
ar
X

iv
:1

70
9.

05
39

6v
3

 [
cs

.D
S]

 1
7

Ja
n

20
19

Differential Privacy on Finite Computers∗

Victor Balcer† Salil Vadhan‡

Center for Research on Computation & Society

School of Engineering & Applied Sciences

Harvard University

vbalcer@g.harvard.edu, salil vadhan@harvard.edu

December 24, 2018

Abstract

We consider the problem of designing and analyzing differentially private algorithms that
can be implemented on discrete models of computation in strict polynomial time, motivated
by known attacks on floating point implementations of real-arithmetic differentially private
algorithms (Mironov, CCS 2012) and the potential for timing attacks on expected polynomial-
time algorithms. As a case study, we examine the basic problem of approximating the histogram
of a categorical dataset over a possibly large data universe X . The classic Laplace Mechanism
(Dwork, McSherry, Nissim, Smith, TCC 2006 and J. Privacy & Confidentiality 2017) does not
satisfy our requirements, as it is based on real arithmetic, and natural discrete analogues, such
as the Geometric Mechanism (Ghosh, Roughgarden, Sundarajan, STOC 2009 and SICOMP
2012), take time at least linear in |X |, which can be exponential in the bit length of the input.

In this paper, we provide strict polynomial-time discrete algorithms for approximate his-
tograms whose simultaneous accuracy (the maximum error over all bins) matches that of the
Laplace Mechanism up to constant factors, while retaining the same (pure) differential privacy
guarantee. One of our algorithms produces a sparse histogram as output. Its “per-bin accu-
racy” (the error on individual bins) is worse than that of the Laplace Mechanism by a factor
of log |X |, but we prove a lower bound showing that this is necessary for any algorithm that
produces a sparse histogram. A second algorithm avoids this lower bound, and matches the
per-bin accuracy of the Laplace Mechanism, by producing a compact and efficiently computable
representation of a dense histogram; it is based on an (n+1)-wise independent implementation
of an appropriately clamped version of the Discrete Geometric Mechanism.

1 Introduction

Differential Privacy [DMNS06] is by now a well-established framework for privacy-protective statis-
tical analysis of sensitive datasets. Much work on differential privacy involves an interplay between
statistics and computer science. Statistics provides many of the (non-private) analyses that we
wish to approximate with differentially private algorithms, as well as probabilistic tools that are
useful in analyzing such algorithms, which are necessarily randomized. From computer science,
differential privacy draws upon a tradition of adversarial modeling and strong security definitions,

∗A condensed version of this paper appeared in ITCS 2018 [BV18]
†Supported by NSF grant CNS-1237235 and CNS-1565387.
‡salil.seas.harvard.edu. Supported by NSF grant CNS-1237235, a Simons Investigator Award, and a grant

from the Sloan Foundation.

1

http://arxiv.org/abs/1709.05396v3
salil.seas.harvard.edu

techniques for designing and analyzing randomized algorithms, and considerations of algorithmic
resource constraints (such as time and memory).

Because of its connection to statistics, it is very natural that much of the literature on dif-
ferential privacy considers the estimation of real-valued functions on real-valued data (e.g. the
sample mean) and introduces noise from continuous probability distributions (e.g. the Laplace
distribution) to obtain privacy. However, these choices are incompatible with standard computer
science models for algorithms (like the Turing machine or RAM model) as well as implementation
on physical computers (which use only finite approximations to real arithmetic, e.g. via floating
point numbers). This discrepancy is not just a theoretical concern; Mironov [Mir12] strikingly
demonstrated that common floating-point implementations of the most basic differentially private
algorithm (the Laplace Mechanism) are vulnerable to real attacks. Mironov shows how to prevent
his attack with a simple modification to the implementation, but this solution is specific to a single
differentially private mechanism and particular floating-point arithmetic standard. His solution in-
creases the error by a constant factor and seems likely to be quite efficient in practice. However, he
provides no bounds on asymptotic running time. Gazeau, Miller and Palamidessi [GMP13] provide
more general conditions under which an implementation of real numbers and a mechanism that
perturbs the correct answer with noise maintains differential privacy. However, they do not provide
an explicit construction with bounds on accuracy and running time.

From a theoretical point of view, a more appealing approach to resolving these issues is to
avoid real or floating-point arithmetic entirely and only consider differentially private computations
that involve discrete inputs and outputs, and rational probabilities, as first done in [DKM+06].
Such algorithms are realizable in standard discrete models of computation. However, some such
algorithms have running times that are only bounded in expectation (e.g. due to sampling from an
exponential distribution supported on the natural numbers), and this raises a potential vulnerability
to timing attacks. If an adversary can observe the running time of the algorithm, it learns something
about the algorithm’s coin tosses, which are assumed to be secret in the definition of differential
privacy. (Even if the time cannot be directly observed, in practice an adversary can determine
an upper bound on the running time, which again is information that is implicitly assumed to be
secret in the privacy definition.)

Because of these considerations, we advocate the following principle:

Differential Privacy for Finite Computers:

We should describe how to implement differentially private algorithms on discrete mod-
els of computation with strict bounds on running time (ideally polynomial in the bit
length of the input) and analyze the effects of those constraints on both privacy and
accuracy.

Note that a strict bound on running time does not in itself prevent timing attacks, but once we have
such a bound, we can pad all executions to take the same amount of time. Also, while standard
discrete models of computation (e.g. randomized Turing machines) are defined in terms of countable
rather than finite resources (e.g. the infinite tape), if we have a strict bound on running time, then
once we fix an upper bound on input length, they can indeed be implemented on a truly finite
computer (e.g. like a randomized Boolean circuit).

In many cases, the above goal can be achieved by appropriate discretizations and truncations
applied to a standard, real-arithmetic differentially private algorithm. However, such modifications
can have a nontrivial price in accuracy or privacy, and thus we also call for a rigorous analysis of
these effects.

In this paper, we carry out a case study of achieving “differential privacy for finite computers”
for one of the first tasks studied in differential privacy, namely approximating a histogram of a

2

categorical dataset. Even this basic problem turns out to require some nontrivial effort, particularly
to maintain strict polynomial time, optimal accuracy and pure differential privacy when the data
universe is large.

We recall the definition of differential privacy.

Definition 1.1 ([DMNS06]). Let M : X n → R be a randomized algorithm. We say M is (ε, δ)-
differentially private if for every pair of datasets D and D′ that differ on one row and every
subset S ⊆ R

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ

We say an (ε, δ)-differentially private algorithm satisfies pure differential privacy when δ = 0
and say it satisfies approximate differential privacy when δ > 0.

In this paper, we study the problem of estimating the histogram of a dataset D ∈ X n, which is
the vector c = c(D) ∈ N

X , where cx is the number of rows in D that have value x. Histograms can
be approximated while satisfying differential privacy using the Laplace Mechanism, introduced in
the original paper of Dwork, McSherry, Nissim and Smith [DMNS06]. Specifically, to obtain (ε, 0)-
differential privacy, we can add independent noise distributed according to a Laplace distribution,
specifically Lap(2/ε), to each component of c and output the resulting vector c̃. Here Lap(2/ε) is the
continuous, real-valued random variable with probability density function f(z) that is proportional
to exp(−ε · |z|/2). The Laplace Mechanism also achieves very high accuracy in two respects:

Per-Query Error: For each bin x ∈ X , with high probability we have |c̃x − cx| ≤ O(1/ε).

Simultaneous Error: With high probability, we have maxx |c̃x − cx| ≤ O(log(|X |)/ε).

Note that both of the bounds are independent of the number n of rows in the dataset, and so the
fractional error vanishes linearly as n grows.

Simultaneous error is the more well-studied notion in the differential privacy literature, but
we consider per-query error to be an equally natural concept: if we think of the approximate
histogram c̃ as containing approximate answers to the |X | different counting queries corresponding
to the bins of X , then per-query error captures the error as experienced by an analyst who may be
only interested in one or a few of the bins of c̃. The advantage of considering per-query error is that
it can be significantly smaller than the simultaneous error, as is the case in the Laplace Mechanism
when the data universe X is very large. It is known that both of the error bounds achieved by the
Laplace Mechanism are optimal up to constant factors; no (ε, 0)-differentially private algorithm for
histograms can achieve smaller per-query error or simultaneous error [HT10, BBKN14].

Unfortunately, the Laplace Mechanism uses real arithmetic and thus cannot be implemented on
a finite computer. To avoid real arithmetic, we could use the Geometric Mechanism [GRS12], which
adds noise to each component of c according to the 2-sided geometric distribution, Geo(2/ε), which
is supported on the integers and has probability mass function f(z) ∝ exp(−ε · |z|/2). However, this
mechanism uses integers of unbounded size and thus cannot be implemented on a finite computer.
Indeed, while the algorithm can be implemented with a running time that is bounded in expectation
(after reducing ε so that eε/2 and hence all the probabilities are rational numbers), truncating long
executions or allowing an adversary to observe the actual running time can lead to a violation of
differential privacy. Thus, as first described by Dwork, Kenthapadi, McSherry, Mironov and Naor
[DKM+06], it is better to restrict the output of the mechanism to a binary representation of fixed
length in order to avoid small tail probabilities. Similarly, we work with the Truncated Geometric
Mechanism of Ghosh, Roughgarden and Sundararajan [GRS12], where we clamp each noisy count

3

c̃x to the interval [0, n]. We observe that the resulting probability distribution of c̃x, supported
on {0, 1, . . . , n}, can be described explicitly in terms of cx, ε and n, and it can be sampled in
polynomial time using only integer arithmetic (after ensuring eε/2 is rational). Thus, we obtain:

Theorem 1.2 (Bounded Geometric Mechanism, informal statement of Thm. 5.3). For every finite
X , n and ε ∈ (0, 1], there is an (ε, 0)-differentially private algorithm M : X n → {0, 1, . . . , n}X for
histograms achieving:

• Per-query error O(1/ε).

• Simultaneous error O(log(|X |)/ε).

• Strict running time Õ(|X |/ε) · log2 n) +O(n log n · log |X |).

We note that while we only consider our particular definition of per-query accuracy, namely that
with high probability |c̃x − cx| ≤ O(1/ε), Ghosh, Roughgarden and Sundararajan [GRS12] proved
that the output of the Bounded Geometric Mechanism can be used (with post-processing) to get
optimal expected loss with respect to an extremely general class of loss functions and arbitrary
priors. The same result applies to each individual noisy count c̃x output by our mechanism, since
each bin is distributed according to the Bounded Geometric Mechanism (up to a modification of ε
to ensure rational probabilities).

The Bounded Geometric Mechanism is not polynomial time for large data universes X . Indeed,
its running time (and output length) is linear in |X |, rather than polynomial in the bit length of
data elements, which is log |X |. To achieve truly polynomial time, we can similarly discretize and
truncate a variant of the Stability-Based Histogram that was introduced by Korolova, Kenthapadi,
Mishra and Ntoulas [KKMN09], and explicitly described by Bun, Nissim and Stemmer [BNS16].
This mechanism only adds Lap(2/ε) noise to the nonzero components of cx and then retains only
the noisy values c̃x that are larger than a threshold t = Θ(log(1/δ)/ε). Thus, the algorithm only
outputs a partial histogram, i.e. counts c̃x for a subset of the bins x, with the rest of the counts
being treated as zero. By replacing the use of the Laplace Mechanism with the (rational) Bounded
Geometric Mechanism as above, we can implement this algorithm in strict polynomial time:

Theorem 1.3 (Stability-Based Histogram, informal statement of Thm. 5.6). For every finite
X , n, ε ∈ (0, 1] and δ ∈ (0, 1/n), there is an (ε, δ)-differentially private algorithm M : X n →
{0, 1, . . . , n}⊆X for histograms achieving:

• Per-query error O(1/ε) on bins with true count at least O(log(1/δ)/ε).

• Simultaneous error O(log(1/δ)/ε).

• Strict running time Õ((n/ε) · log(1/δ)) +O(n log n · log |X |).

Notice that the simultaneous error bound of O(log(1/δ)/ε) is better than what is achieved by
the Laplace Mechanism when δ > 1/|X |, and is known to be optimal up to constant factors in this
range of parameters (see Theorem 7.1). The fact that this error bound is independent of the data
universe size |X | makes it tempting to apply even for infinite data domains X . However, we note
that when X is infinite, it is impossible for the algorithm to have a strict bound on running time (as
it needs time to read arbitrarily long data elements) and thus is vulnerable to timing attacks and
is not implementable on a finite computer. Note also that the per-query error bound only holds on
bins with large enough true count (namely, those larger than our threshold t); we will discuss this
point further below.

4

A disadvantage of the Stability-based Histogram is that it sacrifices pure differential privacy. It
is natural to ask whether we can achieve polynomial running time while retaining pure differential
privacy. A step in this direction was made by Cormode, Procopiuc, Srivastava and Tran [CPST12].
They observe that for an appropriate threshold t = Θ(log(|X |)/ε), if we run the Bounded Geometric
Mechanism and only retain the noisy counts c̃x that are larger than t, then the expected number of
bins that remain is less than n+1. Indeed, the expected number of bins we retain whose true count
is zero (“empty bins”) is less than 1. They describe a method to directly sample the distribution
of the empty bins that are retained, without actually adding noise to all |X | bins. This yields an
algorithm whose output length is polynomial in expectation. However, the output length is not
strictly polynomial, as there is a nonzero probability of outputting all |X | bins. And it is not clear
how to implement the algorithm even in expected polynomial time, because even after making the
probabilities rational, they have denominators of bit length linear in |X |.

To address these issues, we consider a slightly different algorithm. Instead of trying to retain
all noisy counts c̃x that are larger than some fixed threshold t, we retain the n largest noisy
counts (since there are at most n nonzero true counts). This results in a mechanism whose output
length is always polynomial, rather than only in expectation. However, the probabilities still have
denominators of bit length linear in |X |. Thus, we show how to approximately sample from this
distribution, to within an arbitrarily small statistical distance δ, at the price of a poly(log(1/δ))
increase in running time. Naively, this would result only in (ε,O(δ))-differential privacy. However,
when δ is significantly smaller than 1/|R|, where R is the range of the mechanism, we can convert
an (ε, δ)-differentially private mechanism to an (ε, 0)-differentially private mechanism by simply
outputting a uniformly random element of R with small probability. (A similar idea for the case
that |R| = 2 has been used in [KLN+11, CDK17].) Since our range is of at most exponential size
(indeed at most polynomial in bit length), the cost in our runtime for taking δ ≪ 1/|R| is at most
polynomial. With these ideas we obtain:

Theorem 1.4 (Pure DP Histogram in Polynomial Time, informal statement of Thm. 6.11). For
every finite X , n and ε ∈ (0, 1], there is an (ε, 0)-differentially private algorithm M : X n →
{0, 1, . . . , n}⊆X for histograms achieving:

• Per-query error O(1/ε) on bins with true count at least O(log(|X |)/ε).

• Simultaneous error O(log(|X |)/ε).

• Strict running time Õ
(

n2 · log2 |X |+ n2 · log(1/ε) + n · log |X | · log(1/ε)
)

.

It is an open problem as to whether or not one can improve the nearly quadratic dependence in
running time on n to nearly linear while maintaining the sparsity, privacy and accuracy guarantees
achieved in Theorem 1.4.

Both Theorems 1.3 and 1.4 only retain per-query error O(1/ε) on bins with a large enough true
count. We also prove a lower bound showing that this limitation is inherent in any algorithm that
outputs a sparse histogram (as both of these algorithms do).

Theorem 1.5 (Lower Bound on Per-Query Error for Sparse Histograms, Theorem 7.2). Suppose
that there is an (ε, δ)-differentially private algorithm M : X n → {0, 1, . . . , n}X for histograms that
always outputs histograms with at most n′ nonempty bins and has per-query error at most E on all
bins. Then

E ≥ Ω

(

min{log |X |, log(1/δ)}

ε

)

provided that ε > 0, ε2 > δ > 0 and |X | ≥ (n′)2.

5

This lower bound is similar in spirit to a lower bound of [BBKN14], which shows that no (ε, 0)-
differentially private PAC learner for “point functions” (functions that are 1 on exactly one element
of the domain) can produce sparse functions as hypotheses.

To bypass this lower bound, we can consider algorithms that produce succinct descriptions of
dense histograms. That is, the algorithm can output a polynomial-length description of a function
c̃ : X → [0, n] that can be evaluated in polynomial time, even though X may be of exponential size.
We show that this relaxation allows us to regain per-query error O(1/ε).

Theorem 1.6 (Polynomial-Time DP Histograms with Optimal Per-Query Accuracy, informal
statement of Thm. 8.6). For every finite X , n and ε ∈ (0, 1], there is an (ε, 0)-differentially private
algorithm M : X n → H for histograms (where H is an appropriate class of succinct descriptions of
histograms) achieving:

• Per-query error O(1/ε).

• Simultaneous error O(log(|X |)/ε).

• Strict running time Õ ((n/ε) · log |X |).

• Evaluating a count takes time Õ ((n/ε) · log |X |).1

The algorithm is essentially an (n+1)-wise independent instantiation of the Bounded Geometric
Mechanism. Specifically, we release a function h : X → {0, 1}r selected from an (n + 1)-wise
independent family of hash functions, and for each x ∈ X , we view h(x) as coin tosses specifying
a sample from the Bounded Geometric Distribution. That is, we let S : {0, 1}r → [0, n] be an
efficient sampling algorithm for the Bounded Geometric Distribution, and then c̃x = S(h(x)) is our
noisy count for x. The hash function is chosen randomly from the family conditioned on values c̃x
for the nonempty bins x, which we obtain by running the actual Bounded Geometric Mechanism
on those bins. The (n + 1)-wise independence ensures that the behavior on any two neighboring
datasets (which together involve at most n+ 1 distinct elements of X) are indistinguishable in the
same way as in the ordinary Bounded Geometric Mechanism. The per-query accuracy comes from
the fact that the marginal distributions of each of the noisy counts are the same as in the Bounded
Geometric Mechanism.2

As far as we know, the only other use of limited independence in constructing differentially
private algorithms is a use of pairwise independence by [BBKN14] in differentially private PAC
learning algorithms for the class of point functions. Although that problem is related to the one we
consider (releasing a histogram amounts to doing “query release” for the class of point functions, as
discussed below), the design and analysis of our algorithm appears quite different. (In particular,
our analysis seems to rely on (n+ 1)-wise independence in an essential way.)

Another potential interest in our technique is as another method for bypassing limitations of
synthetic data for query release. Here, we have a large family of predicates Q = {q : X → {0, 1}},
and are interested in differentially private algorithms that, given a dataset D = (x1, . . . , xn) ∈ X n,
output a “summary” M(D) that allows one to approximate the answers to all of the counting
queries q(D) =

∑

i q(xi) associated with predicates q ∈ Q. For example, if Q is the family of point
functions consisting of all predicates that evaluate to 1 on exactly one point in the data universe X ,
then this query release problem amounts to approximating the histogram of D. The fundamental

1In the original version of our paper [BV18], both the running time and evaluation time were missing logarithmic
factors.

2Actually, we incur a small approximation error in matching the domain of the sampling procedure to the range
of a family of hash functions.

6

result of Blum, Ligett, and Roth [BLR13] and successors show that this is possible even for families
Q and data universes X that are of size exponential in n. Moreover, the summaries produced by
these algorithms has the form of a synthetic dataset — a dataset D̂ ∈ X n̂ such that for every
query q ∈ Q, we have q(D̂) ≈ q(D). Unfortunately, it was shown in [UV11] that even for very
simple families Q of queries, such correlations between pairs of binary attributes, constructing such
a differentially private synthetic dataset requires time exponential in the bit length log |X | of data
universe elements. Thus, it is important to find other ways of representing approximate answers
to natural families Q of counting queries, which can bypass the inherent limitations of synthetic
data, and progress along these lines was made in a variety of works [GRU12, CKKL12, HRS12,
TUV12, CTUW14, DNT15]. Our algorithm, and its use of (n + 1)-wise independence, can be
seen as yet another representation that bypasses a limitation of synthetic data (albeit a statistical
rather than computational one). Indeed, a sparse histogram is simply a synthetic dataset that
approximates answers to all point functions, and by Theorem 1.5, our algorithm achieves provably
better per-query accuracy than is possible with synthetic datasets. This raises the question of
whether similar ideas can also be useful in bypassing the computational limitations of synthetic
data for more complex families of counting queries.

2 Preliminaries

Throughout this paper, let N be the set {0, 1, . . .}, N+ be the set {1, 2, . . .} and N
−1 be the set

{1/n : n ∈ N+}. For n ∈ N+, let [n] denote the set {0, . . . , n} and [n]+ denote the set {1, . . . , n}.
(Notice that |[n]| = n+1 while |[n]+| = n.) Given a set A and finite set B, we define AB to be the
set of length |B| vectors over A indexed by the elements of B.

2.1 Differential Privacy

We define a dataset D ∈ X n to be an ordered tuple of n ≥ 1 rows where each row is drawn from a
discrete data universe X with each row corresponding to an individual. Two datasets D,D′ ∈ X n

are considered neighbors if they differ in exactly one row.

Definition 2.1 ([DMNS06]). Let M : X n → R be a randomized algorithm. We say M is (ε, δ)-
differentially private if for every pair of neighboring datasets D and D′ and every subset S ⊆ R

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ

We say an (ε, δ)-differentially private algorithm satisfies pure differential privacy when δ = 0
and say it satisfies approximate differential privacy when δ > 0. Intuitively, the ε captures an
upper bound on an adversary’s ability to determine whether a particular individual is in the dataset.
And the δ parameter represents an upper bound of the probability of a catastrophic privacy breach
(e.g. the entire dataset is released). The common setting of parameters takes ε ∈ (0, 1] to be a
small constant and δ to be negligible in n.

The following properties of differentially private algorithms will be used in some of our proofs.

Lemma 2.2 (post-processing [DMNS06]). Let M : X n → Y be (ε, δ)-differentially private and
T : Y → Z be any randomized function. Then T ◦M : X n → Z is (ε, δ)-differentially private.

Lemma 2.3 (group privacy [DMNS06]). Let M : X n → Y be (ε, δ)-differentially private. Let
D1,D2 ⊆ X n be datasets such that D2 can be obtained by changing at most m rows of D1. Then
for all S ⊆ Y

Pr[M(D1) ∈ S] ≤ emε · Pr[M(D2) ∈ S] + emε · δ/ε

7

Lemma 2.4 (composition [DL09]). Let M1 : X n → Y1 be (ε1, δ1)-differentially private and M2 :
X n → Y2 be (ε2, δ2)-differentially private. Define M : X n → Y1 ×Y2 as M(x) = (M1(x),M2(x)).
Then M is (ε1 + ε2, δ1 + δ2)-differentially private.

2.2 Histograms

For x ∈ X , the point function cx : X n → N is defined to count the number of occurrences of x in
a given dataset, i.e.

cx(D) = |{i ∈ [n]+ : Di = x}|

In this paper we focus on algorithms for privately releasing approximations to the values of all point
functions, also known as a histogram. A histogram is a collection of bins, one for each element x
in the data universe, with the xth bin consisting of its label x and a count cx ∈ N.

2.2.1 Representations

The input to our algorithms is always a dataset (i.e. an element D ∈ X n) and the outputs represent
approximate histograms. We consider the following histogram representations as our algorithms’
outputs:

• A vector in N
X . We use {c̃x}x∈X to denote a histogram where c̃x ∈ N is the approximate

count for the element x.

• A partial vector h ∈ (X ×N)∗ such that each element x ∈ X appears at most once in h with
each pair (x, c̃x) ∈ X × N interpreted as element x having approximate count c̃x. Elements
x not listed in the partial vector are assumed to have count c̃x = 0. Implicitly, an algorithm
can return a partial vector by releasing bins for a subset of X .3

• A data structure, encoded as a string, which defines a function h : X → N where h(x),
denoted hx, is the approximate count for x ∈ X and hx is efficiently computable given this
data structure (e.g. time polynomial in the length of the data structure). In Section 8, this
data structure consists of the coefficients of a polynomial, along with some parameters.

Each representation is able to express any histogram over X . The difference between them is the
memory used and the efficiency of computing a count. For example, computing the approximate
count for x ∈ X , when using the data structure representation is bounded by the time it takes to
compute the associated function. But when using partial vectors, one only needs to iterate through
the vector to determine the approximate count.

We define the following class of histograms. Let Hn,n′(X) ⊆ N
X be the set of all histograms

over X with integer counts in [0, n] (or N when n = ∞) and at most n′ of them nonzero. By using
partial vectors each element of Hn,n′(X) can be stored in O(n′ · (log n + log |X |)) bits, which is
shorter than the vector representation when n′ = o(|X |/ log |X |).

3Note that the order in which bins are released can result in a breach of privacy (e.g. releasing the bins of elements
in the dataset before the bins of elements not in the dataset). As a result, our algorithms always sort the released
bins according to a predefined ordering based only on X .

8

2.2.2 Accuracy

In order to preserve privacy, our algorithms return histograms with noise added to the counts.
Therefore, it is crucial to understand their accuracy guarantees. So given a dataset D ∈ X n we
compare the noisy count c̃x = M(D)x of x ∈ X (the count released by algorithm M) to its true
count, cx(D). We focus on the following two metrics:

Definition 2.5. A histogram algorithm M : X n → N
X has (a, β)-per-query accuracy if

∀D ∈ X n ∀x ∈ X Pr[|M(D)x − cx(D)| ≤ a] ≥ 1− β

Definition 2.6. A histogram algorithm M : X n → N
X has (a, β)-simultaneous accuracy if

∀D ∈ X n Pr[∀x ∈ X |M(D)x − cx(D)| ≤ a] ≥ 1− β

Respectively, these metrics capture the maximum error for any one bin and the maximum error
simultaneously over all bins. Even though simultaneous accuracy is commonly used in differential
privacy, per-query accuracy has several advantages:

• For histograms, one can achieve a smaller per-query error than is possible for simultaneous
error. Indeed, the optimal simultaneous error for (ε, 0)-differentially private histograms is
a = Θ(log(|X |/β)/ε) whereas the optimal per-query error is a = Θ(log(1/β)/ε), which is
independent of |X | [HT10, BBKN14].

• Per-query accuracy may be easier to convey to an end user of differential privacy. For example,
it is the common interpretation of error bars shown on a graphical depiction of a histogram.

Figure 1: A histogram with error bars

• For many algorithms (such as ours), per-query accuracy is good enough to imply optimal
simultaneous accuracy. Indeed, an algorithm with (a, β)-per-query accuracy also achieves
(a, β · |X |)-simultaneous accuracy (by a union bound).

However, we may not always be able to achieve as good per-query accuracy as we want. So we
will also use the following relaxation which bounds the error only on bins with large enough true
count.

Definition 2.7. A histogram algorithm M : X n → N
X has (a, β)-per-query accuracy on

counts larger than t if

∀D ∈ X n ∀x ∈ X s.t. cx(D) > t Pr[|M(D)x − cx(D)| ≤ a] ≥ 1− β

9

2.3 Probability Terminology

Definition 2.8. Let Z be an integer-valued random variable. The probability mass function

of Z, denoted fZ , is the function fZ(z) = Pr[Z = z] for all z ∈ Z. The cumulative distribution

function of Z, denoted FZ , is the function FZ(z) = Pr[Z ≤ z] for all z ∈ Z. The support of Z,
denoted supp(Z), is the set of elements for which f(z) 6= 0.

Definition 2.9. Let Y and Z be random variables taking values in discrete range R. The statis-

tical between Y and Z (a.k.a. total variation distance) is defined as

∆(Y,Z) = max
A⊆R

∣

∣Pr[Y ∈ A]− Pr[Z ∈ A]
∣

∣

=
1

2
·
∑

a∈R

∣

∣Pr[Z = a]− Pr[Y = a]
∣

∣

Lemma 2.10. Let Y and Z be random variables over discrete range R. Statistical distance has
the following properties:

1. Y and Z are identically distributed, denoted Y ∼ Z, if and only if ∆(Y,Z) = 0 (equivalently,
FY (z) = FZ(z) for all z ∈ R).

2. Let T : R → R′ be a randomized mapping with R′ discrete. Then

∆(T (Y), T (Z)) ≤ ∆(Y,Z)

3. For i ∈ {1, 2}, let Yi and Zi be random variables over discrete range Ri. Then

∆((Y1, Y2), (Z1, Z2)) ≤ ∆(Y1, Z1) + max
a∈R1

∆(Y2|{Y1 = a}, Z2|{Z1 = a})

Definition 2.11. Let Z1, . . . , Zℓ be integer-valued random variables. The i-th order statistic of

Z1, . . . , Zℓ denoted Z(i) is the i-th smallest value among Z1, . . . , Zℓ.

2.3.1 Sampling

Because we are interested in the computational efficiency of our algorithms we need to consider the
efficiency of sampling from various distributions.

A standard method for sampling a random variable is via inverse transform sampling. Let
Unif(A) denote the uniform distribution over the set A.

Lemma 2.12. Let U ∼ Unif((0, 1]). Then for any integer-valued random variable Z we have
F−1
Z (U) ∼ Z where F−1

Z (u) is defined as min{z ∈ supp(Z) : FZ(z) ≥ u}.

If Z, the random variable we wish to sample, has finite support we can compute the inverse
cumulative distribution by performing binary search on supp(Z) to find the minimum. This method
removes the need to compute the inverse function of the cumulative distribution function. If in
addition, the cumulative distribution function of Z can be represented by rational numbers, then
we only need to sample from a discrete distribution instead of (0, 1].

Lemma 2.13. Let Z be an integer-valued random variable with finite support and has all prob-
abilities of its cumulative distribution function expressible as rational numbers with denominator
d. Then F−1

Z (U) ∼ Z where U ∼ (1/d) · Unif([d]+) and F−1
Z (u) is defined as min{z ∈ supp(Z) :

FZ(z) ≥ u}.

10

2.4 Model of Computation

We analyze the running time of our algorithms with respect to the w-bit word RAM model

taking w logarithmic in our input length, namely w = O(log n + log log |X |). In this model,
memory accesses and basic operations (arithmetic, comparisons and logical) on w-bit words are
constant time. In addition, we assume the data universe is indexed so we can view X = [m]+ for
some m ∈ N. Some parameters to our algorithms are rational and we represent rationals by pairs
of integers. Some of our algorithms will use numbers that span many words. For ease of notation,
we will assume multiplication of two x-bit number is Õ(x) ([vzGG13] Theorem 8.24).

Our algorithms require randomness so we assume that they have access to an oracle that when
given a number d ∈ N+ returns a uniformly random integer between 1 and d inclusive.

Finally, for representing histograms as partial vectors, we will assume internally to the algo-
rithms that they are stored as red-black trees. This will allow us to insert and search for elements in
O(log n · log |X |) time ([CLRS09] Chapter 13). When releasing a partial vector we don’t return the
tree itself (which may violate privacy), but instead return a list of bins using an in-order traversal
of tree.

3 A General Framework for Implementing Differential Privacy

In this section, we outline a basic framework for implementing a pure differentially private algorithm
M on a finite computer with only a small loss in privacy and possibly a small loss in accuracy. It
can be broken down into the following steps:

1. Start by discretizing the input and output of M so that they can only take on a finite
number of values (e.g. rounding a real-valued number to the nearest integer in some finite
set). Depending on how utility is measured, the loss in accuracy by discretizing may be
acceptable.

2. Then find an algorithm M′ that runs on a finite computer and approximates the output
distribution of the discretized version of M to within “small” statistical distance. Notice
that M′ is only guaranteed to satisfy approximate differential privacy and may not satisfy
pure differentially privacy. (This step may require a non-trivial amount of work. For one
example, see Theorem 6.8.)

3. Finally, provided that the statistical distance of the previous step is small enough, by mixing
M′ with uniformly random output (from the discretized and finite output space), the resulting
algorithm satisfies pure differential privacy.

We will use this framework several times in designing our algorithms. Here we start by formal-
izing Step 3. That is, for algorithms whose output distribution is close in statistical distance to that
of a pure differentially private algorithm, we construct an algorithm satisfying pure differentially
privacy by mixing it with random output inspired by similar techniques in [KLN+11, CDK17].

11

Algorithm 3.1. M∗
M′,D,γ(D) for D ∈ X n where R is discrete and finite, an algorithm M′ : X n →

R, a distribution D over R and γ ∈ N
−1

1. With probability 1− γ release M′(D).

2. Otherwise release an element sampled from the distribution D.

Lemma 3.2. Suppose that there is an (ε, 0)-differentially private algorithm M : X n → R such that
∆(M(D),M′(D)) ≤ δ for all input datasets D ∈ X n with parameter δ ∈ [0, 1). Then the algorithm
M∗

M′,D,γ : X n → R has the following properties:

i. (ε, 0)-differential privacy whenever

δ ≤
eε − 1

eε + 1
·

γ

1− γ
·min
r∈R

{

Pr
Z∼D

[Z = r]

}

(1)

ii. Running time O(log(1/γ))+Time(M′)+Time(D) where Time(D) is the time to sample from
the distribution D.

By taking γ and δ small enough and satisfying (1), the algorithm M∗
M′,D,γ satisfies pure differ-

ential privacy and has nearly the same utility as M (due to having a statistical distance at most
γ + δ from M) while allowing for a possibly more efficient implementation since we only need to
approximately sample from the output distribution of M.

To maximize the minimum in (1), one can take D ∼ Unif(R). However, it may the case that
sampling this distribution exactly is inefficient and we are willing to trade needing a smaller δ to
maintain pure differentially privacy for a faster sampling algorithm.

Proof of i. Let r ∈ R and p = PrZ∼D[Z = r]. Then for neighboring datasets D,D′ ∈ X n

Pr[M∗
M′,D,γ(D) = r] = γ · p+ (1− γ) · Pr[M′(D) = r]

≤ γ · p+ (1− γ) · (Pr[M(D) = r] + δ)

≤ γ · p+ (1− γ)
(

eε · Pr[M(D′) = r] + δ
)

≤ γ · p+ (1− γ)
(

eε ·
(

Pr[M′(D′) = r] + δ
)

+ δ
)

Rearranging terms and using the upper bound on δ yields

Pr[M∗
M′,D,γ(D) = r] ≤ eε (1− γ) · Pr[M′(D′) = r] + γ · p+ (eε + 1) (1− γ) · δ

≤ eε (1− γ) · Pr[M′(D′) = r] + γ · p+ (eε − 1) · γ · min
r′∈R

{

Pr
Z∼D

[Z = r′]

}

≤ eε
(

(1− γ) · Pr[M′(D′) = r] + γ · p
)

= eε · Pr[M∗
M′,D,γ(D

′) = r]

Proof of ii. This follows directly from the construction of M∗.

12

4 Counting Queries

Before discussing algorithms for privately releasing histograms, we show how to privately answer a
single counting query using only integers of bounded length. While there exist known algorithms
for this problem [DKM+06, Mir12], our algorithms have additional properties that will be used to
construct histogram algorithms in later sections. In general, counting queries have as input the
dataset D ∈ X n and the bin x to query. However, we will take the true count, cx(D), as the input
to our counting query algorithms. When constructing histogram algorithms in later sections, this
will allow us to improve the running time as we will only need to iterate through the dataset once
to determine all true counts prior to answering any counting query. In addition, we would like to
keep track of the randomness used by most of our algorithms so we write that as an explicit second
input. As a result, we have the following definitions:

Definition 4.1. Let n, d ∈ N+. We say a (deterministic or randomized) algorithm M : [n] ×
[d]+ → [n] is (ε, δ)-differentially private for counting queries if the randomized algorithm
M : {0, 1}n → [n] defined as M(D) = M(c, U) where c =

∑n
i=1 Di and U ∼ Unif([d]+) is (ε, δ)-

differentially private.

Definition 4.2. Let n, d ∈ N+. We say M : [n]× [d]+ → [n] has (a, β)-accuracy if for all c ∈ [n]

Pr[|M(c, U) − c| ≤ a] ≥ 1− β

where U ∼ Unif([d]+).

Definition 4.3. Let n, d ∈ N+ and M : [n] × [d]+ → [n] be deterministic. Let the scaled

cumulative distribution function of M at 0 denoted FM be the function FM : [n] → [d]+
defined as FM(z) = d · FM(0,U)(z) where U ∼ Unif([d]+) for all z ∈ [n].

Being able to efficiently compute the scaled cumulative distribution function of M at 0 will be
a necessary property for constructing efficient histogram algorithms later (see Proposition 6.19 and
Lemma 8.4). Definition 4.1 can easily be extended to handle point queries over data universes with
more than two elements.

Lemma 4.4. Let M : [n] × [d]+ → [n] be (ε, δ)-differentially private for counting queries. Let
D,D′ ∈ X n be neighboring datasets. Then for all x ∈ X and c ∈ [n]

Pr[M(cx(D), U) = c] ≤ eε · Pr[M(cx(D
′), U) = c] + δ

where U ∼ Unif([d]+).

Proof. Define the dataset D(x) ∈ {0, 1}n as

D
(x)
i =

{

1 if Di = x

0 otherwise

Notice that cx(D) =
∑n

i=1D
(x)
i . Similarly, we define the dataset D′(x) for D′. Now, D(x) and D′(x)

are neighboring datasets. The lemma follows by (ε, δ)-differential privacy for counting queries.

13

4.1 The Geometric Mechanism

As shown by Dwork, McSherry, Nissim and Smith [DMNS06], we can privately release a counting
query by adding appropriately scaled Laplace noise to the count. Because our algorithm’s outputs
are counts, we do not need to use continuous noise and instead use a discrete analogue, as in
[DKM+06, GRS12].

We say an integer-valued random variable Z follows a two-sided geometric distribution

with scale parameter s centered at c ∈ Z (denoted Z ∼ c + Geo(s)) if its probability mass
function fZ(z) is proportional to e−|z−c|/s. It can be verified that fZ and its cumulative distribution
function FZ are

fZ(z) =

(

e1/s − 1

e1/s + 1

)

· e−|z−c|/s FZ(z) =

{

e1/s

e1/s+1
· e−(c−z)/s if z ≤ c

1− 1
e1/s+1

· e−(z−c)/s otherwise

for all z ∈ Z. When c is not specified, it is assumed to be 0. The inverse cumulative distribution
of Z is

F−1
Z (u) = c+

{

⌈

s ln (u) + s ln
(

e1/s + 1
)⌉

− 1 if u ≤ 1/2
⌈

−s ln (1− u)− s ln
(

e1/s + 1
)⌉

otherwise

or, equivalently,

F−1
Z (u) = c+

⌈

s · sign(1/2 − u)
(

ln(1− |2u− 1|) + ln(e1/s + 1)− ln 2
)⌉

+ ⌊2u⌋ − 1

Now, we state the counting query algorithm using discrete noise formally studied in [GRS12].
We will not keep track of the randomness used by this algorithm, but to match our syntax for
counting query algorithms we use the dummy parameter 1 as the second argument.

Algorithm 4.5. GeometricMechanismn,ε(c, 1) for c ∈ [n] where n ∈ N+ and ε > 0

1. Return c̃ set to c+Geo(2/ε) clamped to the interval [0, n]. i.e.

c̃ =

0 if Z ≤ 0

n if Z ≥ n

Z otherwise

where Z = c+Geo(2/ε).

Theorem 4.6. Let n ∈ N+ and ε > 0. Then GeometricMechanismn,ε : [n] × [1]+ → [n] has the
following properties:

i. GeometricMechanismn,ε is (ε/2, 0)-differentially private for counting queries [GRS12].

ii. GeometricMechanismn,ε has (a, β)-accuracy for β ∈ (0, 1] and

a =

⌈

2

ε
· ln

1

β

⌉

14

Proof of ii. Let Z ∼ Geo(2/ε). Then for c ∈ [n],

Pr[|GeometricMechanismn,ε(c)− c| ≤ a] ≥ Pr [|Z| ≤ ⌊a⌋]

= 1− 2 · Pr[Z ≤ −⌊a⌋ − 1]

= 1− 2 ·
e−⌊a⌋·ε/2

eε/2 + 1

≥ 1−
2 · β

eε/2 + 1

≥ 1− β

As presented above, this algorithm needs to store integers of unbounded size since Geo(2/ε)
is unbounded in magnitude. As noted in [GRS12], by restricting the generated noise to a fixed
range we can avoid this problem. However, even when the generated noise is restricted to a fixed
range, generating this noise via inverse transform sampling may require infinite precision. By
appropriately choosing ε, the probabilities of this noise’s cumulative distribution function can be
represented with finite precision, and therefore generating this noise via inverse transform sampling
only requires finite precision.

Theorem 4.7. Let n ∈ N+, ε ∈ N
−1 and ε̃ = 2 · ln

(

1 + 2−⌈log(2/ε)⌉
)

∈ (4/9 · ε, ε]. Then there is
a deterministic algorithm GeoSamplen,ε : [n] × [d]+ → [n] where log d = O(n · log(1/ε)) with the
following properties:

i. GeoSamplen,ε(c, U) ∼ GeometricMechanismn,ε̃(c, 1) for all c ∈ [n] where U ∼ Unif([d]+).
Thus, GeoSamplen,ε is (ε̃/2, 0)-differentially private for counting queries and has (a, β)-ac-
curacy for β ∈ (0, 1] and

a =

⌈

2

ε̃
· ln

1

β

⌉

ii. GeoSamplen,ε has running time Õ(n · log(1/ε)).

iii. For all z ∈ [n], FGeoSamplen,ε
(z) can be computed in time Õ(n · log(1/ε)).

iv. GeoSamplen,ε(c, u) is a non-decreasing function in u.

We have chosen ε̃ so that the cumulative distribution function of a two-sided geometric random
variable with scale parameter 2/ε̃ clamped to [0, n] takes on only rational values with a common
denominator d. Therefore, to implement inverse transform sampling on this distribution we only
need to choose a uniformly random integer from [d]+ rather than a uniformly random variable over
(0, 1] which allows us to provide a strict bound on the running time.

15

Algorithm 4.8. GeoSamplen,ε(c, u) for c ∈ [n] and u ∈ [d]+ where n ∈ N+ and ε ∈ N
−1

1. Let k = ⌈log(2/ε)⌉ and d = (2k+1 + 1)(2k + 1)n−1.

2. For z ∈ Z, define the function

F (z) =

0 if z < 0

2k(c−z)
(

2k + 1
)n−(c−z)

if z ∈ [0, c)

d− 2k(z−c+1)
(

2k + 1
)n−1−(z−c)

if z ∈ [c, n)

d if z ≥ n

3. Using binary search find the smallest z ∈ [n] such that F (z) ≥ u.

4. Return z.

The function F is obtained by clearing denominators in the cumulative distribution function of
c+Geo(2/ε̃) clamped to [0, n].

Lemma 4.9. Let ε̃, c, k, d and F be defined as in Theorem 4.7 and Algorithm 4.8. Then F (z) ∈ [d]
and F (z)/d equals the cumulative distribution function of c+Geo(2/ε̃) clamped to [0, n].

We prove this lemma after seeing how it implies Theorem 4.7.

Proof of Theorem 4.7 Part i. By construction, for all z ∈ [n]

Pr[GeoSamplen,ε(c, U) ≤ z] = Pr[U ≤ F (z)] = F (z)/d

implying GeoSamplen,ε(c, U) ∼ GeometricMechanismn,ε̃(c, 1) by Lemma 4.9.

Proof of Theorem 4.7 Part ii-iv. Notice that integers used do not exceed d whose bit length is
O(n · log(1/ε)). Thus, F (z) can be computed in Õ(n · log(1/ε)) time using exponentiation by
repeated squaring. By construction, F (z) = FGeoSamplen,ε

(z), when c = 0 implying Part iii.
Notice that the binary search of GeoSamplen,ε has at most O(log n) rounds each with an evalua-

tion of F . Thus, GeoSamplen,ε has the desired running time and by construction GeoSamplen,ε(c, u)
is a non-decreasing function in u.

Proof of Lemma 4.9. The cumulative distribution function of Z ∼ c+Geo(2/ε̃) is

FZ(z) =

0 if z < 0
eε̃/2

eε̃/2+1
· e−(c−z)·ε̃/2 if z ∈ [0, c)

1− 1
eε̃/2+1

· e−(z−c)·ε̃/2 if z ∈ [c, n)

1 if z ≥ n

16

Consider the case when z ∈ [0, c).

FZ(z) =
eε̃/2

eε̃/2 + 1
· e−(c−z)ε̃/2 =

1 + 2−k

2 + 2−k
·
(

1 + 2−k
)−(c−z)

=
2k + 1

2k+1 + 1
·

(

2k

2k + 1

)c−z

=
2k(c−z)

(2k+1 + 1) (2k + 1)
c−z−1 ·

(

2k + 1

2k + 1

)n−(c−z)

=
2k(c−z)

(

2k + 1
)n+z−c

d

=
F (z)

d

A similar argument holds for z ∈ [c, n). The remaining cases are trivial. So FZ(z) = F (z)/d for all
z ∈ Z.

4.2 Approximating Geometric Noise to Release Counting Queries Faster

Notice that GeoSamplen,ε has running time at least linear in n. This is due to evaluating a (scaled)
cumulative distribution function operating on integers with bit length Ω(n). We can improve the
running time by approximately sampling from a two-sided geometric distribution. Small tail prob-
abilities are dropped to reduce the number of required bits to represent probabilities to logarithmic
in n. And then to recover pure differential privacy, following Lemma 3.2, we mix with uniformly
random output.

Theorem 4.10. Let n ∈ N+, ε, γ ∈ N
−1 and ε̃ = 2 · ln

(

1 + 2−⌈log(2/ε)⌉
)

∈ (4/9 · ε, ε]. Then there

is a deterministic algorithm FastSamplen,ε,γ : [n]× [d]+ → [n] where log d = Õ(1/ε) · log(n/γ) with
the following properties:

i. FastSamplen,ε,γ is (ε/2, 0)-differentially private for counting queries.

ii. For every β > γ, FastSamplen,ε,γ has (a, β)-accuracy for

a =

⌈

2

ε̃
ln

1

β − γ

⌉

iii. FastSamplen,ε,γ has running time

Õ

(

1

ε
· log2 n+

1

ε
· log n · log

1

γ

)

iv. For all z ∈ [n], FFastSamplen,ε,γ
(z) can be computed in time

Õ

(

1

ε
· log

n

γ

)

v. FastSamplen,ε,γ(c, u) is a non-decreasing function in u.

17

Algorithm 4.11. FastSamplen,ε,γ(c, u) for c ∈ [n] and u ∈ [d]+ where n ∈ N+ and ε, γ ∈ N
−1

1. Let k = ⌈log(2/ε)⌉ and t =
⌈

9
2ε ·
⌈

log
(

8(n+1)(1−γ)
εγ

)⌉⌉

− 1.

2. Let d′ = (2k+1 + 1)(2k + 1)t and d = (n+ 1) · d′/γ.

3. For z ∈ [n], define the functions

F ′(z) =

0 if z < max{0, c − t}

2k(c−z)(2k + 1)t+1−(c−z) − 2k(t+1) if z ∈ [max{0, c − t}, c)

d′ − 2k(z−c+1)(2k + 1)t−(z−c) + 2k(t+1) if z ∈ [c,min{c+ t, n})

d′ if z ≥ min{c+ t, n}

and

F (z) = (z + 1) · d′ + (1/γ − 1) · (n+ 1) · F ′(z)

4. Using binary search find the smallest z ∈ [n] such that F (z) ≥ u.

5. Release z.

As presented, it is clear how to compute the cumulative distribution function of this algorithm’s
output distribution, a necessary property for Section 6. And the algorithm, as a function of u, is
non-decreasing, a property that will be used in Section 8. However, as stated, the interpretation of
F ′ and F may not be clear. This is clarified by the following lemma and Figure 2.

Lemma 4.12. Let k, t, d, d′, F ′(z), F (z) be defined as in Algorithm 4.11. Then

i. F ′(z) ∈ [d′] and F ′(z)/d′ is the cumulative distribution function of a random variable Z ′

clamped to [0, n] where Z ′ has probability mass function

fZ′(z) =

Pr[Z = z] if z ∈ [c− t, c+ t] and z 6= c

Pr[Z = c] + Pr[|Z − c| > t] if z = c

0 if z /∈ [c− t, c+ t]

for all z ∈ Z where Z ∼ c+Geo(2/ε̃).

ii. F (z) ∈ [d] and F (z)/d is the cumulative distribution function of the random variable that with
probability 1− γ is distributed as Z ′ (defined in Part i) clamped to [0, n] and with probability
γ is uniform over [n].

We prove this lemma after using it to prove Theorem 4.10.

18

(a)

0 c n

(b)

0 c− t c n

(c)

0 c− t c n

Figure 2: Example probability mass functions of (a) GeoSample, (b) Z ′ clamped to [0, n] as defined
in Lemma 4.12 and (c) FastSample. Notice that in this example c+ t > n.

Proof of Theorem 4.10 Part i. By construction, for all z ∈ [n]

Pr[FastSamplen,ε,γ(c, U) ≤ z] = Pr[U ≤ F (z)]

where U ∼ Unif([d]+). So FastSamplen,ε,γ(c, U) has cumulative distribution function F (z)/d.
Then by Lemma 4.12, FastSamplen,ε,γ(c, U) is a mixture that with probability 1− γ is distributed
as Z ′ clamped to [0, n] as defined in Lemma 4.12 and otherwise is distributed as Unif([n]).

Since GeoSamplen,ε is (ε/2, 0)-differentially private for counting queries (Theorem 4.7), we can
use Lemma 3.2 to prove that FastSamplen,ε,γ is also (ε/2, 0)-differentially private for counting
queries provided we can show the statistical distance between Z ′ clamped to [0, n] and GeoSamplen,ε
is small enough.

∆(Z ′ clamped to [0, n], GeoSamplen,ε(c, U)) ≤ ∆(Z ′, Z)

= Pr[|Z − c| > t]

= 2 · FZ(c− t− 1)

= 2 ·
eε̃/2

eε̃/2 + 1
· e−ε̃·(t+1)/2

≤
4

3
· e

− ε̃
2
· 9
2ε

·ln
(

8(n+1)(1−γ)
εγ

)

≤
ε

6
·

γ

1− γ
·

1

n+ 1

≤
eε/2 − 1

eε/2 + 1
·

γ

1− γ
·

1

n+ 1

where Z ∼ Geo(2/ε̃).

Proof of Theorem 4.10 Part ii. Let U ∼ Unif([d]+). Let Z ′ be defined as in Lemma 4.12 and

19

Z ∼ c+Geo(2/ε̃). Then

Pr[|FastSamplen,ε,γ(c, U)− c| ≤ a] ≥ (1− γ) · Pr[|Z ′ − c| ≤ a]

≥ (1− γ) · Pr[|Z − c| ≤ a]

≥ (1− γ) · (1− (β − γ))

≥ 1− β

Proof of Theorem 4.10 Part iii-v. d′ can be computed in Õ(t · log(1/ε)) time using exponentiation
by repeated squaring. Notice that integers used in computing F ′ and F do not exceed d whose bit
length is O (t · log(1/ε) + log(n/γ)). Thus, F (z) can be computed in time

Õ

(

t · log
1

ε
+ log

n

γ

)

Part iv follows after observing t = Õ(1/ε) · log(n/γ).
Now, the binary search of FastSamplen,ε,γ has at most O(log n) rounds each with an evalu-

ation of F (z) for some z ∈ [n]. Thus, we obtain the desired running time and by construction
FastSamplen,ε,γ(c, u) is a non-decreasing function in u.

Proof of Lemma 4.12 Part i. Let Z ′′ be defined as Z ′ clamped to [0, n]. The cumulative distribution
function of Z ′′ is

FZ′′(z) =

0 if z < max{0, c − t}

FZ(z)− FZ(c− t− 1) if z ∈ [max{0, c− t}, c)

FZ(z) + (1− FZ(c+ t)) if z ∈ [c,min{c+ t, n})

1 if z ≥ min{c+ t, n}

where Z ∼ c+Geo(2/ε̃). Consider the case z ∈ [max{0, c − t}, c).

FZ′′(z) = FZ(z)− FZ(c− t− 1)

=

(

2k + 1

2k+1 + 1

)(

2k

2k + 1

)c−z

−

(

2k + 1

2k+1 + 1

)(

2k

2k + 1

)t+1

=
1

d′
·
(

2k(c−z)(2k + 1)t+1−(c−z) − 2k(t+1)
)

=
F ′(z)

d′

and F ′(z) ∈ [d′] since c − z < t + 1. A similar argument holds for z ∈ [c,min{c + t, n}). The
remaining cases are trivial. So FZ′′(z) = F ′(z)/d′ for all z ∈ Z.

Proof of Lemma 4.12 Part ii. Following from Part i, notice that for z ∈ [n]

F (z)

d
= γ ·

z + 1

n+ 1
+ (1− γ) ·

F ′(z)

d′
= γ · FU[n]

(z) + (1− γ) ·
F ′(z)

d′

where U[n] ∼ Unif([n]) which implies the desired result.

5 Generalizations of Known Histogram Algorithms

In this section we show how to construct differentially private histograms within our finite model
of computation given a private algorithm for releasing a single counting query.

20

5.1 The Laplace Mechanism

As shown by Dwork, McSherry, Nissim and Smith [DMNS06], we can privately release a histogram
by adding independent and appropriately scaled Laplace noise to each bin. Below we state a
generalization guaranteeing privacy provided the counting query algorithm used is private and the
released counts are independent.

Algorithm 5.1. BasicHistogramM,A(D) for D ∈ X n where M : [n]× [d]+ → [n] and A ⊆ X

1. Compute cx(D) for all x ∈ A.

2. For each x ∈ A, do the following:

(a) Sample ux uniformly at random from [d]+.

(b) Let c̃x = M(cx(D), ux).

(c) Release (x, c̃x).

Note that the output of this algorithm is a collection of bins (x, c̃x) representing a partial vector.

Theorem 5.2. Let M : [n]× [d]+ → [n] be (ε/2, 0)-differentially private for counting queries and
have (a, β)-accuracy. And let A ⊆ X . Then BasicHistogramM,A : X n → N

A has the following
properties:

i. BasicHistogramM,A is (ε, 0)-differentially private.

ii. For all D ∈ X n, we have

∀x ∈ A Pr[|(BasicHistogramM,A(D))x − cx(D)| ≤ a] ≥ 1− β

In particular, BasicHistogramM,X (D) has (a, β)-per-query accuracy.

iii. For all D ∈ X n, we have

Pr[∀x ∈ A |(BasicHistogramM,A(D))x − cx(D)| ≤ a] ≥ 1− β′

where β′ = 1−(1−β)|A| ≤ β ·|A|. In particular, BasicHistogramM,X has (a, β′)-simultaneous

accuracy where β′ = 1− (1− β)|X | ≤ β · |X |.

iv. BasicHistogramM,A has running time

O(n log n · log |X |) + |A| · O(log n · log |X |+ log d+Time(M))

It is important to note that the privacy guarantee only holds when A is fixed and does not
depend on the dataset D. The choice of parameterizing by A will be convenient in defining more
complex histogram algorithms later.

Proof of i. This proof follows similarly to the proof of privacy for the Laplace Mechanism. Let
D,D′ ∈ X n be neighboring datasets and let h ∈ N

A. Then

Pr[∀x ∈ A c̃x = hx] =
∏

x∈A

Pr[M(cx(D), ux) = hx] by independence

21

Because there are at most two x ∈ A for which cx(D) 6= cx(D
′), by the (ε/2, 0)-differential privacy

for counting queries of M with Lemma 4.4 and composition (Lemma 2.4),

∏

x∈A

Pr[M(cx(D), ux) = hx] ≤ eε ·
∏

x∈A

Pr[M(cx(D
′), ux) = hx]

≤ eε · Pr[∀x ∈ A c̃x(D
′) = hx]

Proof of ii. For all x ∈ X , c̃x is distributed as M(cx(D), ux) where ux ∼ Unif([d]+). The result
follows from M having (a, β)-accuracy.

Proof of iii. Simultaneous accuracy follows similarly as the bins’ counts are independent. So

Pr[∀x ∈ A |c̃x − cx(D)| ≤ a] =
∏

x∈A

Pr[|c̃x − cx(D)| ≤ a] ≥ (1− β)|A|

Proof of iv. Computing cx(D) for all x ∈ X can be accomplished by iterating through the dataset
once and maintaining a partial vector with counts for the observed data elements. This can be done
in O(n log n·log |X |) time. Each of the |A| bin releases takes time O(log n·log |X |+log d+Time(M))
in order to get the true count, generate the randomness and then compute the noisy count.

Now, we can use the counting query algorithms of Section 4 to get an explicit instantiation
of this algorithm. If we take M = GeometricMechanism, then BasicHistogramM,X is identically
distributed to the Truncated Geometric Mechanism of Ghosh, Roughgarden and Sundararajan
[GRS12] which achieves per-query and simultaneous accuracy with error up to constant factors
matching known lower bounds for releasing a private histogram [HT10, BBKN14].

Theorem 5.3. Let ε, β0 ∈ N
−1 and M = FastSamplen,ε,γ where γ = β0/(2|X |). Then

i. BasicHistogramM,X is (ε, 0)-differentially private.

ii. For every β ≥ 2γ, BasicHistogramM,X has (a, β)-per-query accuracy for

a =

⌈

9

2ε
ln

(

2

β

)⌉

iii. For every β ≥ β0, BasicHistogramM,X has (a, β)-simultaneous accuracy for

a =

⌈

9

2ε
ln

(

2 · |X |

β

)⌉

iv. BasicHistogramM,X has running time

Õ

(

|X |

ε
·

(

log2 n+ log n · log
1

β0

))

+O(n log n · log |X |)

22

M Running Time (a, β)-Per-Query (a, β)-Simul.

GeometricMechanism n/a
⌈

2
ε ln

1
β

⌉ ⌈

2
ε ln

|X |
β

⌉

GeoSample Õ(|X | · n · log(1/ε))
⌈

9
2ε ln

1
β

⌉ ⌈

9
2ε ln

|X |
β

⌉

FastSample Õ
(

(|X |/ε) · log2 n
)

+ Õ(n) · log |X |
⌈

9
2ε ln

2
β

⌉ ⌈

9
2ε ln

2|X |
β

⌉

Figure 3: The running time and errors of BasicHistogramM,X for the counting query algorithms

of Section 4. Values shown are for a (ε, 0)-differentially private release where ε ∈ N
−1. For

FastSample, we assume β0 ≥ 1/nO(1) and γ is specified in Theorem 5.3.

5.2 Stability-Based Histogram

For a large data universe X , the at least linear in |X | running time of BasicHistogramM,X can be
prohibitive. By using approximate differential privacy, we can release counts for a smaller number
of bins (at most n) based on stability techniques [KKMN09, BNS16]. We present a generalization
of the algorithm from [BNS16].

Algorithm 5.4. StabilityHistogramM,b(D) for D ∈ X n where M : [n]× [d]+ → [n] and b ∈ [n]

1. Let A = {x ∈ X : cx(D) > 0}.

2. Let {(x, c̃x)}x∈A = BasicHistogramM,A(D).

3. Release h = {(x, c̃x) : x ∈ A and c̃x > b} ∈ Hn,n(X).

Note that we only release counts for x ∈ X whose true count is nonzero, namely elements in
the set A. Thus, the output length is O(n · (log |X |+log n)). However, releasing the set A does not
satisfy pure differential privacy because this would distinguish between neighboring datasets: one
with a count of 0 and the other with a count of 1 for some element x ∈ X . Thus, we only release
noisy counts c̃x that exceed a threshold b. If b is large enough, then a count of 1 will only be kept
with small probability, yielding approximate differential privacy.

Theorem 5.5. Let M : [n]× [d]+ → [n] be (ε/2, 0)-differentially private for counting queries and
have (a, β)-accuracy. And let b ∈ [n]. Then StabilityHistogramM,b : X n → Hn,n(X) has the
following properties:

i. StabilityHistogramM,b is (ε, δ)-differentially private whenever

δ ≥ 2 · Pr[M(1, U) > b] for U ∼ Unif([d]+)

ii. StabilityHistogramM,b has (a, β)-per-query accuracy on counts larger than a+ b.

iii. StabilityHistogramM,b has (a+ b, β′)-simultaneous accuracy where

β′ = 1− (1− β)n ≤ n · β

23

iv. StabilityHistogramM,b has running time

O (n log n · log |X |+ n · log d+ n · Time(M))

Proof of i. Let D,D′ ∈ X n be neighboring datasets, h ∼ StabilityHistogramM,b(D) and h′ ∼
StabilityHistogramM,b(D

′). Let U ∼ Unif([d]+). Let x ∈ X such that cx(D) 6= cx(D
′) and let

S ⊆ [n]. There are 3 cases to consider:

• cx(D) ≥ 1 and cx(D
′) ≥ 1. By the privacy guarantee on M, we have Pr[M(cx(D), U) ∈ S] ≤

eε/2 · Pr[M(cx(D
′), U) ∈ S]. Thus, by differential privacy’s closure under post-processing

(Lemma 2.2),

Pr[hx ∈ S] ≤ eε/2 · Pr[h′x ∈ S]

• cx(D) = 1 and cx(D
′) = 0. Notice that Pr[h′x = 0] = 1. So if 0 ∈ S, then Pr[hx ∈ S] ≤

Pr[h′x ∈ S]. If 0 /∈ S, then

Pr[hx ∈ S] ≤ Pr[hx > 0] = Pr[hx > b]

= Pr[M(1, U) > b]

≤ δ/2 = Pr[h′x ∈ S] + δ/2

• cx(D) = 0 and cx(D
′) = 1. This case follows similarly to the previous one.

Then overall

Pr[hx ∈ S] ≤ eε/2 · Pr[h′x ∈ S] + δ/2

Because there are at most two bins on which D and D′ have differing counts and each count c̃x is
computed independently, by Lemma 2.4, this algorithm is (ε, δ)-differentially private.

Proof of ii. Let U ∼ Unif([d]+) and x ∈ X such that cx(D) > a+ b. Notice that |c̃x − cx(D)| ≤ a
implies c̃x ≥ cx(D)− a > b. Thus,

Pr[|hx − cx(D)| ≤ a] = Pr[|c̃x − cx(D)| ≤ a]

= Pr[|M(cx(D), U) − cx(D)| ≤ a]

≥ 1− β

Proof of iii. Notice that the counts of elements not in A are trivially accurate. Therefore, we only
need to consider the counts of elements in A. By Theorem 5.2 Part iii, BasicHistogramM,A(D)
has (a, β′)-simultaneous accuracy where β′ = 1− (1− β)n as |A| ≤ n.

The final step of StabilityHistogramM,b can increase the error on any count additively by at
most b. Therefore, StabilityHistogramM,b has (a+ b, β′)-simultaneous accuracy.

Proof of iv. The running time follows from Theorem 5.2 Part iv where |A| ≤ n after noting the
final step has running time O(n log n · log |X |).

By taking M = GeoSample, the simultaneous accuracy of StabilityHistogramM,b matches
known lower bounds. However, we only achieve optimal per-query accuracy on sufficiently large
counts. This constraint is necessary for any algorithm outputting sparse histograms as we will show
in Theorem 7.2. The following theorem shows the accuracies achieved by taking M = FastSample.

24

Theorem 5.6. Let ε, δ, β0 ∈ N
−1, M = FastSamplen,ε,γ where γ = min{β0/(2n), δ/4} and b =

1 + ⌈9/(2ε) · ln(4/δ)⌉. Then

i. StabilityHistogramM,b is (ε, δ)-differentially private.

ii. For every β ≥ 2γ, StabilityHistogramM,b has (a, β)-per-query accuracy on counts larger
than t for

a =

⌈

9

2ε
ln

(

2

β

)⌉

and t = 2 +

⌈

9

2ε
ln

(

8

β · δ

)⌉

iii. For every β ≥ β0, StabilityHistogramM,b has (a, β)-simultaneous accuracy for

a = 2 +

⌈

9

2ε
ln

(

8n

β · δ

)⌉

iv. For b ∈ [n], StabilityHistogramM,b has running time

Õ

(

n

ε
· log

1

β0 · δ

)

+O(n log n · log |X |)

M b Running Time

GeometricMechanism 1 +
⌈

2
ε ln

2
δ

⌉

n/a

GeoSample 1 +
⌈

9
2ε ln

2
δ

⌉

Õ(n2 · log(1/ε)) +O(n log n · log |X |)

FastSample 1 +
⌈

9
2ε ln

4
δ

⌉

Õ ((n/ε) · log(1/(β0 · δ))) +O(n log n · log |X |)

(a, β)-Per-Query on cx(D) > t

M a t (a, β)-Simultaneous

GeometricMechanism

⌈

2
ε ln

1
β

⌉

2 +
⌈

2
ε ln

2
β·δ

⌉

2 +
⌈

2
ε ln

2n
β·δ

⌉

GeoSample

⌈

9
2ε ln

1
β

⌉

2 +
⌈

9
2ε ln

2
β·δ

⌉

2 +
⌈

9
2ε ln

2n
β·δ

⌉

FastSample

⌈

9
2ε ln

2
β

⌉

2 +
⌈

9
2ε ln

8
β·δ

⌉

2 +
⌈

9
2ε ln

8n
β·δ

⌉

Figure 4: The running time and errors of StabilityHistogramM,b for the counting query algo-

rithms of Section 4. Values shown are for a (ε, δ)-differentially private release where ε, δ ∈ N
−1. We

assume b ∈ [n] as otherwise the algorithm always outputs an empty histogram. For FastSample,
the choice of parameters is specified in Theorem 5.6.

6 Improving the Running Time

While StabilityHistogram has running time logarithmic in the universe size, it can only guarantee
approximate differential privacy. In this section, we present an algorithm whose running time

25

depends only poly-logarithmically on the universe size while maintaining pure differential privacy
based on the observation that most counts are 0 when n ≪ |X |; this is the same observation
made by Cormode, Procopiuc, Srivastava and Tran [CPST12] to release private histograms that
are sparse in expectation.

6.1 Sparse Histograms

We start by reducing the output length of BasicHistogramM,X to release only the bins with the
heaviest (or largest) counts (interpreted as a partial vector).

Algorithm 6.1. KeepHeavyM(D) for D ∈ X n where M : [n]× [d]+ → [n]

1. Let {(x, c̃x)}x∈X = BasicHistogramM,X (D).

2. Let x1, . . . , xn+1 be the elements of X with the largest counts in sorted order, i.e.

c̃x1 ≥ c̃x2 ≥ . . . ≥ c̃xn+1 ≥ max
x∈X\{x1,...,xn+1}

c̃x

3. Release h = {(x, c̃x) : x ∈ X and c̃x > c̃xn+1} ∈ Hn,n(X).4

Observe that the output length has been improved to O(n · (log |X |+ log n)) bits compared to
the O(|X | · (log |X |+ log n)) bits needed to represent the output of BasicHistogramM,X .

Theorem 6.2. Let M : [n]× [d]+ → [n] be (ε/2, 0)-differentially private for counting queries such
that BasicHistogramM,X has (a1, β)-per-query accuracy and (a2, β)-simultaneous accuracy with
a1 ≤ a2. Then KeepHeavyM : X n → Hn,n(X) has the following properties:

i. KeepHeavyM is (ε, 0)-differentially private.

ii. KeepHeavyM has (a1, 2β)-per-query accuracy on counts larger than 2a2.

iii. KeepHeavyM has (2a2, β)-simultaneous accuracy.

Unlike BasicHistogramM,X , by taking M = GeoSample, the algorithm KeepHeavyM achieves
(O(log(1/β)/ε), β)-per-query accuracy only on counts larger than O(log(|X |/β)/ε). This loss is
necessary for any algorithm that outputs a sparse histogram as we will show in Theorem 7.2.

Proof of i. Privacy follows from the (ε, 0)-differential privacy of BasicHistogramM,X (Theorem 5.2
Part i) along with differential privacy’s closure under post-processing (Lemma 2.2).

To prove the remaining parts, we start with the following lemma.

Lemma 6.3. Define the event E = {∀x ∈ X |c̃x − cx(D)| ≤ a2}. Then Pr[E] ≥ 1 − β and E
implies that for all x ∈ X such that cx(D) > 2a2 we have c̃x > c̃xn+1.

4If instead M had a continuous output distribution this last step is equivalent to releasing the n heaviest bins.
However, in the discrete case, where ties can occur, from the set A∪{q0, . . . , qn} we cannot determine all bins with a
count tied for the n-th heaviest as there may be many other noisy counts tied with c̃xn

. As a result, we only output
the bins with a strictly heavier count than c̃x

n+1
.

26

Proof. Pr[E] ≥ 1− β follows from the (a2, β)-simultaneous accuracy of BasicHistogramM,X .
Assume the event E. Then for all x ∈ X such that cx(D) > 2a2, we have c̃x > a2 and for all

x ∈ X such that cx(D) = 0, we have c̃x ≤ a2. Because there are at most n distinct elements in D,
we have c̃x > c̃xn+1 for all x ∈ X such that cx(D) > 2a2.

Proof of Theorem 6.2 Part ii. Let x ∈ X such that cx(D) > 2a2. We have

Pr (|hx − cx(D)| > a1) ≤ Pr
(

c̃x ≤ c̃xn+1

)

+ Pr (|c̃x − cx(D)| > a1) ≤ 2β

by Lemma 6.3 and the (a1, β)-per-query accuracy of BasicHistogramM,X .

Proof of Theorem 6.2 Part iii. Assume the event E. By Lemma 6.3, for all x ∈ X such that
cx(D) > 2a2 we have c̃x > c̃xn+1 which implies hx = c̃x. Thus, |hx−cx(D)| ≤ a2. For the remaining
x ∈ X we have |hx − cx(D)| ≤ 2a2 as hx = 0 or hx = c̃x.

However, as described KeepHeavy still requires adding noise to the count of every bin. The
following algorithm KH′M : X n → Hn,n(X) simulates KeepHeavyM by generating a candidate set of
heavy bins from which only the heaviest are released. This candidate set is constructed from all
bins with nonzero true count and a sample representing the bins with a true count of 0 that have
the heaviest noisy counts.

Algorithm 6.4. KH′M(D) for D ∈ X n where M : [n]× [d]+ → [n] and |X | ≥ 2n+ 15

1. Let A = {x ∈ X : cx(D) > 0} and m = |X \ A|.

2. Let {(x, c̃x)}x∈A = BasicHistogramM,A(D).

3. Pick a uniformly random sequence (q0, . . . , qn) of distinct elements from X \A.

4. Sample (c̃q0 , . . . , c̃qn) from the joint distribution of the order statistics (Z(m), . . . , Z(m−n)) where
Z1, . . . , Zm are i.i.d. M(0, U) random variables with U ∼ Unif([d]+).

5. Sort the elements of A ∪ {q0, . . . , qn} as x1, . . . , x|A|+n+1 such that c̃x1 ≥ . . . ≥ c̃x|A|+n+1
.

6. Release h = {(x, c̃x) : x ∈ {x1, . . . , xn} and c̃x > c̃xn+1} ∈ Hn,n(X).

Proposition 6.5. KH′M(D) is identically distributed to KeepHeavyM(D).

Proof. Let {ĉx}x∈X be the noisy counts set by KeepHeavyM(D) and let x̂1, . . . , x̂n+1 be the sorted
ordering of the n+ 1 heaviest bins defined by these counts. We have c̃x ∼ ĉx for all x ∈ A and the
Zi’s are identically distributed to {ĉx}x∈X\A.

{(qi, c̃qi)}
n
i=0 is identically distributed to the n + 1 bins with heaviest counts of {(x, ĉx)}x∈X\A

(breaking ties uniformly at random) due the noisy counts of the empty bins being independent and
identically distributed. Therefore,

h = {(x, c̃x) : x ∈ {x1, . . . , xn} and c̃x > c̃xn+1}

= {(x, c̃x) : x ∈ A ∪ {q0, . . . , qn} and c̃x > c̃xn+1}

∼ {(x, ĉx) : x ∈ X and ĉx > ĉx̂n+1}

which shows that KH′M(D) is identically distributed to KeepHeavyM(D).

5|X | ≥ 2n+ 1 ensures that |X \A| ≥ n+ 1. One can use BasicHistogramM,X (D) when |X | ≤ 2n.

27

The original version of our paper [BV18] used an incorrect method for sampling the order
statistics based on a claim that their conditional CDF is given by:

FZ(m−k)|Z(m−k+1)=vm−k+1,...,Z(m)=vm(z) =

{

(F (z)/F (vm−k+1))
m−k if z ≤ vm−k+1

1 otherwise

Unfortunately, this only holds for continuous distributions. Here we correct the error with a different
method of sampling from the order statistics. In order to sample from the order statistics used by
KH′ we construct an algorithm that samples from binomial distributions to construct a histogram
of Z(m), . . . , Z(m−n).

Proposition 6.6. Let n, d ∈ N+ and F : [n] → [d]+ such that F is non-decreasing and F (n) = d.
Let m ∈ N+ such that m ≥ n+1. Let Z1, . . . , Zm be i.i.d. random variables over [n] with cumulative
distribution function F (z)/d for all z ∈ [n]. Then the following algorithm OrdSampleF (m) is
identically distributed to the top (n+ 1) order statistics (Z(m), . . . , Z(m−n)).

Algorithm 6.7. OrdSampleF (m) for m ∈ N+ such that m ≥ n+1 where F : [n] → [d]+ such that
F is non-decreasing and F (n) = d

1. Let Ln+1 = 0.

2. For v from n to 1, do the following:

(a) Sample ℓv ∼ min{Bin(m− Lv+1, pv), n+ 1− Lv+1} where pv = 1− F (v−1)
F (v) .

(b) Let Lv = Lv+1 + ℓv.

3. Let ℓ0 = n+ 1− L1.

4. Return (c0, . . . cn) such that the first ℓn values are n, the next ℓn−1 values are n− 1 and so on
until the last ℓ0 values are 0.

Proof. For v ∈ [n], let Yv = |{i : Zi = v}|. Using these random variables we can compute the order
statistics Z(m), . . . , Z(1) by taking the first Yn values to be n, the next Yn−1 to be n− 1 and so on.

Since we only need the top n + 1 order statistics, it suffices for us to stop calculating the Yv’s
once their sum exceeds n+1. That is, we can consider the random variables Y ′

v = min{Yv, n+1−
∑n

i=v+1 Y
′
i }. Notice that

Y ′
v =

0 if v < v∗

n+ 1−
∑n

i=v∗+1 Yi if v = v∗

Yv if v > v∗
where v∗ = max{v ∈ [n] :

n
∑

i=v

Yi ≥ n+ 1}

Therefore, using (Y ′
0 , . . . , Y

′
n) we can compute the order statistics (Z(m), . . . , Z(m−n)) in the same

manner as we did with the Yv’s.
Observe that conditioned on {Yn = yn, Yn−1 = yn−1, . . . , Yv+1 = yv+1}, we have Yv ∼ Bin(m−

Lv+1, pv) where Lv+1 =
∑n

i=v+1 Yi is the number of “assigned” values of Zj and

pv = Pr[Zj = v |Zj ≤ v] = 1− Pr[Zj ≤ v − 1 |Zj ≤ v] = 1−
F (v − 1)

F (v)

28

We now prove by induction from v = n down to v = 1 that

ℓv | ℓv+1, . . . , ℓn ∼ Y ′
v |Y

′
v+1, . . . , Y

′
n

For the base case, observe that:

ℓn ∼ min{Bin(m, pn), n+ 1} ∼ Y ′
n

For the induction step, we have that for v ∈ [n− 1]+,

ℓv | ℓv+1, . . . , ℓn

∼

{

min {Bin(m− Lv+1, pv), n + 1− Lv+1} if Lv+1 < n+ 1

0 otherwise
| ℓv+1, . . . , ℓn

∼

{

min
{

Bin(m−
∑n

i=v+1 Y
′
i , pv), n + 1−

∑n
i=v+1 Y

′
i

}

if
∑n

i=v+1 Y
′
i < n+ 1

0 otherwise
| Y ′

v+1, . . . , Y
′
n

∼

{

min
{

Bin(m−
∑n

i=v+1 Yi, pv), n + 1−
∑n

i=v+1 Y
′
i

}

if
∑n

i=v+1 Y
′
i < n+ 1

0 otherwise
| Y ′

v+1, . . . , Y
′
n

∼ min

{

Yv, n+ 1−
n
∑

i=v+1

Y ′
i

}

| Y ′
v+1, . . . , Y

′
n

∼ Y ′
v | Y ′

v+1, . . . , Y
′
n

By construction, we have ℓ0 | ℓ1, . . . , ℓn ∼ Y ′
0 | Y ′

1 , . . . , Y
′
n. Therefore, (ℓ0, . . . , ℓn) ∼ (Y ′

0 , . . . , Y
′
n)

and so this algorithm returns values (c0, . . . , cn) distributed as (Z(m), . . . , Z(m−n)).

Unfortunately, the running time of this algorithm is Ω(m) as it requires Ω(m) bits to represent
the probabilities in Bin(m, pv). So while KH′M only has an output of length O(n · (log |X |+ log n)),
by using OrdSampleFM

to implement step 4, KH′M has running time at least linear in m ≥ |X | − n.
Indeed, this is necessary since the distribution of the order statistic Z(m) has probabilities that are
exponentially small in m.6

6.2 An Efficient Approximation

To remedy the inefficiency of KH′ we construct an efficient algorithm that approximates the output
distribution of KH′ by replacing OrdSample with an efficient algorithm whose output distribution is
close in statistical distance to that of OrdSample, resulting in the following histogram algorithm:

Theorem 6.8. Let ε, δ ∈ N
−1 and deterministic M : [n]× [d]+ → [n] be (ε/2, 0)-differentially pri-

vate for counting queries. Let |X | ≥ 2n+1. Then there exists an algorithm SparseHistogramM,δ :
X n → Hn,n(X) with the following properties:

i. ∆
(

KH′M(D), SparseHistogramM,δ(D)
)

≤ δ for all D ∈ X n.

ii. SparseHistogramM,δ is (ε, (eε + 1) · δ)-differentially private.

iii. The running time of SparseHistogramM,β1,δ
is

Õ(n · log |X | · (log |X |+ log(1/δ))) +O(n) ·
(

Õ(log d) + Time(M) + Time(FM)
)

6Notice Pr[Z(m) = 0] = Pr[M(0, U)]m. Thus, we need Ω(m) random bits to sample from Z(m).

29

Note that this algorithm only achieves (ε,O(δ))-differential privacy. By reducing δ, the algo-
rithm better approximates KH′, at only the cost of increasing running time (polynomial in the bit
length of δ). This is in contrast to most (ε, δ)-differentially private algorithms such as the stability
based algorithm of Section 5.2, where one needs n ≥ Ω(log(1/δ)/ε) to get any meaningful accuracy.

We will prove Theorem 6.8 in Section 6.3. Before that we will convert SparseHistogram to a
pure differentially private algorithm by mixing it with random output, following Lemma 3.2.

Algorithm 6.9. PureSparseHistogramM,ε,β1
(D) for D ∈ X n where deterministic M : [n] ×

[d]+ → [n], ε, β1 ∈ N
−1 s.t. β1 < 1 and

|X | ≥ 2n + 1

1. With probability 1− β1 release SparseHistogramM,δ(D) with

δ =
ε

3
· β1 ·

(

1

3 · |X |

)n

2. Otherwise

(a) Draw (x1, . . . xn) uniformly at random from X n.

(b) Let Q be the set of distinct elements from (x1, . . . , xn).

(c) For each q ∈ Q, sample c̃q uniformly at random from [n].

(d) Release h = {(q, c̃q) : q ∈ Q and c̃q > 0} ∈ Hn,n(X).

Theorem 6.10. Let ε, β1 ∈ N
−1 such that β1 < 1 and |X | ≥ 2n + 1. Let deterministic M :

[n]× [d]+ → [n] be (ε/2, 0)-differentially private for counting queries such that BasicHistogramM,X

has (a1, β2)-per-query accuracy and (a2, β2)-simultaneous accuracy with a1 ≤ a2.
Then PureSparseHistogramM,ε,β1

: X n → Hn,n(X) has the following properties:

i. PureSparseHistogramM,ε,β1
is (ε, 0)-differentially private.

ii. PureSparseHistogramM,ε,β1
has (a1, 2β1+2β2)-per-query accuracy on counts larger than 2a2.

iii. PureSparseHistogramM,ε,β1
has (2a2, 2β1 + β2)-simultaneous accuracy.

iv. PureSparseHistogramM,ε,β1
has running time

Õ(n2 log2 |X |+ n · log |X | · log(1/(β1ε))) +O(n) · (Õ(log d) + Time(M) + Time(FM))

Notice that the running time of this algorithm depends nearly quadratically on n. It is an open
problem as to whether or not one can improve the nearly quadratic dependence in running time
on n to nearly linear while maintaining the sparsity, privacy and accuracy guarantees achieved
by this algorithm. The nearly quadratic running time dependence on n is due to approximating
the distribution of each of the O(n) order statistics in KH′ to within a statistical distance that is
exponentially small in n (in order to apply Lemma 3.2). See Section 6.3 for more details.

Proof of i. Define the distribution D over Hn,n(X) as the histogram returned by second step of
PureSparseHistogram. Notice that D has full support over Hn,n(X) and is determined by our

30

sample from X n and [n]n. Thus,

min
h′∈Hn,n(X)

Pr
h∼D

[h = h′] ≥
n!

(n+ 1)n · |X |n
≥

(

1

3 · |X |

)n

Privacy follows from Theorem 6.8 and Lemma 3.2 by taking M = KH′M, R = Hn,n(X), M′ =
SparseHistogramM,δ, γ = β1 and D = D as

δ ≤
eε − 1

eε + 1
·

β1
1− β1

· min
h′∈Hn,n(X)

Pr
h∼D

[h = h′]

Proof of ii-iii. Let D ∈ X n. For any x ∈ X such that cx(D) > 2a2 define the set G = {h ∈
Hn,n(X) : |hx − cx(D)| ≤ a1}. By construction,

Pr[PureSparseHistoygramM,ε,β1
(D) ∈ G] ≥ Pr[SparseHistogramM,δ(D) ∈ G]− β1

where δ is defined in Algorithm 6.9. Notice that δ ≤ β1. So by Theorem 6.8 Part i,

Pr[SparseHistogramM,δ(D) ∈ G]− β1 ≥ Pr[KH′M(D) ∈ G]− 2β1

And by Theorem 6.2 Part ii and Proposition 6.5, we have

Pr[KH′M(D) ∈ G]− 2β1 ≥ 1− 2β1 − 2β2

Similarly, we can bound the simultaneous accuracy by using Theorem 6.2 Part iii.

Proof of iv. The second step of PureSparseHistogram can be computed in O(n log n · log |X |) time.
The running time follows from Theorem 6.8 Part iv with

log
1

δ
= O

(

n · log |X |+ log
1

β1 · ε

)

Now we can use PureSparseHistogram with the counting query algorithms of Section 4.

Theorem 6.11. Let ε, β0 ∈ N
−1 and M = GeoSamplen,ε. Then

i. PureSparseHistogramM,ε,β0/4 is (ε, 0)-differentially private.

ii. For every β ≥ β0, PureSparseHistogramM,ε,β0/4 has (a, β)-per-query accuracy on counts
larger than t for

a =

⌈

9

2ε
ln

(

4

β

)⌉

and t = 2 ·

⌈

9

2ε
ln

(

4 · |X |

β

)⌉

iii. For every β ≥ β0, PureSparseHistogramM,ε,β0/4
has (a, β)-simultaneous accuracy for

a = 2 ·

⌈

9

2ε
ln

(

2 · |X |

β

)⌉

iv. PureSparseHistogramM,ε,β0/4 has running time

Õ
(

n2 · log2 |X |+ n2 · log(1/ε) + n · log |X | · log(1/(β0 · ε))
)

31

M Running Time

GeoSample Õ
(

n2 · log2 |X |+ n2 · log(1/ε) + n · log |X | · log(1/(β · ε))
)

FastSample Õ
(

n2 · log2 |X |+ (n/ε) · log(|X |/β) + n · log |X | · log(1/(β · ε))
)

(a, β)-Per-Query on cx(D) > t

M a t (a, β)-Simultaneous

GeoSample

⌈

9
2ε ln

4
β

⌉

2 ·
⌈

9
2ε ln

4|X |
β

⌉

2 ·
⌈

9
2ε ln

2|X |
β

⌉

FastSample

⌈

9
2ε ln

8
β

⌉

2 ·
⌈

9
2ε ln

8|X |
β

⌉

2 ·
⌈

9
2ε ln

4|X |
β

⌉

Figure 5: The running time and errors of PureSparseHistogramM,ε,β/4 for the counting query

algorithms of Section 4 where ε, β ∈ N
−1. For per-query accuracy, the first value is the error a and

the second value is the threshold t. Values shown are for a (ε, 0)-differentially private release. For
FastSample, we take γ = β/(8|X |).

6.3 Construction of SparseHistogram

We finish this section with the construction of SparseHistogram. Notice that if we implement KH′

by using OrdSample(m) to implement step 4, then OrdSample will have to sample from Bin(i, p)
for i ≥ |X | −n and rational p. This in turn has probabilities as small as pi, whose bit length is too
large for us.

In order to keep our bit lengths manageable, we will only sample from a distribution close in
statistical distance to the desired Binomial distribution. We will leverage the fact that a Binomial
random variable can be represented as the sum of independent Bernoulli random variables. By
representing the probability mass function of a Bernoulli as a vector, we can then compute the
probability mass function of a Binomial by repeatedly convolving this vector.

Definition 6.12. Let a, b ∈ R
t. We define the convolution a ∗ b ∈ R

t such that (a ∗ b)k =
∑k

i=0 aibk−i for all k ∈ [t− 1]. And we define i-fold convolution of a denoted ∗(i)(a) to be i− 1
convolutions of a with itself.

Lemma 6.13. Let Y1, Y2 ∈ [t] be independent discrete random variables with probability mass
functions fY1 and fY2 represented as vectors in R

t+1. Then Pr[Y1 + Y2 = k] = (fY1 ∗ fY2)k for all
k ∈ [t].

Corollary 6.14. Let Z ∼ Bin(m, p) and Y ∼ Bern(p) with probability mass functions fZ and fY
represented as vectors in R

m+1. In particular, fY = (1−p, p, 0, . . . , 0). Then we have fZ = ∗(m)(fY).

The following algorithm will approximate i-fold convolution of a by using an algorithm similar
to exponentiation by repeated squaring while truncating each intermediate result to keep its bit
length manageable. The following lemma provides a bound on the error and on the running time.

Proposition 6.15. There is an algorithm ApproxConvExps,t(a, i) such that for all i, s, t ∈ N+ and
a ∈ [s]t such that ‖a‖1 ≤ s:

i. ApproxConvExps,t(a, i) ∈ [s]t and ‖ApproxConvExps,t(a, i)‖1 ≤ s.

32

ii. The approximation does not change as t varies. In particular, let d = ApproxConvExps,t(a, i).
Then for t′ < t

(d0, . . . , dt′−1) = ApproxConvExps,t′((a0, . . . , at′−1), i)

iii. ApproxConvExps,t(a, i) satisfies the accuracy bound

∥

∥

∥

∥

∥

ApproxConvExps,t(a, i)

s
−

∗(i)(a)

si

∥

∥

∥

∥

∥

1

≤
t

s
· (i− 1)

iv. ApproxConvExps,t(a, i) has running time O(log i) · Õ(t · log s) +O(log2 i).

Proof. The algorithm is defined as follows.

Algorithm 6.16. ApproxConvExps,t(a, i) for i, s, t ∈ N+ and a ∈ [s]t

1. If i = 1, stop and return a.

2. Let b = ApproxConvExps,t (a, ⌊i/2⌋).

3. Compute c =

{

(b ∗ b)/s if i is even

(a ∗ b ∗ b)/s2 if i is odd

4. Return d = (⌊c0⌋, ⌊c1⌋, . . . , ⌊ct−1⌋).

Proof of i. We prove this part by induction on i. The result is trivial for i = 1. Let i > 1. By
the inductive hypothesis for b = ApproxConvExps,t(a, ⌊i/2⌋), we have ‖b‖1 ≤ s. If i is odd, then

c = (b ∗ b)/s and we have ‖c‖1 ≤ ‖b‖21/s ≤ s. If i is even, then c = (a ∗ b ∗ b)/s2 and we have
‖c‖1 ≤ ‖a‖1 · ‖b‖

2
1/s

2 ≤ s. Finally, for the output d = ApproxConvExps,t(a, i) = (⌊c0⌋, . . . , ⌊ct−1⌋),
we have ‖d‖1 ≤ ‖c‖1 ≤ s.

Proof of ii. Let a′ = (a0, . . . , at′−1). We prove this part by induction on i. The result is trivial
for i = 1. Let i > 1. By the inductive hypothesis, for b = ApproxConvExps,t(a, ⌊i/2⌋) and
b′ = ApproxConvExps,t′(a

′, ⌊i/2⌋) we have b′ = (b0, . . . , bt′−1). Then for k ∈ [t′ − 1] and i even

ApproxConvExps,t(a, i)k = ⌊(b ∗ b)k/s⌋

=
⌊

(b′ ∗ b′)k/s
⌋

= ApproxConvExps,t′(a
′, i)k

where the second equality holds because (b ∗ b)k only depends on the first k + 1 terms of b (i.e.
b0, . . . , bk) which are equal those of b′ since k < t′. Similarly this induction holds for i odd.

Proof of iii. We prove this part by induction on i. The result is trivial for i = 1. Let i > 1. For i

33

odd, we can bound the error as

∥

∥

∥

∥

∥

d

s
−

∗(i)(a)

si

∥

∥

∥

∥

∥

1

≤

∥

∥

∥

∥

d− c

s

∥

∥

∥

∥

1

+

∥

∥

∥

∥

∥

c

s
−

∗(i)(a)

si

∥

∥

∥

∥

∥

1

≤
t

s
+

∥

∥

∥

∥

∥

(

a

s
∗
b

s
∗
b

s

)

−

(

a

s
∗
∗(⌊i/2⌋)(a)

s⌊i/2⌋
∗
∗(⌊i/2⌋)(a)

s⌊i/2⌋

)∥

∥

∥

∥

∥

1

≤
t

s
+
∥

∥

∥

a

s

∥

∥

∥

1
·

∥

∥

∥

∥

∥

b

s
+

∗(⌊i/2⌋)(a)

s⌊i/2⌋

∥

∥

∥

∥

∥

1

·

∥

∥

∥

∥

∥

b

s
−

∗(⌊i/2⌋)(a)

s⌊i/2⌋

∥

∥

∥

∥

∥

1

≤
t

s
+ 2 ·

∥

∥

∥

∥

∥

b

s
−

∗(⌊i/2⌋)(a)

s⌊i/2⌋

∥

∥

∥

∥

∥

1

≤
t

s
· (i− 1)

with the last step by the inductive hypothesis. Similarly this induction holds for i even.

Proof of iv. The running time follows from the observation that a call to ApproxConvExps,t (a, i)
makes at most O(log i) recursive calls with each dominated by computing ⌊i/2⌋ and the convolution
of up to three vectors in [s]t which can be done in time Õ(t · log s) ([vzGG13] Corollary 8.27).

Using ApproxConvExp we can approximately sample from a Binomial distribution truncated to
a specified upper bound.

Proposition 6.17. There exists an algorithm ApproxBinSamples,t(m, p, q) such that for m, q, s ∈
N+ with s ≥ m, t ∈ N, p ∈ [q] and Z ∼ min{Bin(m, p/q), t}, we have

∆(ApproxBinSamples,t(m, p, q), Z) ≤
m · (t+ 1)− t

s

In addition for every ℓ ∈ [t], every execution of ApproxBinSamples,t(m, p, q) that produces an output
of ℓ has running time at most

Õ(log q) +O(logm) · Õ(ℓ · log s)

Let a = (1 − p/q, p/q, 0, . . . , 0). By using ApproxConvExps,t, we can approximate ∗(m)(a) and
therefore the CDF of Z for k < t. Then to approximately sample from Z we follow Lemma 2.13
by first generating a random uniform u and then outputting the smallest ℓ such that the CDF at
ℓ is at least u. This would yield what is claimed in Proposition 6.17, except that the running time
would depend nearly linearly on t instead of the specific output ℓ. To remedy this, we approximate
the first t′ terms of ∗(m)(a) for t′ = 1, 2, 4, . . . until we find an ℓ < t′ such that CDF of Z at ℓ is at
least u.

Proof. The algorithm is defined as follows.

34

Algorithm 6.18. ApproxBinSamples,t(m, p, q) for m, s, q ∈ N+ such that s ≥ m, t ∈ N and p ∈ [q]

1. If t = 0, stop and return 0.

2. Sample u uniformly at random from [s]+.

3. Let t′ = 1 and p′ = ⌊sp/q⌋.

4. While t′ < 2t, do the following:

(a) Let a ∈ [s]t
′
such that a0 = s− p′, a1 = p′ and ak = 0 for k ≥ 2.

(b) Let d(t
′) = ApproxConvExps,t′(a,m).

(c) Let F
(t′)
0 = d

(t′)
0 and F

(t′)
k = F

(t′)
k−1 + d

(t′)
k for k ∈ [t′ − 1]+.

(d) For ℓ ∈ [⌊t′/2⌋, . . . , t′ − 1], do the following:

i. If F
(t′)
ℓ ≥ u, stop and return min{ℓ, t}.

(e) Set t′ to 2t′.

5. Return t.

Assume t > 0 (as accuracy is trivial otherwise). Notice that ApproxBinSamples,t(m, p) ∈ [t]

and by Proposition 6.15 Parts i-ii, we have F
(t′)
k = F

(t)
k and F

(t)
k ∈ [s] for k < t′ ≤ t. Then by

construction for ℓ ∈ [t− 1],

Pr[ApproxBinSamples,t(m, p, q) = ℓ] = Pr
[

u ∈
(

F
(t)
ℓ−1, F

(t)
ℓ

]]

=
1

s
· d

(t)
ℓ

Now, let Z ′ ∼ min{Bin(m, p′/s), t}. Let Y ∼ Bern(p/q) and Y ′ ∼ Bern(p′/s). Notice that

∆(Z, Z ′) ≤ m ·∆(Y, Y ′) ≤
m

s

and, by Corollary 6.14, Pr[Z ′ = k] = ∗(m)(a)k/s
m for k ∈ [t−1] where a = (s−p′, p′, 0, . . . , 0) ∈ [s]t.

Therefore, by Proposition 6.15 Part iii

∆(ApproxBinSamples,t(m, p, q), Z) ≤ ∆(Z,Z ′) + ∆(ApproxBinSamples,t(m, p, q), Z ′)

≤
m

s
+

∥

∥

∥

∥

∥

d(t)

s
−

∗(m)(a)

sm

∥

∥

∥

∥

∥

1

≤
m · (t+ 1)− t

s

We consider each step to calculate the running time. Step 3 takes times Õ(log s+log q). The i-th
iteration of step 4 has t′ = 2i−1. Therefore, for the i-th iteration step 4b takes O(logm) ·Õ(2i · log s)
time and steps (4c-d) take O(2i · log s) time. Now, for the algorithm to output ℓ, it must halt in
the 1 + ⌈log2(ℓ+ 1)⌉-th iteration of step 4. Therefore, the overall running time is

Õ(log s+ log q) +

1+⌈log2(ℓ+1)⌉
∑

i=1

O(logm) · Õ(2i · log s) = Õ(log q) +O(logm) · Õ(ℓ · log s)

35

Now we can modify OrdSample by replacing sampling from a binomial distribution with a call
to ApproxBinSample to keep the bit lengths of its numbers from becoming too large, yielding an
efficient algorithm whose output distribution is close to that of OrdSample.

Proposition 6.19. Let n, d ∈ N+ and F : [n] → [d]+ such that F is non-decreasing and F (n) = d.
Let m ∈ N+ such that m ≥ n + 1 and s ∈ N+ such that s ≥ m. Then the following algorithm
ApproxOrdSampleF (m, s) satisfies

∆(OrdSampleF (m), ApproxOrdSampleF (m, s)) ≤
m · (n2 + 2n)

s

In addition, ApproxOrdSampleF (m, s) has running time

O(n) ·
(

Time(F) + Õ(log d)
)

+O(logm) · Õ(n · log s)

where Time(F) is the worst-case time to evaluate F .

The running time of ApproxOrdSample is exponentially faster than OrdSample as a function of
m, which we take to be close to |X |. However, ApproxOrdSample will still be the bottleneck of
PureSparseHistogram as it has a nearly quadratic running time dependence on n (since we will
take s ≥ 2n) as opposed to the other steps which only have a nearly linear dependence on n (see
Theorem 6.10 Part iv).

Algorithm 6.20. ApproxOrdSampleF (m, s) for m, s ∈ N+ such that m ≥ n + 1 and s ≥ m
where F : [n] → [d]+ such that F is non-
decreasing and F (n) = d

1. Let L′
n+1 = 0.

2. For v from n to 1, do the following:

(a) Let ℓ′v = ApproxBinSamples, n+1−L′
v+1

(m− L′
v+1, F (v) − F (v − 1), F (v)).

(b) Let L′
v = L′

v+1 + ℓ′v.

3. Let ℓ′0 = n+ 1− L′
1.

4. Return (c′0, . . . c
′
n) such that the first ℓ′n values are n, the next ℓ′n−1 values are n− 1 and so on

until the last ℓ′0 values are 0.

Proof. Let (ℓ0, . . . , ℓn) and (L1, . . . , Ln+1) and be defined as in OrdSampleF (m). And let (ℓ′0, . . . , ℓ
′
n)

and (L′
1, . . . , L

′
n+1) be defined as in ApproxOrdSampleF (m, s). Let Kv = {(kv+1, . . . , kn) ∈ N

n−v :
∑n

i=v+1 ki ≤ n+ 1}. By Lemma 2.10 Part iii and induction,

∆(ApproxOrdSampleF (m, s), OrdSampleF (m))

≤ ∆((ℓ0, . . . , ℓn), (ℓ
′
0, . . . , ℓ

′
n))

≤
n
∑

v=0

max
(kv+1,...,kn)∈Kv

∆(ℓv | {∀i > v ℓi = ki}, ℓ
′
v | {∀i > v ℓ′i = ki})

Let (kv+1, . . . , kn) ∈ Kv and Kv+1 =
∑n

i=v+1 ki. Then for v ∈ [n]+ we have

ℓ′v | {∀i > v ℓ′i = ki} ∼ ApproxBinSamples, n+1−Kv+1
(m−Kv+1, F (v)− F (v − 1), F (v))

36

and recall that

ℓv | {∀i > v ℓi = ki} ∼ min (Bin (m−Kv+1, pv) , n+ 1−Kv+1) where pv =
F (v)− F (v − 1)

F (v)

So by Proposition 6.17

∆(ℓv | {∀i > v ℓi = ki}, ℓ
′
v | {∀i > v ℓ′i = ki}) ≤

m · (n + 2)

s

In addition, ℓ0 | {∀i > 0 ℓi = ki} ∼ ℓ′0 | {∀i > 0 ℓ′i = ki}. Therefore,

∆(ApproxOrdSampleF (m, s), OrdSampleF (m)) ≤
m · (n2 + 2n)

s

The running time of this algorithm is dominated by the n calls to ApproxBinSample and the
evaluation of F on all n+1 points. The other steps are simple arithmetic on O(log n) bit numbers
and the final step can be done in O(n log n) time.

Because
∑n

v=1 ℓ
′
v ≤ n+ 1, the running time to all calls of ApproxBinSample takes time

O(n) · Õ(log d) +

n
∑

v=1

O(logm) · Õ(ℓ′v · log s) ≤ O(n) · Õ(log d) +O(logm) · Õ(n · log s)

We are ready to state the algorithm SparseHistogram and show it satisfies Theorem 6.8. It is
identical to KH′ except we replace sampling of order statistics with a call to ApproxOrdSample.

Algorithm 6.21. SparseHistogramM,δ(D) for D ∈ X n where deterministic M : [n]× [d]+ → [n],

δ ∈ N
−1 and |X | ≥ 2n+ 1

1. Let A = {x ∈ X : cx(D) > 0} and m = |X \ A|.

2. Let {(x, c̃x)}x∈A = BasicHistogramM,A(D).

3. Pick a uniformly random sequence (q0, . . . , qn) of distinct elements from X \A.

4. Let (c̃q0 , . . . , c̃qn) = ApproxOrdSampleFM
(m, s) where s = (n2 + 2n) · |X |/δ.

5. Sort the elements of A ∪ {q0, . . . , qn} as x1, . . . , x|A|+n+1 such that c̃x1 ≥ . . . ≥ c̃x|A|+n+1
.

6. Release h = {(x, c̃x) : x ∈ {x1, . . . , xn} and c̃x > c̃xn+1} ∈ Hn,n(X).

Theorem 6.8 (restated). Let deterministic M : [n] × [d]+ → [n] be (ε/2, 0)-differentially private
for counting queries. And let δ ∈ N

−1 and |X | ≥ 2n + 1. Then SparseHistogramM,β1,δ : X n →
Hn,n(X) has the following properties:

i. ∆
(

KH′M(D), SparseHistogramM,δ(D)
)

≤ δ for all D ∈ X n.

ii. SparseHistogramM,δ is (ε, (eε + 1) · δ)-differentially private.

iii. The running time of SparseHistogramM,δ is

Õ(n · log |X | · (log |X |+ log(1/δ))) +O(n) ·
(

Õ(log d) + Time(M) + Time(FM)
)

37

Proof of i. Let KH′∗ : X n → Hn,2n+1(X) be the algorithm KH′ except, (if it passes the first step)
instead of releasing the heaviest bins, KH′∗ releases the bins for all elements of A∪ {q0, . . . , qn} (i.e.
KH′∗ releases (x, c̃x) for all x ∈ A and (qi, c̃qi) for all i ∈ [n]). Similarly, we define SparseHistogram∗

with respect to SparseHistogram.
Notice that KH′∗ and SparseHistogram∗ have the same distribution overs the bins with nonzero

true count. Only on the bins with counts sampled using OrdSample and ApproxOrdSample respec-
tively do their output distributions differ. As a result, we can apply Proposition 6.19 to the output
distributions of KH′∗ and SparseHistogram∗. So for all D ∈ X n

∆
(

KH′∗M(D), SparseHistogram∗M,δ(D)
)

≤ (n2 + 2n) ·
|X |

s
= δ

Now we consider the effect of keeping the heaviest counts. Define T : Hn,2n+1(X) → Hn,n(X)
to be the function that sets counts not strictly larger than the (n+1)-heaviest count of its input to
0. Notice that T ◦ KH′∗ ∼ KH′ and T ◦ SparseHistogram∗ ∼ SparseHistogram. So for all D ∈ X n,
by Lemma 2.10 Part 2,

∆
(

KH′M(D), SparseHistogramM,δ(D)
)

= ∆
(

T
(

KH′∗M(D)
)

, T
(

SparseHistogram∗M,δ(D)
))

≤ ∆(KH′∗M(D), SparseHistogram∗M,δ(D))

≤ δ

Proof of ii. Let D and D′ be neighboring datasets. Let S ⊆ Hn,n(X). By the previous part,
Theorem 6.2 Part i and Proposition 6.5,

Pr[SparseHistogramM,δ(D) ∈ S] ≤ Pr[KH′M(D) ∈ S] + δ

≤ eε · Pr[KH′M(D′) ∈ S] + δ

≤ eε ·
(

Pr[SparseHistogramM,δ(D) ∈ S] + δ
)

+ δ

Therefore, SparseHistogramM,δ is (ε, (eε + 1) · δ)-differentially private.

Proof of iii. We consider the running time at each step. Steps 1, 5 and 6 take time O(n log n ·
log |X |). Step 3 can be done in time O(n log n · log2 |X |) (see Appendix A). For step 2, by Theorem
5.2 Part i, the call to BasicHistogramM,A(D) takes time

O (n log n · log |X |+ n · log d+ n · Time(M))

Notice that s can be computed in Õ(log n+log |X |+log(1/δ)) time and has bit length O(log n+
log |X |+ log(1/δ)). Thus, by Proposition 6.19 the call to ApproxOrdSampleFM

(m, s) in step 4 can
be computed in time

Õ(n · log |X | · (log |X |+ log(1/δ))) +O(n) ·
(

Õ(log d) + Time(FM)
)

Therefore, overall SparseHistogramM,δ has the desired running time.

7 Lower Bounds

In this section, we prove a lower bound on the per-query accuracy of histogram algorithms whose
outputs are restricted to H∞,n′(X) (i.e. sparse histograms) using a packing argument [HT10,
BBKN14]. First, for completeness we state and reprove existing lower bounds for per-query accu-
racy and simultaneous accuracy as well as generalize them to the case of δ > 0.

38

Theorem 7.1 (following [HT10, BBKN14]). Let M : X n → H∞,|X |(X) be (ε, δ)-differentially
private and β ∈ (0, 1/2].

i. If M has (a, β)-per-query accuracy, then

a ≥
1

2
·min

{

1

ε
ln

(

1

4β

)

− 1,
1

ε
ln
(ε

4δ

)

− 1, n

}

ii. If M has (a, β)-simultaneous accuracy, then

a ≥
1

2
·min

{

1

ε
ln

(

|X | − 1

4β

)

− 1,
1

ε
ln
(ε

4δ

)

− 1, n

}

Proof of i. Assume a < n/2. Let x, x0 ∈ X such that x 6= x0. Define the dataset D′ ∈ X n such
that all rows are x0. And define the dataset D such that the first m = ⌊2a⌋+1 rows are x and the
remaining n −m rows are x0. Notice that Pr[|M(D)x − cx(D)| > a] ≤ β by the (a, β)-per-query
accuracy of M. By Lemma 2.3 and the fact that cx(D) > 2a while cx(D

′) = 0,

Pr[|M(D)x − cx(D)| > a] ≥ e−mε · Pr[|M(D′)x − cx(D)| > a]− δ/ε

≥ e−mε · Pr[|M(D′)x − cx(D
′)| ≤ a]− δ/ε

≥ e−mε · (1− β)− δ/ε

Therefore,

e−(2a+1)·ε ≤
1

1− β
·

(

β +
δ

ǫ

)

≤ 4 ·max

{

β,
δ

ε

}

Proof of ii. Assume a < n/2. Let x0 ∈ X . For each x ∈ X define the dataset D(x) ∈ X n such that
the first m = ⌊2a⌋ + 1 rows are x and the remaining n−m rows are x0. For all x ∈ X , let

Gx = {h ∈ H∞,|X |(X) : ∀x′ ∈ X |hx′ − cx′(D(x))| ≤ a}

By Lemma 2.3, for all x ∈ X

Pr[M(D(x0)) ∈ Gx] ≥ e−mε · Pr[M(D(x)) ∈ Gx]− δ/ε

≥ e−mε · (1− β)− δ/ε

Notice that Pr[M(D(x0)) /∈ Gx0] ≤ β and {Gx}x∈X is a collection of disjoint sets. Then

Pr[M(D(x0)) /∈ Gx0] ≥
∑

x∈X :x 6=x0

Pr[M(D(x0)) ∈ Gx]

≥ (|X | − 1) ·
(

e−mε · (1− β)− δ/ε
)

Therefore,

e−(2a+1)·ε ≤
1

1− β
·

(

β

|X | − 1
+

δ

ε

)

which implies the desired lower bound.

We now state and prove our lower bound for privately releasing sparse histograms.

39

Theorem 7.2. Let M : X n → H∞,n′(X) be (ε, δ)-differentially private with (a, β)-per-query accu-
racy with β ∈ (0, 1/2]. Then

a ≥
1

2
·min

{

1

2ε
ln

(

|X |

16βn′

)

− 1,
1

ε
ln
(ε

4δ

)

− 1, n

}

The histogram algorithms of Sections 5.2 and 6 achieve (O(log(1/β)/ε), β)-per-query accuracy
on large enough counts. However, on smaller counts we can only guarantee (a, β)-per-query accu-
racy with a = O(log(1/(βδ))/ε) and a = O(log(|X |/β)/ε) for algorithms from Sections 5.2 and 6
respectively (taking threshold b = O(log(1/δ)/ε) in Section 5.2) . Theorem 7.2 shows these bounds
are the best possible, up to constant factors, when |X | ≥ (n′)2, ε2 ≥ δ and β ≥ δ.

Proof. Assume a < n/2. Let x0 ∈ X . For each x ∈ X define the dataset D(x) ∈ X n such that the
first m = ⌈2a⌉ rows are x and the remaining n −m rows are x0. By definition of (a, β)-per-query
accuracy and the fact that cx(D

(x)) ≥ 2a, we have

Pr
[

M(D(x))x ≥ a
]

≥ Pr
[∣

∣

∣M(D(x))x − cx(D
(x))
∣

∣

∣ ≤ a
]

≥ 1− β

Then, by Lemma 2.3 and that D(x) is at distance at most m from D(x0), we have

Pr
[

M(D(x0))x ≥ a
]

≥ (1− β)e−mε − δ/ε

Thus, by linearity of expectations

E
[∣

∣

∣

{

x ∈ X : M(D(x0))x ≥ a
}∣

∣

∣

]

≥ |X | ·
(

(1− β)e−mε − δ/ε
)

On the other hand, as M(D(x0)) ∈ H∞,n′(X) we have

E
[∣

∣

∣

{

x ∈ X : M(D(x0))x ≥ a
}∣

∣

∣

]

≤ n′

Therefore,

e−⌈2a⌉·ε ≤
1

1− β
·

(

n′

|X |
+

δ

ε

)

which along with ⌈2a⌉ ≤ 2a+ 1 implies the lower bound of

a ≥
1

2
·min

{

1

ε
ln

(

|X |

4n′

)

− 1,
1

ε
ln
(ε

4δ

)

− 1, n

}

Therefore, along with Theorem 7.1 Part i, we have

a ≥
1

2
·min

{

max

{

1

ε
ln

(

|X |

4n′

)

− 1,
1

ε
ln

(

1

4β

)

− 1

}

,
1

ε
ln
(ε

4δ

)

− 1, n

}

≥
1

2
·min

{

1

2ε
ln

(

|X |

16βn′

)

− 1,
1

ε
ln
(ε

4δ

)

− 1, n

}

8 Better Per-Query Accuracy via Compact, Non-Sparse Repre-

sentations

In this section, we present a histogram algorithm whose running time is poly-logarithmic in |X |,
but, unlike Algorithm 6.9, is able to achieve (O(log(1/β)/ε), β)-per query accuracy. It will output
a histogram from a properly chosen family of succinctly representable histograms. This family
necessarily contains histograms that have many nonzero counts to avoid the lower bound of Theorem
7.2.

40

8.1 The Family of Histograms

We start by defining this family of histograms.

Lemma 8.1. Let deterministic M0 : [d0]+ → [n], d0 = 22·3
ℓ
for some ℓ ∈ N, d0 ≥ |X | and

U ∼ Unif([d0]+). There exists a multiset of histograms GM0(X) satisfying:

i. Let g ∼ Unif(GM0(X)). For all x ∈ X , the marginal distribution gx is distributed according
to M0(U).

ii. Let g ∼ Unif(GM0(X)). For all B ⊆ X such that |B| ≤ n+ 1 and for all c ∈ [n]B

Pr[∀x ∈ B gx = cx] =
∏

x∈B

Pr[gx = cx]

iii. For all g ∈ GM0(X), the histogram g can be represented by a string of length O(n · log d0) and
given this representation for all x ∈ X the count gx can be evaluated in time

O(n) · Õ(log d0) + Time(M0)

iv. For all A ⊆ X such that |A| ≤ n and c ∈ [n]A sampling a histogram h uniformly at random
from {g ∈ GM0(X) : ∀x ∈ A gx = cx} can be done in time

O(n) · Time(S) + Õ(n · log d0)

where Time(S) is the maximum time over v ∈ [n] to sample from the distribution Sv ∼
Unif({u0 ∈ [d0]+ : M0(u0) = v}).

Proof. (Construction) Let G′
M0

be the set of all degree at most n polynomials over the finite field Fd0 .
Now, G′

M0
is a (n+ 1)-wise independent hash family mapping Fd0 to Fd0 . That is, p ∼ Unif(G′

M0
)

has the following properties:

• Let x ∈ Fd0 . Then p(x) ∼ Unif(Fd0).

• Let x0, . . . , xn ∈ Fd0 be distinct. Then the random variables p(x0), . . . , p(xn) are independent.

And given any function pg ∈ G′
M0

we construct a histogram g ∈ GM0(X) by using pg(x) as the
randomness for M0. More specifically, let T : Fd0 → [d0]+ be a bijection and for all x ∈ X , define

gx = M0(T (pg(x)))

By construction, g ∼ Unif(GM0(X)) if and only if pg ∼ Unif(G′
M0

).

Proof of i. Let g ∼ Unif(GM0(X)) and U ∼ Unif([d0]+). Then pg ∼ Unif(G′
M0

) and because G′
M0

is a (n + 1)-wise independent hash family, for all x ∈ X ⊆ [d0]+, T (pg(x)) ∼ U which implies
gx = M0(T (pg(x))) ∼ M0(U).

Proof of ii. Let g ∼ Unif(GM0(X)). Because G′
M0

is a (n+1)-wise independent hash family, for all

B ⊆ X such that |B| ≤ n+ 1 and for all c ∈ [n]B

Pr[∀x ∈ B gx = cx] = Pr [∀x ∈ B M0(T (pg(x))) = cx]

=
∏

x∈B

Pr [M0(T (pg(x))) = cx]

=
∏

x∈B

Pr[gx = cx]

41

Proof of iii. By choice of d0, we have Fd0 ≃ F2[x]/(x
2·3ℓ + x3

ℓ
+ 1) [Lin99]. Thus, elements of Fd0

can be represented by a polynomial of degree at most log d0 − 1 over F2 which requires log d0 bits.
Arithmetic operations (addition, multiplication and inverse) of elements in Fd0 can be done in time
Õ(log d0) ([vzGG13] Corollary 11.11). Also, this encoding defines an efficient bijection T between
Fd0 and [d0]+ by also interpreting the string as the binary representation of an element in [d0]+
offset by 1.

For all g ∈ GM0(X), g can be represented by the coefficients of pg. This representation can be
encoded in O(n · log d0) bits. And given this encoding, the time to compute gx = M0(T (pg(x)))
follows from its construction.

Proof of iv. Let A ⊆ X such that |A| ≤ n and c ∈ [n]A. Given A and c, we can sample h ∈ GM0(X)
given by the coefficients a0, . . . , an ∈ Fd0 uniformly at random from {g ∈ GM0(X) : ∀x ∈ A gx = cx}
with the following steps:

1. For each x ∈ A, sample ux from the distribution Sx.

2. Let B ⊆ X such that A ⊆ B and |B| = n + 1. For all x ∈ B \ A, sample ux uniformly at
random from Fd0 .

3. Take the coefficients a0, . . . , an ∈ Fd0 to be the coefficients of the interpolating polynomial
over Fd0 given the set of points (x, ux) for all x ∈ B.

We first prove correctness. Notice this procedure can only return a histogram h ∈ GM0(X) such
that hx = cx for all x ∈ A as the interpolating polynomial always exists. Now, let h be any such
histogram. Then

Pr[Sampling h] = Pr[(a0, . . . , an) are the coefficients of ph]

= Pr[∀x ∈ B ux = ph(x)]

=
∏

x∈B

Pr[ux = ph(x)]

=

(

∏

x∈A

1

|supp(Sx)|

)

·

(

1

d0

)|B\A|

Therefore, these steps output h ∈ GM0(X) uniformly at random such that hx = cx for all x ∈ A.
Because |A| ≤ n, the first step takes time O(n) · Time(S). Because |B| = n + 1, the second

step takes time O(n log n · log d0). Polynomial interpolation of n + 1 points over Fd0 takes time
Õ(n · log d0) ([vzGG13] Corollary 10.12). Thus, we have the desired running time overall.

8.2 The Algorithm

For our algorithm to have the correct marginal distributions over all bins we first compute the
noisy counts for the nonzero bins using an algorithm M that is differentially private for counting
queries and then randomly pick a histogram from our family that is consistent with these computed
counts. However, for technical reasons (e.g. requiring d0 ≥ |X |) we allow our family to be defined
in terms of an algorithm M0 that approximates M; we refer to M0 as the empty-bin sampler.

42

Algorithm 8.2. CompactHistogramM,M0
(D) for D ∈ X n where deterministic M : [n]×[d]+ → [n]

and deterministic M0 : [d0]+ → [n] such that

d0 = 22·3
ℓ
for some ℓ ∈ N and d0 ≥ |X |

1. Let A = {x ∈ X : cx(D) > 0}.

2. Let {(x, c̃x)}x∈A = BasicHistogramM,A(D).

3. Release h drawn uniformly at random from {g ∈ GM0(X) : ∀x ∈ A gx = c̃x}.

Theorem 8.3. Let deterministic M : [n]×[d]+ → [n] be (ε1/2, 0)-differentially private for counting

queries and have (a, β)-accuracy. Let M0 : [d0]+ → [n] be deterministic, d0 = 22·3
ℓ
for some ℓ ∈ N

and d0 ≥ |X |. Assume Pr[M0(U0) ≤ a] ≥ 1− β and for all c ∈ [n]

e−ε2 · Pr[M0(U0) = c] ≤ Pr[M(0, U) = c] ≤ eε3 · Pr[M0(U0) = c]

where U ∼ Unif([d]+) and U0 ∼ Unif([d0]+). Then CompactHistogramM,M0
: X n → GM0(X) has

the following properties:

i. CompactHistogramM,M0
is (ε1 + ε2 + ε3, 0)-differentially private.

ii. CompactHistogramM,M0
has (a, β)-per-query accuracy.

iii. CompactHistogramM,M0
has (a, β · |X |)-simultaneous accuracy.

iv. CompactHistogramM,M0
has running time

Õ(n · log d0) +O(n) · (log d+Time(M) + Time(S)) +O(n log n · log |X |)

where Time(S) is the maximum time over v ∈ [n] to sample from the distribution Sv ∼
Unif({u0 ∈ [d0]+ : M0(u0) = v}).

v. Given h = CompactHistogramM,M0
(D), for all x ∈ X the count hx can be evaluated in time

O(n) · Õ(log d0) + Time(M0)

As discussed earlier, a natural choice for M0 is to take M0(u) = M(0, u) for all u ∈ [d].
However, d may not satisfy the required constraints. In the next section (see Lemma 8.4), we will
show how to construct M0 for the counting query algorithms of Section 4 at only a constant factor
loss in privacy (i.e. ε2 = O(ε) and ε3 = O(ε)).

Proof of i. Let D,D′ ∈ X n be neighboring datasets. Let A = {x ∈ X : cx(D) > 0}. Similarly,
define A′ = {x ∈ X : cx(D

′) > 0}. Let B = A ∪ A′. Notice that |B| ≤ n + 1. Let h ∼
CompactHistogramM,M0

(D) and h′ ∼ CompactHistogramM,M0
(D′). Let g ∼ Unif(GM0(X)) and

r ∈ GM0(X). Then by construction

Pr[h = r] = Pr[∀x ∈ B hx = rx] ·
Pr[h = r | ∀x ∈ A hx = rx]

Pr[∀x ∈ B hx = rx | ∀x ∈ A hx = rx]

=
Pr[∀x ∈ B hx = rx]

|{g′ ∈ GM0(X) : ∀x ∈ A g′x = rx}|
·
|{g′ ∈ GM0(X) : ∀x ∈ A g′x = rx}|

|{g′ ∈ GM0(X) : ∀x ∈ B g′x = rx}|

= Pr[∀x ∈ B hx = rx] · Pr[g = r | ∀x ∈ B gx = rx]

43

Now, because |B \A| ≤ 1 and |B \ A′| ≤ 1 along with Lemma 8.1 Parts i-ii

Pr[h = r]

Pr[g = r | ∀x ∈ B gx = rx]

=

(

∏

x∈A

Pr[M(cx(D), U) = rx]

)

∏

x∈B\A

Pr[hx = rx | ∀x ∈ A hx = rx]

=

(

∏

x∈A

Pr[M(cx(D), U) = rx]

)

∏

x∈B\A

Pr[gx = rx | ∀x ∈ A gx = rx]

=

(

∏

x∈A

Pr[M(cx(D), U) = rx]

)

∏

x∈B\A

Pr[M0(U0) = rx]

≤ eε2 ·
∏

x∈B

Pr[M(cx(D), U) = rx]

≤ eε1+ε2 ·
∏

x∈B

Pr[M(cx(D
′), U) = rx]

≤

(

eε1+ε2 ·
∏

x∈A′

Pr[M(cx(D
′), U) = rx]

)

eε3 ·
∏

x∈B\A′

Pr[M0(U0) = rx]

= eε1+ε2+ε3 ·
Pr[h′ = r]

Pr[g = r | ∀x ∈ B gx = rx]

Therefore, CompactHistogramM,M0
is (ε1 + ε2 + ε3, 0)-differentially private.

Proof of ii. Let h ∼ CompactHistogramM,M0
(D). Let A = {x ∈ X : cx(D) > 0}. If x ∈ A, then

hx ∼ M(cx(D), U) with accuracy following from M having (a, β)-accuracy.
Otherwise, for x ∈ X \ A, let g ∼ Unif(GM0(X)). Notice that cx(D) = 0 and |A| ≤ n. By

construction and Lemma 8.1 Parts i-ii

Pr[|hx| ≤ a] =
∑

c∈[n]A

Pr[∀x′ ∈ A hx′ = cx′] · Pr[hx ≤ a | ∀x′ ∈ A hx′ = cx′]

=
∑

c∈[n]A

Pr[∀x′ ∈ A hx′ = cx′] · Pr[gx ≤ a | ∀x′ ∈ A gx′ = cx′]

=
∑

c∈[n]A

Pr[∀x′ ∈ A hx′ = cx′] · Pr[gx ≤ a]

= Pr[gx ≤ a]

= Pr[M0(U0) ≤ a]

≥ 1− β

with the last inequality by assumption. Therefore, CompactHistogramM,M0
has (a, β)-per-query

accuracy.

Proof of iii. CompactHistogramM,M0
has (a, β · |X |)-simultaneous accuracy by a union

bound over each x ∈ X along with the previous part.

Proof of iv-v. By Theorem 5.2 Part iv and Lemma 8.1 Parts iii-iv, we get the desired bounds on
running time.

44

8.3 Constructing the Empty-Bin Sampler

The following lemma allows us to construct the empty-bin sampler satisfying the constraints of
Theorem 8.3 for the counting query algorithms of Section 4.

Lemma 8.4. Let deterministic M : [n]× [d]+ → [n] such that M(0, u) is non-decreasing function
in u. Let d0 ∈ N+ such that d0 ≥ (4/3) · d. Let U ∼ Unif([d]+) and U0 ∼ Unif([d0]+). Then there
is a deterministic algorithm M0 : [d0]+ → [n] with the following properties:

i. M0 is non-decreasing.

ii. For all c ∈ [n]

e−2·d/d0 · Pr[M(0, U) = c] ≤ Pr[M0(U0) = c] ≤ ed/d0 · Pr[M(0, U) = c]

Moreover, if d0 is a multiple of d, then M0(U0) ∼ M(0, U).

iii. For all a ∈ [n]

Pr[M0(U0) ≤ a] ≥ Pr[M(0, U) ≤ a]

In particular, if M has (a, β)-accuracy, then Pr[M0(U0) ≤ a] ≥ 1− β.

iv. M0 has running time

Õ(log d0) + Time(M)

v. For any v ∈ [n], define the distribution Sv ∼ Unif({u0 ∈ [d0]+ : M0(u0) = v}). Then Sv can
be sampled in time

Õ(log d0) +O(Time(FM))

Proof. (Construction) We start by considering a sample uniformly at random from [d0]+ and then
map it to [d]+ such that the resulting number is almost uniform while preserving monotonicity.
The algorithm is as follows:

Algorithm 8.5. M0(u0) for u0 ∈ [d0]+

1. Pick q ∈ N and r ∈ [d− 1] such that d0 = q · d+ r.

2. Define the function f : [d0]+ → [d]+

f(u0) =

{

⌈u0/(q + 1)⌉ if r 6= 0 and u0 ≤ r · (q + 1)

⌈(u0 − r)/q⌉ if r = 0 or u0 > r · (q + 1)

3. Return M(0, f(u0)).

Proof of i. Notice that f as defined in Algorithm 8.5 is non-decreasing. Therefore, M0(u0) =
M(0, f(u0)) is non-decreasing in u0 as M(0, u) is non-decreasing in u.

45

Proof of ii. Notice that ⌈(u0 − r)/q⌉ = ⌈(u0 − r · (q + 1))/q⌉ + r. So |{u0 ∈ [d0]+ : f(u0) = u}| =
q or q + 1 for all u ∈ [d]+. Thus,

Pr[M0(U0) = c] ≤
q + 1

d0
· |{u ∈ [d]+ : M(0, u) = c}|

=
(q + 1) · d

d0
· Pr[M(0, U) = c]

≤

(

1 +
d

d0

)

· Pr[M(0, U) = c]

≤ ed/d0 · Pr[M(0, U) = c]

and because d/d0 ≤ 3/4

Pr[M0(U0) = c] ≥
q · d

d0
· Pr[M(0, U) = c]

≥

(

1−
d

d0

)

· Pr[M(0, U) = c]

≥ e−2·d/d0 · Pr[M(0, U) = c]

If d0 is a multiple of d, then r = 0 and |{u0 ∈ [d0]+ : f(u0) = u}| = q for all u ∈ [d]+. So
Pr[M0(U0) = c] = Pr[M(0, U) = c] for all c ∈ [n].

Proof of iii. Let u ∈ [d]+. Notice that

|{u0 ∈ [d0]+ : f(u0) = u}| =

{

q + 1 if u ≤ r

q otherwise

Then for all a ∈ [n]

Pr[M0(U0) ≤ a] =
q · d

d0
· Pr[M(0, U) ≤ a] +

r

d0
· Pr[M(0, U) ≤ a | U ≤ r]

≥
q · d

d0
· Pr[M(0, U) ≤ a] +

r

d0
· Pr[M(0, U) ≤ a]

asM(0, u) is non-decreasing in u. Therefore, Pr[M0(U0) ≤ a] ≥ Pr[M(0, U) ≤ a] for all a ∈ [n].

Proof of iv. Evaluating f takes time Õ(log d0). So we have the desired running time overall.

Proof of v. Because M(0, u) is non-decreasing in u and f(u0) is non-decreasing in u0, we have

supp(Sv) = {u0 ∈ [d0]+ : M(0, f(u0)) = v}

= {u0 ∈ [d0]+ : FM(v − 1) < f(u0) ≤ FM(v)}

= {min{u0 ∈ [d0]+ : f(u0) ≥ FM(v − 1) + 1}, . . . ,max{u0 ∈ [d0]+ : f(u0) ≤ FM(v)}}

One can show for u ∈ [d]+ that

max{u0 ∈ [d0]+ : f(u0) ≤ u} =

{

(q + 1) · u if r 6= 0 and u ≤ r

q · u+ r if r = 0 or u > r

and min{u0 ∈ [d0]+ : f(u0) ≥ u} = 1+max{u0 ∈ [d0]+ : f(u0) ≤ u− 1}. So both endpoints can be
computed in time Õ(log d0).

46

Now, we are ready to obtain a private histogram algorithm that achieves pure differential
privacy, has the same accuracy guarantees (up to constant factors) as the Laplace mechanism and
has running polynomial in n and log |X |.

Theorem 8.6. Let ε, β0 ∈ N
−1 and M = FastSamplen,ε′,γ where ε′ = 1/⌈10/(9ε)⌉ and γ =

β0/(2|X |). Then there exists deterministic M0 : [d0]+ → [n] with log d0 = Õ(1/ε) ·(log n+log |X |+
log(1/β0)) such that CompactHistogramM,M0

: X n → GM0(X) has the following properties:

i. CompactHistogramM,M0
is (ε, 0)-differentially private.

ii. For every β ≥ 2γ, CompactHistogramM,M0
has (a, β)-per-query accuracy for

a =

⌈

5

ε
ln

(

2

β

)⌉

iii. For every β ≥ β0, CompactHistogramM,M0
has (a, β)-per-query accuracy for

a =

⌈

5

ε
ln

(

2 · |X |

β

)⌉

iv. CompactHistogramM,M0
has running time

Õ

(

n

ε
· log

|X |

β0

)

v. Given h = CompactHistogramM,M0
(D), for all x ∈ X the count hx can be evaluated in time

Õ

(

n

ε
· log

|X |

β0

)

Proof. Let d0 = 22·3
ℓ
where ℓ = ⌈log3(⌈log2 max{|X |, 30 · d/ε}⌉/2)⌉ where log d = Õ(1/ε) · (log n+

log |X | + log(1/β0)) as defined in Algorithm 4.11. Notice that d0 ≥ |X | and d/d0 ≤ ε/30. In
addition, d0 = O(|X |3 + (d/ε)3). So log d0 = Õ(1/ε) · (log n + log |X | + log(1/β0)). Now, let
M0 : [d0]+ → [n] be defined as in Lemma 8.4 for M. The proof follows from Theorem 4.10 and
Theorem 8.3.

In the following figure, we show using CompactHistogram with FastSample is asymptotically
faster than when using it with GeoSample, particularly in the case when ε ≫ 1/n, with only a small
constant loss in accuracy.

47

M Running Time Evaluation Time

GeoSample Õ(n2 · log(1/ε) + n · log |X |) Õ(n2 · log(1/ε) + n · log |X |)

FastSample Õ((n/ε) · log(|X |/β)) Õ((n/ε) · log(|X |/β))

M (a, β)-Per-Query (a, β)-Simultaneous

GeoSample

⌈

5
ε ln

1
β

⌉ ⌈

5
ε ln

|X |
β

⌉

FastSample

⌈

5
ε ln

2
β

⌉ ⌈

5
ε ln

2|X |
β

⌉

Figure 6: The running time and errors of CompactHistogramM,M0
for the counting query al-

gorithms of Section 4 using the empty-bin sampler M0 defined in Lemma 8.4 with log d0 =
O(log(1/ε) + log d+ log |X |). For more details, see Theorem 8.6.

Acknowledgments

We thank the Harvard Privacy Tools differential privacy research group, particularly Mark Bun and
Kobbi Nissim, for informative discussions and feedback. And we thank Ashwin Machanavajjhala,
Frank McSherry, Uri Stemmer, and the anonymous TPDP and ITCS reviewers for their helpful
comments.

References

[BBKN14] Amos Beimel, Hai Brenner, Shiva Prasad Kasiviswanathan, and Kobbi Nissim. Bounds
on the sample complexity for private learning and private data release. Machine learn-
ing, 94(3):401–437, 2014.

[BLR13] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach
to noninteractive database privacy. J. ACM, 60(2):12:1–12:25, may 2013.
doi:10.1145/2450142.2450148.

[BNS16] Mark Bun, Kobbi Nissim, and Uri Stemmer. Simultaneous private learning of multiple
concepts. In Proceedings of the 2016 ACM Conference on Innovations in Theoreti-
cal Computer Science, ITCS ’16, pages 369–380, New York, NY, USA, 2016. ACM.
doi:10.1145/2840728.2840747.

[BV18] Victor Balcer and Salil Vadhan. Differential privacy on finite computers. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 94. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

[CDK17] Bryan Cai, Constantinos Daskalakis, and Gautam Kamath. Priv’it: Private and sample
efficient identity testing. CoRR, abs/1703.10127, 2017. arXiv:1703.10127.

[CKKL12] Mahdi Cheraghchi, Adam Klivans, Pravesh Kothari, and Homin K. Lee. Submodular
functions are noise stable. In Proceedings of the Twenty-third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’12, pages 1586–1592, Philadelphia, PA,
USA, 2012. Society for Industrial and Applied Mathematics.

48

http://dx.doi.org/10.1145/2450142.2450148
http://dx.doi.org/10.1145/2840728.2840747
https://arxiv.org/abs/1703.10127

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT press, 2009.

[CPST12] Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, and Thanh T. L. Tran. Dif-
ferentially private summaries for sparse data. In Proceedings of the 15th International
Conference on Database Theory, ICDT ’12, pages 299–311, New York, NY, USA, 2012.
ACM. doi:10.1145/2274576.2274608.

[CTUW14] Karthekeyan Chandrasekaran, Justin Thaler, Jonathan Ullman, and Andrew Wan.
Faster private release of marginals on small databases. In Proceedings of the 5th Con-
ference on Innovations in Theoretical Computer Science, ITCS ’14, pages 387–402, New
York, NY, USA, 2014. ACM. doi:10.1145/2554797.2554833.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In Eurocrypt,
volume 4004, pages 486–503. Springer, 2006.

[DL09] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings
of the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, pages
371–380, New York, NY, USA, 2009. ACM. doi:10.1145/1536414.1536466.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In TCC, volume 3876, pages 265–284. Springer,
2006.

[DNT15] Cynthia Dwork, Aleksandar Nikolov, and Kunal Talwar. Efficient algorithms for pri-
vately releasing marginals via convex relaxations. volume 53, pages 650–673. Springer,
2015.

[GMP13] Ivan Gazeau, Dale Miller, and Catuscia Palamidessi. Preserving differential privacy
under finite-precision semantics. In Proceedings 11th International Workshop on Quan-
titative Aspects of Programming Languages and Systems, QAPL 2013, Rome, Italy,
March 23-24, 2013., pages 1–18, 2013. doi:10.4204/EPTCS.117.1.

[GRS12] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally utility-
maximizing privacy mechanisms. SIAM Journal on Computing, 41(6):1673–1693, 2012.

[GRU12] Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and private
data release. Theory of Cryptography, pages 339–356, 2012.

[HRS12] Moritz Hardt, Guy N. Rothblum, and Rocco A. Servedio. Private data release via learn-
ing thresholds. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’12, pages 168–187, Philadelphia, PA, USA, 2012. Society
for Industrial and Applied Mathematics.

[HT10] Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In Proceedings
of the Forty-second ACM Symposium on Theory of Computing, STOC ’10, pages 705–
714, New York, NY, USA, 2010. ACM. doi:10.1145/1806689.1806786.

[KKMN09] Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and Alexandros Ntoulas.
Releasing search queries and clicks privately. In Proceedings of the 18th International
Conference on World Wide Web, WWW ’09, pages 171–180, New York, NY, USA,
2009. ACM. doi:10.1145/1526709.1526733.

49

http://dx.doi.org/10.1145/2274576.2274608
http://dx.doi.org/10.1145/2554797.2554833
http://dx.doi.org/10.1145/1536414.1536466
http://dx.doi.org/10.4204/EPTCS.117.1
http://dx.doi.org/10.1145/1806689.1806786
http://dx.doi.org/10.1145/1526709.1526733

[KLN+11] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam Smith. What can we learn privately? SIAM Journal on Computing, 40(3):793–
826, 2011.

[Lin99] Jacobus Hendricus van Lint. Introduction to coding theory. 1999.

[Mir12] Ilya Mironov. On significance of the least significant bits for differential privacy. In Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security, CCS
’12, pages 650–661, New York, NY, USA, 2012. ACM. doi:10.1145/2382196.2382264.

[TUV12] Justin Thaler, Jonathan Ullman, and Salil Vadhan. Faster algorithms for privately
releasing marginals. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 810–821. Springer, 2012.

[UV11] Jonathan Ullman and Salil P. Vadhan. PCPs and the hardness of generating private
synthetic data. In TCC, volume 6597, pages 400–416. Springer, 2011.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge
university press, 2013.

A Efficient Sampling of Distinct Elements

In this section we show how to efficiently sample distinct elements from a subset of X .

Lemma A.1. There exists an algorithm that given an integer m specifying the set X = [m]+ and
a subset A ⊆ X , samples a uniformly random sequence of r ≤ |X \A| distinct elements from X \A
with running time

O(|A| log |A| · log |X |) +O(r · log2 |X | · log(|A|+ r))

To prove this lemma, we will use a data structure that supports efficiently computing the
numbers of elements in the tree less than a given value. We will use this data structure to store
the elements in X which we do not want to sample.

Proposition A.2 (Order-Statistic Tree [CLRS09] Chapter 14.1). There exists a data structure T
maintaining a set over X (let |T | denote the size of the set maintained by T) with the following
properties:

i. Inserting an element x ∈ X into T takes O(log |T | · log |X |) time.

ii. T can be represented in O(|T | · log |X |) bits.

iii. For all x ∈ X , the quantity |{x′ ∈ T : x′ ≤ x}| can be computed in O(log |T | · log |X |) time.

Proof of Lemma A.1. We define the sampling algorithm as follows:

50

http://dx.doi.org/10.1145/2382196.2382264

Algorithm A.3. DistinctSample(A, r) for A ⊆ X and r ∈ N+ such that r ≤ |X \ A|

1. Let S = ∅ and T be the data structure defined in Proposition A.2.

2. For x ∈ A, insert x into T .

3. For i ∈ [r]+:

(a) Let m′ = |X | − |T |.

(b) Sample z uniformly at random form [m′]+.

(c) Perform binary search over X to find s = min{x ∈ X : x− |{x′ ∈ T : x′ ≤ x}| = z}.

(d) Insert s into T and let S = S ∪ {s}.

4. Return S

We prove correctness by induction on r. We start with the base case r = 1. Notice that
x − |{x′ ∈ T : x′ ≤ x}| = |{x′ ∈ X \ A : x′ ≤ x}|. Thus for all z ∈ [m′]+ there exists x ∈ X \ A
such that |{x′ ∈ X \ A : x′ ≤ x}| = z.

Now, we show s ∈ X \ A. Let x ∈ A. If |{x′ ∈ X \ A : x′ ≤ x}| = 0, then s 6= x as z ≥ 1.
Otherwise |{x′ ∈ X \ A : x′ ≤ x}| = |{x′ ∈ X \ A : x′ ≤ (x − 1)}| which also implies s 6= x by
definition of s. Therefore, s ∈ X \ A.

Notice that two different values of z cannot output the same s and m′ = |X \ A|. Therefore,
DistinctSample(A, 1) is uniformly distributed over X \ A.

For the induction step, let S ∼ DistinctSample(A, 1) and assume DistinctSample(A′, r − 1)
is uniformly distributed over random sequences of r−1 elements from X \A′ for any A′ ⊆ X . Then

DistinctSample(A, r) ∼ S ∪ DistinctSample(A ∪ S, r − 1)

Therefore DistinctSample(A, r) is uniformly distributed over random sequences of r elements from
X \ A.

Now, we analyze the running time of DistinctSample. Step 2 can be done in O(|A| log |A| ·
log |X |) time by Proposition A.2 Part i. Each of the r iterations of step 3 is dominated by step 3c
which takes O(log2 |X | · log(|A|+ r)) time by Proposition A.2 Part iii as |T | ≤ |A|+ r.

51

	1 Introduction
	2 Preliminaries
	2.1 Differential Privacy
	2.2 Histograms
	2.2.1 Representations
	2.2.2 Accuracy

	2.3 Probability Terminology
	2.3.1 Sampling

	2.4 Model of Computation

	3 A General Framework for Implementing Differential Privacy
	4 Counting Queries
	4.1 The Geometric Mechanism
	4.2 Approximating Geometric Noise to Release Counting Queries Faster

	5 Generalizations of Known Histogram Algorithms
	5.1 The Laplace Mechanism
	5.2 Stability-Based Histogram

	6 Improving the Running Time
	6.1 Sparse Histograms
	6.2 An Efficient Approximation
	6.3 Construction of SparseHistogram

	7 Lower Bounds
	8 Better Per-Query Accuracy via Compact, Non-Sparse Representations
	8.1 The Family of Histograms
	8.2 The Algorithm
	8.3 Constructing the Empty-Bin Sampler

	A Efficient Sampling of Distinct Elements

