Formal Privacy Models and Title 13 (Census Cooperative Agreement CB16ADR0160001)

Alabi, Daniel, Audra McMillan, Jayshree Sarathy, Adam Smith, and Salil Vadhan. “Differentially private simple linear regression.” arXiv: 2007.05157 [cs.LG] (2020). Publisher's VersionAbstract
Economics and social science research often require analyzing datasets of sensitive personal information at fine granularity, with models fit to small subsets of the data. Unfortunately, such fine-grained analysis can easily reveal sensitive individual information. We study algorithms for simple linear regression that satisfy differential privacy, a constraint which guarantees that an algorithm's output reveals little about any individual input data record, even to an attacker with arbitrary side information about the dataset. We consider the design of differentially private algorithms for simple linear regression for small datasets, with tens to hundreds of datapoints, which is a particularly challenging regime for differential privacy. Focusing on a particular application to small-area analysis in economics research, we study the performance of a spectrum of algorithms we adapt to the setting. We identify key factors that affect their performance, showing through a range of experiments that algorithms based on robust estimators (in particular, the Theil-Sen estimator) perform well on the smallest datasets, but that other more standard algorithms do better as the dataset size increases.
ArXiv 2020.pdf
Karwa, Vishesh, and Salil Vadhan. “Finite sample differentially private confidence intervals.” In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in Informatics (LIPIcs), 44:1-44:9. Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. ITCS, 2018. Publisher's VersionAbstract

Version History: Also presented at TPDP 2017. Preliminary version posted as arXiv:1711.03908 [cs.CR].

We study the problem of estimating finite sample confidence intervals of the mean of a normal population under the constraint of differential privacy. We consider both the known and unknown variance cases and construct differentially private algorithms to estimate confidence intervals. Crucially, our algorithms guarantee a finite sample coverage, as opposed to an asymptotic coverage. Unlike most previous differentially private algorithms, we do not require the domain of the samples to be bounded. We also prove lower bounds on the expected size of any differentially private confidence set showing that our the parameters are optimal up to polylogarithmic factors.

ITCS2018.pdf ArXiv2017.pdf