
The Complexity of Computing the Optimal Composition
of Differential Privacy

Jack Murtagh∗ Salil Vadhan†

Center for Research on Computation & Society
John A. Paulson School of Engineering & Applied Sciences

Harvard University
{jmurtagh,salil}@seas.harvard.edu

scholar.harvard.edu/jmurtagh
people.seas.harvard.edu/~salil

June 1, 2016

Abstract
In the study of differential privacy, composition theorems (starting with the original paper

of Dwork, McSherry, Nissim, and Smith (TCC’06)) bound the degradation of privacy when
composing several differentially private algorithms. Kairouz, Oh, and Viswanath (ICML’15)
showed how to compute the optimal bound for composing k arbitrary (ε, δ)-differentially private
algorithms. We characterize the optimal composition for the more general case of k arbitrary
(ε1, δ1), . . . , (εk, δk)-differentially private algorithms where the privacy parameters may differ
for each algorithm in the composition. We show that computing the optimal composition in
general is #P-complete. Since computing optimal composition exactly is infeasible (unless
FP=#P), we give an approximation algorithm that computes the composition to arbitrary
accuracy in polynomial time. The algorithm is a modification of Dyer’s dynamic programming
approach to approximately counting solutions to knapsack problems (STOC’03).

1 Introduction
Differential privacy is a framework that allows statistical analysis of private databases while mini-
mizing the risks to individuals in the databases. The idea is that an individual should be relatively
unaffected whether he or she decides to join or opt out of a research dataset. More specifically, the
probability distribution of outputs of a statistical analysis of a database should be nearly identical
to the distribution of outputs on the same database with a single person’s data removed. Here
the probability space is over the coin flips of the randomized differentially private algorithm that
∗Supported by NSF grant CNS-1237235 and a grant from the Sloan Foundation.
†Supported by NSF grant CNS-1237235, a grant from the Sloan Foundation, and a Simons Investigator Award.

1

ar
X

iv
:1

50
7.

03
11

3v
2

 [
cs

.C
C

]
 3

1
M

ay
 2

01
6

scholar.harvard.edu/jmurtagh
people.seas.harvard.edu/~salil

handles the queries. To formalize this, we call two databases D0, D1 with n rows each neighboring
if they are identical on at least n− 1 rows, and define differential privacy as follows:

Definition 1.1 (Differential Privacy [DMNS06, DKMMN06]). A randomized algorithmM is (ε, δ)-
differentially private for ε, δ ≥ 0 if for all pairs of neighboring databases D0 and D1 and all output
sets S ⊆ Range(M)

Pr[M(D0) ∈ S] ≤ eε Pr[M(D1) ∈ S] + δ

where the probabilities are over the coin flips of the algorithm M .

In the practice of differential privacy, we generally think of ε as a small, non-negligible, constant
(e.g. ε = .1). We view δ as a “security parameter” that is cryptographically small (e.g. δ =
2−30). One of the important properties of differential privacy is that if we run multiple distinct
differentially private algorithms on the same database, the resulting composed algorithm is also
differentially private, albeit with some degradation in the privacy parameters (ε, δ). In this paper,
we are interested in quantifying the degradation of privacy under composition. We will denote the
composition of k differentially private algorithms M1,M2, . . . ,Mk as (M1,M2, . . . ,Mk) where

(M1,M2, . . . ,Mk)(x) = (M1(x),M2(x), . . . ,Mk(x))

A handful of composition theorems already exist in the literature. The first basic result says:

Theorem 1.2 (Basic Composition [DKMMN06]). For every ε ≥ 0, δ ∈ [0, 1], and (ε, δ)-differentially
private algorithms M1,M2, . . . ,Mk, the composition (M1,M2, . . . ,Mk) satisfies (kε, kδ)-differential
privacy.

This tells us that under composition, the privacy parameters of the individual algorithms “sum
up,” so to speak. We care about understanding composition because in practice we rarely want to
release only a single statistic about a dataset. Releasing many statistics may require running mul-
tiple differentially private algorithms on the same database. Composition is also a very useful tool
in algorithm design. Often, new differentially private algorithms are created by combining several
simpler algorithms. Composition theorems help us analyze the privacy properties of algorithms
designed in this way.

Theorem 1.2 shows a linear degradation in global privacy as the number of algorithms in the
composition (k) grows and it is of interest to improve on this bound. If we can prove that privacy
degrades more slowly under composition, we can get more utility out of our algorithms under the
same global privacy guarantees. Dwork, Rothblum, and Vadhan gave the following improvement
on the basic summing composition above [DRV10].

Theorem 1.3 (Advanced Composition [DRV10]). For every ε > 0, δ, δ′ > 0, k ∈ N, and (ε, δ)-
differentially private algorithmsM1,M2, . . . ,Mk, the composition (M1,M2, . . . ,Mk) satisfies (εg, kδ+
δ′)-differential privacy for

εg =
√

2k ln(1/δ′) · ε+ k · ε · (eε − 1)

Theorem 1.3 shows that privacy under composition degrades by a function of O(
√
k ln(1/δ′))

which is an improvement if δ′ = 2−O(k). It can be shown that a degradation function of Ω(
√
k ln(1/δ))

is necessary even for the simplest differentially private algorithms, such as randomized response
[War65].

2

Despite giving an asymptotically correct upper bound for the global privacy parameter, εg,
Theorem 1.3 is not exact. We want an exact characterization because, beyond being theoretically
interesting, constant factors in composition theorems can make a substantial difference in the prac-
tice of differential privacy. Furthermore, Theorem 1.3 only applies to “homogeneous” composition
where each individual algorithm has the same pair of privacy parameters, (ε, δ) . In practice we
often want to analyze the more general case where some individual algorithms in the composition
may offer more or less privacy than others. That is, given algorithms M1,M2, . . . ,Mk, we want
to compute the best achievable privacy parameters for (M1,M2, . . . ,Mk). Formally, we want to
compute the function:

OptComp(M1,M2, . . . ,Mk, δg) = inf{εg ≥ 0: (M1,M2, . . . ,Mk) is (εg, δg)-DP}

It is convenient for us to view δg as given and then compute the best εg, but the dual formulation,
viewing εg as given, is equivalent (by binary search). Actually, we want a function that depends
only on the privacy parameters of the individual algorithms:

OptComp((ε1, δ1), (ε2, δ2), . . . , (εk, δk), δg) = sup{OptComp(M1,M2, . . . ,Mk, δg) : Mi is (εi, δi)-DP ∀i ∈ [k]}

In other words we want OptComp to give us the minimum possible εg that maintains privacy
for every sequence of algorithms with the given privacy parameters (εi, δi). A result from Kairouz,
Oh, and Viswanath [KOV15] characterizes OptComp for the homogeneous case.

Theorem 1.4 (Optimal Homogeneous Composition [KOV15]1). For every ε ≥ 0 and δ ∈ [0, 1),
OptComp((ε, δ), (ε, δ), . . . , (ε, δ)︸ ︷︷ ︸

k

, δg) equals the least value of εg ≥ 0 such that

1
(1 + eε)k

k∑
l=
⌈
εg+kε

2ε

⌉
(
k

l

)(
elε − eεge(k−l)ε

)
≤ 1− 1− δg

(1− δ)k

Empirically (see Appendix A), this optimal bound provides a 30-40% savings in εg compared
to Theorem 1.3 (and a 20% savings compared to an improved asymptotic bound from [KOV15]).
The problem remains to find the optimal composition behavior for the more general heterogeneous
case. Kairouz, Oh, and Viswanath also provide an upper bound for heterogeneous composition that
generalizes the O(

√
k ln(1/δ′)) degradation found in Theorem 1.3 for homogeneous composition but

do not comment on how close it is to optimal.

1.1 Our Results
We begin by extending the results of Kairouz, Oh, and Viswanath [KOV15] to the general hetero-
geneous case.

Theorem 1.5 (Optimal Heterogeneous Composition). For all ε1, . . . , εk ≥ 0 and δ1, . . . , δk, δg ∈
[0, 1),OptComp((ε1, δ1), (ε2, δ2), . . . , (εk, δk), δg) equals the least value of εg ≥ 0 such that

1∏k
i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}
≤ 1− 1− δg∏k

i=1 (1− δi)
(1)

1The phrasing of Theorem 1.4 is not exactly how it is presented in [KOV15] (which only refers to εg of the form
(k − 2i)ε for integer i), but this version can be deduced from the original.

3

Theorem 1.5 exactly characterizes the optimal composition behavior for any arbitrary set of
differentially private algorithms. It also shows that optimal composition can be computed in time
exponential in k by computing the sum over S ⊆ {1, . . . , k} by brute force. Of course in practice
an exponential-time algorithm is not satisfactory for large k. Our next result shows that this
exponential complexity is necessary:

Theorem 1.6. Computing OptComp is #P -complete, even on instances where δ1 = δ2 = . . . =
δk = 0 and

∑
i∈[k] εi ≤ ε for any desired constant ε > 0.

Recall that #P is the class of counting problems associated with decision problems in NP.
So being #P -complete means that there is no polynomial-time algorithm for OptComp unless
there is a polynomial-time algorithm for counting the number of satisfying assignments of boolean
formulas (or equivalently for counting the number of solutions of all NP problems). So there is
almost certainly no efficient algorithm for OptComp and therefore no analytic solution. Despite
the intractability of exact computation, we show that OptComp can be approximated efficiently.

Theorem 1.7. There is a polynomial-time algorithm that given rational ε1, . . . , εk ≥ 0, δ1, . . . δk, δg ∈
[0, 1), and η ∈ (0, 1), outputs ε∗ satisfying

OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ ε∗ ≤ OptComp((ε1, δ1), . . . , (εk, δk), e−η/2 · δg) + η

The algorithm runs in time

O

(
k3 · ε · (1 + ε)

η
· log

(
k2 · ε · (1 + ε)

η

))
where ε =

∑
i∈[k] εi/k, assuming constant-time arithmetic operations.

Note that we incur a relative error of η in approximating δg and an additive error of η in
approximating εg. Since we always take εg to be non-negligible or even constant, we get a very
good approximation when η is polynomially small or even a constant. Thus, it is acceptable that
the running time is polynomial in 1/η.

In addition to the results listed above, our proof of Theorem 1.5 also provides a somewhat simpler
proof of the Kairouz-Oh-Viswanath homogeneous composition theorem (Theorem 1.4 [KOV15]).
The proof in [KOV15] introduces a view of differential privacy through the lens of hypothesis
testing and uses geometric arguments. Our proof relies only on elementary techniques commonly
found in the differential privacy literature.

Practical Application. The theoretical results presented here were motivated by our work on an
applied project called “Privacy Tools for Sharing Research Data”2. We are building a system that
will allow researchers with sensitive datasets to make differentially private statistics about their
data available through data repositories using the Dataverse3 platform [Cro11, Kin07]. Part of
this system is a tool that helps both data depositors and data analysts distribute a global privacy
budget across many statistics. Users select which statistics they would like to compute and are
given estimates of how accurately each statistic can be computed. They can also redistribute their
privacy budget according to which statistics they think are most valuable in their dataset. We
implemented the approximation algorithm from Theorem 1.7 and integrated it with this tool to
ensure that users get the most utility out of their privacy budget.

2privacytools.seas.harvard.edu
3dataverse.org

4

2 Technical Preliminaries
A useful notation for thinking about differential privacy is defined below.

Definition 2.1. For two discrete random variables Y and Z taking values in the same output space
S, the δ-approximate max-divergence of Y and Z is defined as:

Dδ
∞(Y ‖Z) ≡ max

S

[
ln Pr[Y ∈ S]− δ

Pr[Z ∈ S]

]
Notice that an algorithmM is (ε, δ) differentially private if and only if for all pairs of neighboring

databases, D0, D1, we have Dδ
∞(M(D0)‖M(D1)) ≤ ε. The standard fact that differential privacy

is closed under “post processing” [DMNS06, DR13] now can be formulated as:

Fact 2.2. If f : S → R is any randomized function, then

Dδ
∞(f(Y)‖f(Z)) ≤ Dδ

∞(Y ‖Z)

Adaptive Composition. The composition results in our paper actually hold for a more general
model of composition than the one described in the introduction. The model is called k-fold adaptive
composition and was formalized in [DRV10]. We generalize their formulation to the heterogeneous
setting where privacy parameters may differ across different algorithms in the composition.

The idea is that instead of running k differentially private algorithms chosen all at once on a
single database, we can imagine an adversary adaptively engaging in a “composition game.” The
game takes as input a bit b ∈ {0, 1} and privacy parameters (ε1, δ1), . . . , (εk, δk). A randomized
adversary A, tries to learn b through k rounds of interaction as follows: on the ith round of the game,
A chooses an (εi, δi)-differentially private algorithmMi and two neighboring databases D(i,0), D(i,1).
A then receives an output yi = Mi(D(i,b)) where the internal randomness of Mi is independent of
the internal randomness of M1, . . . ,Mi−1. The choices of Mi, D(i,0), and D(i,1) may depend on
y0, . . . , yi−1 as well as the adversary’s own randomness.

The outcome of this game is called the view of the adversary, V b which is defined to be
(y1, . . . , yk) along with A’s coin tosses. The algorithms Mi and databases D(i,0), D(i,1) from each
round can be reconstructed from V b. Now we can formally define privacy guarantees under k-fold
adaptive composition.

Definition 2.3. We say that the sequences of privacy parameters ε1, . . . , εk ≥ 0, δ1, . . . , δk ∈ [0, 1)
satisfy (εg, δg)-differential privacy under adaptive composition if for every adversary A we have
D
δg
∞(V 0‖V 1) ≤ εg, where V b represents the view of A in composition game b with privacy parameter

inputs (ε1, δ1), . . . , (εk, δk).

Computing real-valued functions. Many of the computations we discuss involve irrational
numbers and we need to be explicit about how we model such computations on finite, discrete
machines. Namely when we talk about computing a function f : {0, 1}∗ → R, what we really mean
is computing f to any desired number q bits of precision. More precisely, given x, q, the task is to
compute a number y ∈ Q such that |f(x)− y| ≤ 1

2q . We measure the complexity of algorithms for
this task as a function of |x| + q. In order to reason about the complexity of OptComp, we will
also require that the inputs be rational. So when we talk about computing OptComp exactly, we

5

actually mean given ε1, . . . , εk ≥ 0, δ1, . . . , δk, δg ∈ [0, 1) all rational and an integer q, compute ε∗
such that:

|εg − ε∗| ≤
1
2q

where εg is the true optimal parameter with full precision.

3 Characterization of OptComp
Following [KOV15], we show that to analyze the composition of arbitrary (εi, δi)-DP algorithms, it
suffices to analyze the composition of the following simple variant of randomized response [War65].

Definition 3.1 ([KOV15]). Define a randomized algorithm M̃(ε,δ) : {0, 1} → {0, 1, 2, 3} as follows,
setting α = 1− δ:

Pr[M̃(ε,δ)(0) = 0] = δ Pr[M̃(ε,δ)(1) = 0] = 0
Pr[M̃(ε,δ)(0) = 1] = α · eε

1+eε Pr[M̃(ε,δ)(1) = 1] = α · 1
1+eε

Pr[M̃(ε,δ)(0) = 2] = α · 1
1+eε Pr[M̃(ε,δ)(1) = 2] = α · eε

1+eε
Pr[M̃(ε,δ)(0) = 3] = 0 Pr[M̃(ε,δ)(1) = 3] = δ

Note that M̃(ε,δ) is in fact (ε, δ)-DP. Kairouz, Oh, and Viswanath showed that M̃(ε,δ) can be
used to simulate the output of every (ε, δ)-DP algorithm on adjacent databases.

Lemma 3.2 ([KOV15]). For every (ε, δ)-DP algorithm M and neighboring databases D0, D1, there
exists a randomized algorithm T such that T (M̃(ε,δ)(b)) is identically distributed to M(Db) for b = 0
and b = 1.

For the sake of completeness, we provide a self-contained proof of this lemma, which does not
use the hypothesis testing and geometric arguments in [KOV15]. Specifically, we give an explicit
construction of the simulator, T in two steps. First we introduce a slight generalization of M̃(ε,δ)
called M̃(ε,δ0,δ1) and an algorithm T ′ that can use M̃(ε,δ0,δ1) to simulate every differentially private
algorithm on adjacent databases for some δ0, δ1 ≤ δ. Then we show how to simulate M̃(ε,δ0,δ1) using
M̃(ε,δ) with an algorithm called T ′′. The construction will look like:

M̃(ε,δ)(b)
T ′′−−→ M̃(ε,δ0,δ1)(b)

T ′−→M(Db)

Then the T needed for Lemma 3.2 will be T = T ′ ◦ T ′′. Before introducing M̃(ε,δ0,δ1) and T ′ we
define some additional notation.

Given an (ε, δ)-DP algorithm M with output space R and neighboring databases D0, D1, let
P0, P1 be the probability mass functions of M(D0) and M(D1), respectively. The definition of
differential privacy tells us that for all sets S ⊆ R:

P0(S)− eεP1(S) ≤ δ
P1(S)− eεP0(S) ≤ δ

The left-hand side of the first inequality is maximized by S = S0 for

S0 = {r ∈ R : P0(r) > eεP1(r)} (2)

6

and the left-hand side of the second inequality is maximized by

S1 = {r ∈ R : P1(r) > eεP0(r)} (3)

Define δ0, δ1 as

δ0 = P0(S0)− eεP1(S0) ≤ δ (4)
δ1 = P1(S1)− eεP0(S1) ≤ δ (5)

We will show how to simulate M using the following algorithm.

Definition 3.3. Define M̃(ε,δ0,δ1) : {0, 1} → {0, 1, 2, 3} as follows, with δ0, δ1 as defined in Equations
4 and 5 for some (ε, δ)-DP algorithm and setting α0 = 1− δ0, α1 = 1− δ1:

Pr[M̃(ε,δ0,δ1)(0) = 0] = δ0 Pr[M̃(ε,δ0,δ1)(1) = 0] = 0
Pr[M̃(ε,δ0,δ1)(0) = 1] = e2εα0−eεα1

e2ε−1 Pr[M̃(ε,δ0,δ1)(1) = 1] = eεα0−α1
e2ε−1

Pr[M̃(ε,δ0,δ1)(0) = 2] = eεα1−α0
e2ε−1 Pr[M̃(ε,δ0,δ1)(1) = 2] = e2εα1−eεα0

e2ε−1
Pr[M̃(ε,δ0,δ1)(0) = 3] = 0 Pr[M̃(ε,δ0,δ1)(1) = 3] = δ1

Notice that if δ0 = δ1 = δ then M̃(ε,δ0,δ1) = M̃(ε,δ). We need to show that M̃(ε,δ0,δ1) is composed
of a valid probability distribution. Since αb = 1− δb,∑

x∈{0,1,2,3}

Pr[M̃(ε,δ0,δ1)(b) = x] = 1 for b = 0, 1

To see that all of the terms are non-negative we need to show that the recurring terms eεα1 − α0
and eεα0 − α1 are non-negative and the rest follows by inspection.

Lemma 3.4. For every (ε, δ)-DP algorithm, M with output space R and neighboring databases D0
and D1, eεα1 − α0 and eεα0 − α1 are non-negative where α0 = 1 − δ0, α1 = 1 − δ1 and δ0, δ1 are
defined in Equations 4 and 5.

Proof.

α1 = 1− P1(S1) + eεP0(S1)
≤ P1(S0) + eε · (1− P0(S0))
≤ e2εP1(S0) + eε · (1− P0(S0))
= eεα0

The other inequality follows by symmetry.

Now we show how to use M̃(ε,δ0,δ1) to simulate any (ε, δ) differentially private algorithm.

Lemma 3.5. For every (ε, δ)-DP algorithm M with output space R, and every pair of neighboring
databases, D0, D1, there exists δ0, δ1 ≤ δ and a randomized algorithm T ′ : {0, 1, 2, 3} → R such that
T ′(M̃(ε,δ0,δ1)(b)) is identically distributed to M(Db) for b = 0 and b = 1.

Proof. Fix neighboring databases, D0, D1 and let P0, P1 be the probability mass functions of M on
D0, D1, respectively. We will use S0, S1, δ0, and δ1 as defined above in Equations 2, 3, 4, and 5.
Fix r ∈ R. T ′ : {0, 1, 2, 3} → R is defined in the table below.

7

x Pr[T ′(x) = r], r ∈ S0 Pr[T ′(x) = r], r ∈ S1 Pr[T ′(x) = r], r ∈ R \ S0 \ S1
0 1

δ0
(P0(r)− eεP1(r)) 0 0

1 (e2ε−1)P1(r)
eεα0−α1

0 eεP0(r)−P1(r)
eεα0−α1

2 0 (e2ε−1)P0(r)
eεα1−α0

eεP1(r)−P0(r)
eεα1−α0

3 0 1
δ1

(P1(r)− eεP0(r)) 0

We need to show that T ′(x) is a valid probability distribution for each x. All of the terms are
non-negative because eεα1 − α0 and eεα0 − α1 are non-negative by Lemma 3.4.

The sums of Pr[T ′(0) = r] and Pr[T ′(3) = r] are immediate from the definitions of δ0 and δ1,
respectively: ∑

r∈R
Pr[T ′(0) = r] = 1

δ0

∑
r∈S0

(P0(r)− eεP1(r)) + 0 + 0 = 1

A symmetrical argument works for Pr[T ′(3) = r]. We now analyze the sum for Pr[T ′(1) = r]. The
sum for Pr[T ′(2) = r] follows by symmetry. We use the following identities:

α0 = 1−
∑
r∈S0

(P0(r)− eεP1(r)) =
∑
r∈S0

eεP1(r) +
∑
r∈S1

P0(r) +
∑

r∈R\S0\S1

P0(r)

α1 = 1−
∑
r∈S1

(P1(r)− eεP0(r)) =
∑
r∈S0

P1(r) +
∑
r∈S1

eεP0(r) +
∑

r∈R\S0\S1

P1(r)

Thus:
eεα0 − α1 =

∑
r∈S0

(e2ε − 1)P1(r) +
∑

r∈R\S0\S1

(eεP0(r)− P1(r))

This implies
∑
r∈R

Pr[T ′(1) = r] = 1. Now we just need to show that T ′(M̃(ε,δ0,δ1)(b)) is identically

distributed to M(Db). We will show this for b = 0 and the b = 1 case follows by symmetry. Fix
r ∈ R. By the definition of M̃(ε,δ0,δ1):

Pr[T ′(M̃(ε,δ0,δ1)(0)) = r] = δ0·Pr[T ′(0) = r]+
(
e2εα0 − eεα1

e2ε − 1

)
·Pr[T ′(1) = r]+

(
eεα1 − α0

e2ε − 1

)
·Pr[T ′(2) = r]

From here we break the calculation into the three possible cases:

Case 1: r ∈ S0

Pr[T ′(M̃(ε,δ0,δ1)(0)) = r] = δ0 ·
(

1
δ0

(P0(r)− eεP1(r))
)

+ e2εα0 − eεα1

e2ε − 1 · (e2ε − 1)P1(r)
eεα0 − α1

= P0(r)− eεP1(r) + eεP1(r) = P0(r)

Case 2: r ∈ S1

Pr[T ′(M̃(ε,δ0,δ1)(0)) = r] = eεα1 − α0

e2ε − 1 · (e2ε − 1)P0(r)
eεα1 − α0

= P0(r)

8

Case 3: r ∈ R \ S0 \ S1

Pr[T ′(M̃(ε,δ0,δ1)(0)) = r] = e2εα0 − eεα1

e2ε − 1 · e
εP0(r)− P1(r)
eεα0 − α1

+ eεα1 − α0

e2ε − 1 · e
εP1(r)− P0(r)
eεα1 − α0

= e2εP0(r)− eεP1(r) + eεP1(r)− P0(r)
e2ε − 1 = P0(r)

We have shown how a generalization of M̃(ε,δ) called M̃(ε,δ0,δ1) can be used to simulate the output
of every differentially private algorithm. In the next lemma we show how to simulate M̃(ε,δ0,δ1) using
M̃(ε,δ), which implies that M̃(ε,δ) can be used to simulate the output of every differentially private
algorithm by composing the simulator introduced in Lemma 3.5 with the one introduced below.

Lemma 3.6. For every ε ≥ 0 and δ0, δ1, δ ∈ [0, 1) such that eε · (1− δ0) ≥ 1− δ1 and eε · (1− δ1) ≥
1− δ0 and δ0, δ1 ≤ δ, there exists a randomized algorithm T ′′ such that T ′′(M̃(ε,δ)(b)) is identically
distributed to M̃(ε,δ0,δ1)(b) for both b = 0, 1.

Proof. Assume without loss of generality that δ0 ≥ δ1 and set α = 1−δ, α0 = 1−δ0, and α1 = 1−δ1.
We will represent T ′′(M̃(ε,δ)(b)) as a Markov Chain below. Here, the probability of transitioning
from one state to another is proportional to the weight of an edge. That is, the true probability
along an edge leaving some node a is the weight divided by the sum of the weights of all of the
edges leaving a (this is just to avoid cluttering the diagram with the normalizing denominators).

9

0

1

1

2

0

3

0

1

2

3

b M̃(ε,δ)(b) T ′′(M̃(ε,δ)(b))

α

δ

α

δ

eε

1

1

eε

δ0
δ − δ0 = α0 − α

eεα0 − α1

α1 − α0

1

δ −
δ1 = α1−

α

δ1

e εα0 − α1

α
1 −

e −
ε
α

0

p

1−
p

Where
p =

(
α0 − α
α1 − α

)
·
(
eεα0 − α1

α0(e2ε − 1)

)
All of the weights are non-negative because α1 ≥ α0 ≥ α, eεα1 ≥ α0, and p is also at most 1,

which we verify now:

(α0 − α) · (eεα0 − α1) ≤ (α1 − α) · (e2εα0 − α1)
≤ (α1 − α) · (e2εα0 − α0)
= (α1 − α) · α0 · (e2ε − 1)

We need to show that T ′′(M̃(ε,δ)(b)) is identically distributed to M̃(ε,δ0,δ1)(b) for b = 0 and
b = 1, which will complete the proof. Notice that Pr[T ′′(M̃(ε,δ)(0)) = 3] = 0 = Pr[M̃(ε,δ0,δ1)(0) = 3]
because there is no path from the b = 0 node to the T ′′ = 3 node. Similarly, Pr[T ′′(M̃(ε,δ)(1)) =

10

0] = 0 = Pr[M̃(ε,δ0,δ1)(1) = 0] We also have:

Pr[T ′′(M̃(ε,δ)(0)) = 0] =
(

δ

δ + α

)
·
(

δ0
δ0 + (δ − δ0)

)
= δ

1 ·
δ0
δ

= δ0

= Pr[M̃(ε,δ0,δ1)(0) = 0]

Similarly,

Pr[T ′′(M̃(ε,δ)(3)) = 3] =
(

δ

δ + α

)
·
(

δ1
δ1 + (δ − δ1)

)
= δ

1 ·
δ1
δ

= δ1

= Pr[M̃(ε,δ0,δ1)(3) = 3]

Next we check the probabilities with which T ′′ outputs 1 and 2 when b = 0.

Pr[T ′′(M̃(ε,δ)(0)) = 1] = δ ·
(
α0 − α
δ

)
·
(

eεα0 − α1

α0(eε − e−ε)

)
+ α ·

(
eε

eε + 1

)
·
(
eεα0 − α1

α0(eε − 1)

)
= (α0 − α+ α) ·

(
e2εα0 − eεα1

α0(e2ε − 1)

)
= e2εα0 − eεα1

e2ε − 1
= Pr[M̃(ε,δ0,δ1)(0) = 1]

It follows that Pr[T ′′(M̃(ε,δ)(0)) = 2] = Pr[M̃(ε,δ0,δ1)(0) = 2] because the probabilities sum to 1.
Finally we show the probabilities with which T ′′ outputs 1 and 2 when b = 1.

Pr[T ′′(M̃(ε,δ)(1)) = 1] = δ · α1 − α
δ

·
(
α0 − α
α1 − α

)
·
(
eεα0 − α1

α0(e2ε − 1)

)
+ α ·

(
1

eε + 1

)
·
(
eεα0 − α1

α0(eε − 1)

)
= (α0 − α+ α) ·

(
eεα0 − α1

α0(e2ε − 1)

)
= Pr[M̃(ε,δ0,δ1)(1) = 1]

Again because the probabilities sum to 1, it follows that Pr[T ′′(M̃(ε,δ)(1)) = 2] = Pr[M̃(ε,δ0,δ1)(1) =
2], which completes the proof.

So M̃(ε,δ) can simulate any (ε, δ) differentially private algorithm. Since it is known that post-
processing preserves differential privacy (Fact 2.2), it follows that to analyze the composition of
arbitrary differentially private algorithms, it suffices to analyze the composition of M̃(εi,δi)’s:

11

Lemma 3.7. For all ε1, . . . , εk ≥ 0, δ1, . . . , δk, δg ∈ [0, 1),

OptComp((ε1, δ1), . . . , (εk, δk), δg) = OptComp(M̃(ε1,δ1), . . . , M̃(εk,δk), δg)

Proof. Since M̃(ε1,δ1), . . . , M̃(εk,δk) are (ε1, δ1), . . . , (εk, δk)-differentially private, we have:

OptComp((ε1, δ1), . . . , (εk, δk), δg) = sup{OptComp(M1, . . . ,Mk, δg) : Mi is (εi, δi)-DP ∀i ∈ [k]}
≥ OptComp(M̃(ε1,δ1), . . . , M̃(εk,δk), δg)

For the other direction, it suffices to show that for everyM1, . . . ,Mk that are (ε1, δ1), . . . , (εk, δk)-
differentially private, we have

OptComp(M1, . . . ,Mk, δg) ≤ OptComp(M̃(ε1,δ1), . . . , M̃(εk,δk))

That is,

inf{εg ≥ 0: (M1, . . . ,Mk) is (εg, δg)-DP} ≤ inf{εg ≥ 0: (M̃(ε1,δ1), . . . , M̃(εk,δk)) is (εg, δg)-DP}

So suppose (M̃(ε1,δ1), . . . , M̃(εk,δk)) is (εg, δg)-DP. We will show that (M1, . . . ,Mk) is also (εg, δg)-DP.
Taking the infimum over εg then completes the proof.

We know from Lemma 3.2 that for every pair of neighboring databases D0, D1, there must exist
randomized algorithms T1, . . . , Tk such that Ti(M̃(εi,δi)(b)) is identically distributed to Mi(Db) for
all i ∈ {1, . . . , k}. By hypothesis we have

Dδg
∞
(
(M̃(ε1,δ1)(0), . . . , M̃(εk,δk)(0))‖(M̃(ε1,δ1)(1), . . . , M̃(εk,δk)(1))

)
≤ εg

Thus by Fact 2.2 we have:

Dδg
∞
(
(M1(D0), . . . ,Mk(D0))‖(M1(D1), . . . ,Mk(D1))

)
=

Dδg
∞
(
(T1(M̃(ε1,δ1)(0)), . . . , Tk(M̃(εk,δk)(0)))‖(T1(M̃(ε1,δ1)(1)), . . . , Tk(M̃(εk,δk)(1)))

)
≤ εg

Now we are ready to characterize OptComp for an arbitrary set of differentially private algo-
rithms.

Proof of Theorem 1.5. Given (ε1, δ1), . . . , (εk, δk) and δg, let M̃k(b) denote the composition
(M̃(ε1,δ1)(b), . . . , M̃(εk,δk)(b)) and let P̃ kb (x) be the probability mass function of M̃k(b), for b = 0
and b = 1. By Lemma 3.7, OptComp((ε1, δ1), . . . , (εk, δk), δg) is the smallest value of εg such that:

δg ≥ max
Q⊆{0,1,2,3}k

{
P̃ k0 (Q)− eεg · P̃ k1 (Q), P̃ k1 (Q)− eεg · P̃ k0 (Q)

}
.

Since M̃ is symmetric, we can instead consider the smallest value of εg such that:

δg ≥ max
Q⊆{0,1,2,3}k

{
P̃ k0 (Q)− eεg · P̃ k1 (Q)

}
,

without loss of generality. Given εg, the set S ⊆ {0, 1, 2, 3}k that maximizes the right-hand side is

S = S(εg) =
{
x ∈ {0, 1, 2, 3}k | P̃ k0 (x) ≥ eεg · P̃ k1 (x)

}
12

We can further split S(εg) into S(εg) = S0(εg) ∪ S1(εg) with

S0(εg) =
{
x ∈ {0, 1, 2, 3}k | P̃ k1 (x) = 0

}
S1(εg) =

{
x ∈ {0, 1, 2, 3}k | P̃ k0 (x) ≥ eεg · P̃ k1 (x), and P̃ k1 (x) > 0

}
Note that S0(εg) ∩ S1(εg) = ∅. We have P̃ k1 (S0(εg)) = 0 and P̃ k0 (S0(εg)) = 1 − Pr[M̃k(0) ∈

{1, 2, 3}k] = 1−
∏k
i=1(1− δi). So

P̃ k0 (S(εg))− eεg P̃ k1 (S(εg)) = P̃ k0 (S0(εg))− eεg P̃ k1 (S0(εg)) + P̃ k0 (S1(εg))− eεg P̃ k1 (S1(εg))

= 1−
k∏
i=1

(1− δi) + P̃ k0 (S1(εg))− eεg P̃ k1 (S1(εg))

Now we just need to analyze P̃ k0 (S1(εg))− eεg P̃ k1 (S1(εg)). Notice that S1(εg) ⊆ {1, 2}k because
for all x ∈ S1(εg), we have P̃0(x) > P̃1(x) > 0. So we can write:

P̃ k0 (S1(εg))− eεg · P̃ k1 (S1(εg))

=
∑

y∈{1,2}k
max

 ∏
i : yi=1

(1− δi)eεi
1 + eεi

·
∏

i : yi=2

(1− δi)
1 + eεi

− eεg
∏

i : yi=1

(1− δi)
1 + eεi

·
∏

i : yi=2

(1− δi)eεi
1 + eεi

, 0

=

k∏
i=1

1− δi
1 + eεi

∑
y∈{0,1}k

max

 e
∑k

i=1
εi

e
∑k

i=1
yiεi
− eεg · e

∑k

i=1
yiεi , 0

Putting everything together yields:

δg ≥ P̃ k0 (S0(εg))− eεg P̃ k1 (S0(εg)) + P̃ k0 (S1(εg))− eεg P̃ k1 (S1(εg))

= 1−
k∏
i=1

(1− δi) +
∏k
i=1(1− δi)∏k
i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}

We have characterized the optimal composition for an arbitrary set of differentially private
algorithms (M1, . . . ,Mk) under the assumption that the algorithms are chosen in advance and all
run on the same database. Next we show that OptComp under this restrictive model of composition
is actually equivalent under the more general k-fold adaptive composition discussed in Section 2.

Theorem 3.8. The privacy parameters ε1, . . . , εk ≥ 0, δ1, . . . , δk ∈ [0, 1), satisfy (εg, δg)-differential
privacy under adaptive composition for εg, δg ≥ 0 if and only if OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤
εg

Proof. First suppose the privacy parameters ε1, . . . , εk, δ1, . . . , δk satisfy (εg, δg)-differential privacy
under adaptive composition. Then OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ εg because adaptive com-
position is more general than the composition defining OptComp.

13

Conversely, suppose OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ εg. In particular, this means
OptComp(M̃(ε1,δ1), . . . , M̃(εk,δk), δg) ≤ εg. To complete the proof, we must show that the privacy
parameters ε1, . . . , εk, δ1, . . . , δk satisfy (εg, δg)-differential privacy under adaptive composition.

Fix an adversary A. On each round i, A uses its coin tosses r and the previous outputs
y1, . . . , yi−1 to select an (εi, δi)-differentially private algorithm Mi = M

r,y1,...,yi−1
i and neighboring

databases D0 = D
r,y1,...,yi−1
0 , D1 = D

r,y1,...,yi−1
1 . Let V b be the view of A with the given privacy

parameters under composition game b for b = 0 and b = 1.
Lemma 3.2 tells us that there exists an algorithm Ti = T

r,y1,...,yi−1
i such that Ti(M̃(εi,δi)(b))

is identically distributed to Mi(Db) for both b = 0, 1 for all i ∈ [k]. Define T̂ (z1, . . . , zk) for
z1, . . . , zk ∈ {0, 1, 2, 3} as follows:

1. Randomly choose coins r for A

2. For i = 1, . . . , k, let yi ← T
r,y1,...,yi−1
i (zi)

3. Output (r, y1, . . . , yk)

Notice that T̂ (M̃(ε1,δ1)(b), . . . , M̃(εk,δk)(b)) is identically distributed to V b for both b = 0, 1. By
hypothesis we have

Dδg
∞
(
(M̃(ε1,δ1)(0), . . . , M̃(εk,δk)(0))‖(M̃(ε1,δ1)(1), . . . , M̃(εk,δk)(1))

)
≤ εg

Thus by Fact 2.2 we have:

Dδg
∞
(
V 0‖V 1) = Dδg

∞

(
T̂ (M̃(ε1,δ1)(0), . . . , M̃(εk,δk)(0))‖T̂ (M̃(ε1,δ1)(1), . . . , M̃(εk,δk)(1))

)
≤ εg

4 Hardness of OptComp
#P is the class of all counting problems associated with decision problems in NP. It is a set of
functions that count the number of solutions to some NP problem. More formally:

Definition 4.1. A function f : {0, 1}∗ → N is in the class #P if there exists a polynomial p : N→ N
and a polynomial time algorithm M such that for every x ∈ {0, 1}∗:

f(x) =
∣∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣∣
Definition 4.2. A function g is called #P -hard if every function f ∈ #P can be computed in
polynomial time given oracle access to g. That is, evaluations of g can be done in one time step.

If a function is #P -hard, then there is no polynomial-time algorithm for computing it unless
there is a polynomial-time algorithm for counting the number of solutions of all NP problems.

Definition 4.3. A function f is called #P -easy if there is some function g ∈ #P such that f can
be computed in polynomial time given oracle access to g.

If a function is both #P -hard and #P -easy, we say it is #P -complete. Proving that computing
OptComp is #P -complete can be broken into two steps: showing that it is #P -easy and showing
that it is #P -hard.

14

Lemma 4.4. Computing OptComp is #P -easy.

Proof. For convenience we will view rational (ε1, δ1), . . . , (εk, δk) and εg as given arguments to
OptComp and compute δg. Recall that the two versions of OptComp, viewing εg as given and
computing δg and vice versa, are equivalent up to a polynomial factor (just run binary search over
values of δg computing polynomially many bits of precision). So the formulation we choose for the
proof will not affect whether OptComp is in #P or not. Recall that in our model of computing real
valued functions, we will take another input q and we will output an approximation of δg to q bits
of precision in polynomial time using a #P oracle where δg satisfies the following:

1∏k
i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}

= 1− 1− δg∏k
i=1 (1− δi)

Notice that the only part of the expression above that cannot be computed in polynomial time is
the summation over subsets of {1, . . . , k}. If we knew the sum, computing δg would be easy given
our inputs. We show how to compute the sum in polynomial time using a #P oracle and it follows
that computing δg is #P-easy .

Define f : 2[k] → R as f(S) = max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}
. f is computable in polyno-

mial time (to any desired precision). Let f̂ be a function computable in polynomial time where∣∣∣f̂(S)− f(S)
∣∣∣ < 1

2q+k for all S. Set m = 10q. Now define the function g : 2[k] × N → {0, 1} as
follows:

g(S, n) =
{

1 if m · f̂(S) ≥ n
0 otherwise

We can now phrase a decision problem in NP: Does there exist a pair (S, n) such that g(S, n) = 1?
This is in NP because given a witness (S, n), we can compute m · f̂(S) and compare the output to
n, thereby verifying the solution, in polynomial time. Since this is an NP problem, a #P oracle
can count the number of solutions to it in one time step. Notice that for every set S, the number of
solutions (pairs of the form (S, n) satisfying g(S, n) = 1) is exactly m · f̂(S) because g will output 1
for g(S, 1), g(S, 2), . . . , g(S,m · f̂(S)). So over all possible sets S, the number of solutions as counted
by the #P oracle equals m ·

∑
S⊆[k] f̂(S). Dividing this by m gives us the sum up to an additive

error of 2k
2q+k = 1

2q , which can be used to compute δg to q bits of precision in polynomial time. This
only required one call to a #P oracle. So computing OptComp is #P -easy.

Next we show that computing OptComp is also #P -hard through a series of reductions. We
start with a multiplicative version of the partition problem that is known to be #P -complete by
Ehrgott [Ehr00]. The problems in the chain of reductions are defined below.

Definition 4.5. #INT-PARTITION is the following problem: given a set Z = {z1, z2, . . . , zk} of
positive integers, count the number of partitions P ⊆ [k] such that∏

i∈P
zi −

∏
i 6∈P

zi = 0

15

All of the remaining problems in our chain of reductions take inputs {w1, . . . , wk} where 1 ≤
wi ≤ e is the Dth root of a positive integer zi for all i ∈ [k] and some positive integer D. All of the
reductions we present actually hold for every positive integer D, including D = 1 (in which case
the inputs are integers). However, we will constrain D to be large enough so that our inputs are in
the range [1, e]. This is because in the final reduction to OptComp, εi values in the proof are set
to ln(wi). We want to show that our reductions hold for reasonable values of ε’s in a differential
privacy setting so throughout the proofs we use wi’s ∈ [1, e] to correspond to εi’s ∈ [0, 1] in the
final reduction. In fact, we will later state our reductions as applying to instances where

∏
i wi ≤ eε

(and hence
∑
i εi ≤ ε) for any desired ε > 0.

Definition 4.6. #PARTITION is the following problem: given a number D ∈ N and a set
W = {w1, w2, . . . , wk} of real numbers where 1 ≤ w1, . . . , wk ≤ e are Dth roots of positive integers
z1, . . . zk, respectively, count the number of partitions P ⊆ [k] such that∏

i∈P
wi −

∏
i 6∈P

wi = 0

(The real numbers w1, . . . , wk are specified in the input by z1, . . . , zk and D with the input size
being the combined bit length of these integers in binary).

Definition 4.7. #T-PARTITION is the following problem: given a number D ∈ N, a set W =
{w1, w2, . . . , wk} of real numbers and a positive real number T where 1 ≤ w1, . . . , wk ≤ e are Dth
roots of positive integers z1, . . . zk, respectively, and T = 2D

√
t − 2D

√
t′ for two integers t, t′, count

the number of partitions P ⊆ [k] such that∏
i∈P

wi −
∏
i6∈P

wi = T

(The real numbers w1, . . . , wk and T are specified in the input by z1, . . . , zk, t, t
′ and D with the

input size being the combined bit length of these integers in binary).

Definition 4.8. SUM-PARTITION: given a number D ∈ N and a set W = {w1, w2, . . . , wk} of
real numbers where 1 ≤ w1, . . . , wk ≤ e are Dth roots of positive integers z1, . . . zk, respectively,
and a rational number r > 1, find

∑
P⊆[k]

max

∏
i∈P

wi − r ·
∏
i 6∈P

wi, 0

(The real numbers w1, . . . , wk are specified in the input by z1, . . . , zk and D with the input size
being the combined bit length of these integers and the numerator and denominator of r in binary).

Since the output of SUM-PARTITION is irrational, the actual computational problem is defined
according to our convention in Section 2 for computing real-valued functions. That is, given an
additional input q, compute a number y such that∣∣∣∣∣∣y −

∑
P⊆[k]

max

∏
i∈P

wi − r ·
∏
i 6∈P

wi, 0

∣∣∣∣∣∣ < 1

2q

16

We prove that computing OptComp is #P -hard by the following series of reductions:

#INT-PARTITION ≤ #PARTITION ≤ #T-PARTITION ≤ SUM-PARTITION ≤ OptComp

Since #INT-PARTITION is known to be #P -complete [Ehr00], the chain of reductions will
prove that OptComp is #P -hard.

Lemma 4.9. For every constant c > 1, #PARTITION is #P -hard, even on instances where∏
i wi ≤ c.

Proof. Given an instance of #INT-PARTITION, {z1, . . . , zk}, we show how to find the solution
in polynomial time using a #PARTITION oracle. Set D = dlogc(

∏
i zi)e and wi = D

√
zi ∀i ∈ [k].

Note that
∏
i wi = (

∏
i zi)

1/D ≤ c. Let P ⊆ [k]:

∏
i∈P

wi =
∏
i 6∈P

wi ⇐⇒

(∏
i∈P

wi

)D
=

∏
i6∈P

wi

D

⇐⇒
∏
i∈P

zi =
∏
i 6∈P

zi

There is a one-to-one correspondence between solutions to the #PARTITION problem and solu-
tions to the given #INT-PARTITION instance. We can solve #INT-PARTITION in polynomial
time with a #PARTITION oracle. Therefore #PARTITION is #P -hard.

Lemma 4.10. For every constant c > 1, #T-PARTITION is #P -hard, even on instances where∏
i wi ≤ c.

Proof. Let c > 1 be a constant. We will reduce from #PARTITION, so consider an instance of the
#PARTITION problem, W = {w1, w2, . . . , wk} of Dth roots of integers z1, . . . , zk, respectively.
We may assume

∏
i wi ≤

√
c since

√
c is also a constant greater than 1.

Set W ′ = W ∪ {wk+1}, where wk+1 =
∏k
i=1 wi. Notice that

∏k+1
i=1 wi ≤ (

√
c)2 = c. Set

T = √wk+1 (wk+1 − 1). Notice that wk+1 =
(∏k

i=1 zi

) 1
D so by setting integers t =

(∏k
i=1 zi

)3
and

t′ =
∏k
i=1 zi we get that

T = 2D
√
t− 2D

√
t′

which meets the input requirement for #T-PARTITION. So we can use a #T-PARTITION
oracle to count the number of partitions Q ⊆ {1, . . . , k + 1} such that∏

i∈Q
wi −

∏
i6∈Q

wi = T

Let P = Q ∩ {1, . . . , k}. We will argue that
∏
i∈Q wi −

∏
i 6∈Q wi = T if and only if

∏
i∈P wi =∏

i 6∈P wi, which completes the proof. There are two cases to consider: wk+1 ∈ Q and wk+1 6∈ Q.

17

Case 1: wk+1 ∈ Q. In this case, we have:

wk+1 ·

(∏
i∈P

wi

)
−
∏
i 6∈P

wi =
∏
i∈Q

wi −
∏
i 6∈Q

wi = T = √wk+1 (wk+1 − 1)

⇐⇒

∏
i∈[k]

wi

(∏
i∈P

wi

)2

−
∏
i∈[k]

wi =
√∏
i∈[k]

wi

∏
i∈[k]

wi − 1

(∏
i∈P

wi

)
multiplied both sides by

∏
i∈P

wi

⇐⇒

∏
i∈P

wi −
√∏
i∈[k]

wi

∏
i∈[k]

wi
∏
i∈P

wi +
√∏
i∈[k]

wi

 = 0 factored quadratic in
∏
i∈P

wi

⇐⇒
∏
i∈P

wi =
√∏
i∈[k]

wi

⇐⇒
∏
i 6∈P

wi =
∏
i∈P

wi

So there is a one-to-one correspondence between solutions to the #T-PARTITION instance
W ′ where wk+1 ∈ Q and solutions to the original #PARTITION instance W .

Case 2: wk+1 6∈ Q. Solutions now look like:

∏
i∈P

wi −
∏
i∈[k]

wi
∏
i 6∈P

wi =
√∏
i∈[k]

wi

∏
i∈[k]

wi − 1

One way this can be true is if wi = 1 for all i ∈ [k]. We can check ahead of time if our input

set W contains all ones. If it does, then there are 2k − 2 partitions that yield equal products (all
except P = [k] and P = ∅) so we can just output 2k−2 as the solution and not even use our oracle.
The only other way to satisfy the above expression is for

∏
i∈P wi >

∏
i∈[k] wi which cannot happen

because P ⊆ [k]. So there are no solutions in the case that wk+1 6∈ Q.
Therefore the output of the #T-PARTITION oracle onW ′ is the solution to the #PARTITION

problem. So #T-PARTITION is #P -hard.

For the next two proofs we will make use of the following fact to bound the amount of precision
needed when approximating irrational numbers by rational ones in our reductions:

Fact 4.11. For all real numbers y > x and functions f that are differentiable on the interval [x, y]:

f(y)− f(x) ≥ (y − x) · min
z∈(x,y)

f ′(z)

Lemma 4.12. For every constant c > 1, SUM-PARTITION is #P -hard even on instances where∏
i wi ≤ c and where there are no partitions S such that

∏
i∈S wi = r ·

∏
i 6∈S wi.

Proof. We will use a SUM-PARTITION oracle to solve #T-PARTITION given a set W =
{w1, . . . , wk} of Dth roots of positive integers z1, . . . , zk, respectively, and a positive real number

18

T = 2D
√
t− 2D

√
t′ for integers t, t′ given in the input. Notice that for every x > 0:∏
i∈P

wi −
∏
i6∈P

wi = x =⇒
∏
i∈P

wi −
∏
i∈[k] wi∏
i∈P wi

= x

=⇒ ∃ j ∈ Z+such that D
√
j −

∏
i∈[k] wi
D
√
j

= x

Above, j must be a positive integer greater than
(∏k

i=1 zi

)1/2
, which tells us that the gap in

products from every partition must take a particular form. This means that for a given D and
W , #x-PARTITION can only be non-zero on a discrete set of possible values of x. So given
our #T-PARTITION instance we can find a T ′ > T such that the above has no solutions for
x in the interval (T, T ′). Specifically, solve the above quadratic for D

√
j. If j is not an integer,

then we know the answer to the #T-PARTITION instance is 0, so assume j is an integer and set
T ′ = D

√
j + 1 −

∏
i wi/

D
√
j + 1. We can also find an interval (T ′′, T) just below T where no value

of x in the interval can yield a solution above by setting T ′′ = D
√
j − 1 −

∏
i wi/

D
√
j − 1. We use

these discreteness properties twice in the proof. Also notice that these intervals are not too small:

Claim 4.13. T ′ − T ≥ 2−poly(n) and T − T ′′ ≥ 2−poly(n) where n is the input length (i.e. the bit
lengths of the integers z1, . . . , zk, t, t

′).

Proof of Claim.

T ′ − T = D
√
j + 1−

∏
i∈[k] wi
D
√
j + 1

− D
√
j +

∏
i∈[k] wi
D
√
j

≥ D
√
j + 1− D

√
j

≥ 1
D(j + 1)

where the last inequality follows from Fact 4.11. This final value is only exponentially
small because j is upper bounded by

∏k
i=1 zi, which is at most exponentially large in

the bit length of the zi’s. A very similar proof shows that (T ′′, T) is only exponentially
small.

This means that we can always find T̂ ∈ (T, T ′) such that T̂ is rational and can be fully specified
with a bit length that is polynomial in the input length. Fix such a quantity T̂ . For all y > 0,
define P y ≡ {P ⊆ [k] |

∏
i∈P wi −

∏
i6∈P wi ≥ y}. Then, since x-PARTITION has no solutions for

x ∈ (T, T ′):∣∣∣∣∣∣
P ⊆ [k] |

∏
i∈P

wi −
∏
i6∈P

wi = T

∣∣∣∣∣∣ =

∣∣∣PT \P T̂ ∣∣∣
= 1
T

 ∑
P∈PT \P T̂

∏
i∈P

wi −
∏
i6∈P

wi

= 1
T

 ∑
P∈PT

∏
i∈P

wi −
∏
i 6∈P

wi

− ∑
P∈P T̂

∏
i∈P

wi −
∏
i 6∈P

wi

19

We now show how to compute the two sums in the final term using the SUM-PARTITION

oracle. We will give the procedure for computing
∑

P∈PT

(∏
i∈P

wi −
∏
i 6∈P

wi

)
and the case with T̂

will follow by symmetry. The oracle returns a real number, so by our model of computing real
valued functions, we will also give the oracle an additional input that specifies the number of bits
of precision in its output. Ultimately we only need to approximate each sum to within ±T/4. This
will give an approximation to the #T-PARTITION problem to within ±1/2, thereby solving it
by rounding the approximation because the solution will be an integer. We want to set the input
r to the SUM-PARTITION oracle to be r = rT such that for all P ⊆ [k], we have:∏

i∈P
wi − rT ·

∏
i 6∈P

wi ≥ 0 ⇐⇒
∏
i∈P

wi −
∏
i6∈P

wi ≥ T (6)

Taking w =
∏
i∈[k] wi and thinking of v =

∏
i∈P wi, it suffices that all positive solutions to each

of the following two inequalities are the same:

v − rT
w

v
≥ 0 and v − w

v
≥ T

The positive solutions to the left one are v ≥ √rTw, and to the right one are v ≥ (T+
√
T 2 + 4w)/2.

Setting the right-hand sides equal gives

rT =
(
T +
√
T 2 + 4w

)2
4w (7)

Since rT might be irrational and SUM-PARTITION takes as input rational values of r, we
need to find a rational r that approximates rT and preserves the set of solutions PT . Recall from
Claim 4.13 that there is an (only) exponentially small interval (T ′′, T) below T such that for all
T̄ ∈ (T ′′, T), PT = P T̄ . This translates to a corresponding interval (rT ′′ , rT) such that for all
r ∈ (rT ′′ , rT), equivalence (6) holds. Furthermore, this interval is also only exponentially small.

Claim 4.14. rT − rT ′′ ≥ 2−poly(n) where n is the input length (i.e. the bit lengths of the integers
z1, . . . , zk, t, t

′).

Proof of Claim. To see this, view rT from Equation 7 as a function r(T) of T , and
calculate the derivative:

r′(T) =
(
T +
√
T 2 + 4w

)2
2w ·
√
T 2 + 4w

,

Fact 4.11 says that:

rT − rT ′′ = r(T)− r(T ′′)

≥
(

min
z∈(T ′′,T)

r′(z)
)
· (T − T ′′)

≥ (T − T ′′) · poly(T)

(Recall that 1 ≤ w =
∏
i wi ≤ c). This is only exponentially small in the input length

by Claim 4.13.

20

So we can choose a rational r ∈ (rT ′′ , rT) that can be specified with a number of bits that is poly-
nomial in the input length and preserves PT =

{
P ⊆ [k] |

∏
i∈P wi − r ·

∏
i6∈P wi ≥ 0

}
. However

the SUM-PARTITION oracle gives us

∑
P⊆[k]

max

∏
i∈P

wi − r ·
∏
i6∈P

wi, 0

 =
∑
P∈PT

∏
i∈P

wi − r ·
∏
i6∈P

wi

whereas we want to compute the right-hand side without the r coefficient. To get this we just pick
another rational r′ ∈ (rT ′′ , rT) such that r′− r ≥ 2−poly(n). If precision were not an issue, we could
run our SUM-PARTITION oracle for r and r′ and receive the output:

S1 =
∑
P∈PT

∏
i∈P

wi − r ·
∏
i6∈P

wi

S2 =

∑
P∈PT

∏
i∈P

wi − r′ ·
∏
i 6∈P

wi

Then the following linear combination of S1 and S2 gives us what we want:

r′ − 1
r′ − r

· S1 −
r − 1
r′ − r

· S2 =
∑
P∈PT

∏
i∈P

wi −
∏
i 6∈P

wi

Claim 4.15. Computing S1 and S2 to within ±2−poly(n) yields an approximation of

∑
P∈PT

(∏
i∈P wi −

∏
i6∈P wi

)
to within ±T/4.

Proof of Claim. We just need to approximate S1 and S2 to within ±T8 ·
r′−r
r′−1 to get the

desired precision. This additive error is only exponentially small by Claim 4.14.

Running this whole procedure again for T̂ ∈ (T, T ′), which we fixed above gives us all the
information we need to count the number of solutions to the #T-PARTITION instance we were
given. We can solve #T-PARTITION in polynomial time with four calls to a SUM-PARTITION
oracle. Therefore SUM-PARTITION is #P -hard.

Now we prove that computing OptComp is #P -complete.

Proof of Theorem 1.6. We have already shown that computing OptComp is #P -easy. Here we
prove that it is also #P -hard, thereby proving #P -completeness.

We are given an instance D, W = {w1, . . . , wk}, r ∈ Q, and q of SUM-PARTITION, where
∀i ∈ [k], wi is the Dth root of a corresponding integer zi,

∏
i wi ≤ c, and q specifies the desired

number of bits of precision in the output. If we disregard precision, we would like to set εi =
ln(wi) ∀i ∈ [k], δ1 = δ2 = . . . δk = 0 and εg = ln(r). Note that

∑
i εi = ln (

∏
i wi) ≤ ln(c). Since we

can take c to be an arbitrary constant greater than 1, we can ensure that
∑
i εi ≤ ε for an arbitrary

ε > 0.

21

Again we will use the version of OptComp that takes εg as input and outputs δg. After using
an OptComp oracle to find δg we know the optimal composition equation 1 from Theorem 1.5 is
satisfied:

1∏k
i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}

= 1− 1− δg∏k
i=1 (1− δi)

= δg

Thus we can compute:

δg ·
k∏
i=1

(1 + eεi) =
∑

S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}

=
∑

S⊆{1,...,k}

max

∏
i∈S

wi − r ·
∏
i 6∈S

wi, 0

This last expression is exactly the solution to the instance of SUM-PARTITION we were

given. Taking precision into account, the input SUM-PARTITION instance has an additional
input q that specifies the desired number of bits of precision in the output and we can only pass
OptComp rational values so we will have to approximate εi = ln(wi) for all i and εg = ln(r).
Again there is a worry that when we approximate these values the set of partitions S that make∏
i∈S wi − r ·

∏
i 6∈S wi > 0 might change. We want to get enough precision in our inputs so that

the set of partitions over which we sum does not change and enough precision so that the output
is accurate to q bits. We will calculate the approximations required for each of these two goals
separately and the final precision that we use will just be the maximum of the two. We prove that
we can achieve both of these goals with the next two claims.

Claim 4.16. There exists a polynomial p(n) in the length n of the input (the bit lengths of
z1, . . . , zk, q, and the numerator and denominator of r) such that if |wi − w′i| ≤ 2−p(n) for each
i, then the set of partitions S satisfying∏

i∈S
wi − r ·

∏
i 6∈S

wi > 0

is the same as the set of partitions satisfying∏
i∈S

w′i − r ·
∏
i 6∈S

w′i > 0

Proof of Claim. Recall that SUM-PARTITION is #P-hard even on instances where
there are no partitions S such that

∏
i∈S wi = r ·

∏
i 6∈S wi so we may assume our input

instance of SUM-PARTITION has no such partitions and still prove the hardness of
OptComp. So to ensure that we have enough precision such that the set over which
we sum does not change, we must make the error smaller than the minimum possible
(in absolute value) nonzero outcome of

∏
i∈S wi − r ·

∏
i 6∈S wi. We now bound this

quantity. Let

S =

S ⊆ [k] |
∏
i∈S

wi 6=
∏
i6∈S

wi

22

Since r is rational, r = a/b for two integers a and b. Let a′ = aD and b′ = bD. Then:

min
S∈S

∣∣∣∣∣∣
∏
i∈S

wi − r ·
∏
i 6∈S

wi

∣∣∣∣∣∣
 = min

S∈S

∣∣∣∣∣∣∣
(∏
i∈S

zi

) 1
D

−

a′
b′

∏
i 6∈S

zi

 1
D

∣∣∣∣∣∣∣

≥ min
S∈S

∣∣∣∣∣∣
∏
i∈S

zi −
a′

b′

∏
i6∈S

zi

∣∣∣∣∣∣ · 1

D
(∏

i∈[k] zi

)(D−1)/D

Where the last line follows from Fact 4.11 applied to the function f(x) = x1/D.

1/
(∏

i∈[k] zi

)(D−1)/D
is only exponentially small because

∏
i∈[k] zi is at most exponen-

tially large in the bit length of the integers z1, . . . , zk. We claim that
∣∣∣∏i∈S zi −

a′

b′

∏
i 6∈S zi

∣∣∣
is at least 1/b′ for all S ∈ S. Fix S ∈ S:

∣∣∣∣∣∣
∏
i∈S

zi −
a′

b′

∏
i 6∈S

zi

∣∣∣∣∣∣ = h =⇒

∣∣∣∣∣∣b′ ·
∏
i∈S

zi − a′ ·
∏
i 6∈S

zi

∣∣∣∣∣∣ = h · b′

=⇒ h ≥ 1/b′

Where the last implication follows because b′ ·
∏
i∈S zi−a′ ·

∏
i6∈S zi is just a difference

of integers so the closest nonzero value it can take on is ±1.

Claim 4.17. There exists a polynomial p(n) in the length n of the input (the bit lengths of
z1, . . . , zk, q, and the numerator and denominator of r) such that if |wi − w′i| ≤ 2−p(n) for each
i, then∣∣∣∣∣∣

∑
S⊆{1,...,k}

max

∏
i∈S

w′i − r ·
∏
i 6∈S

w′i, 0

− ∑
S⊆{1,...,k}

max

∏
i∈S

wi − r ·
∏
i6∈S

wi, 0

∣∣∣∣∣∣ ≤ 2−q

Proof of Claim. We will choose p(n) = p1(n) + p2(n) where p1(n) is the polynomial
that exists from Claim 4.16 and p2(n) will be determined later. Define

S+ =

S ⊆ [k] |
∏
i∈S

wi − r ·
∏
i 6∈S

wi > 0

Claim 4.16 says that:

S+ =

S ⊆ [k] |
∏
i∈S

w′i − r ·
∏
i 6∈S

w′i > 0

23

Now we can write∣∣∣∣∣∣
∑

S⊆{1,...,k}

max

∏
i∈S

w′i − r ·
∏
i6∈S

w′i, 0

− ∑
S⊆{1,...,k}

max

∏
i∈S

wi − r ·
∏
i 6∈S

wi, 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
S∈S+

∏
i∈S

w′i − r ·
∏
i 6∈S

w′i

− ∑
S∈S+

∏
i∈S

wi − r ·
∏
i 6∈S

wi

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
S∈S+

(∏
i∈S

w′i −
∏
i∈S

wi

)
−
∑
S∈S+

r ·

∏
i 6∈S

w′i −
∏
i 6∈S

wi

∣∣∣∣∣∣ ≤∣∣∣∣∣ ∑
S∈S+

(∏
i∈S

w′i −
∏
i∈S

wi

)∣∣∣∣∣+

∣∣∣∣∣∣
∑
S∈S+

r ·

∏
i 6∈S

w′i −
∏
i 6∈S

wi

∣∣∣∣∣∣
Bounding each term in the final expression above by 2−(q+1) then gives us the accuracy
we want. We will show directly how to bound the second term and the argument for
the first term follows symmetrically. By hypothesis we have that for all S ⊆ [k]:∏

i 6∈S

w′i ≤
∏
i 6∈S

(
wi + 2−p(n)

)
≤
∏
i 6∈S

(
1 + 2−p(n)

)
wi

≤
(

1 + 2−p(n)
)k
·
∏
i6∈S

wi

and similarly ∏
i6∈S

w′i ≥
(

1− 2−p(n)
)k
·
∏
i 6∈S

wi

It follows that for all S ⊆ [k]:((
1− 2−p(n)

)k
− 1
)
·
∏
i 6∈S

wi ≤

∏
i 6∈S

w′i −
∏
i 6∈S

wi

 ≤ ((1 + 2−p(n)
)k
− 1
)
·
∏
i 6∈S

wi

Since |S+| ≤ 2k and 1 ≤
∏
i 6∈S wi ≤ c for all S we get:

2k · r ·
((

1− 2−p(n)
)k
− 1
)
· ≤

∑
S∈S+

r ·

∏
i 6∈S

w′i −
∏
i 6∈S

wi

 ≤ 2k · r ·
((

1 + 2−p(n)
)k
− 1
)
· c

Picking p2(n) such that p(n) = p1(n) + p2(n) > 2k + log(rc) + q + 1 then suffices to
bound the absolute value of the sum by 2−(q+1). Repeating the same calculation for∑
S∈S+

(∏
i∈S w

′
i −
∏
i∈S wi

)
will yield the same approximation except without the

factor of r. So we can bound both terms by 2−(q+1) (and therefore their sum by 2−q)
by approximating each wi to a precision that is polynomial in n, which proves the
claim.

24

So by the two claims above we can get an approximation of the SUM-PARTITION instance
to q bits of precision in polynomial time with access to an OptComp oracle. Therefore computing
OptComp is #P -hard.

5 Approximation of OptComp
Although we cannot hope to efficiently compute the optimal composition for a general set of dif-
ferentially private algorithms (assuming P6=NP or even FP6= #P), we show in this section that we
can approximate OptComp to arbitrary precision in polynomial time.

Theorem 1.7 (restated). There is a polynomial-time algorithm that given rational ε1, . . . , εk ≥
0, δ1, . . . δk, δg ∈ [0, 1), and η ∈ (0, 1), outputs ε∗ satisfying

OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ ε∗ ≤ OptComp((ε1, δ1), . . . , (εk, δk), e−η/2 · δg) + η

The algorithm runs in time

O

(
k3 · ε · (1 + ε)

η
· log

(
k2 · ε · (1 + ε)

η

))
where ε =

∑
i∈[k] εi/k, assuming constant-time arithmetic operations.

We prove Theorem 1.7 using the following three lemmas:

Lemma 5.1. Given non-negative integers a1, . . . , ak, B and weights w1, . . . , wk ∈ Q, one can
compute ∑

S⊆[k] s.t.∑
i∈S

ai≤B

∏
i∈S

wi

in time O(Bk).

Notice that the constraint in Lemma 5.1 is the same one that characterizes knapsack problems.
Indeed, the algorithm we give for computing

∑
S⊆[k]

∏
i∈S wi is a slight modification of the known

pseudo-polynomial time algorithm for counting knapsack solutions, which uses dynamic program-
ming. Next we show that we can use this algorithm to approximate OptComp.

Lemma 5.2. Given a rational eε0 with ε0 ≥ 0 and ε1 = a1 · ε0, . . . , εk = ak · ε0, ε∗ = a∗ · ε0
for positive integers a1, . . . , ak, a

∗ (given as input), and rational δ1, . . . δk, δg ∈ [0, 1), there is an
algorithm that determines whether or not OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ ε∗ and runs in time
O
(
k ·
∑k
i=1 ai

)
assuming constant-time arithmetic operations.

In other words, if the ε values we are given are all integer multiples of some ε0 where eε0 is
rational, we can determine whether or not the composition of those privacy parameters is (a∗ ·ε0, δg)-
DP in pseudo-polynomial time, for every positive integer a∗. Running binary search over integers
a∗, we can find the minimum such integer. When ε0 is small, this gives us a good overestimate of
the optimal composition of the discrete input privacy parameters. This means that given any inputs
(ε1, δ1), . . . , (εk, δk), δg to OptComp, we can discretize and polynomially bound the εi values to new
values ε′i for all i ∈ [k] and use Lemma 5.2 to approximate OptComp((ε′1, δ1), . . . , (ε′k, δk), δg). The
next lemma tells us that this is also a good approximation of OptComp((ε1, δ1), . . . , (εk, δk), δg).

25

Lemma 5.3. For all ε1, . . . , εk, c1, . . . , ck ≥ 0 and δ1, . . . , δk, δg ∈ [0, 1):

OptComp((ε1 + c1, δ1), . . . , (εk + ck, δk), δg) ≤ OptComp((ε1, δ1), . . . , (εk, δk), e−c/2 · δg) + c

where c =
∑k
i=1 ci

Next we prove the three lemmas and then show that Theorem 1.7 follows.

Proof of Lemma 5.1. We modify Dyer’s algorithm for approximately counting solutions to knap-
sack problems [Dye03]. The algorithm uses dynamic programming. Given non-negative integers
a1, . . . , ak, B, and weights w1, . . . , wk ∈ Q, define

F (r, s) =
∑

S⊆[r] s.t.∑
i∈S

ai≤s

∏
i∈S

wi

We want to compute F (k,B). We can find this by tabulating F (r, s) for (0 ≤ r ≤ k, 0 ≤ s ≤ B)
using the recursion:

F (r, s) =

1 if r = 0
F (r − 1, s) + wrF (r − 1, s− ar) if r > 0 and ar ≤ s
F (r − 1, s) if r > 0 and ar > s

Each cell F (r, s) in the table can be computed in constant time given earlier cells F (r′, s′) where
r′ < r. Thus filling the entire table takes time O(Bk).

Proof of Lemma 5.2. Given a rational eε0 ≥ 0 and ε1 = a1 · ε0, . . . , εk = ak · ε0, ε∗ = a∗ · ε0 for
positive integers a1, . . . , ak, a

∗ and rational δ1, . . . δk, δg ∈ [0, 1) Theorem 1.5 tells us that answering
whether or not

OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ ε∗

is equivalent to answering whether or not the following inequality holds:

1∏k
i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eε
∗
· e

∑
i6∈S

εi

, 0
}
≤ 1− 1− δg∏k

i=1 (1− δi)
(8)

The right-hand side and
∏k
i=1(1 + eεi) are easy to compute given the inputs (note that eεi is

rational for all i ∈ [k] because each is an integer power of eε0). So in order to check the inequality,
we will show how to compute the sum. Define

K =

T ⊆ [k] |
∑
i 6∈T

εi ≥ ε∗ +
∑
i∈T

εi

=
{
T ⊆ [k] |

∑
i∈T

εi ≤

(
k∑
i=1

εi − ε∗
)
/2
}

=
{
T ⊆ [k] |

∑
i∈T

ai ≤ B

}
for B =

⌊(
k∑
i=1

ai − a∗
)
/2
⌋

26

and observe that by setting T = Sc, we have

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eε
∗
· e

∑
i6∈S

εi

, 0
}

=
∑
T∈K

((
k∏
i=1

eεi ·
∏
i∈T

e−εi

)
−

(
eε
∗
·
∏
i∈T

eεi

))

We can now use Lemma 5.1 to compute each term separately since K is a set of knapsack
solutions. Specifically, setting wi = e−εi ∀i ∈ [k], Lemma 5.1 tells us that we can compute∑
T⊆[k]

∏
i∈T wi subject to

∑
i∈T ai ≤ B, which is equivalent to

∑
T∈K

∏
i∈T e

−εi . To compute∑
T∈K

∏
i∈T e

εi , we instead set wi = eεi and run the same procedure. (Note that eε∗ = (eε0)a∗ ,
which is rational.) So we can determine whether or not Inequality 8 holds. We used the algorithm
from Lemma 5.1 so the running time is O(Bk) = O

(
k ·
∑k
i=1 ai

)
Proof of Lemma 5.3. Fix ε1, . . . , εk, c1, . . . , ck ≥ 0 and δ1, . . . , δk, δg ∈ [0, 1) and let c =

∑
i∈[k] ci.

Let OptComp((ε1, δ1), . . . , (εk, δk), e−c/2 · δg) = εg. From Equation 1 in Theorem 1.5 we know:

1∏k
i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}
≤ 1− 1− e−c/2 · δg∏k

i=1 (1− δi)

Multiplying both sides by ec/2 gives:

ec/2∏k
i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}
≤ ec/2 ·

(
1− 1− e−c/2 · δg∏k

i=1 (1− δi)

)

≤ 1− 1− δg∏k
i=1 (1− δi)

The above inequality together with Theorem 1.5 means that showing the following will complete
the proof:

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

(εi+ci)
− eεg+c · e

∑
i6∈S

(εi+ci)

, 0
}
≤
ec/2 ·

∏k
i=1 (1 + eεi+ci)∏k

i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}

Since (1 + eεi+ci)/(1 + eεi) ≥ eci/2 for every εi, ci > 0, it suffices to show:

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

(εi+ci)
− eεg+c · e

∑
i6∈S

(εi+ci)

, 0
}
≤

∑
S⊆{1,...,k}

ec ·max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}

This inequality holds term by term. If a right-hand term is zero
(∑

i∈S εi ≤ εg +
∑
i 6∈S εi

)
, then

so is the corresponding left-hand term
(∑

i∈S(εi + ci) ≤ εg + c+
∑
i6∈S(εi + ci)

)
. For the nonzero

terms, the factor of ec ensures that the right-hand terms are larger than the left-hand terms.

Proof of Theorem 1.7. Lemma 5.2 tells us that we can determine whether a set of privacy parame-
ters satisfies some (εg, δg) differential privacy guarantee if the εi values and εg are all positive integer

27

multiples of some ε0 where eε0 is rational. We are given rational ε1, . . . , εk ≥ 0, δ1, . . . δk, δg ∈ [0, 1),
and η ∈ (0, 1). Let ε =

∑
i∈[k] εi/k be the arithmetic mean of the εi values. Let β = η/(k ·(1+ε)+1),

set ε0 = ln(1 + β), and for all i ∈ [k] set ai = dεi · (1/β + 1)e and ε′i = ε0 · ai. We will use the
following bounds on ε0 in the proof:

β

2 ≤
β

1 + β
≤ ε0 ≤ β

With these settings, the ai’s are non-negative integers, the ε′i values are all integer multiples of ε0
and eε0 is rational. So for every positive integer a we can apply Lemma 5.2 to determine whether or
not OptComp((ε′1, δ1), . . . , (ε′k, δk), δg) ≤ a ·ε0 in time O

(
k ·
∑
i∈[k] ai

)
. Running binary search over

integers a, we can find the minimum such integer, which we will call a∗. The algorithm’s estimate of
OptComp((ε1, δ1), . . . , (εk, δk), δg) will be a∗ ·ε0. However since this number is irrational, we will use
the Taylor approximation of the natural logarithm to output ε∗ satisfying a∗ ·ε0 ≤ ε∗ ≤ a∗ ·ε0+β−ε0.
Since we only need to calculate a few terms of the Taylor expansion of ln(1 + β) to achieve this
approximation, this step will not affect our running time.

Since we choose a∗ to be the minimum integer satisfying composition we have:

ε∗ − β ≤ (a∗ − 1) · ε0 ≤ OptComp((ε′1, δ1), . . . , (ε′k, δk), δg) ≤ a∗ · ε0 ≤ ε∗

a∗ can range from 0 to
∑
i∈[k] ai so the binary search can be done in log

(∑
i∈[k] ai

)
= logO

(
k2 · ε · (1 + ε)/η

)
iterations. This gives us a total running time of:

O

(
k3 · ε · (1 + ε)

η
· log

(
k2 · ε · (1 + ε)

η

))
Now we argue that ε∗ is a good approximation of OptComp((ε1, δ1), . . . , (εk, δk), δg). For all

i ∈ [k] we have:

ε′i = ε0 · ai

≥ β

1 + β
·
⌈
εi ·
(

1
β

+ 1
)⌉

≥ εi

So all of the ε′i values are overestimates of their corresponding εi values and therefore

OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ OptComp((ε′1, δ1), . . . , (ε′k, δk), δg) ≤ ε∗

satisfying one of the inequalities in the theorem. We also have for all i ∈ [k]:

ε′i = ε0 ·
⌈
εi ·
(

1
β

+ 1
)⌉

≤ β ·
(
εi ·
(

1
β

+ 1
)

+ 1
)

= εi + β · (εi + 1)

28

Let ci = β · (εi + 1) for all i ∈ [k] and let c =
∑
i∈[k] ci = β · k · (1 + ε). Now we get

ε∗ − β ≤ OptComp((ε′1, δ1), . . . , (ε′k, δk), δg)
≤ OptComp((ε1 + c1, δ1), . . . , (εk + ck, δk), δg)
≤ OptComp((ε1, δ1), . . . , (εk, δk), e−β·k·(1+ε)/2 · δg) + β · k · (1 + ε)

by Lemma 5.3. Noting that β · k · (1 + ε) and β · k · (1 + ε) + β are both at most η completes the
proof.

29

References
[Cro11] Mercè Crosas. The Dataverse Network R©: an open-source application for sharing, discov-
ering and preserving data. D-lib Magazine, 17.1, 2, 2011.

[DKMMN06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: privacy via distributed noise generation. Advances in Cryptology-
EUROCRYPT, pages 486-503, 2006.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis: Third Theory of Cryptography Conference (TCC’06), pages
265-284, 2006.

[DR13] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foun-
dations and Trends in Theoretical Computer Science, 9.3-4, pages 211-407, 2013.

[DRV10] Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. Boosting and differential privacy. In
Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS’10),
2010 51st Annual IEEE Symposium., IEEE, 2010.

[Dye03] Martin Dyer. Approximate counting by dynamic programming. Proceedings of the 35th
annual ACM Symposium on Theory of Computing (STOC’13), ACM, pages 693-699, 2003.

[Ehr00] Matthias Ehrgott. Approximation algorithms for combinatorial multicriteria optimization
problems. International Transactions in Operational Research, Wiley Online Library, pages 5-31,
2000.

[Kin07] Gary King. An introduction to the Dataverse Network as an infrastructure for data sharing.
Sociological Methods & Research, 36.2, pages 173-199, 2007.

[KOV15] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The Composition Theorem for
Differential Privacy. Proceedings of the 32nd International Conference on Machine Learning,
(ICML’15), 37, pages 1376-1385, 2015.

[War65] Stanley L. Warner. Randomized Response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association, 60.309, pages 63-69, 1965.

30

A Comparison of Composition Theorems
The figures below compare the performances of four homogeneous composition theorems. In all
figures, “Summing” refers to basic composition - Theorem 1.2 [DKMMN06], “DRV” refers to ad-
vanced composition - Theorem 1.3 [DRV10], “KOV Bound” refers to a bound in [KOV15] that
is a closed form approximation of the optimal composition theorem, and “Optimal” refers to the
optimal composition theorem - Theorem 1.4 [KOV15]. Here we are composing k mechanisms that
are (ε, δ) differentially private to obtain an (εg, δg) differentially private mechanism as guaranteed
by one of the composition theorems.

0 100 200 300 400 500 600 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Varying Epsilon, k up to 700

k

G
lo

ba
l E

ps
ilo

n

Summing
DRV
KOV bound
Optimal

ε = 0.01

ε = 0.005

ε = 0.0025

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Varying Epsilon, k up to 100

k

G
lo

ba
l E

ps
ilo

n

Summing
DRV
KOV bound
Optimal

ε = 0.01

ε = 0.005

ε = 0.0025

Figure 1: (Left) εg given by four composition theorems for varying values of ε as k grows. Parameters
δ = 0 and δg = 2−25. (Right) Same plot zoomed in on the k < 100 regime. We see that optimal
composition gives substantial savings in εg, even for moderate values of k.

31

0 100 200 300 400 500 600 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Varying Global Delta

k

G
lo

ba
l E

ps
ilo

n

Summing
DRV
KOV bound
Optimal

δg = 2−20

δg = 2−45

0 100 200 300 400 500 600 700

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Percentage Comparison

k

R
at
io
s

Summing/Opt
DRV/Opt
KOV/Opt
Opt/Opt

Figure 2: (Left) εg given by four composition theorems for varying values of δg as k grows, with
parameters δ = 0 and ε = .005 for the individual mechanisms. δg does not affect εg in basic com-
position. (Right) Performance of composition theorems measured relative to optimal composition.
Depicts every curve in Figure 1 divided by the optimal composition curve. We see that relative
performances of the KOV bound and DRV seem to converge to a constant. The εg values given by
the KOV bound are about 20% larger than optimal and the values given by advanced composition
are about 30-40% larger than optimal.

32

	1 Introduction
	1.1 Our Results

	2 Technical Preliminaries
	3 Characterization of OptComp
	4 Hardness of OptComp
	5 Approximation of OptComp
	A Comparison of Composition Theorems

