this lower bound is twofold. First, for reasonable settings of parameters (e.g. δ is

negligible and items in X are of polynomial bit length in n), our Ω(log∗ |X|) lower bound for threshold
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functions is dominated by the dependence on log(1/δ) in the upper bound. However, � · log∗ |X| can

still be much larger than log(1/δ), even when δ is negligible in the bit length of items in X�. Second,

the lower bound for threshold functions only yields a separation between the sample complexities of

private and non-private learning for a class of VC dimension 1. Since the concept class of �-dimensional

thresholds has VC dimension of �, we obtain an ω(VC(C)) lower bound for concept classes even with

arbitrarily large VC dimension.

Consider the following extension of THRESHX to � dimensions.

Definition IV.1. For a totally ordered set X and 
a = (a1, . . . , a�) ∈ X� define the concept c	a : X� →
{0, 1} where c	a(
x) = 1 if and only if for every 1 ≤ i ≤ � it holds that xi ≤ ai. Define the concept class

of all thresholds over X� as THRESH�X = {c	a}	a∈X� .

Note that the VC dimension of THRESH�X is �. We obtain the following lower bound on the sample

complexity of privately learning THRESH�X .

Theorem IV.2. For every n, � ∈ N, α > 0, and δ ≤ �2/(1500n2), any (ε = 1
2 , δ)-differentially private

and (α, β = 1
8)-accurate proper learner for THRESH�X requires sample complexity n = Ω( �

α log∗ |X|).
This is the result of a general hardness amplification theorem for private proper learning. We show that

if privately learning a concept class C requires sample complexity n, then (subject to a mild technical

condition on C) learning the class C� of conjunctions of � different concepts from C requires sample

complexity Ω(�n).
Proof idea: In the full version of this work, we show an equivalence between private PAC learning

and the “empirical learning” problem of privately identifying a concept c that agrees with a given labeled

database up to empirical error α. Using this equivalence, let D be the hard distribution witnessing the

lower bound of n on the sample complexity of empirically learning C. Assume toward a contradiction

that there exists an (ε, δ)-differentially private and (α, β)-accurate empirical learner A for C� using

fewer than n′ = Ω(�n) samples. We construct an algorithm SolveD which uses A to empirically learn

C on databases of size n drawn from D. Algorithm SolveD takes as input a set of n labeled examples

from X and applies A on a database containing n′ labeled examples in X�, producing a conjunction of

hypotheses h1 ∧ · · · ∧ h�. The n input points are embedded along a randomly chosen axis r. That is,

the rth coordinate of each example produced is the input point, and the remaining coordinates are some

fixed element x0 ∈ X . Fresh random samples from D are then placed on each of the other axes (with n
labeled points along each axis). The output of SolveD is the hypothesis hr. Observe that the algorithm

SolveD remains differentially private.

Now as long as the point x0 is such that c(x0) = 1 for all c ∈ C, then the examples given to A are

correctly labeled by some concept in C�. If A learns an accurate hypothesis, then the functions h1, . . . , h�
must be accurate for most of the axes 1, . . . �. Moreover, as r is a random axis and the points along the

rth axis are distributed exactly like the points along the other axes, we have that w.h.p. the hypothesis

hr is accurate on the input database. This contradicts the hardness of the distribution D.

V. MECHANISM-DEPENDENT LOWER BOUNDS

By a reduction to the interior point problem problem, we can prove an impossibility result for the

problem of privately outputting something that is at least the minimum of a database on an unbounded

domain. Specifically, we show

Theorem V.1. For every (infinite) totally ordered domain X with no maximum element (e.g., X = N)
and every n ∈ N, there is no (ε, δ)-differentially private mechanism M : Xn → X such that for every
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x = (x1, . . . , xn) ∈ Xn,
Pr[M(x) ≥ min

i
xi] ≥ 2/3.

Besides being a natural relaxation of the interior point problem, this undominated point problem is of

interest because we require new techniques to obtain lower bounds against it. Note that if we ask for a

mechanism that works over a bounded domain (e.g., [0, 1]), then the problem is trivial. Moreover, this

means that proving a lower bound on the problem when the domain is N cannot possibly go by way of

constructing a single distribution that every differentially private mechanism fails on. The reason is that

for any distribution D over N
n, there is some number K where PrD←RD[maxD > K] ≤ 2/3, so the

mechanism that always outputs K solves the problem.

Here we only provide a proof sketch; see the full version of the paper for more details.

Proof idea: For clarity, we restrict our discussion to the domain N. Let M : N
n → N be a

mechanism with sample complexity n. The key observation is that for any such mechanism there exists

an increasing function T : N → N (depending on M) s.t. on any database x = (x1, . . . , xn) ∈ N
n, it

is unlikely that M(x) ≥ T (maxi xi). Hence, if M solves the undominated point problem then (w.h.p.)

its output is in the range [mini xi, T (maxi xi)). Therefore M solves the interior point problem over the

domain Xd = {1, T (1), T (T (1)), T (T (T (1))), . . . , T (d−1)(1)}. By our lower bound for the interior point

problem we have n = Ω(log∗ d), which is a contradiction since n is fixed and d is arbitrary.

Using similar ideas, we revisit the problem of privately learning the concept class POINTN of point

functions over the natural numbers. Recall that a point function cx is defined by cx(y) = 1 if x = y
and evaluates to 0 otherwise. Beimel et al. [2] used a packing argument to show that POINTN cannot be

properly learned with pure ε-differential privacy (i.e., δ=0). However, more recent work of Beimel et

al. [3] exhibited an ε-differentially private improper learner for POINTN with sample complexity O(1).
Their construction required an uncountable hypothesis class, with each concept being described by a real

number. This left open the question of whether POINTN could be learned with a countable hypothesis

class, with each concept having a finite description length.

We resolve this question in the negative. Specifically, we show that it is impossible to learn (even

improperly) point functions over an infinite domain with pure differential privacy using a countable

hypothesis class. The idea is that for any pure-private mechanism A we can tailor an infinite sequence of

target concepts ci and distributions Di for which the sets of α-good hypotheses in the support of A are

disjoint. Given such a sequence, the result follows by a packing argument [27], [2]. The proof appears

in the full version of this work.

Theorem V.2. Let X be an infinite domain, let H be a countable collection of hypotheses {h : X →
{0, 1}}, and let ε ≥ 0. Then there is no ε-differentially private (1/3, 1/3)-accurate PAC learner for
points over X using the hypothesis class H .

Remark V.3. A learner implemented by an algorithm (i.e. a probabilistic Turing machine) must use a
hypothesis class where each hypothesis has a finite description. Note that the standard proper learner
for POINTX can be implemented by an algorithm. However, a consequence of our result is that there is
no algorithm for privately learning POINTX .
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