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Abstract. We show new information-theoretic lower bounds on the sample complexity of (ε, δ)-
differentially private algorithms that accurately answer large sets of counting queries. A counting
query on a database D ∈ ({0, 1}d)n has the form “What fraction of the individual records in the
database satisfy the property q?” We show that in order to answer an arbitrary set Q of � d/α2

counting queries on D to within error ±α it is necessary that n ≥ Ω̃(
√
d log |Q|/α2ε). This bound

is optimal up to polylogarithmic factors, as demonstrated by the private multiplicative weights
algorithm (Hardt and Rothblum, FOCS’10). In particular, our lower bound is the first to show that
the sample complexity required for accuracy and (ε, δ)-differential privacy is asymptotically larger
than what is required merely for accuracy, which is O(log |Q|/α2). In addition, we show that our

lower bound holds for the specific case of k-way marginal queries (where |Q| = 2k
(d
k

)
) when α is not

too small compared to d (e.g., when α is any fixed constant). Our results rely on the existence of
short fingerprinting codes (Boneh and Shaw, CRYPTO’95; Tardos, STOC’03), which we show are
closely connected to the sample complexity of differentially private data release. We also give a new
method for combining certain types of sample-complexity lower bounds into stronger lower bounds.
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1. Introduction. Consider a database D ∈ Xn, in which each of the n rows
corresponds to an individual’s record, and each record is an element of some data
universe X (e.g., X = {0, 1}d, corresponding to d binary attributes per record). The
goal of privacy-preserving data analysis is to enable rich statistical analyses on such
a database while protecting the privacy of the individuals. It is especially desirable
to achieve (ε, δ)-differential privacy [21, 20], which (for suitable choices of ε and δ)
guarantees that no individual’s data have a significant influence on the information
released about the database. A natural way to measure the trade-off between these
two goals is via sample complexity—the minimum number of records n such that
there exists a (possibly computationally unbounded) algorithm that achieves both
differential privacy and statistical accuracy.

Some of the most basic statistics are counting queries, which are queries of the
form “What fraction of individual records in D satisfy some property q?” In par-
ticular, we would like to design an algorithm that takes as input a database D and,
for some family of counting queries Q, outputs an approximate answer to each of the
queries in Q that is accurate to within, say, ±.01. Suppose we are given a bound
on the number of queries |Q| and the dimensionality of the database records d, but
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FINGERPRINTING CODES AND THE PRICE OF PRIVACY 1889

otherwise allow the family Q to be arbitrary. What is the sample complexity required
to achieve (ε, δ)-differential privacy and statistical accuracy for Q?

Of course, if we drop the requirement of privacy, then we could achieve perfect
accuracy when D contains any number of records. However, in many interesting
settings the database D consists of random samples from some larger population, and
an analyst is actually interested in answering the queries on the population. Thus,
even without a privacy constraint, D would need to contain enough records to ensure
that (with high probability) for every query q ∈ Q, the answer to q on D is close to
the answer to q on the whole population, say within ±.01. To achieve this form of
statistical accuracy, it is well known that it is necessary and sufficient for D to contain
Θ(log |Q|) samples.1 In this work we consider whether there is an additional “price
of differential privacy” if we require both statistical accuracy and (ε, δ)-differential
privacy (for, say, ε = O(1), δ = o(1/n)). This benchmark has often been used to
evaluate the utility of differentially private algorithms, beginning with the seminal
work of Dinur and Nissim [16].

Some of the earliest work in differential privacy [16, 26, 8, 21] gave an algorithm—
the so-called Laplace mechanism—whose sample complexity is Θ̃(|Q|1/2), and thus
incurs a large price of differential privacy. Fortunately, a remarkable result of Blum,
Ligett, and Roth [9] showed that the dependence on |Q| can be improved exponentially
to O(d log |Q|) where d is the dimensionality of the data. Their work was improved
on in several important aspects [23, 27, 44, 35, 32, 34]. The current best upper
bound on the sample complexity is O(

√
d log |Q|), which is obtained via the private

multiplicative weights mechanism of Hardt and Rothblum [35].
These results show that the price of privacy is small for datasets with few at-

tributes, but may be large for high-dimensional datasets. For example, if we simply
want to estimate the mean of each of the d attributes without a privacy guarantee,
then Θ(log d) samples are necessary and sufficient to get statistical accuracy. However,
the best known (ε, δ)-differentially private algorithm requires Ω(

√
d) samples—an ex-

ponential gap. In the special case of pure (ε, 0)-differential privacy, a lower bound of
Ω(d) is known [36]. However, for the general case of approximate (ε, δ)-differential
privacy the best known lower bound is Ω(log d) [16]. More generally, there are no
known lower bounds that separate the sample complexity of (ε, δ)-differential privacy
from the sample complexity required for statistical accuracy alone.

In this work we close this gap almost completely, and show that there is indeed a
“price of approximate differential privacy” for high-dimensional datasets.

Theorem 1.1 (informal). Any algorithm that takes as input a database D ∈
({0, 1}d)n, satisfies approximate differential privacy, and estimates the mean of each
of the d attributes to within error ±1/3 requires n ≥ Ω̃(

√
d) samples.

We establish this lower bound using a combinatorial object called a fingerprinting
code, which was originally introduced by Boneh and Shaw [12] for the problem of wa-
termarking copyrighted content. Specifically, we use Tardos’ construction of optimal
fingerprinting codes [49]. The use of “secure content distribution schemes” to prove
lower bounds for differential privacy originates with the work of Dwork et al. [23], who
used “traitor-tracing schemes,” which are a cryptographic analogue of information-
theoretic fingerprinting codes, to prove computational hardness results for differential
privacy. Extending this connection, Ullman [51] used fingerprinting codes to construct

1For a specific family of queries Q, the necessary and sufficient number of samples is proportional
to the Vapnik–Chervonenkis (VC) dimension of Q, which can be as large as log |Q|.
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1890 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

a novel traitor-tracing scheme and obtain a strong computational hardness result for
differential privacy.2 Here we show that a direct use of fingerprinting codes yields
information-theoretic lower bounds on sample complexity.

Using the additional structure of Tardos’ fingerprinting code, we are able to prove
statistical minimax lower bounds for inferring the marginals of a product distribution
from samples while guaranteeing differential privacy for the sample. Specifically, sup-
pose the database D ∈ ({0, 1}d)n consists of n independent samples from a product
distribution over {0, 1}d such that the ith coordinate of each sample is set to 1 with
probability pi, for some unknown p = (p1, . . . , pd) ∈ [0, 1]d. We show that if there
exists a differentially private algorithm that takes such a database as input, satis-
fies approximate differential privacy, and outputs p̂ such that ‖p̂ − p‖∞ ≤ 1/3, then
n ≥ Ω̃(

√
d). Statistical minimax bounds of this type for differentially private infer-

ence problems were first studied by Duchi, Jordan, and Wainwright [18], who proved
minimax bounds for algorithms that satisfy the stronger constraint of local pure (ε, 0)-
differential privacy.

Next, we consider the sample complexity of answering an arbitrary set Q of
counting queries to within error ±α. As above, if we assume the database con-
tains samples from a population, and require only that the answers to queries on the
sampled database and the population are close, to within ±α, then Θ(log |Q|/α2)
samples are necessary and sufficient for just statistical accuracy. When |Q| is large
(relative to d and 1/α), the best sample complexity for differential privacy is again
achieved by the private multiplicative weights algorithm, and is O(

√
d log |Q|/α2).

For pure differential privacy, a lower bound of Ω(d log |Q|/α2) is known [33]. On
the other hand, the best known lower bound for approximate differential privacy is
Ω(max{log |Q|/α, 1/α2}), which follows from the techniques of [16]. To resolve this
gap, we give a composition theorem that allows us to obtain a nearly optimal lower
bound by combining Theorem 1.1 with (variants of) the existing sample-complexity
lower bounds. The result shows that the private multiplicative weights algorithm
achieves nearly optimal sample complexity as a function of |Q|, d, and α.

Theorem 1.2 (informal). For every sufficiently small α > 0, d ≥ 6 log(1/α),
and s ≥ d/α2, there exists a family of queries Q of size s such that any algorithm that
takes as input a database D ∈ ({0, 1}d)n, satisfies approximate differential privacy,
and outputs an approximate answer to each query in Q to within ±α requires n ≥
Ω̃(
√
d log |Q|/α2).

We remark that the condition that d ≥ 6 log(1/α) is both necessary (up to the con-
stant factor) and fairly mild. Necessary because the noisy histogram algorithm (see,
e.g., [53]) requires n = O(2d/2

√
log |Q|/α) samples, which is better than the conclu-

sion of the lower bound when d < 2 log(1/α). Mild because differential privacy cannot
be satisfied for large query sets unless α & 1/

√
n, so the condition is no stronger than

assuming n . 2d/3, in which case the number of samples is exponential in the dimen-
sion. Similarly, the condition s ≥ d/α2 is also necessary, since adding independent
noise to each query requires only n & |Q|1/2/α samples.

Finally, we consider the sample complexity of the natural and well studied class
of k-way marginal queries, also known as k-way conjunction queries (see, e.g., [2, 40,
31, 50, 14, 25]). A k-way marginal query on a database D ∈ ({0, 1}d)n is specified by
a set S ⊆ [d], |S| ≤ k, and a pattern t ∈ {0, 1}|S| and asks “What fraction of records

2In fact, one way to prove Theorem 1.1 is by replacing the one-way functions in [51] with a
random oracle, and thereby obtain an information-theoretically secure traitor-tracing scheme.

D
ow

nl
oa

de
d 

04
/1

6/
19

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINGERPRINTING CODES AND THE PRICE OF PRIVACY 1891

in D has each attribute j in S set to tj?” The number of k-way marginal queries on

{0, 1}d is about 2k
(
d
k

)
. For the special case of k = 1, the queries simply ask for the

mean of each attribute, which was discussed above. We prove that the lower bound
of Theorem 1.2, which applies to worst-case queries, also holds for the special case of
k-way marginal queries when α is not too small.

Theorem 1.3 (informal). Any algorithm that takes a database D ∈ ({0, 1}d)n,
satisfies approximate differential privacy, and outputs an approximate answer to each
of the k-way marginal queries to within ±α (for α smaller than some universal con-
stant and larger than an inverse polynomial in d) requires n ≥ Ω̃(k

√
d/α2).

We remark that, since the number of k-way marginal queries is about 2k
(
d
k

)
,

the sample-complexity lower bound in Theoem 1.3 essentially matches that of Theo-
rem 1.2. The two theorems are incomparable, since Theorem 1.2 applies even when
α is exponentially small in d, but only applies for a worst-case family of queries.

1.1. Our techniques. We now describe the main technical ingredients used to
prove these results. For concreteness, we will describe the main ideas for the case of
k-way marginal queries.

Fingerprinting codes. Fingerprinting codes, introduced by Boneh and Shaw [12],
were originally designed to address the problem of watermarking copyrighted content.
Roughly speaking, a (fully-collusion-resilient) fingerprinting code is a way of generat-
ing codewords for n users in such a way that any codeword can be uniquely traced
back to a user. Each legitimate copy of a piece of digital content has such a codeword
hidden in it, and thus any illegal copy can be traced back to the user who copied it.
Moreover, even if an arbitrary subset of the users collude to produce a copy of the
content, then under a certain marking assumption, the codeword appearing in the
copy can still be traced back to one of the users who contributed to it. The standard
marking assumption is that if every colluder has the same bit b in the jth bit of their
codeword, then the jth bit of the “combined” codeword in the copy they produce must
be also b. We refer the reader to the original paper of Boneh and Shaw [12] for the
motivation behind the marking assumption and an explanation of how fingerprinting
codes can be used to watermark digital content.

We show that the existence of short fingerprinting codes implies sample-complexity
lower bounds for 1-way marginal queries. Recall that a 1-way marginal query qj is
specified by an integer j ∈ [d] and asks simply “What fraction of records in D have
a 1 in the jth bit?” Suppose a coalition of users takes their codewords and builds
a database D ∈ ({0, 1}d)n where each record contains one of their codewords, and d
is the length of the codewords. Consider the 1-way marginal query qj(D). If every
user in S has a bit b in the jth bit of their codeword, then qj(D) = b. Thus, if an
algorithm answers 1-way marginal queries on D with nontrivial accuracy, its output
can be used to obtain a combined codeword that satisfies the marking assumption.
By the tracing property of fingerprinting codes, we can use the combined codeword
to identify one of the users in the database. However, if we can identify one of the
users from the answers, then the algorithm is not differentially private.

This argument can be formalized to show that if there is a fingerprinting code for
n users with codewords of length d, then the sample complexity of answering 1-way
marginals must be at least n. The nearly optimal construction of fingerprinting codes
due to Tardos [49], gives fingerprinting codes with codewords of length d = Õ(n2),
which implies a lower bound of n ≥ Ω̃(

√
d) on the sample complexity required to

answer 1-way marginals queries.
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1892 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

Composition of sample-complexity lower bounds. Suppose we want to prove a
lower bound of Ω̃(k

√
d) for answering k-way marginals up to accuracy ±.01 (a special

case of Theorem 1.3). Given our lower bound of Ω̃(
√
d) for 1-way marginals, and

the known lower bound of Ω(k) for answering k-way marginals implicit in [16, 43],
a natural approach is to somehow compose the two lower bounds to obtain a nearly
optimal lower bound of Ω̃(k

√
d). Our composition technique uses the idea of the Ω(k)

lower bound from [16, 43] to show that if we can answer k-way marginal queries on a
large database D with n rows, then we can obtain the answers to the 1-way marginal
queries on a “subdatabase” of roughly n/k rows. Our lower bound for 1-way marginals
tell us that n/k = Ω̃(

√
d), so we deduce n = Ω̃(k

√
d).

Actually, this reduction only gives accurate answers to most of the 1-way marginals
on the subdatabase, so we need an extension of our lower bound for 1-way marginals
to differentially private algorithms that are allowed to answer a small fraction of the
queries with arbitrarily large error. Proving a sample-complexity lower bound for this
problem requires a “robust” fingerprinting code whose tracing algorithm can trace
codewords that have errors introduced into a small fraction of the bits. We show
how to construct such a robust fingerprinting code of length d = Õ(n2), and thus
obtain the desired lower bound. Fingerprinting codes satisfying a weaker notion of
robustness were introduced by Boneh, Kiayias, and Montgomery [10] and Boneh and
Naor [11].3

Theorems 1.2 and 1.3 are proven by using this composition technique repeatedly
to combine our lower bound for 1-way marginals with (variants of) several known
lower bounds that capture the optimal dependence on log |Q| and 1/α2.

Are fingerprinting codes necessary to prove differential privacy lower bounds? The
connection between fingerprinting codes and differential privacy lower bounds extends
to arbitrary families Q of counting queries. We introduce the notion of a generalized
fingerprinting code with respect to Q, where each codeword corresponds to a data
universe element x ∈ X and the bits of the codeword are given by q(x) for each
q ∈ Q, but is the same as an ordinary fingerprinting code otherwise. The existence
of a generalized fingerprinting code with respect to Q, for n users, implies a sample-
complexity lower bound of n for privately releasing answers to Q. We also show a
partial converse to the above result, which states that some sort of “fingerprinting-
code-like object” is necessary to prove sample-complexity lower bounds for answering
counting queries under differential privacy. This object has similar semantics to a gen-
eralized fingerprinting code, however, the marking assumption required for tracing is
slightly stronger and the probability that tracing succeeds can be significantly smaller
than what is required by the standard definition of fingerprinting codes. Our partial
converse parallels the result of Dwork et al. [23] that shows computational hardness
results for differential privacy imply a “traitor-tracing-like object.” We leave it as an
open question to pin down precisely the relationship between fingerprinting codes and
information-theoretic lower bounds in differential privacy (and also between traitor-
tracing schemes and computational hardness results for differential privacy).

1.2. Other related work.

1.2.1. Previous work. We have mostly focused on the sample complexity as
a function of the number of queries, the number of attributes d, and the accuracy
parameter α. There have been several works focused on the sample complexity as

3In the fingerprinting codes of [11, 10] the adversary is allowed to erase a large fraction of the
coordinates of the combined codeword, and must reveal which coordinates are erased.
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a function of the specific family Q of queries. For (ε, 0)-differential privacy, Hardt
and Talwar [36] showed how to approximately characterize the sample complexity of
a family Q when the accuracy parameter α is sufficiently small. Nikolov, Talwar, and
Zhang [42] extended their results to gives an approximate characterization for (ε, δ)-
differential privacy and for the full range of accuracy parameters. Specifically, [42]
gives an (ε, δ)-differentially private algorithm that answers any family of queries Q
on {0, 1}d with error α using a number of samples that is optimal up to a factor of
poly(d, log |Q|) that is independent of α. Thus, their algorithm has sample complexity
that depends optimally on α. However, their characterization may be loose by a factor
of poly(d, log |Q|). In fact, when α is a constant, the lower bound on the sample
complexity given by their characterization is always O(1), whereas their algorithm
requires poly(d, log |Q|) samples to give nontrivially accurate answers. In contrast,
our lower bounds are tight to within poly(log d, log log |Q|, log(1/α)) factors, and thus
give meaningful lower bounds even when α is constant, but apply only to certain
families of queries.

There have been attempts to prove optimal sample-complexity lower bounds for
k-way marginals. In particular, when k is a constant, Kasiviswanathan et al. [40] and
De [15] prove a lower bound of min{|Q|1/2/α, 1/α2} on the sample complexity. Note
that when α is a constant, these lower bounds are O(1).

There have also been attempts to explicitly and precisely determine the sample
complexity of even simpler query families than k-way conjunctions, such as point
functions and threshold functions [5, 6, 7, 13]. These works show that these families
can have sample complexity lower than Õ(

√
d log |Q|/α2).

In addition to the general computational hardness results referenced above, there
are several results that show stronger hardness results for restricted types of efficient
algorithms [52, 31, 24].

1.2.2. Subsequent work. Subsequent to our work, Steinke and Ullman [47]
refined our use of fingerprinting codes to prove a lower bound of Ω(

√
d log(1/δ)/ε) on

the number of samples required to release the mean of each of the d attributes under
(ε, δ)-differential privacy when δ � 1/n. This lower bound is optimal up to constant
factors, and improves on Theorem 1.1 by a factor of roughly

√
log(1/δ) · log d. They

also improve and simplify our analysis of robust fingerprinting codes.
Our fingerprinting code technique has also been used to prove lower bounds

for other types of differentially private data analyses. Namely, Dwork et al. [29]
prove lower bounds for differentially private principal component analysis and Bass-
ily, Smith, and Thakurta [4] prove lower bounds for differentially private empirical
risk minimization. In order to establish lower bounds for privately releasing threshold
functions, Bun et al. [13] construct a fingerprinting-code-like object that yields a lower
bound for the problem of releasing a value between the minimum and maximum of a
dataset.

Dwork et al. [28] observe that the privacy attack implicit in our negative results
is closely related to the influential attacks that were employed by Homer et al. [38]
(and further studied in [46]) to violate privacy of public genetic datasets. Using this
connection, they show how to make Homer et al.’s attack robust to very general
models of noise and how to make the attack work without detailed knowledge of the
population the dataset represents.

A pair of works [37, 48] show that fingerprinting codes and the related traitor-
tracing schemes imply both information-theoretic lower bounds and computational
hardness results for the “false discovery” problem in adaptive data analysis.
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Specifically, they show lower bounds for answering an online sequence of adaptively
chosen counting queries where the database is a sample from some unknown distri-
bution and the answers must be accurate with respect to that distribution. These
works [37, 48] effectively reverse a connection established in [19, 3], which used differ-
entially private algorithms to obtain positive results for this problem.

Our technique for composing lower bounds in differential privacy has also found
applications outside of privacy. Specifically, Liberty et al. [41] used this technique
to prove nearly optimal lower bounds on the space required to “sketch” a database
while approximately preserving answers to k-way marginal queries (called “frequent
itemset queries” in their work).

2. Preliminaries.

2.1. Differential privacy. We define a database D ∈ Xn to be an ordered tuple
of n rows (x1, . . . , xn) ∈ X chosen from a data universe X . We say that two databases
D,D′ ∈ Xn are adjacent if they differ only by a single row, and we denote this by
D ∼ D′. In particular, we can replace the ith row of a database D with some fixed
“junk” element of X to obtain another database D−i ∼ D. We emphasize that if D
is a database of size n, then D−i is also a database of size n.

Definition 2.1 (differential privacy [21]). Let A : Xn → R be a randomized
algorithm (where n is a varying parameter). A is (ε, δ)-differentially private if for
every two adjacent databases D ∼ D′ and every subset S ⊆ R,

Pr [A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

Lemma 2.2. Let A : Xn → R be a randomized algorithm such that for every
D ∈ Xn, every i, j ∈ [n], and every subset S ⊆ R,

Pr [A(D−i) ∈ S] ≤ eεPr [A(D−j) ∈ S] + δ.

Let ⊥ denote the fixed junk element of X . Then A′ : Xn−1 → R defined by A′(x1, . . . ,
xn−1) = A(x1, . . . , xn−1,⊥) is (2ε, (eε + 1)δ)-differentially private.

Proof. Let D = (x1, . . . , xn−1) and D′ = (x1, . . . , x
′
i, . . . , xn−1) be adjacent

databases. Then for any S ⊆ R, we have

Pr [A′(D) ∈ S] = Pr [A(x1, . . . , xn−1,⊥) ∈ S]

≤ eεPr [A(x1, . . . , xi−1,⊥, xi+1, . . . , xn−1,⊥) ∈ S] + δ

≤ e2εPr [A(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn−1,⊥) ∈ S] + (eε + 1)δ

= e2εPr [A′(D′) ∈ S] + (eε + 1)δ.

2.2. Counting queries and accuracy. In this paper we study algorithms that
answer counting queries. A counting query on X is defined by a predicate q : X →
{0, 1}. Abusing notation, we define the evaluation of the query q on a database
D = (x1, . . . , xn) ∈ Xn to be its average value over the rows,

q(D) =
1

n

n∑
i=1

q(xi).

Definition 2.3 (accuracy for counting queries). Let Q be a set of counting queries
on X and α, β ∈ [0, 1] be parameters. For a database D ∈ Xn, a sequence of answers
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a = (aq)q∈Q ∈ R|Q| is (α, β)-accurate for Q if |q(D)− aq| ≤ α for at least a 1 − β
fraction of queries q ∈ Q.

Let A : Xn → R|Q| be a randomized algorithm. A is (α, β)-accurate for Q if for
every D ∈ Xn,

Pr [A(D) is (α, β)-accurate for Q] ≥ 2/3.

When β = 0 we may simply write that a or A is α-accurate for Q.

In the definition of accuracy, we have assumed that A outputs a sequence of |Q|
real-valued answers, with aq representing the answer to q. Since we are not concerned
with the running time of the algorithm, this assumption is without loss of generality.4

An important example of a collection of counting queries is the set of k-way
marginals. For all of our results it will be sufficient to consider only the set of monotone
k-way marginals.

Definition 2.4 (monotone k-way marginals). A (monotone) k-way marginal qS
over {0, 1}d is specified by a subset S ⊆ [d] of size |S| ≤ k. It takes the value qS(x) = 1
if and only if xi = 1 for every index i ∈ S. The collection of all (monotone) k-way
marginals is denoted by Mk,d.

2.3. Sample complexity. In this work we prove lower bounds on the sample
complexity required to simultaneously achieve differential privacy and accuracy.

Definition 2.5 (sample complexity). Let Q be a set of counting queries on X
and let α, β > 0 be parameters, and let ε, δ be functions of n. We say that (Q,X ) has
sample complexity n∗ for (α, β)-accuracy and (ε, δ)-differential privacy if n∗ is the least
n ∈ N such that there exists an (ε, δ)-differentially private algorithm A : Xn → R|Q|
that is (α, β)-accurate for Q.

We will focus on the case where ε = O(1) and δ = o(1/n). This setting of the
parameters is essentially the most permissive for which (ε, δ)-differential privacy is
still a meaningful privacy definition. However, pinning down the exact dependence on
ε and δ is still of interest. Regarding ε, this can be done via the following standard
lemma, which allows us to take ε = 1 without loss of generality.

Lemma 2.6. For every set of counting queries Q, universe X , α, β ∈ [0, 1], ε ≤ 1,
(Q,X ) has sample complexity n∗ for (α, β)-accuracy and (1, o(1/n))-differential pri-
vacy if and only if it has sample complexity Θ(n∗/ε) for (α, β)-accuracy and (ε, o(1/n))-
differential privacy.

One direction (O(n∗/ε) samples are sufficient) is the “secrecy-of-the-sample lemma,”
which appeared implicitly in [39]. The other direction (Ω(n∗/ε) samples are necessary)
appears to be folklore.

The next lemma allows us to generically translate sample-complexity lower bounds
for constant accuracy into lower bounds that depend on the error parameter α. For
some sets of queries, such as 1-way marginals, the dependence we get on α is tight.
However, as we will see in section 5, we can obtain lower bounds with an even stronger
dependence on α for specific sets of queries.

4In certain settings, A is allowed to output a “summary” z ∈ R for some range R. In this case,
we would also require that there exists an “evaluator” E : R×Q → R that takes a summary and a
query and returns an answer E(z, q) = aq that approximates q(D). The extra generality is used to
allow A to run in less time than the number of queries it is answering. However, since we do not
bound the running time of A we can convert any such sanitizer to one that outputs a sequence of
|Q| real-valued answers simply by running the evaluator for every q ∈ Q.
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1896 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

Lemma 2.7. Let Q be a set of counting queries on X and let β, ε, δ > 0. Suppose
(Q,X ) has sample complexity n∗ for (α0, β)-accuracy and (ε, δ)-differential privacy,
where α0 ∈ (0, 1) is a constant. Then (Q,X ) has sample complexity Ω(n∗/α) for
(α, β, γ)-accuracy and (ε, δ)-differential privacy.

Proof. Let A : Xm → R|Q| be an (ε, δ)-differentially private and (α, β)-accurate
mechanism for releasing answers to Q. We will use A to construct a mechanism
A′ : Xn → R|Q| achieving constant accuracy α0 on databases of size n = dmα/α0e.
To do so, fix a (publicly known) element x0 ∈ X . On input a database D′ ∈ Xn, the
mechanism A′ “pads” D′ by appending m− n copies of x0, producing a database D.
It then runs A on D, obtaining answers (aq)q∈Q. Finally, it releases answers (a′q)q∈Q,

where a′q = 1
n (maq − (m− n)q(x0)).

The mechanism A′ inherits (ε, δ)-differential privacy from A, since changing one
row of D′ changes one row of the padded database D′. Now we argue accuracy.
Suppose aq is an answer such that |aq − q(D)| ≤ α. Note that by construction,
q(D) = 1

m (nq(D′) + (m − n)q(x0)), and hence q(D′) = 1
n (mq(D) − (m − n)q(x0)).

Thus we have

|a′q − q(D′)| =
1

n
|maq − (m− n)q(x0)− (mq(D)− (m− n)q(x0))|

=
m

n
|aq − q(D)|

≤ m

n
· α.

Taking n = dmα/α0e makes this quantity at most α0, completing the proof.

For context, we can restate some prior results on differentially private counting
query release in our sample-complexity terminology.

Theorem 2.8 (combination of [16, 26, 8, 21, 9, 35, 32]). For every set of counting
queries Q on X and every α > 0, (Q,X ) has sample complexity at most

min

{
Õ

(√
|Q|
α

)
, Õ

(√
|X | log |Q|

α

)
, Õ

(√
log |X | log |Q|

α2

)}
for (α, 0)-accuracy and (1, o(1/n))-differential privacy.

We are mostly interested in a setting of parameters where α is not too small
(e.g., constant) and log |X | � |Q| ≤ poly(|X |). In this regime the best known sample
complexity will be achieved by the final expression, corresponding to the private
multiplicative weights algorithm [35] using the analysis of [32]. In light of Lemma 2.6,
it is without loss of generality that we have stated these upper bounds for ε = 1.

The next theorem shows that, when the data universe is not too small, the private
multiplicative weights algorithm is nearly-optimal as a function of |Q| and 1/α when
each parameter is considered individually.

Theorem 2.9 (combination of [16, 43]). For every s ∈ N, and α ∈ (0, 1/4), there
exists a set of s counting queries Q on a data universe X of size max{log s,O(1/α2)}
such that (Q,X ) has sample complexity at least

max

{
Ω

(
log |Q|
α

)
,Ω

(
1

α2

)}
for (α, 0)-accuracy and (1, o(1/n))-differential privacy.
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2.4. Reidentifiable distributions. All of our eventual lower bounds will take
the form of a “reidentification” attack, in which we possess data from a large number
of individuals, and identify one such individual who was included in the database.
In this attack, we choose a distribution on databases and give an adversary (1) a
database D drawn from that distribution and (2) either A(D) or A(D−i) for some
row i, where A is an alleged sanitizer. The adversary’s goal is to identify a row of D
that was given to the sanitizer. We say that the distribution is reidentifiable if there is
an adversary who can identify such a row with sufficiently high confidence whenever
A outputs accurate answers. If the adversary can do so, it means that there must be
a pair of adjacent databases D ∼ D−i such that the adversary can distinguish A(D)
from A(D−i), which means A cannot be differentially private.

Definition 2.10 (reidentifiable distribution). For a data universe X and n ∈ N,
let D be a distribution on n-row databases D ∈ Xn. Let Q be a family of counting
queries on X and let γ, ξ, α, β ∈ [0, 1] be parameters. The distribution D is (γ, ξ)-
reidentifiable from (α, β)-accurate answers to Q if there exists a (possibly randomized)
adversary B : Xn × R|Q| → [n] ∪ {⊥} such that for every randomized algorithm
A : Xn → R|Q|, the following both hold:

1. PrD←RD [(B(D,A(D)) = ⊥) ∧ (A(D) is (α, β)-accurate for Q)] ≤ γ.
2. For every i ∈ [n], PrD←RD [B(D,A(D−i)) = i] ≤ ξ.

Here the probability is taken over the choice of D and i as well as the coins of A and
B. We allow D and B to share a common state.

Note that, when row i is not in the dataset, then it would be an error for B to
declare that row i is in the dataset, and condition 2 requires that the probability of
this error occurring is at most ξ.

The common state between D and B should be thought of as auxiliary information
about the realization of D that may help B identify a user i. Formally, we could model
this shared state by having D output an additional string aux that is given to B but
not to A. However, we make the shared state implicit to reduce notational clutter.
The need for this shared state will become apparent when we use fingerprinting codes
to construct reidentifiable distributions; in the context of fingerprinting codes, the
shared state represents auxiliary information about a codebook that helps the Trace
algorithm accuse a guilty pirate.

If A is an (α, β)-accurate algorithm, then its output A(D) will be (α, β)-accurate
with probability at least 2/3. Therefore, if γ < 2/3, we can conclude that

Pr [B(D,A(D)) ∈ [n]] ≥ 1− γ − 1/3 = Ω(1).

In particular, there exists some i∗ ∈ [n] for which

Pr [B(D,A(D)) = i∗] ≥ Ω(1/n).

However, if ξ = o(1/n), then Pr [B(D,A(D−i∗)) = i∗] ≤ ξ = o(1/n). Thus, for this
choice of γ and ξ we will obtain a contradiction to (ε, δ)-differential privacy of the
postprocessed algorithm B(D,A(·)) for any ε = O(1) and δ = o(1/n). Note that this
conclusion holds even if D and B share a common state. We summarize this argument
with the following lemma.

Lemma 2.11. Let Q be a family of counting queries on X , n ∈ N, and ξ ∈
[0, 1]. Suppose there exists a distribution on n-row databases D ∈ Xn that is (γ, ξ)-
reidentifiable from (α, β)-accurate answers to Q. Then there is no (ε, δ)-differentially
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1898 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

private algorithm A : Xn → R|Q| that is (α, β)-accurate for Q for any ε, δ such that
e−ε(1− γ − 1/3)/n− δ ≥ ξ.

In particular, if there exists a distribution that is (γ, o(1/n))-reidentifiable from
(α, β)-accurate answers to Q for γ = 1/3, then no algorithm A : Xn → R|Q| that is
(α, β)-accurate for Q can satisfy (O(1), o(1/n))-differential privacy.

3. Lower bounds via fingerprinting codes. In this section we prove that
there exists a simple family of d queries that requires n ≥ Ω̃(

√
d) samples for both

accuracy and privacy. Specifically, we prove that for the family of 1-way marginals on
d bits, sample complexity Ω̃(

√
d) is required to produce differentially private answers

that are accurate even just to within ±1/3. In contrast, without a privacy guarantee,
Θ(log d) samples from the population are necessary and sufficient to ensure that the
answers to these queries on the database and the population are approximately the
same. The best previous lower bound for (ε, δ)-differential privacy is also O(log d),
which follows from the techniques of [16, 43].

In section 3.1 we give the relevant background on fingerprinting codes and in
section 3.2 we prove our lower bounds for 1-way marginals.

3.1. Fingerprinting codes. Fingerprinting codes were introduced by Boneh
and Shaw [12] to address the problem of watermarking digital content. A fingerprint-
ing code is a pair of randomized algorithms (Gen,Trace). The code generator Gen
outputs a codebook C ∈ {0, 1}n×d. Each row ci of C is the codeword of user i. For
a subset of users S ⊆ [n], we use CS ∈ {0, 1}|S|×d to denote the set of codewords of
users in S. The parameter d is called the length of the fingerprinting code.

The security property of fingerprinting codes asserts that any codeword can be
“traced” to a user i ∈ [n]. Moreover, we require that the fingerprinting code is
“fully-collusion-resilient”—even if any “coalition” of users S ⊆ [n] gets together and
“combines” their codewords in any way that respects certain constraints known as a
marking assumption, then the combined codeword c′ can be traced to a user i ∈ S.
That is, there is a tracing algorithm Trace that takes as inputs the codebook and
combined codeword c′ and outputs either a user i ∈ [n] or ⊥, and we require that if c′

satisfies the constraints, then Trace(C, c′) ∈ S with high probability. Moreover, Trace
should accuse an innocent user, i.e., Trace(C, c′) ∈ [n] \ S, with very low probability.
Analogous to the definition of reidentifiable distributions (Definition 2.10), we allow
Gen and Trace to share a common state.5 When designing fingerprinting codes, one
tries to make the marking assumption on the combined codeword as weak as possible.

The basic marking assumption is that each bit of the combined word c′ must match
the corresponding bit for some user in S. Formally, for a codebook C ∈ {0, 1}n×d,
and a coalition S ⊆ [n], we define the set of feasible codewords for CS to be

F (CS) =
{
c′ ∈ {0, 1}d | ∀j ∈ [d],∃i ∈ S, c′j = cij

}
.

Observe that the combined codeword is only constrained on coordinates j where all
users in S agree on the jth bit.

We are now ready to formally define a fingerprinting code.

Definition 3.1 (fingerprinting codes). For any n, d ∈ N, ξ ∈ (0, 1], a pair of
algorithms (Gen,Trace) is an (n, d)-fingerprinting code with security ξ if Gen outputs
a codebook C ∈ {0, 1}n×d and for every (possibly randomized) adversary AFP , and
every coalition S ⊆ [n], if we set c′ ←R AFP (CS), then

5As in Definition 2.10, we could model this by having Gen output an additional string aux that
is given to Trace. However, we make the shared state implicit to reduce notational clutter.
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FINGERPRINTING CODES AND THE PRICE OF PRIVACY 1899

1. Pr [c′ ∈ F (CS) ∧ Trace(C, c′) = ⊥] ≤ ξ,
2. Pr [Trace(C, c′) ∈ [n] \ S] ≤ ξ,

where the probability is taken over the coins of Gen,Trace, and AFP . The algorithms
Gen and Trace may share a common state.

We remark that our proof of Theorem 3.5, showing how to construct reidentifiable
distributions from a fingerprinting code, will only require collusion resilience against
coalitions S of size |S| ≥ n − 1. Our choice to state Definition 3.1 using resilience
against arbitrary coalitions is more consistent with the literature on fingerprinting
codes.

Tardos [49] constructed a family of fingerprinting codes with a nearly optimal
number of users n for a given length d.

Theorem 3.2 (see [49]). For every d ∈ N, and ξ ∈ [0, 1], there exists an (n, d)-
fingerprinting code with security ξ for

n = n(d, ξ) = Ω̃(
√
d/ log(1/ξ)).

As we will see in the next subsection, fingerprinting codes satisfying Definition 3.1
will imply lower bounds on the sample complexity for releasing 1-way marginals with
(α, 0)-accuracy (accuracy for every query). In order to prove sample-complexity lower
bounds for (α, β)-accuracy with β > 0, we will need fingerprinting codes satisfying
a stronger security property. Specifically, we will expand the feasible set F (CS) to
include all codewords that satisfy most feasibility constraints, and require that even
codewords in this expanded set can be traced. Formally, for any β ∈ [0, 1], we define

Fβ(CS) =

{
c′ ∈ {0, 1}d | Pr

j←R[d]

[
∃i ∈ S, c′j = cij

]
≥ 1− β

}
.

Observe that F0(CS) = F (CS).

Definition 3.3 (error-robust fingerprinting codes). For any n, d ∈ N, ξ, β ∈
[0, 1], a pair of algorithms (Gen,Trace) is an (n, d)-fingerprinting code with security
ξ robust to a β fraction of errors if Gen outputs a codebook C ∈ {0, 1}n×d and for
every (possibly randomized) adversary AFP , and every coalition S ⊆ [n], if we set
c′ ←R AFP (CS), then

1. Pr [c′ ∈ Fβ(CS) ∧ Trace(C, c′) = ⊥] ≤ ξ,
2. Pr [Trace(C, c′) ∈ [n] \ S] ≤ ξ,

where the probability is taken over the coins of Gen,Trace, and AFP . The algorithms
Gen and Trace may share a common state.

In section 6 we show how to construct error-robust fingerprinting codes with a
nearly optimal number of users that are tolerant to a constant fraction of errors.

Theorem 3.4. For every d ∈ N, and ξ ∈ (0, 1], there exists an (n, d)-fingerprinting
code with security ξ robust to a 1/75 fraction of errors for

n = n(d, ξ) = Ω̃(
√
d/ log(1/ξ)).

Boneh and Naor [11] introduced a different notion of fingerprinting codes robust to
adversarial “erasures.” In their definition, the adversary is allowed to output a string
in {0, 1, ?}d, and in order to trace they require that the fraction of ? symbols is bounded
away from 1 and that any non-? symbols respect the basic feasibility constraint. For
this definition, constructions with nearly optimal length d = Õ(n2), robust to a 1−o(1)
fraction of erasures are known [10]. In contrast, our codes are robust to adversarial
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“errors.” Robustness to a β fraction of errors can be seen to imply robustness to
nearly a 2β fraction of erasures but the converse is false. Thus for corresponding
levels of robustness our definition is strictly more stringent. Unfortunately we don’t
currently know how to design a code tolerant to a 1/2− o(1) fraction of errors, so our
Theorem 3.4 does not subsume prior results on robust fingerprinting codes.

3.2. Lower bounds for 1-way marginals. We are now ready to state and
prove the main result of this section, namely, that there is a distribution on databases
D ∈ ({0, 1}d)n for n = Ω̃(

√
d), that is reidentifiable from accurate answers to 1-way

marginals.

Theorem 3.5. For every n, d ∈ N, and ξ ∈ [0, 1] if there exists an (n, d)-
fingerprinting code with security ξ, robust to a β fraction of errors, then there ex-
ists a distribution on n-row databases D ∈ ({0, 1}d)n that is (ξ, ξ)-reidentifiable from
(1/3, β)-accurate answers to M1,d.

In particular, if ξ = o(1/n), then there is no algorithm A : ({0, 1}d)n → R|M1,d|

that is (O(1), o(1/n))-differentially private and (1/3, β)-accurate for M1,d.

By combining Theorem 3.5 with Theorem 3.2 we obtain a sample-complexity lower
bound for 1-way marginals, and thereby establish Theorem 1.1 in the introduction.

Corollary 3.6. For every d ∈ N, the family of 1-way marginals on {0, 1}d
has sample complexity at least Ω̃(

√
d) for (1/3, 1/75)-accuracy and (O(1), o(1/n))-

differential privacy.

Proof of Theorem 3.5. Let (Gen,Trace) be the promised fingerprinting code. We
define the reidentifiable distribution D to simply be the output distribution of the
code generator, Gen. And we define the privacy adversary B to take the answers
a = A(D) ∈ [0, 1]|M1,d|, obtain a ∈ {0, 1}|M1,d| by rounding each entry of a to {0, 1},
run the tracing algorithm Trace on the rounded answers a, and return its output.
The shared state of D and B will be the shared state of Gen and Trace.

Now we will verify that D is (ξ, ξ)-reidentifiable. First, suppose thatA(D) outputs
answers a = (aqj )j∈[d] that are (1/3, β)-accurate for 1-way marginals. That is, there
is a set G ⊆ [d] such that |G| ≥ (1−β)d and for every j ∈ G, the answer aqj estimates
the fraction of rows having a 1 in column j to within 1/3. Let aqj be aqj rounded
to the nearest value in {0, 1}. Let j be a column in G. If column j has all 1’s, then
aqj ≥ 2/3, and aqj = 1. Similarly, if column j has all 0’s, then aqj ≤ 1/3, and aqj = 0.
Therefore, we have

(1) a is (1/3, β)-accurate =⇒ a ∈ Fβ(D).

By security of the fingerprinting code (Definition 3.3), we have

(2) Pr [a ∈ Fβ(D) ∧ Trace(D, a) = ⊥] ≤ ξ.

Combining (1) and (2) implies that

Pr [A(D) is (1/3, β)-accurate ∧ Trace(D, a) = ⊥] ≤ ξ.

But the event Trace(D, a) = ⊥ is exactly the same as B(D,A(D)) = ⊥, and thus we
have established the first condition necessary for D to be (ξ, ξ)-reidentifiable.

The second condition for reidentifiability follows directly from the soundness of
the fingerprinting code, which asserts that for every adversary AFP , in particular for
A, it holds that

Pr [Trace(D,AFP (D−i)) = i] ≤ ξ.
This completes the proof.
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FINGERPRINTING CODES AND THE PRICE OF PRIVACY 1901

Remark 3.7. Corollary 3.6 implies a lower bound of Ω̃(
√
d) for any family Q on

a data universe X in which we can “embed” the 1-way marginals on {0, 1}d in the
sense that there exists q1, . . . , qd ∈ Q such that for every string x ∈ {0, 1}d there is
an x′ ∈ {0, 1}d such that (q1(x′), . . . , qd(x

′)) = x. (The maximum such d is actually
the VC dimension of X when we view each element x ∈ X as defining a mapping
q 7→ q(x). See Definition 5.1.)

Our proof technique does not directly yield a lower bound with any meaningful
dependence on the accuracy α. Since the privacy adversary B simply runs the tracing
algorithm on the rounded answers it is given, it is not able to leverage subconstant
accuracy to gain an advantage in reidentification. However, Lemma 2.7 lets us gener-
ically translate our lower bound for constant accuracy into a lower bound depending
linearly on 1/α. For 1-way marginals, we get an essentially tight sample-complexity
lower bound of Ω̃(

√
d/α) for (α, β)-accuracy.

Corollary 3.8. For every d ∈ N, the family of 1-way marginals on {0, 1}d
has sample complexity at least Ω̃(

√
d/α) for (α, 1/75)-accuracy and (O(1), o(1/n))-

differential privacy.

3.2.1. Minimax lower bounds for statistical inference. Using the addi-
tional structure of Tardos’ fingerprinting code, and our robust fingerprinting codes,
we can prove minimax lower bounds for an “inference version” of the problem com-
puting the 1-way marginals of a product distribution.

For any d ∈ N, and any marginals p = (p1, . . . , pd) ∈ [0, 1]d, let Dp denote
the product distribution over strings x ∈ {0, 1}d, where each coordinate xi is an
independent draw from a Bernoulli random variable with mean pi (i.e., xi is set to
1 with probability pi and set to 0 otherwise). We use D⊗np to denote n independent

draws from Dp. We say that a vector q ∈ [0, 1]d is (α, β)-accurate for p if

Pr
i←R[d]

[|qi − pi| ≤ α] ≥ 1− β.

We can now formally define the problem of inferring the marginals p as follows.

Definition 3.9. Let α, β ∈ [0, 1] be parameters. An algorithm A : ({0, 1}d)n →
Rd (α, β)-accurately infers the marginals of a product distribution if for every vector
of marginals p ∈ [0, 1]d,

Pr
D←RD⊗np ,A’s coins

[A(D) is (α, β)-accurate for p] ≥ 2/3.

Our lower bound can thus be stated as follows.

Theorem 3.10. Suppose there is a function n = n(d) such that for every d ∈ N,
there exists an algorithm A : ({0, 1}d)n → Rd that satisfies (O(1), o(1/n))-differential
privacy and (1/3, 1/75)-accurately infers the marginals of a product distribution. Then
n = Ω̃(

√
d).

Proof Sketch. The proof has the same general structure that we used to prove
Theorem 3.5. Here, we describe additional observations about the structure of the
fingerprinting codes used in that proof (see section 6 for a description of Tardos’
fingerprinting code) that allow it to carry over to the inference version of computing
1-way marginals.

First, in Tardos’ (nonrobust) fingerprinting code, the codebook D is chosen by
first sampling marginals p ∈ [0, 1]d from an appropriate distribution and then sam-
pling D from D⊗np . The robust fingerprinting codes we construct in section 6 also have
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1902 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

this property.6 Thus the instances used to prove Theorem 3.5 indeed consist of in-
dependent samples from a product distribution, which is what the inference problem
assumes.

Next, recall that the proof of Theorem 3.5 shows that any string that is (α, β)-
accurate for the 1-way marginals of D can be traced successfully. It is moreover the
case that any string that is (α, β)-accurate for the marginals p can also be traced
successfully. This is because the rows of D are sampled independently from Dp,
so accuracy for the 1-way marginals of D and accuracy for p coincide with high
probability, at least when n = ω(log d).

Claim 3.11. Let p ∈ [0, 1]d and let D ←R D⊗np . Let a ∈ [0, 1]d denote the exact
1-way marginals of D. Then for every α, η > 0, and n = Ω(log(d/η)/α2), we have
‖a− p‖∞ ≤ α with probability at least 1− η over the choice of D.

We remark that Steinke and Ullman [47] showed that accuracy with respect to
the marginals p actually suffices to trace regardless of the value of n.

These two observations suffice to show that, when n is too small, a differentially
private algorithm cannot be accurate for p with high probability over the choices of
both p and D. Thus, for every differentially private algorithm, there exists some p
such that the algorithm is not accurate with high probability over the choice of D,
which means that the algorithm does not accurately infer the marginals of an arbitrary
product distribution.

3.3. Fingerprinting codes for general query families. In this section, we
generalize the connection between fingerprinting codes and sample-complexity lower
bounds for arbitrary sets of queries. We show that a generalized fingerprinting code
with respect to any family of counting queries Q yields a sample-complexity lower
bound for Q, which is analogous to our lower bound for 1-way marginals (Theo-
rem 3.5). We then argue that some type of fingerprinting code is necessary to prove
any sample-complexity lower bound by exhibiting a tight connection between such
lower bounds and a weak variant of our generalized fingerprinting codes.

We begin by defining our generalization of fingerprinting codes. Fix a finite data
universe X and a set of counting queries Q over X . A generalized fingerprinting code
with respect to the family Q consists of a pair of randomized algorithms (Gen,Trace).
The code generation algorithm Gen produces a codebook C ∈ Xn. Each row ci of C
is the codeword corresponding to user i. A coalition S ⊆ [n] of pirates receives the
subset CS = {ci : i ∈ S} of codewords, and produces an answer vector a ∈ [0, 1]|Q|.
We replace the traditional marking condition on the pirates with the generalized
constraint that they output a feasible answer vector. A natural way to define feasibility
for answer vectors is to require a condition similar to (α, β)-accuracy, i.e., an answer
vector a is feasible if |aq − q(CS)| ≤ α for all but a β fraction of queries q ∈ Q. We
thus define a generalized set of feasible answer vectors by

Fα,β(CS) =

{
a ∈ [0, 1]|Q| | Pr

q←RQ
[|aq − q(CS)| ≤ α] ≥ 1− β

}
.

6To generate a codebook D′ for our robust fingerprinting code, we sample a codebook D from
Tardos’ fingerprinting code and then insert additional columns of all 1’s or all 0’s to D in random
locations. Equivalently, we can obtain a codebook D′ by appending 1’s and 0’s in random locations
of p to obtain a vector p′ and then sampling D′ from D⊗n

p′ .
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When α = 1 − 1/n, the generalized set of feasible answer vectors captures the tra-
ditional marking assumption by rounding each entry of a feasible answer vector to 0
or 1.7

Definition 3.12. A pair of algorithms (Gen,Trace) is an (n,Q)-fingerprinting
code for (α, β)-accuracy with security (γ, ξ) if Gen outputs a codebook C ∈ Xn and
for every (possibly randomized) adversary AFP , and every coalition S ⊆ [n] with
|S| ≥ n− 1, if we set a←R AFP (CS), then

1. Pr [a ∈ Fα,β(CS) ∧ Trace(C, a) = ⊥] ≤ γ,
2. Pr [Trace(C, a) ∈ [n] \ S] ≤ ξ,

where the probability is taken over the coins of Gen,Trace, and AFP . The algorithms
Gen and Trace may share a common state.

The security properties of Definition 3.12 differ from those of an ordinary finger-
printing code in two ways so as to enable a clean statement of a composition theorem
for generalized fingerprinting codes (Theorem 4.6). First, we use two separate secu-
rity parameters γ, ξ for the different types of tracing errors, as in the definition of
reidentifiable distributions. Second, security only needs to hold for coalitions of size
n − 1 or n. However, this condition implies security for coalitions of arbitrary size
with an increased false accusation probability of nξ.

As in Theorem 3.5, the existence of a generalized (n,Q)-fingerprinting code im-
plies a sample-complexity lower bound of n for privately releasing answers to Q, with
essentially the same proof.

Theorem 3.13. For every n ∈ N and γ, ξ ∈ [0, 1), if there exists an (n,Q)-
fingerprinting code for (α, β)-accuracy with security (γ, ξ), then there exists a distri-
bution on n-row databases D ∈ Xn that is (γ, ξ)-reidentifiable from (α, β)-accurate
answers to Q.

In particular, if γ ≤ 1/3 and ξ = o(1/n), then there is no algorithm A : Xn →
[0, 1]|Q| that is (O(1), o(1/n))-differentially private and (α, β)-accurate for Q.

We now turn to investigate whether a converse to Theorem 3.13 holds. We show
that a sample-complexity lower bound for a family of queries Q is essentially equiva-
lent to the existence of a weak type of fingerprinting code, where the tracing procedure
depends on the family Q and the tracing error probabilities satisfy certain affine con-
straints. It remains an interesting open question to determine the precise relationship
between privacy lower bounds and our notion of generalized fingerprinting codes.

Definition 3.14. A pair of algorithms (Gen,Trace) is an (n,Q)-weak finger-
printing code for (α, β)-accuracy with security (ε, δ) if Gen outputs a codebook C ∈ Xn
and for every (possibly randomized) adversary AFP that outputs a feasible answer
vector with probability 2/3, and every coalition S ⊆ [n] with |S| ≥ n − 1, if we set
a←R AFP (CS), then

Pr[Trace(C, a) 6= ⊥] > eεn · Pr[Trace(C, a) ∈ [n] \ S] + δ,

where the probabilities are taken over the coins of Gen, Trace, and AFP . The algo-
rithms Gen and Trace may share a common state.

7An equivalent way to view a codebook is as a set of n codewords C ∈ ({0, 1}|Q|)n, where each
user’s codeword is ci = (q(x))q∈Q for some x ∈ X . Notice that the case where Q is the class of 1-way
marginals places no constraints on the structure of a codeword, i.e., a codeword can be any binary
string. With this viewpoint, the goal of the pirates is to output an answer vector a ∈ [0, 1]|Q| with
|aq − 1

|S|
∑

i∈S(ci)q | ≤ α for all but a β fraction of the queries q ∈ Q.
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1904 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

That is, we require the false accusation probability Pr[Trace(C, a) ∈ [n] \ S] to
be much smaller than the total probability of accusing any user. Note that a tracing
algorithm that accuses a random user with probability p will falsely accuse a user
with probability p/n when |S| = n− 1; however, this does not satisfy Definition 3.14
because we require the gap between the two probabilities to be at least a factor of eεn.

Observe that taking ξ < (1 − δ)/2eεn in Definition 3.12 yields an (n,Q)-weak
fingerprinting code with security (ε, δ). However, Definition 3.14 is weaker than
Definition 3.12 in a few important ways. First, security only holds against pirates
with a failure probability of at most 1/3. Second, while Definition 3.12 requires
completeness error Pr[Trace(C, a) = ⊥] < ξ, a weak fingerprinting code allows
Pr[Trace(C, a) = ⊥] = 1 − o(1) as long as Pr[Trace(C, a) ∈ [n] \ S] is sufficiently
small.

The following theorem shows that the existence of an (n,Q)-weak fingerprinting
code is essentially equivalent to a sample-complexity lower bound of n against Q.

Theorem 3.15. For every n ∈ N, if there exists an (n,Q)-weak fingerprinting
code for (α, β)-accuracy with security (ε, δ), then there exists a distribution on n-
row databases D ∈ Xn such that no (ε/2, δ/(2eε/2n))-differentially private algorithm
A : Xn → R|Q| outputs (α, β)-accurate answers to Q.

Conversely, let ε ≤ 3 and suppose there is no (ε, δ)-differentially private A :
Xn → R|Q| that gives (α, β)-accurate answers to Q with probability at least 1/2.
Then there exists an (m = dn/εe,Q)-weak fingerprinting code for (α−α′, β)-accuracy
with security (ε/6, δ/(eε/3 + e5ε/6)) for α′ = Õ(

√
εVC (Q)/n).

Proof. The forward direction follows the ideas of Lemma 2.11 and Theorem 3.5.
Suppose for the sake of contradiction that there exists an (ε′, δ′)-differentially private
A : Xn → R|Q| that is (α, β)-accurate for Q. Define a pirate strategy AFP for
coalitions of size |S| ≥ n− 1 by running A on its input CS (possibly padded to size n
by a junk row). Since A is (α, β)-accurate, with probability at least 2/3 it produces
an answer vector a such that |a− q(CS)| ≤ α for all but a β fraction of q ∈ Q. Hence,
AFP outputs a feasible answer vector with probability 2/3. Define

p = Pr
C←RGen

coins(AFP ),coins(Trace)

[Trace(C,AFP (C)) 6= ⊥].

Then there exists an i∗ such that Pr[Trace(C,AFP (C)) = i∗] ≥ p/n. By differential
privacy,

Pr[Trace(C,AFP (C−i∗)) = i∗] ≥ e−ε
′
·
( p
n
− δ′

)
.

On the other hand, by the security of the weak fingerprinting code and differential
privacy,

eε · n · Pr[Trace(C,AFP (C−i∗) = i∗] < Pr[Trace(C,AFP (C−i∗) 6= ⊥]− δ

≤ eε
′
p+ δ′ − δ.

This yields a contradiction whenever ε′ ≤ ε/2 and δ′ ≤ δ/(1 + eε/2n).
We now show the converse direction, i.e., that the high sample-complexity of

(Q,X ) implies the existence of a weak fingerprinting code. We begin with a technical
lemma which shows that the high sample complexity of Q also rules out mechanisms
that satisfy only a one-sided constraint on the probability of any event under the
replacement of one row.
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Lemma 3.16. Let ε ≤ 1/2. Let A be an (α, β)-accurate algorithm for Q on
databases D ∈ Xm. Suppose we have that for all databases D ∈ Xm, all i ∈ [m],
and all measurable T ⊆ Range(A) that

Pr
j←R[m]
coins(A)

[A(D−j) ∈ T ] ≤ eε Pr
coins(A)

[A(D−i) ∈ T ] + δ.

Let d = VC (Q) be the VC dimension of Q and let

α′ =

(
8

m
·
(

ln 24 + d · ln
(

2em

d

)))1/2

+
ε

m
.

Then there exists a (6ε, (e2ε+e5ε)δ)-differentially private algorithm B on databases of
size n = dm/εe that gives (α+α′, β)-accurate answers to Q on any database D′ ∈ Xn
with probability at least 1/2 .

Proof. On input to a database D′ ∈ Xn, consider the algorithm B′ that samples
a random subset D consisting of m rows from D′ (without replacement) and returns
A(D). Then by our hypothesis on A, for every i ∈ [n] and every measurable T ⊆
Range(B) = Range(A) we have

Pr
j←R[n]

coins(B′)

[
B′(D′−j) ∈ T

]
≤ eε Pr

coins(B′)

[
B′(D′−i) ∈ T

]
+ δ.

On the other hand, a “secrecy-of-the-sample” argument [39] enables us to obtain the
reverse inequality. For a row k ∈ [n], consider the following two experiments:
Experiment 1: Sample a random subset D of m rows from D′−k.
Experiment 2: Sample j ←R [n], and then sample a random subset D of m rows

from D′−j .

Any database D sampleable under Experiment 1 appears with probability 1/
(
n
m

)
, but

appears with probability at least

n−m
n
· 1(

n
m

) ≥ (1− ε) · 1(
n
m

)
under Experiment 2. Therefore,

Pr
j←R[n]
coins(B)

[
B(D′−j) ∈ T

]
≥ e−2ε Pr

coins(B)

[
B(D′−k) ∈ T

]
.

Combining the two inequalities shows that for every database D′ ∈ Xn and every
i, k ∈ [n],

Pr
coins(B′)

[
B′(D′−k) ∈ T

]
≤ e3ε Pr

coins(B′)

[
B′(D′−i) ∈ T

]
+ e2εδ.

By Lemma 2.2, we have the algorithm B(D′1, . . . , D
′
n−1) = B′(D′1, . . . , D′n−1,⊥) is

(6ε, (e2ε + e5ε)δ)-differentially private.
Finally, uniform convergence of the sampling error of B′ implies that it remains

an accurate algorithm, and hence so is B. In particular, when D is a random sample
of m rows from D′ and d is the VC dimension of Q, we have [1]

Pr[∃q ∈ Q : |q(D)− q(D′)| > α′] ≤ 4 ·
(

2em

d

)d
· exp

(
− (α′)2m

8

)
.

Taking α′ as in the theorem statement makes the total failure probability of B at most
1/2.

D
ow

nl
oa

de
d 

04
/1

6/
19

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1906 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

Now we proceed to complete the proof of Theorem 3.15. Suppose (Q,X ) has
sample complexity greater than n for (α + α′, β)-accuracy (with failure probability
1/2) and (6ε, (e2ε + e5ε)δ)-differential privacy. By Lemma 3.16, for every (α, β)-
accurate mechanism A for Q there exists a database D ∈ Xm with m = bnεc, a set
T , and an index i such that

(3) Pr
j←R[m]
coins(A)

[A(D−j) ∈ T ] > eε Pr
coins(A)

[A(D−i) ∈ T ] + δ.

We now argue that it is without loss of generality to restrict our attention to mecha-

nisms A whose range is the finite set I
|Q|
m = {0, 1

2m ,
1
m , . . . , 1−

1
2m , 1}

|Q|. To see this,
note that the exact answer to any counting query q on a database D ∈ Xm is in the
set {0, 1

m ,
2
m , . . . , 1−

1
m , 1}. Therefore, if an answer a ∈ [0, 1] satisfies |a− q(D)| ≤ α,

then the value

ā =
1

2m
· (d(a− α)me+ b(a+ α)mc)

is a point in Im that also satisfies |ā − q(D)| ≤ α. Thus, we will henceforth assume
that the mechanism’s output lies in this finite range.

We now apply the min-max theorem from game theory (or, equivalently, linear
programming duality), to exhibit a fixed distribution on (D,T, i) for which inequality
(3) holds. Specifically, consider a two-player zero-sum game in which Player 1 chooses

a triple (D,T, i), where D ∈ Xm, T ⊆ I
|Q|
m , and i ∈ [m], and Player 2 chooses a

randomized function A : Xm → I
|Q|
m that is (α, β)-accurate for Q. Let the payoff to

Player 1 be
Pr

j←R[m]
[A(D−j) ∈ T ]− eεI(A(D−i) ∈ T ).

By inequality (3), the value of this game is greater than δ. So by the min-max
theorem there exists a mixed strategy for Player 1 that achieves a payoff greater
than δ against any mixed strategy for Player 2. (Note that we can apply the min-
max theorem because we have assumed that the mechanism’s output lies in a finite
range.) That is, there exists a distribution D over triples (D,T, i) such that for any

randomized algorithm A : Xm → I
|Q|
m that takes any D to a feasible vector in Fα,β(D)

with probability at least 2/3,

(4) Pr
j←R[m]
coins(A)

(D,T,i)←RD

[A(D−j) ∈ T ] > eε · Pr
coins(A)

(D,T,i)←RD

[A(D−i) ∈ T ] + δ.

Now consider the following code: Gen samples a database D, a set T , and an index
i according to the promised distribution D. The codebook C is (Dπ(1), . . . , Dπ(m)),
where π : [m] → [m] is a random permutation. On input of an answer vector a,
the algorithm Trace checks whether a ∈ T . If it is, then Trace outputs π(i) and,
otherwise, outputs ⊥.

To analyze the security of this code, fix a coalition S of m−1 users using a pirate
strategy AFP . Because the codebook is a random permutation of the rows of D, it is
equivalent to analyzing the original database D and a random coalition of m−1 users.
Thus the part of the codebook CS given to the pirates is a random set of m− 1 rows
from D, i.e., D−j for a random j ∈ [m] with the junk row at index j removed. The
condition that AFP outputs a feasible answer vector is equivalent to a = AFP (CS)

being an (α, β)-accurate answer vector. Therefore, letting A : Xm → I
|Q|
m be the

algorithm that runs AFP on its input with the junk row removed, we have
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Pr
Gen,Trace,AFP

[Trace(C, a) 6= ⊥] = Pr
coins(AFP )

(D,T,i)←RD,π

[AFP (CS) ∈ T ]

= Pr
j←R[m],coins(A)

(D,T,i)←RD

[A(D−j) ∈ T ].

However, the probability that Trace outputs the user j not in the coalition is

Pr
Gen,Trace,AFP

[Trace(C, a) = i] = Pr
j←R[m],coins(AFP )

(D,T,i)←RD,π

[Trace(C, a) = i ∧ j = i]

=
1

m
· Pr

coins(A),(D,T,i)←RD
[A(D−i) ∈ T ],

because the events {j = i} and {Trace(C, a) = i} are independent. Thus by (4),

Pr[Trace(a) 6= ⊥] > eεm · Pr[Trace(a) ∈ [m] \ S] + δ,

where both probabilities are taken over the coins of Gen,Trace, and AFP .

4. A composition theorem for sample complexity. In this section we state
and prove a composition theorem for sample-complexity lower bounds. At a high
level the composition theorem starts with two pairs, (Q,X ) and (Q′,X ′), for which
we know sample-complexity lower bounds of n and n′, respectively, and attempts to
prove a sample-complexity lower bound of n · n′ for a related family of queries on a
related data universe.

Specifically, our sample-complexity lower bound will apply to the “product” of Q
and Q′, defined on X × X ′. We define the product Q∧Q′ to be

Q∧Q′ = {q ∧ q′ : (x, x′) 7→ q(x) ∧ q′(x′) | q ∈ Q, q ∈ Q′}.

Since q, q′ are boolean valued, their conjunction can also be written q(x)q′(x′).
We now begin to describe how we can prove a sample-complexity lower bound for

Q ∧ Q′. First, we describe a certain product operation on databases. Let D ∈ Xn,
D = (x1, . . . , xn), be a database. Let D′1, . . . , D

′
n ∈ (X ′)n′ , where D′i = (x′i1, . . . , x

′
in′)

be n databases. We define the product databaseD∗ = D×(D′1, . . . , D
′
n) ∈ (X×X ′)n·n′

as follows: For every i = 1, . . . , n, j = 1, . . . , n′, let the (i, j)th row of D∗ be x∗(i,j) =

(xi, x
′
ij). Note that we index the rows of D∗ by (i, j). We will sometimes refer to

D′1, . . . , D
′
n as the subdatabases of D∗.

The key property of these databases is that we can use a query q ∧ q′ ∈ Q ∧ Q′
to compute a “subset sum” of the vector sq′ = (q′(D′1), . . . , q′(D′n)) consisting of the
answers to q′ on each of the n subdatabases. That is, for every q ∈ Q and q′ ∈ Q′,

(5) (q ∧ q′)(D∗) =
1

n · n′
n∑
i=1

n′∑
j=1

(q ∧ q′)(x∗(i,j)) =
1

n

n∑
i=1

q(xi)q
′(D′i).

Thus, every approximate answer aq∧q′ to a query q ∧ q′ places a subset-sum con-
straint on the vector sq′ . (Namely, aq∧q′ ≈ 1

n

∑n
i=1 q(xi)q

′(D′i).) If the database D
and family Q are chosen appropriately, and the answers are sufficiently accurate, then
we will be able to reconstruct a good approximation to sq′ . Indeed, this sort of “re-
construction attack” is the core of many lower bounds for differential privacy, starting
with the work of Dinur and Nissim [16]. The setting they consider is essentially the
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1908 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

special case of what we have just described, where D′1, . . . , D
′
n are each just a single

bit (X ′ = {0, 1}, and Q′ contains only the identity query). In section 5 we will discuss
choices of D and Q that allow for this reconstruction.

We now state the formal notion of reconstruction attack that we want D and Q
to satisfy.

Definition 4.1 (reconstruction attacks). Let Q be a family of counting queries
over a data universe X . Let n ∈ N and α′, α, β ∈ [0, 1] be parameters. Let D =
(x1, . . . , xn) ∈ Xn be a database. Suppose there is an adversary BD : R|Q| → [0, 1]n

with the following property: For every vector s ∈ [0, 1]n and every sequence a =
(aq)q∈Q ∈ R|Q| such that ∣∣∣∣∣aq − 1

n

n∑
i=1

q(xi)si

∣∣∣∣∣ < α

for at least a 1− β fraction of queries q ∈ Q, BD(a) outputs a vector t ∈ [0, 1]n such
that

1

n

n∑
i=1

|ti − si| ≤ α′.

Then we say that D ∈ Xn enables an α′-reconstruction attack from (α, β)-accurate
answers to Q.

A reconstruction attack itself implies a sample-complexity lower bound, as in [16].
However, we show how to obtain stronger sample-complexity lower bounds from the
reconstruction attack by applying it to a product database D∗ to obtain accurate
answers to queries on its subdatabases. For each query q′ ∈ Q′, we run the adversary
promised by the reconstruction attack on the approximate answers given to queries of
the form (q∧q′) ∈ Q∧{q′}. As discussed above, answers to these queries will approx-
imate subset sums of the vector sq′ = (q′(D′1), . . . , q′(D′n)). When the reconstruction
attack is given these approximate answers, it returns a vector tq′ = (tq′,1, . . . , tq′,n)
such that tq′,i ≈ sq′,i = q′(D′i) on average over i. Running the reconstruction attack
for every query q′ gives us a collection t = (tq′,i)q′∈Q′,i∈[n], where tq′,i ≈ q′(D′i) on
average over both q′ and i. By an application of Markov’s inequality, for most of the
subdatabases D′i, we have that tq′,i ≈ q′(D′i) on average over the choice of q′ ∈ Q′.
For each i such that this guarantee holds, another application of Markov’s inequality
shows that for most queries q′ ∈ Q′ we have tq′,i ≈ q′(D′i), which is our definition of
(α, β)-accuracy (later enabling us to apply a reidentification adversary for Q′).

The algorithm we have described for obtaining accurate answers on the sub-
databases is formalized in Figure 1.

We are now in a position to state the main lemma that enables our composition
technique. The lemma says that if we are given accurate answers to Q ∧ Q′ on D∗

Let a = (aq∧q′)q∈Q,q′∈Q′ be an answer vector.
Let BD : R|Q| → [0, 1]n be a reconstruction attack.
For each q′ ∈ Q′

Let (tq′,1, . . . , tq′,n) = BD((aq∧q′)q∈Q)
Output (tq′,i)q′∈Q′,i∈[n].

Fig. 1. The reconstruction R∗D(a).
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and the database D ∈ Xn enables a reconstruction attack from accurate answers to Q,
then we can obtain accurate answers to Q′ on most of the subdatabases D′1, . . . , D

′
n ∈

(X ′)n′ .
Lemma 4.2. Let D ∈ Xn and D′1, . . . , D

′
n ∈ (X ′)n′ be databases and let D∗ ∈

(X × X ′)n·n′ be as above. Let a = (aq∧q′)q∈Q,q′∈Q′ ∈ R|Q∧Q′|. Let α′, α, β ∈ [0, 1] be
parameters. Suppose that for some parameter c > 1, the database D enables an α′-
reconstruction attack from (α, cβ)-accurate answers to Q. Then if (tq′,i)q′∈Q′,i∈[n] =
R∗D(a) (Figure 1),

a is (α, β)-accurate for Q∧Q′ on D∗

=⇒ Pr
i←R[n]

[(tq′,i)q′∈Q′ is (6cα′, 2/c)-accurate for Q′ on Di] ≥ 5/6.

The additional bookkeeping in the proof is to handle the case where a is only
accurate for most queries. In this case the reconstruction attack may fail completely
for certain queries q′ ∈ Q′ and we need to account for this additional source of error.

Proof of Lemma 4.2. Assume the answer vector a = (aq∧q′)q∈Q,q′∈Q′ is (α, β)-
accurate for Q ∧ Q′ on D∗ = D × (D′1, . . . , D

′
n). By assumption, D enables a re-

construction attack BD that succeeds in reconstructing an approximation to sq′ =
(q′(D′1), . . . , q′(D′n)) when given (α, cβ)-accurate answers for the family of queries
Q∧ {q′}. Consider the set of q′ on which the reconstruction attack succeeds, i.e.,

Q′good = {q′ | (aq∧q′)q∈Q is (α, cβ)-accurate for Q∧ {q′}} .

Since a is (α, β)-accurate, an application of Markov’s inequality shows that

Pr
[
q′ ∈ Q′good

]
≥ 1− 1/c.

Thus, |Q′good | ≥ (1− 1/c)|Q′|.
Recall that, by (5), we can interpret answers to Q∧Q′ as subset sums of answers

to the subdatabases, so for every q′ ∈ Q′good ,∣∣∣∣∣aq∧q′ − 1

n

n∑
i=1

q(xi)q
′(D′i)

∣∣∣∣∣ < α

for at least a 1−cβ fraction of queries q∧q′ ∈ Q∧{q′}. SinceD enables a reconstruction
attack from (α, cβ)-accurate answers to Q, by Definition 4.1, BD((aq∧q′)q∈Q) recovers
a vector tq′ ∈ [0, 1]n such that

1

n

n∑
i=1

|tq′,i − q′(D′i)| < α′.

Since this holds for every q′ ∈ Q′good , we have

E
q′←RQ′good ,i←R[n]

[|tq′,i − q′(D′i)|] ≤ α′

=⇒ Pr
i←R[n]

[
E

q′∈Q′good
[|tq′,i − q′(D′i)|] ≤ 6α′

]
≥ 5/6

=⇒ Pr
i←R[n]

[
|tq′,i − q′(D′i)| ≤ 6cα′ for at least a 1− 1/c fraction of q′ ∈ Q′good

]
≥ 5/6

=⇒ Pr
i←R[n]

[|tq′,i − q′(D′i)| ≤ 6cα′ for at least a 1− 2/c fraction of q′ ∈ Q′] ≥ 5/6.
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1910 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

The first two implications are Markov’s inequality, and the final implication is because
|Q′good | ≥ (1 − 1/c)|Q′|. The statement inside the final probability is precisely that
(tq′,i)q′∈Q′ is (6cα′, 2/c)-accurate for Q′ on D′i. This completes the proof of the
lemma.

We now explain how the main lemma allows us to prove a composition theorem for
sample-complexity lower bounds. We start with a query family Q on a database D ∈
Xn that enables a reconstruction attack, and a distributionD′ over databases in (X ′)n′

that is reidentifiable from answers to a family Q′. We show how to combine these
objects to form a reidentifiable distribution D∗ for queries Q∧Q′ over (X ×X ′)n·n′ ,
yielding a sample-complexity lower bound of n · n′.

A sample from D∗ consists of D∗ = D × (D′1, . . . , D
′
n), where each subdatabase

D′i is an independent sample from from D′. The main lemma above shows that if
there is an algorithm A that is accurate for Q ∧ Q′ on D∗, then an adversary can
reconstruct accurate answers to Q′ on most of the subdatabases D′1, . . . , D

′
n. Since

these subdatabases are drawn from a reidentifiable distribution, the adversary can
then reidentify a member of one of the subdatabases D′i. Since the identified member
of D′i is also a member of D∗, we will have a reidentification attack against D∗ as
well.

We are now ready to formalize our composition theorem.

Theorem 4.3. Let Q be a family of counting queries on X , and let Q′ be a family
of counting queries on X ′. Let γ, ξ, α′, α, β ∈ [0, 1] be parameters. Assume that for
some parameters c > 1, γ, ξ, α′, α, β ∈ [0, 1], the following both hold:

1. There exists a database D ∈ Xn that enables an α′-reconstruction attack from
(α, cβ)-accurate answers to Q.

2. There is a distribution D′ on databases D ∈ (X ′)n′ that is (γ, ξ)-reidentifiable
from (6cα′, 2/c)-accurate answers to Q′.

Then there is a distribution on databases D∗ ∈ (X × X ′)n·n′ that is (γ + 1/6, ξ)-
reidentifiable from (α, β)-accurate answers to Q∧Q′.

Proof. Let D = (x1, . . . , xn) ∈ Xn be the database that enables a reconstruc-
tion attack (Definition 4.1). Let D′ be the promised reidentifiable distribution on
databases D ∈ (X ′)n′ and B′ : (X ′)n′ ×R|Q′| → [n′]∪ {⊥} be the promised adversary
(Definition 2.10).

In Figure 2, we define a distribution D∗ on databases D′ ∈ (X × X ′)n·n′ . In
Figure 3, we define an adversary B∗ : (X × X ′)n·n′ × R|Q∧Q′| for a reidentification
attack. The shared state of D∗ and B∗ will be the shared state of D′ and B′. The next
two claims show that D∗ satisfies the two properties necessary to be a (γ + 1/6, ξ)-
reidentifiable distribution (Definition 2.10).

Claim 4.4. Pr D∗←RD∗
coins(A),coins(B∗)

[
(B∗(D∗,A(D∗))=⊥)

∧ (A(D∗) is (α, β)-accurate for Q ∧Q′)

]
≤ γ + 1/6.

Let D = (x1, . . . , xn) ∈ Xn be a database that enables reconstruction.
Let D′ on (X ′)n′ be a reidentifiable distribution.
For i = 1, . . . , n, choose D′i ←R D′ (independently)

Output D∗ = D × (D′1, . . . , D
′
n) ∈ (X × X ′)n·n′

Fig. 2. The new distribution D∗.
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Let D∗ = D × (D′1, . . . , D
′
n).

Run R∗D(A(D∗)) (Figure 1) to reconstruct a set of approximate answers
(tq′,i)q′∈Q′,i∈[n].
Choose a random i←R [n].
Output B′(D′i, (tq′,i)q′∈Q′).

Fig. 3. The privacy adversary B∗(D∗,A(D∗)).

Proof of Claim 4.4. Assume that A(D∗) is (α, β)-accurate for Q∧Q′. By Lemma
4.2, we have

Pr
i←R[n]

coins(A),coins(B∗)

[
(A(D∗) is (α, β)-accurate for Q∧Q′)

∧((tq′,i)q′∈Q′ is not (6cα′, 2/c)-accurate for Q′ on Di)

]
≤ 1/6.(6)

By construction of B∗,

Pr
D∗←RD∗

[(B∗(D∗,A(D∗)) = ⊥) ∧ (A(D∗) is (α, β)-accurate for Q∧Q′)]

(7)

= Pr
D∗←RD∗
i←R[n]

[(B′(D′i, (tq′,i)q′∈Q′) = ⊥) ∧ (A(D∗) is (α, β)-accurate for Q∧Q′)]

≤ Pr
D∗←RD∗
i←R[n]

[(B′(D′i, (tq′,i)q′∈Q′) = ⊥) ∧ ((tq′,i) is (6cα′, 2/c)-accurate for Q′)] +
1

6

where the last inequality is by (6). Thus, it suffices to prove that

(8) Pr
D∗←RD∗
i←R[n]

[(B′(D′i, (tq′,i)q′∈Q′) = ⊥) ∧ ((tq′,i) is (6cα′, 2/c)-accurate for Q′)] ≤ γ.

We prove this inequality by giving a reduction to the reidentifiability of D′. Consider
the following sanitizer A′: On input D′ ←R D′, A′ first chooses a random index
i∗ ←R [n]. Next, it samples D′1, . . . , D

′
i∗−1, D

′
i∗+1, . . . , D

′
n ←R D′ independently, and

sets D′i∗ = D′. Finally, it runs A on D∗ = D × (D′1, . . . , D
′
n) and then runs the

reconstruction attack R∗ to recover answers (tq′,i)q′∈Q′,i∈[n] and outputs (tq′,i∗)q′∈Q′ .
Notice that since D′1, . . . , D

′
n are all independently and identically distributed

(i.i.d.) samples from D′, their joint distribution is independent of the choice of i∗.
Specifically, in the view of B∗, we could have chosen i∗ after seeing its output on D∗.
Therefore, the following random variables are identically distributed:

1. (tq′,i)q′∈Q′ , where (tq′,i)q′∈Q′,i∈[n] is the output of R∗D(A(D∗)) on D∗ ←R D∗,
and i←R [n].

2. A′(D′), where D′ ←R D′.
Thus we have

Pr
D∗←RD∗
i←R[n]

[(B′(D′i, (tq′,i)q′∈Q′) = ⊥) ∧ ((tq′,i) is (6cα′, 2/c)-accurate for Q′)]

= Pr
D′←RD′

[(B′(D′,A′(D′)) = ⊥) ∧ (A′(D′) is (6cα′, 2/c)-accurate for Q′)] ≤ γ,

where the last inequality follows because D′ is (γ, ξ)-reidentifiable from (6cα′, 2/c)-
accurate answers to Q′. Thus we have established (8). Combining (7) and (8) com-
pletes the proof of the claim.
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The next claim follows directly from the definition of B∗ and the fact that D′ is
(γ, ξ)-reidentifiable.

Claim 4.5. For every (i, j)∈ [n]× [n′], PrD←RD∗
[
B∗(D,A(D−(i,j))) = (i, j)

]
≤ ξ.

Combining Claims 4.4 and 4.5 suffices to prove that D∗ is (γ+1/6, ξ)-reidentifiable
from (α, β)-accurate answers to Q∧Q′, completing the proof of the theorem.

The proof of Theorem 4.3 also yields a composition theorem for generalized finger-
printing codes. Specifically, Theorem 4.6 below shows how to combine a reconstruc-
tion attack for a query family Q on a database D ∈ Xn with a (n′,Q′)-generalized
fingerprinting code to obtain an (n · n′,Q∧Q′)-generalized fingerprinting code.

Theorem 4.6. Let Q be a family of counting queries on X , and let Q′ be a family
of counting queries on X ′. Let γ, ξ, α′, α, β ∈ [0, 1] be parameters. Assume that for
some parameters c > 1, γ, ξ, α′, α, β ∈ [0, 1], the following both hold:

1. There exists a database D ∈ Xn that enables an α′-reconstruction attack from
(α, cβ)-accurate answers to Q.

2. There exists an (n′,Q′)-generalized fingerprinting code for (6cα′, 2/c)-accuracy
with security (γ, ξ).

Then there is an (n · n′,Q ∧ Q′)-generalized fingerprinting code for (α, β)-accuracy
with security (γ + 1/6, ξ).

5. Applications of the composition theorem. In this section we show how
to use our composition theorem (section 4) to combine our new lower bounds for
1-way marginal queries from section 3 with (variants of) known lower bounds from
the literature to obtain our main results. In section 5.1 we prove a lower bound for
k-way marginal queries when α is not too small (at least inverse polynomial in d),
thereby proving Theorem 1.2 in the introduction. Then in section 5.2 we obtain a
similar lower bound for arbitrary counting queries that allows α to take a wider range
of parameters.

5.1. Lower bounds for k-way marginals. In this section, we carry out the
composition of sample-complexity lower bounds for k-way marginals as described in
the introduction (Theorem 1.2). Recall that we obtain our new Ω̃(k

√
d/α2) lower

bound by combining three lower bounds:
1. Our reidentification-based Ω̃(

√
d) lower bound for 1-way marginals (sec-

tion 3.2).
2. A known reconstruction-based lower bound of Ω(k) for k-way marginals.
3. A known reconstruction-based lower bound of Ω(1/α2) for k-way marginals.

The lower bound of Ω(k) for k-way marginals is a special case of a lower bound of
Ω(VC (Q)) due to [43] and based on [16], where VC (Q) is the VC dimension of Q.
The lower bound of Ω(1/α2) for k-way marginals is due to [40, 15].

To apply our composition theorem, we need to formulate these reconstruction
attacks in the language of Definition 4.1. In particular, we observe that these re-
construction attacks readily generalize to allow us to reconstruct fractional vectors
s ∈ [0, 1]n, instead of just boolean vectors as in [16, 43].

5.1.1. The Ω(k) lower bound. First we state and prove that the linear de-
pendence on k is necessary.

Definition 5.1 (VC dimension of counting queries). Let Q be a collection of
counting queries over a data universe X . We say a set {x1, . . . , xk} ⊆ X is shat-
tered by Q if for every string v ∈ {0, 1}k, there exists a query q ∈ Q such that

D
ow

nl
oa

de
d 

04
/1

6/
19

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINGERPRINTING CODES AND THE PRICE OF PRIVACY 1913

Input: Queries Q and (aq)q∈Q that are (α, 0)-accurate for s.
Find any t ∈ [0, 1]n such that∣∣∣∣∣aq − 1

n

n∑
i=1

q(xi)ti

∣∣∣∣∣ ≤ α ∀q ∈ Q.

Output: t.

Fig. 4. The reconstruction adversary B(D, a).

(q(x1), . . . , q(xk)) = (v1, . . . , vk). The VC dimension of Q denoted VC (Q) is the
cardinality of the largest subset of X that is shattered by Q.

Fact 5.2. The set of k-way conjunctions Mk,d over any data universe {0, 1}d
with d ≥ k has VC dimension VC (Mk,d) ≥ k.8

Proof. For each i = 1, . . . , k, let xi = (1, 1, . . . , 0, . . . , 1), where the zero is at
the ith index. We will show that {x1, . . . , xk} is shattered by Mk,d. For a string
v ∈ {0, 1}k, let the query qv(x) take the conjunction of the bits of x at indices set to
0 in v. Then qv(xi) = 1 iff vi = 1, so (qv(x1), . . . , qv(xk)) = (v1, . . . , vk).

Lemma 5.3 (variant of [16, 43]). Let Q be a collection of counting queries over a
data universe X and let n = VC (Q). Then there is a database D ∈ Xn which enables
a 4α-reconstruction attack from (α, 0)-accurate answers to Q.

Proof. Let {x1, . . . , xn} be shattered by Q, and consider the database D =
(x1, . . . , xn). Let s ∈ [0, 1]n be an arbitrary string to be reconstructed and let
a = (aq)q∈Q be (α, 0)-accurate answers. That is, for every q ∈ Q∣∣∣∣∣aq − 1

n

n∑
i=1

q(xi)si

∣∣∣∣∣ ≤ α.
Consider the brute-force reconstruction attack B defined in Figure 4. Notice that,
since a is (α, 0)-accurate, B always finds a suitable vector t. Namely, the original
database s satisfies the constraints. We will show that the reconstructed vector t
satisfies

1

n

n∑
i=1

|ti − si| ≤ 4α.

Let T be the set of coordinates on which ti > si and let S be the set of coordinates
where si > ti. Note that

n∑
i=1

|ti − si| =
∑
i∈T

(ti − si) +
∑
i∈S

(si − ti).

We will show that absolute values of the sums over T and S are each at most 2α.
Since {x1, . . . , xn} is shattered by Q, there is a query q ∈ Q such that q(xi) = 1 iff

8More precisely, VC (Mk,d) ≥ k log2(bd/kc), but we use the simpler bound VC (Mk,d) ≥ k to
simplify calculation, since our ultimate lower bounds are already suboptimal by polylog(d) factors
for other reasons.
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1914 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

i ∈ T . Therefore, by the definitions of t and (α, 0)-accuracy,∣∣∣∣∣aq − 1

n

n∑
i=1

q(xi)ti

∣∣∣∣∣ =

∣∣∣∣∣aq − 1

n

∑
i∈T

ti

∣∣∣∣∣ ≤ α and

∣∣∣∣∣aq − 1

n

∑
i∈T

si

∣∣∣∣∣ ≤ α,
so by the triangle inequality, 1

n

∑
i∈T (ti−si) ≤ 2α. An identical argument shows that

1
n

∑
i∈S(si − ti) ≤ 2α, proving that t is an accurate reconstruction.

5.1.2. The Ω(1/α2) lower bound for k-way marginals. We can now state
in our terminology the lower bound of De from [15] (building on [40]) showing that
the inverse-quadratic dependence on α is necessary.

Theorem 5.4 (restatement of [15]). Let k be any constant, d ≥ k be any integer,
and let α ≥ 1/d.499k be a sufficiently small parameter9 (i.e., bounded by an absolute
constant). There exists a constant β = β(k) > 0 such that for every α′ > 0, there
exists a database D ∈ ({0, 1}d)n with n = Ωα′,k(1/α2) such that D enables an α′-
reconstruction attack from (α, β)-accurate answers to the k-way marginals Mk,d.

Although the above theorem is a simple extension of De’s lower bound, we sketch
a proof for completeness, and refer the interested reader to [15] for a more detailed
analysis.

Proof Sketch. The reconstruction attack uses the “`1-minimization” algorithm,
which is shown in Figure 5. To prove that the reconstruction attack succeeds, we
will show that there exists a database D = (x1, . . . , xn) ∈ {0, 1}n×d such that for any
s ∈ [0, 1]n, if a satisfies

Pr
q∈Mk,d

[∣∣∣∣∣aq − 1

n

n∑
i=1

q(xi)si

∣∣∣∣∣ ≤ α
]
≥ 1− β,

(i.e., a has (α, β)-accurate answers) then BMk,d
(D, a) returns a vector t such that

‖t− s‖1 ≤ α′ · n. Henceforth we refer to such an a simply as (α, β)-accurate forMk,d

on (D, s), as a shorthand. The above guarantee must hold for suitable choices of n, β,
and α′ to satisfy the theorem.

We will argue that the reconstruction succeeds in two steps. First, we show that
reconstruction succeeds if D is a nice. Second, we show that there exists a nice D
that has the dimensions promised by the theorem.

Input: Queries Q, D = (x1, . . . , xn) ∈ {0, 1}n×d and a = (aq)q∈Q.
Let t ∈ [0, 1]n be

arg min
t∈[0,1]n

∑
q∈Q

∣∣∣∣∣aq − 1

n

n∑
i=1

q(xi)ti

∣∣∣∣∣
Output: t.

Fig. 5. The reconstruction adversary BQ(D, a).

9The constant .499 was chosen for simplicity, and can be replaced with any constant strictly
smaller than .5.
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FINGERPRINTING CODES AND THE PRICE OF PRIVACY 1915

To explain what we mean by a nice database D, for any D = (x1, . . . , xn) ∈
{0, 1}n×d and family of queries Q on {0, 1}d, we define the matrix M = MD,Q ∈
{0, 1}n×|Q| as M(i, q) = q(xi).

De analyzes this reconstruction attack in terms of certain properties of the matrix
M. Before stating the conclusion, we will need to define the notion of a Euclidean
section. Informally, a matrix M is a Euclidean section if its rowspace10 contains only
vectors that are “spread out.”

Definition 5.5 (Euclidean section). A matrix M ∈ {0, 1}n×m is a δ-Euclidean
section if for every vector a in the rowspace of M we have

√
m · ‖a‖2 ≥ ‖a‖1 ≥

δ
√
m · ‖a‖2.
Lemma 5.6 (see [15]). Let D be a database and Q be a set of queries such that

MD,Q ∈ {0, 1}n×|Q| is a δ-Euclidean section and the least singular value of MD,Q
is σ. Let s ∈ [0, 1]n be arbitrary. There exists β = β(δ) > 0 such that if a’s are
(α, β)-accurate answers for Q on (D, s), and t = BQ(D, a), then t satisfies

‖s− t‖1 ≤ γn

for γ = O(α
√
n|Q|/σ). The constant hidden in the O(·) notation depends only on δ.

Thus, it suffices to find database D such that the matrix MD,Mk,d
is a Euclidean

section (for some fixed constant δ > 0) and has no “small” singular values. A result
of Rudelson [45] (strengthening that of Kasiviswanathan et al. [40]) guarantees that
such a database exists.

Lemma 5.7 (see [45]). Let k ∈ N be any constant. Let d, n ∈ N be such that
dk ≥ n log n. Let D ∈ {0, 1}n×d be a uniform random matrix. Then with probability
at least 9/10, the matrix MD,Mk,d

defined above has a least singular value of at least

σ = Ω(dk/2) (where the hidden constant in the Ω(·) may depend on k) and is a δ-
Euclidean section for some constant δ > 0 that depends only on k.11

In particular, there exists a database D ∈ {0, 1}n×d such that the Hadamard
product M satisfies the two properties above.

Using the above lemma, we can now complete the proof. Fix any constant k ∈ N.
Let α, d, n be any parameters such that d ≥ k, α ≥ 1/d.499k, and dk ≥ n log n.
The precise value of n will be determined later. Let D ∈ {0, 1}n×d be the database
promised by Lemma 5.7. Let β = β(k) > 0 be a parameter to be chosen later. Let
α′ > 0 be the desired accuracy of the reconstruction attack.

Now fix any s ∈ [0, 1]n and let a ∈ [0, 1]|Mk,d| be (α, β)-accurate answers toMk,d

on (D, s). Now, if we let t = BMk,d
(D, a), by Lemma 5.6, provided that β is smaller

than some constant that depends only on δ, which in turn depends only on k, we will
have ‖s− t‖1 ≤ γ · n for

γ = O

(
α
√
n|Q|
σ

)
= O

(
α
√
n(d/k)k/2

dk/2

)
= O(α

√
n).

10For a matrix M with rows M1, . . . ,Mn, the rowspace of M is
{
a =

∑n
i=1 ciMi | c1, . . . , cn ∈ R

}
.

11Rudelson actually proves these statements about a related matrix MD,Q, where Q ⊆ Mk,d.

Since, for the Q he considers, |Q| ≥ |Mk,d|/(2k)k, these statements can easily be seen to hold for
the matrix MD,Mk,d

itself. Specifically, adding this many more columns to the matrix MD,Q cannot

decrease its least singular value (since MD,Q already has more columns than rows), and can only

decrease the Euclidean section parameter δ by a factor of at most (2k)k.
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1916 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

Note that by Lemma 5.6, the hidden constant in the O(·) notation depends only on
the parameter δ such that MD,Mk,d

is a δ-Euclidean section. By Lemma 5.7, the
parameter δ depends only on k. Thus γ = O(α

√
n), where the hidden constant

depends only on k. Now, we can choose n = Ω(1/α2) such that γ ≤ α′. The hidden
constant in the Ω(·) will depend only on k and α′, as required by the theorem. Note
that, since we have assumed α ≥ 1/d.499k, we have n log n = Õ(d.998k), and so we can
define n = Ωk,α′(1/α

2) while ensuring that dk ≥ n log n. Similarly, we required that β
is smaller than some constant that depends only on δ, which in turn depends only on
k. Thus, we can set β = β(k) > 0 to be some sufficiently small constant depending
only on k, as required by the theorem. This completes our sketch of the proof.

5.1.3. Putting together the lower bound. Now we show how to combine
the various attacks to prove Theorem 1.2 in the introduction. We obtain our lower
bound by applying two rounds of composition. In the first round, we compose the
reconstruction attack of Theorem 5.4 described above with the reidentifiable distribu-
tion for 1-way marginals. We then take the resulting reidentifiable distribution and
apply a second round of composition using the reconstruction attack based on the VC
dimension of k-way marginals.

We remark that it is necessary to apply the two rounds of composition in this
order. In particular, we cannot prove Theorem 1.3 by composing first with the VC-
dimension-based reconstruction attack. Our composition theorem requires a reidenti-
fiable distribution from (α, β)-accurate answers for β > 0, whereas the reconstruction
attack described in Lemma 5.3 requires (α, 0)-accurate answers, and the reconstruc-
tion can fail if some queries have error much larger than α. The resulting reidentifiable
distribution obtained from composing with this reconstruction attack will also require
(α, 0)-accurate answers, and thus cannot be composed further.

This limitation of Lemma 5.3 is inherent, because a sample-complexity upper
bound of Õ(

√
d/α2) can be achieved for answering any family of queries Q with (α, β)-

accuracy (for any constant β > 0). Notice that this sample complexity is independent
of VC (Q).

We can now formally state and prove our sample-complexity lower bound for
k-way marginals, thereby establishing Theorem 1.3 in the introduction.

Theorem 5.8. For every constant ` ∈ N, every k, d ∈ N, ` + 2 ≤ k ≤ d, and
every sufficiently small (i.e., bounded by an absolute constant) α ≥ 1/d.499`, there is
an

n = n(k, d, α) = Ω̃

(
k
√
d

α2

)
such that there exists a distribution on n-row databases D ∈ ({0, 1}d)n that is (1/2, o(1/n))-
reidentifiable from (α, 0)-accurate answers to the k-way marginals Mk,d.

Proof. We begin with the following two attacks:
1. By combining Theorems 3.5 and 3.4, there exists a distribution on databases
D′ ∈ ({0, 1}d/3)nd that is (γ = 1/6, ξ = o(1/ndnαnk))-reidentifiable from
(6cα′ = 1/3, 2/c = 1/75) accurate answers to the 1-way marginals M1,d/3

for nd = Ω̃(
√
d/ log(ndnαnk)). Here nα and nk are set below (the subscript

corresponds to the primary parameter that each of the n’s will depend on).
2. By Theorem 5.4 (with α′ = 1/2700 and k = `), there is a constant β > 0 such

that for any 7200α/β ≥ 1/d.499` there exists a database D ∈ ({0, 1}d/3)nα for
nα = Ω̃(1/α2) that enables a (1/2700)-reconstruction attack from (7200α/
β, β)-accurate answers to M`,d/3.
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Applying Theorem 4.3 (with parameter c = 150), we obtain item 1′ below. We then
bring in another reconstruction attack for the composition theorem.

1′. There exists a probability distribution on databases in ({0, 1}2d/3)ndnα that
is (1/3, o(1/ndnαnk))-reidentifiable from (6c′α′ = 7200α/β, 2/c′ = β/150)-
accurate answers toM`,d/3 ∧M1,d/3 ⊂M`+1,2d/3 (by applying Theorem 4.3
to 1 and 2 above).

2′. By Lemma 5.3 and Fact 5.2, there exists a database D ∈ ({0, 1}d/3)nk for
nk = k − `− 1, that enables an (α′ = 4α)-reconstruction attack from (α, 0)-
accurate answers to the (k − ` − 1)-way marginals Mk−`−1,d/3. Note that
(k − `− 1) ≥ 1, since we have assumed k ≥ `+ 2.

We can then apply Theorem 4.3 to 1′ and 2′ (with parameter c′ = 300/β). Thereby
we obtain a distribution D on databases D ∈ ({0, 1}d/3 ×{0, 1}d/3 ×{0, 1}d/3)ndnαnk

that is (1/2, ξ)-reidentifiable from (α, 0)-accurate answers to Mk−`−1,d/3 ∧M`,d/3 ∧
M1,d/3 ⊂Mk,d.

To complete the theorem, first note that (α, 0)-accurate answers to Mk,d imply
(α, 0)-accurate answers to any subset of Mk,d. So our lower bound for the subset
Mk−`−1,d/3∧M`,d/3∧M1,d/3 is sufficient to obtain the desired lower bound. Finally,
note that

n = ndnαnk = Ω̃

(
k
√
d

α2

)
,

as desired. This completes the proof.

Using the composition Theorem 4.6 in place of Theorem 4.3, we obtain a version
of Theorem 5.8 in the language of generalized fingerprinting codes.

Theorem 5.9. For every constant ` ∈ N, every k, d ∈ N, ` + 2 ≤ k ≤ d, and
every sufficiently small (i.e., bounded by an absolute constant) α ≥ 1/d.499`, there is
an

n = n(k, d, α) = Ω̃

(
k
√
d

α2

)
such that there exists an (n,Mk,d)-generalized fingerprinting code that achieves secu-
rity (1/2, o(1/n)) for (α, 0)-accuracy.

5.1.4. A tight lower bound for 2-way marginals. Theorem 5.8 does not give
any nontrivial lower bound for 2-way marginals. Intuitively, the problem is that the
proof uses two rounds of composition, and thus if we try to instantiate the proof for
2-way marginals, one of the three lower bounds being composed will have to be trivial
(i.e., will be a lower bound for 0-way marginals). However, a simple modification of
the proof yields a tight lower bound for 2-way marginals that holds even for (α, β)-
accuracy.

Theorem 5.10. For every k, d ∈ N, and every sufficiently small (i.e., bounded by
an absolute constant) α ≥ 1/d.499, there is a constant β > 0 and an

n = n(d, α) = Ω̃
(√
d/α2

)
such that there exists a distribution on n-row databases D ∈ ({0, 1}d)n that is (1/2,
o(1/n))-reidentifiable from (α, β)-accurate answers to the 2-way marginals M2,d.

Proof. We begin with the following two attacks:
1. By combining Theorems 3.5 and 3.4, there exists a distribution on databases
D′ ∈ ({0, 1}d/2)nd that is (γ = 1/6, ξ = o(1/ndnα))-reidentifiable from
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(6cα′ = 1/3, 2/c = 1/75) accurate answers to the 1-way marginals M1,d/2

for nd = Ω̃(
√
d/ log(ndnα)). nα is set below.

2. By Theorem 5.4 (with α′ = 1/2700 and k = 1), there is a constant β > 0 such
that for any 2700α/β ≥ 1/d.499 there exists a database D ∈ ({0, 1}d/2)nα for
nα = Ω̃(1/α2) that enables a (1/2700)-reconstruction attack from
(2700α, 600β)-accurate answers to M1,d/2.

Applying Theorem 4.3 (with parameter c = 150), we obtain the following: There exists
a distribution on databases in ({0, 1}d)ndnα that is (1/3, o(1/ndnα))-reidentifiable
from (α, 4β)-accurate answers to M1,d/2 ∧M1,d/2 ⊂M2,d.

To complete the theorem, note thatM1,d/2∧M1,d/2 contains exactly 1/4 of all the
queries inM2,d, so (α, β)-accurate answers toM2,d contain (α, 4β)-accurate answers
to the subset M1,d/2 ∧M1,d/2. So our lower bound for the subset M1,d/2 ∧M1,d/2

is sufficient to obtain the desired lower bound. Finally, note that

n = ndnα = Ω̃
(√
d/α2

)
,

as desired. This completes the proof.

5.2. Lower bounds for arbitrary queries. Using our composition theorem,
we can also prove a nearly optimal sample-complexity lower bound as a function of
|Q|, d, and α and establish Theorem 1.3 in the introduction.

As was the case in the previous section, the main result of this section will fol-
low from three lower bounds: the Ω̃(

√
d) lower bound for 1-way marginals and the

Ω(VC (Q)) bound that we have already discussed, a lower bound of Ω(1/α2) for worst-
case queries, which is a simple variant of the seminal reconstruction attack of Dinur
and Nissim [16], and related attacks such as [22, 30]. Although we already proved
a Ω(1/α2) lower bound for the simpler family of k-way marginals in the previous
section, the lower bound in this section will hold for a much wider range of α than
what is known for k-way marginals (roughly α ≥ 2−d for arbitrary queries, whereas
for k-way marginals we require α ≥ 1/d` for some constant `).

5.2.1. The Ω(1/α2) lower bound for arbitrary queries. Roughly, the re-
sults of [16] can be interpreted in our framework as showing that there is an Ω(1/α2)-
row database that enables a 1/100-reconstruction attack from (α, 0)-accurate answers
to some family of queries Q, but only when the vector to be reconstructed is boolean.
That is, the attack reconstructs a bit vector accurately provided that every query in
Q is answered correctly. Dwork, McSherry, and Talwar, [22] and Dwork and Yekhanin
[30] generalized this attack to only require (α, β)-accuracy for some constant β > 0,
and we will make use of this extension (although we do not require computational
efficiency, which was a focus of those works). Finally, we need an extension to the
case of fractional vectors s ∈ [0, 1]n, instead of boolean vectors s ∈ {0, 1}n.

The extension is fairly simple and the proof follows the same outline as the original
reconstruction attack from [16]. We are given accurate answers to queries in Q, which
we interpret as approximate subset sums of the vector s ∈ [0, 1]n that we wish to
reconstruct. The reconstruction attack will output any vector t from a discretization
{0, 1/m, . . . , (m− 1)/m, 1}n of the unit interval that is “consistent” with these subset
sums. The main lemma we need is an “elimination lemma” that says that if ‖t− s‖1
is sufficiently large, then for a random subset T ⊆ [n],

1

n

∣∣∣∣∣∑
i∈T

(ti − si)

∣∣∣∣∣ > 3α
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with suitably large constant probability. For m = 1 this lemma can be established via
combinatorial arguments, whereas for the m > 1 case we establish it via the Berry–
Esséen theorem. The lemma is used to argue that for every t that is sufficiently far
from s, a large fraction of the subset-sum queries will witness the fact that t is far
from s, and ensure that t is not chosen as the output.

First we state and prove the lemma that we just described, and then we will verify
that it indeed leads to a reconstruction attack.

Lemma 5.11. Let κ > 0 be a constant, let α > 0 be a parameter with α ≤ κ2/240,
and let n = 1/576κ2α2. Then for every r ∈ [−1, 1]n such that 1

n

∑n
i=1 |ri| > κ, and a

randomly chosen q ⊆ [n],

Pr
q⊆[n]

∣∣∣∣∣∣ 1n
∑
i∈q

ri

∣∣∣∣∣∣ > 3α

 ≥ 3

5
.

Proof of Lemma 5.11. Let r be as in the statement of the lemma. Define a random
variable

Qi =

{
ri/2 if i ∈ q,
−ri/2 if i /∈ q.

By construction, we have

1

n

∑
i∈q

ri =
1

n

n∑
i=1

(
Qi +

ri
2

)
.

Thus, ∣∣∣∣∣∣ 1n
∑
i∈q

ri

∣∣∣∣∣∣ ≤ 3α⇐⇒
n∑
i=1

Qi ∈

[
−3αn− 1

2

n∑
i=1

ri, 3αn−
1

2

n∑
i=1

ri

]
.

The condition on the right-hand side says that
∑
iQi is in some interval of width 6αn.

Since the random variables Qi are independent, as q is a randomly chosen subset, we
will use the Berry–Esséen Theorem (Theorem 5.13) to conclude that this sum does
not fall in any interval of this width too often. Establishing the next claim suffices to
prove Lemma 5.11.

Claim 5.12. For any interval I ⊆ R of width 6αn,

Pr

[∑
i

Qi 6∈ I

]
≥ 3

5
.

Proof of Claim 5.12. We use the Berry–Esséen theorem to prove this.

Theorem 5.13 (Berry–Esséen theorem). Let X1, . . . , Xn be independent random
variables such that E [Xi] = 0,

∑
i E
[
X2
i

]
= σ2, and

∑
i E
[
|Xi|3

]
= γ. Let X =

(X1 + · · ·+Xn)/σ and let Y be a normal random variable with mean 0 and variance
1. Then,

sup
z,z′∈R

|Pr [X ∈ [z, z′]]− Pr [Y ∈ [z, z′]]| ≤ 2γ

σ3
.

D
ow

nl
oa

de
d 

04
/1

6/
19

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1920 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

In order to apply Theorem 5.13 with Xi = Qi, we need to analyze the moments
of the random variables Qi. The following bounds can be verified from the definition
of Qi and the assumption that ‖r‖1 ≥ κn.

1. E [Qi] = 0.
2. σ2 =

∑
i E
[
Q2
i

]
≥ κ2n/4.

3. γ =
∑
i E
[
|Qi|3

]
≤ n

8 .
Thus, by Theorem 5.13 we have

sup
z,z′∈R

∣∣∣∣Pr

[
Q1 + · · ·+Qn

σ
∈ [z, z′]

]
− Pr [Y ∈ [z, z′]]

∣∣∣∣ ≤ 2γ

σ3
≤ 2

κ3
√
n
≤ 1

5
,

where the final inequality holds because n = 1/576κ2α2 ≥ 100/κ6. It can be verified
that for a standard normal random variable Y , and every interval I ⊂ R of width 1/2,
it holds that Pr [Y 6∈ I] ≥ 4/5. Thus, for every such interval I,

Pr

[
Q1 + · · ·+Qn

σ
6∈ I
]
≥ 4

5
− 1

5

=⇒ Pr [Q1 + · · ·+Qn 6∈ σI] ≥ 3

5
,

where σI is an interval of width σ/2. Thus we have obtained that
∑
iQi falls outside

of any interval of width σ/2 with probability at least 3/5. In order to establish the
claim, we simply observe that

σ

2
≥ κ
√
n

4
≥ 6αn

when n = 1/576κ2α2. Thus, the probability of falling outside an interval of width
6αn is only larger than the probability of falling outside an interval of width σ/2.

Establishing Claim 5.12 completes the proof of Lemma 5.11.

Theorem 5.14. Let α′ ∈ (0, 1] be a constant, let α > 0 be a parameter with
α ≤ (α′)2/960, and let n = 1/144(α′)2α2. For any data universe X = {x1, . . . , xn}
of size n, there is a set of counting queries Q over X of size at most O(n log(1/α))
such that the database D = (x1, . . . , xn) enables an α′-reconstruction attack from
(α, 1/3)-accurate answers to Q.

Proof. First we will give a reconstruction algorithm B for an arbitrary family of
queries. We will then show that for a random set of queries Q of the appropriate size,
the reconstruction attack succeeds for every s ∈ [0, 1]n with nonzero probability, which
implies that there exists a set of queries satisfying the conclusion of the theorem. We
will use the shorthand

〈q, s〉 =
1

n

n∑
i=1

q(xi)si

for vectors s ∈ [0, 1]n.
In order to show that the reconstruction attack B from Figure 6 succeeds, we

must show that 1
n

∑n
i=1 |ti − si| ≤ α′. Let s ∈ [0, 1]n, and let

s′ ∈ {0, 1/m, . . . , (m− 1)/m, 1}n

be the vector obtained by rounding each entry of s to the nearest 1/m. Then

1

n

n∑
i=1

|s′i − si| ≤
α

2
≤ α′

2
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Input: Queries Q and (aq)q∈Q that are (α, 1/3)-accurate for s.
Let m = d 1

αe
Find any t ∈ {0, 1/m, . . . , (m− 1)/m, 1}n such that

Pr
q←RQ

[|〈q, t〉 − aq| < 2α] >
5

6
.

Output: t.

Fig. 6. The reconstruction adversary B.

so it is enough to show that the reconstruction attack outputs a vector close to s′.
Observe that the vector s′ itself satisfies

|〈q, s′〉 − aq| ≤ |〈q, s〉 − aq|+ |〈q, s′ − s〉| ≤ 2α

for any subset sum query q, so the reconstruction attack always finds some vector t.
To show that the reconstruction is successful, fix any t ∈ {0, 1/m, . . . , (m− 1)/m, 1}n

such that 1
n

∑n
i=1 |ti−s′i| >

α′

2 . If we write r = s′−t ∈ {−1, . . . ,−1/m, 0, 1/m, . . . , 1}n,

then 1
n

∑n
i=1 |ri| >

α′

2 and 〈q, r〉 = 〈q, t〉−〈q, s′〉. In order to show that no t that is far
from s′ can be output by B, we will show that for any r∈{−1, . . . ,−1/m, 0, 1/m, . . . , 1}
with 1

n

∑n
i=1 |r| >

α′

2 ,

Pr
q←RQ

[|〈q, r〉| > 3α] ≥ 1

2
.

To prove this, we first observe by Lemma 5.11 (setting κ = 1
2α
′) that for a

randomly chosen query q defined on X ,

Pr
q

[|〈q, r〉| > 3α] ≥ 3

5
.

The lemma applies because 〈q, r〉 = 1
n

∑n
i=1 q(xi)ri is a random subset-sum of the

entries of r.
Next, we apply a concentration bound to show that if the set Q of queries is a

sufficiently large random set, then for every vector r the fraction of queries for which
|〈q, r〉| is large will be close to the expected number, which we have just established
is at least 3|Q|/5. We use the following version of the Chernoff bound.

Theorem 5.15 (Chernoff bound). Let X1, . . . , XN be a sequence of independent

random variables taking values in [0, 1]. If X =
∑N
i=1Xi and µ = E [X], then

Pr [X ≤ µ− ε] ≤ e−2ε2/N .

Consider a set of randomly chosen queries Q. By the above, we have that for
every r ∈ {−1, . . . ,−1/m, 0, 1/m, . . . , 1}n such that 1

n

∑n
i=1 |r| >

α′

2 ,

E
Q

[|{q ∈ Q | |〈q, r〉| > 3α}|] ≥ 3|Q|
5

.

Since the queries are chosen independently, by the Chernoff bound we have
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Pr
Q

[
|{q ∈ Q | |〈q, r〉| > 3α}| ≤ |Q|

2

]
≤ e−|Q|/50.

Thus, we can choose |Q| = O(n logm) to obtain

Pr
Q

[
∃r ∈ {−1, . . . ,−1/m, 0, 1/m, . . . , 1}n ,

1
n

∑n
i=1 |ri| >

α′

2 , |{q ∈ Q | |〈q, y〉| > 3α}| ≤ |Q|2

]

< (2m+ 1)ne−|Q|/50 ≤ 1

2
.

Thus, we have established that there exists a family of queries Q such that for
every s, t such that 1

n

∑n
i=1 |ti − si| > α′,

Pr
q←RQ

[|〈q, s〉 − 〈q, t〉| > 3α] ≥ 1

2
.

Moreover, by (α, 1/3)-accuracy, we have

Pr
q←RQ

[|aq − 〈q, s〉| > α] ≤ 1

3
.

Applying a triangle inequality, we can conclude

Pr
q←RQ

[|aq − 〈q, t〉| > 2α] ≥ 1

2
− 1

3
≥ 1

6
,

which implies that t cannot be the output of B. This completes the proof.

5.2.2. Putting together the lower bound. Now we show how to combine
the various attacks to prove Theorem 1.2 in the introduction. We obtain our lower
bound by applying two rounds of composition. In the first round, we compose the
reconstruction attack described above with the reidentifiable distribution for 1-way
marginals. We then take the resulting reidentifiable distribution and apply a second
round of composition using the reconstruction attack for query families of high VC-
dimension.

Just like our lower bound for k-way marginal queries, we remark that it is nec-
essary to apply the two rounds of composition in this order. See section 5.1.3 for a
discussion of this issue.

Theorem 5.16. For all d ∈ N, all sufficiently small (i.e., bounded by an absolute
constant) α > 2−d/6, and all h ≤ 2d/3, there exists a family of queries Q of size
O(hd log(1/α)/α2) and an

n = n(h, d, α) = Ω̃

(√
d log h

α2

)

such that there exists a distribution on n-row databases D ∈ ({0, 1}d)n that is (1/2,
o(1/n))-reidentifiable from (α, 0)-accurate answers to Q.

Proof. We begin with the following two attacks:
1. By Theorems 3.5 and 3.4, there exists a distribution on databases in

({0, 1}d/3)m that is (1/6, o(1/m` log h))-reidentifiable from (1/3, 1/75) accu-
rate answers to M1,d/3 for m = Ω̃(

√
d/ log(m` log h)). Here ` and h are

parameters we set below.
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2. For some ` = Ω(1/α2), by Theorem 5.14, there exists a database D ∈
({0, 1}d/3)` that enables an α′-reconstruction attack from (6c′α, 1/3)-accurate
answers to some Qrec of size O((log(1/α))/ α2). Here α′ is a constant with
6cα′ = 1/3 for a composition parameter c set below, and c′ is a constant
composition parameter set when we apply the second round of composition.

Applying Theorem 4.3 (with parameter c = 150), we obtain item 1′ below. We then
bring in another reconstruction attack for the composition theorem.

1′. There exists a probability distribution on databases in ({0, 1}2d/3)m` that
is (1/3, o(1/m` log h))-reidentifiable from (6c′α, 1/450)-accurate answers to
Qrec ∧M1,d/3 (by applying Theorem 4.3 to 1 and 2 above).

2′. By Lemma 5.3, there exists a database D ∈ ({0, 1}d/3)log h that enables a
(4α)-reconstruction attack from (α, 0)-accurate answers to some Qvc of size
h. (In particular, the family of queries can be all (log h)-way marginals on
the first log h bits of the data universe items.)

We can then apply Theorem 4.3 to 1′ and 2′ (with parameter c′ = 900). Thereby we
obtain a distribution D on databases D ∈ ({0, 1}d/3×{0, 1}d/3×{0, 1}d/3)m` log h that
is (1/2, ξ)-reidentifiable from (α, 0)-accurate answers to Q = Qvc ∧Qrec ∧M1,d/3.

To complete the theorem we first set

n = m` log h = Ω̃(
√
d log h/α2),

and then observe that

|Qvc ∧Qrec ∧M1,d/3| = h ·O(` log(1/α)/α2) · d/3 = O(hd log(1/α)/α2).

This completes the proof.

Again, Theorem 5.16 has a corresponding statement in terms of generalized fin-
gerprinting codes.

Theorem 5.17. For all d ∈ N, all sufficiently small (i.e., bounded by an absolute
constant) α > 2−d/6, and all h ≤ 2d/3, there exists a family of queries Q of size
O(hd log(1/α)/α2) and an

n = n(h, d, α) = Ω̃

(√
d log h

α2

)

such that there exists an (n,Q)-generalized fingerprinting code with security
(1/2, o(1/n)) for (α, 0)-accuracy.

6. Constructing error-robust fingerprinting codes. In this section, we show
how to construct fingerprinting codes that are robust to a constant fraction of errors,
which will establish Theorem 3.4. Our codes are based on the fingerprinting code of
Tardos [49], which has a nearly optimal number of users, but is not robust to any
constant fraction of errors. The number of users in our code is only a constant factor
smaller than that of Tardos, and thus our codes also have a nearly optimal number
of users.

To motivate our approach, it is useful to see why the Tardos code (and all other
fingerprinting codes we are aware of) are not robust to a constant fraction of errors.
The reason is that the the only way to introduce an error is to put a 0 in a column
containing only 1’s or vice versa (recall that the set of codewords, C ∈ {0, 1}n×d, can
be viewed as an n × d matrix). We call such columns “marked columns.” Thus, if
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1924 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

the adversary is allowed to introduce ≥ m errors, where m is the number of marked
columns, then he can simply ignore the codewords and output either the all-0 or all-1
codeword, which cannot be traced. Thus, in order to tolerate a β fraction of errors,
it is necessary that m ≥ βd, where d is the length of the codeword, and this is not
satisfied by any construction we know of (when β > 0 is a constant). However, Tardos’
construction can be shown to remain secure if the adversary is allowed to introduce
βm errors, rather than βd errors, for some constant β > 0. We demonstrate this
formally in section 6.2. In addition, we show how to take a fingerprinting code that
tolerates βm errors and modify it so that it can tolerate about βd/3 errors. This
reduction is formalized in section 6.1. Combining these two results will give us a
robust fingerprinting code.

We remark that prior work [11, 10] has shown how to construct fingerprinting
codes satisfying a weaker robustness property. Specifically, their codes allow the
adversary to introduce a special “?” symbol in a large fraction of coordinates, but
still require that any coordinate that is not a “?” satisfies the feasibility constraint.

Before proceeding with the construction and analysis, we restate some terminol-
ogy and notation from section 3. Recall that a fingerprinting code is a pair of algo-
rithms (Gen,Trace), where Gen specifies a distribution over codebooks C ∈ {0, 1}n×d
consisting of n codewords (c1, . . . , cn), and Trace(C, c′) either outputs the identity
i ∈ [n] of an accused user or outputs ⊥. Recall that Gen and Trace share a common
state. For a coalition S ⊆ [n], we write CS ∈ {0, 1}|S|×d to denote the subset of
codewords belonging to users in S.

Every codebook C, coalition S, and robustness parameter β ∈ [0, 1] defines a
feasible set of combined codewords,

Fβ(CS) =

{
c′ ∈ {0, 1}d | Pr

j←R[d]

[
∃i ∈ S, c′j = cij

]
≥ 1− β

}
.

We now recall the definition of an error-robust fingerprinting code from section 3.1.

Definition 6.1 (error-robust fingerprinting codes (restatement of Definition 3.3)).
For any n, d ∈ N, ξ, β ∈ [0, 1], a pair of algorithms (Gen,Trace) is an (n, d)-

fingerprinting code with security ξ robust to a β fraction of errors if Gen outputs
a codebook C ∈ {0, 1}n×d and for every (possibly randomized) adversary AFP , and
every coalition S ⊆ [n], if we set c′ ←R AFP (CS), then

1. Pr [(Trace(C, c′) = ⊥) ∧ (c′ ∈ Fβ(CS))] ≤ ξ,
2. Pr [Trace(C, c′) ∈ [n] \ S] ≤ ξ,

where the probability is taken over the coins of Gen,Trace, and AFP . The algorithms
Gen and Trace may share a common state.

The main result of this section is a construction of fingerprinting codes satisfying
Definition 6.1

Theorem 6.2 (restated from section 3.1). For every n ∈ N and ξ ∈ (0, 1], there
exists an (n, d)-fingerprinting code with security ξ robust to a 1/75 fraction of errors
for

d = d(n, ξ) = Õ(n2 log(1/ξ)).

Equivalently, for every d ∈ N, and ξ ∈ (0, 1], there exists an (n, d)-fingerprinting code
with security ξ robust to a 1/75 fraction of errors for

n = n(d, ξ) = Ω̃(
√
d/ log(1/ξ)).
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We remark that we have made no attempt to optimize the fraction of errors to
which our code is robust. We leave it as an interesting open problem to construct a
robust fingerprinting code for a nearly optimal number of users that is robust to a
fraction of errors arbitrarily close to 1/2.

6.1. From weak error robustness to strong error robustness. A key step
in our construction is a reduction from constructing error-robust fingerprinting codes
to constructing a weaker object, which we call a weakly robust fingerprinting code.
The difference between a weakly robust fingerprinting code and an error-robust fin-
gerprinting code of the previous section is that we now demand that only a β fraction
of the marked positions can have errors, rather than a β fraction of all positions.

In order to formally define weakly robust fingerprinting codes, we introduce some
terminology. If C ∈ {0, 1}n×d is a codebook, then for b ∈ {0, 1}, we say that position
j ∈ [d] is b-marked in C if cij = b for every i ∈ [n]. That is, j is b-marked if every
user has the symbol b in the jth position of their codeword. The set Fβ(C) consists
of all codewords c′ such that for a 1−β fraction of positions j, either j is not marked,
or j is b-marked and c′j = b. Notice that this constraint is vacuous if fewer than a β
fraction of positions are marked.

For a weakly robust fingerprinting code, we will define a more constrained feasible
set. Intuitively, a codeword c′ is feasible if for a 1 − β fraction of positions that are
marked, c′j is set appropriately. Note that this condition is meaningful even when the
fraction of marked positions is much smaller than β. More formally, we define

WFβ(CS)

=

{
c′ ∈{0, 1}d | Pr

j←R[d]

[
c′j = b | j is b-marked in CS for some b ∈ {0, 1}

]
≥ 1−β

}
.

Definition 6.3 (weakly robust fingerprinting codes). For any n, d ∈ N and
ξ, β ∈ [0, 1], a pair of algorithms (Gen,Trace) is an (n, d)-weakly robust fingerprinting
code with security ξ weakly robust to a β fraction of errors if (Gen,Trace) satisfy
the conditions of a robust fingerprinting code (for the same parameters) with WFβ in
place of Fβ.

The next theorem states that if we have an (n, d)-fingerprinting code that is
weakly robust to a β fraction of errors and satisfies a mild technical condition, then
we obtain an (n,O(d))-fingerprinting code that is robust to an Ω(β) fraction of errors
with a similar level of security.

Lemma 6.4. For any n, d ∈ N, ξ, β ∈ [0, 1], and m ∈ N, suppose there is a pair
of algorithms (Gen,Trace) which

1. are an (n, d)-fingerprinting code with security ξ weakly robust to a β fraction
of errors, and

2. with probability at least 1− ξ over C ←R Gen, produce C that has at least m
0-marked columns and m 1-marked columns.

Then there is a pair of algorithms (Gen ′,Trace ′) that are an (n, d′)-fingerprinting code
with security ξ′ robust to a β/3 fraction of errors, where

d′ = 5d and ξ′ = ξ + 2 exp
(
−Ω(βm2/d)

)
.

Proof. The reduction is given in Figure 7. Recall that Gen ′ and Trace ′ may share
a state, so π and the shared state of Gen and Trace is known to Trace ′.

Fix a coalition S ⊆ [n]. Let A′FP be an adversary. Sample C ′ ←R Gen ′ and let
c′ = A′FP (C ′). We will show that the reduction is successful by proving that if c′ ∈
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1926 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

Gen ′:
Choose C ←R Gen, C ∈ {0, 1}n×d
Append 2d 0-marked columns and 2d 1-marked columns to C
Apply a random permutation π to the columns of the augmented codebook
Let the new codebook be C ′ ∈ {0, 1}n×d′ for d′ = 5d

(We refer to the columns from C as real and to the additional columns as
fake)

Output C ′

Trace ′(C ′, c′):
Obtain C by applying π−1 to the columns of C ′ and removing the fake

columns
Obtain c by applying π−1 to c′ and removing the symbols corresponding to

fake columns
Output i←R Trace(C, c)

Fig. 7. Reducing robustness to weak robustness.

Fβ/3(C ′), then the modified string c ∈WFβ(C) with probability 1−exp(−Ω(βm2/d)).
The reason is that an adversary who is given (a subset of the rows of) C ′ cannot
distinguish real columns that are marked from fake columns. Therefore, the fraction
of errors in the real marked columns should be close to the fraction of errors that
are either real and marked or fake. Since the total fraction of errors in the entire
codebook is at most β/3, we know that the fraction of errors in real marked columns
is not much larger than β/3. Thus the fraction of errors in the real marked columns
will be at most β with high probability. We formalize this argument in the following
claim.

Claim 6.5.

Pr
π

[
(c′ ∈ Fβ/3(C ′)) ∧ (c ∈WFβ(C))

]
≤ 2 exp(−Ω(βm2/d)).

Proof of Claim 6.5. Our analysis will handle 0-marked and 1-marked columns
separately. Assume that c′ ∈ Fβ/3(C ′) and that the adversary has introduced k ≤
βd′/3 errors to 0-marked columns. Let m0 ≥ m be the number of 0-marked columns.
Let R0 be a random variable denoting the number of columns that are both real and
0-marked in which the adversary introduces an error. Since real 0-marked columns are
indistinguishable from fake 0-marked columns, R0 has a hypergeometric distribution
on k draws from a population of size N = m0 +2d with m0 successes. In other words,
we can think of an urn with N balls, m0 of which are labeled “real” and 2d of which
are labeled “fake.” We draw k balls without replacement, and R0 is the number that
are labeled real. This distribution has E [R0] = km0/N = km0/(m0 + 2d). Moreover,
as shown in [17, section 7.1]), it satisfies the concentration inequality

Pr[|R0 − E [R0] | > t] ≤ exp

(
−2(N − 1)t2

(N − k)(k − 1)

)
≤ exp(−Ω(t2/k))

since k ≤ 5N/6. Thus
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Pr[R0 > βm0] ≤ Pr[|R0 − E [R0] | > βm0 − E [R0]]

≤ exp

(
−Ω

(
(βm0 − km0/N)2

k2

))
≤ exp

(
−Ω

(
(βm0)2(1− d′/6d)2

(βd′/3)2

))
≤ exp

(
−Ω

(
βm2

0

d

))
for any choice of k. An identical argument bounds the probability that the number
of errors in real 1-marked columns is more than βm1. Therefore, the probability that
more than a β fraction of marked columns have errors is at most
2 exp(−Ω(βm2/d)).

Now define an adversary AFP that takes CS as input, simulates Gen ′ by append-
ing marked columns to CS and applying a random permutation π, and then applies
A′FP to the resulting codebook C ′S . Then it takes A′FP (C ′S), applies π−1, removes the
fake columns, and outputs the result. Notice that Trace ′ applies Trace to a codebook
and codeword generated by exactly the same procedure. If we assume that A′FP (C ′S)
is feasible with parameter β/3, then by the analysis above, with probability at least
1− ξ − exp(−Ω(βm2/d)), AFP (CS) is weakly feasible with parameter β. Thus,

Pr
C′←RGen′

[
(Trace ′(C ′,A′FP (CS)) = ⊥) ∧ (A′FP (CS) ∈ Fβ/3(CS))

]
≤ Pr
C←RGen

[(Trace(C,AFP (CS)) = ⊥ ∧ (AFP (CS) ∈WFβ(CS))] + 2e−Ω(βm2/d)

≤ ξ + 2 exp(−Ω(βm2/d)),

where the first inequality is by Claim 6.5 and the second inequality is by ξ-security
of Trace.

Since Trace does not accuse a user outside of S (except with probability at most
ξ) regardless of whether or not that adversary’s codeword is feasible, it is immediate
that Trace ′ also does not accuse a user outside of S (except with probability at
most ξ).

6.2. Weak robustness of Tardos’ fingerprinting code. In this section we
show that Tardos’ fingerprinting code is weakly robust to a β fraction of errors for
β ≥ 1/25. Specifically we prove the following.

Lemma 6.6. For every n ∈ N and ξ ∈ (0, 1], there exists an (n, d)-fingerprinting
code with security ξ weakly robust to a 1/25 fraction of errors for

d = d(n, ξ) = Õ(n2 log(1/ξ)).

Equivalently, for every d ∈ N, and ξ ∈ (0, 1], there exists an (n, d)-fingerprinting code
with security ξ weakly robust to a 1/25 fraction of errors for

n = n(d, ξ) = Ω̃(
√
d/ log(1/ξ)).

Tardos’ fingerprinting code is described in Figure 8. Note that the shared state of
Gen and Trace will include p1, . . . , pd.

Tardos’ proof that no user is falsely accused (except with probability ξ) holds
for every adversary, regardless of whether or not the adversary’s output is feasible,
therefore it holds without modification even when we allow the adversary to introduce
errors. So we will state the following lemma from [49, section 3] without proof.
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Gen:
Let d = 100n2 log(n/ξ) be the length of the code.
Let t = 1/300n be a parameter and let t′ be such that sin2 t′ = t.
For j = 1, . . . , d:

Choose rj ←R [t′, π/2− t′] and let pj = sin2 rj . Note that pj ∈ [t, 1− t].
For each i = 1, . . . , n, set Cij = 1 with probability pj , independently.

Output C.

Trace(C, c′):
Let Z = 20n log(n/ξ) be a parameter.
For each j = 1, . . . , d, let qj =

√
(1− pj)/pj .

For each j = 1, . . . , d, and each i = 1, . . . , n, let

Uij =

{
qj if Cij = 1,

−1/qj if Cij = 0.

For each i = 1, . . . , n:
Let

Si(c
′) =

d∑
j=1

c′jUij .

If Si(c
′) ≥ Z/2, output i.

If Si(c
′) < Z/2 for every i = 1, . . . , n, output ⊥.

Fig. 8. The Tardos fingerprinting code [49].

Lemma 6.7 (restated from [49]). Let (Gen,Trace) be the fingerprinting code de-
fined in Algorithm 8. Then for every adversary AFP , and every S ⊆ [n],

Pr [Trace(C,AFP (CS)) ∈ [n] \ S] ≤ ξ,

where the probability is taken over the choice of C ←R Gen and the coins of AFP .

Most of the remainder of this section is devoted to proving that any adversary
who introduces errors into at most a 1/25 fraction of the marked columns can be
traced successfully.

Lemma 6.8. Let (Gen,Trace) be the fingerprinting code defined in Algorithm 8.
Then for every adversary AFP , and every S ⊆ [n],

Pr
[
(Trace(C,AFP (CS)) = ⊥) ∧ (AFP (CS) ∈WF 1/25(CS))

]
≤ ξ,

where the probability is taken over the choice of C ←R Gen and the coins of AFP .

Before giving the proof, we briefly give a high-level roadmap. Recall that in the
construction there is a “score” function Si(c

′) that is computed for each user, and
Trace will output some user whose score is larger than the threshold Z/2, if such a
user exists. Tardos shows that the sum of the scores over all users is at least nZ/2,
which demonstrates that there exists a user whose score is above the threshold. His
argument works by balancing two contributions to the score: (1) the contribution
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from 1-marked columns j, which will always be positive due to the fact that c′j = 1,
and (2) the potentially negative contribution from columns that are not 1-marked.
Conceptually, he shows that the contribution from the 1-marked columns is larger in
expectation than the negative contribution from the other columns, so the expected
score is significantly above the threshold. He then applies a Chernoff-type bound to
show that the score will be above the threshold with high probability. When the
adversary is allowed to introduce errors so that there may be some 1-marked columns
j such that c′j = 0, these errors will contribute negatively to the score. The new
ingredient in our argument is essentially to bound the negative contribution from
these errors. We are able to get a sufficiently good bound to tolerate errors in 1/25
of the coordinates. We expect that a tighter analysis and more careful tuning of the
parameters can improve the fraction of errors that can be tolerated.

Proof of Lemma 6.8. We will write S = [n]. Doing so is without loss of generality
as users outside of S are irrelevant. We will use β = 1/25 to denote the allowable
fraction of errors. Fix an adversary B. Sample C ←R Gen and let c′ = B(C). Assume
c′ ∈WFβ(C). In order to prove that some user is traced, we will bound the quantity

S(c′) =

n∑
i=1

Si(c
′) =

d∑
j=1

c′j

(
xjqj −

n− xj
qj

)
,

where xj =
∑n
i=1 Cij is defined to be the number of codewords ci such that cij = 1.

Our goal is to show that this quantity is at least nZ/2 with high probability. If we
can do so, then there must exist a user i ∈ [n] such that Si(c

′) ≥ Z/2, in which case
Trace(C, c′) 6= ⊥.

We may decompose an output c′ of B(C) into a the sum of a codeword c̃ ∈
WF 0(C) with no errors, and a string c that captures errors introduced into at most a β
fraction of the marked coordinates. Each codeword c has a unique such decomposition
if we assume the following constraints on c.

1. If j is unmarked, then cj = 0.
2. If j is 0-marked, then cj ∈ {0, 1}.
3. If j is 1-marked, then cj ∈ {−1, 0}.
4. The number of nonzero coordinates of c is at most βm, where m is the number

of marked columns of c.
We call a c satisfying the above constraints valid. By the linearity of S(·), we can
write

S(c′) = S(c̃) + S(c).

Tardos’ analysis of the error-free case proves that S(c̃) is large. In our language, he
proves the following.

Claim 6.9 (restated from [49]). For every adversary B, if C ←R Gen, c′ ←R

B(C), and c′ = c̃+ c as above, then

Pr [(S(c̃) < nZ) ∧ (c̃ ∈WF 0(C))] ≤ ξ
√
n/4.

Although S(c) will be negative, and thus S(c′) ≤ S(c̃), we will show that S(c) is
not too negative. That is, introducing errors into a β fraction of the marked columns
in c′ cannot reduce S(c′) by too much.

We will now establish the following claim.

Claim 6.10. For any adversary B, if C ←R Gen, c′ ←R B(C), and c′ = c̃ + c as
above, then

Pr [(S(c) < −nZ/2) ∧ (c is valid)] ≤ ξ/2.

D
ow

nl
oa

de
d 

04
/1

6/
19

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1930 MARK BUN, JONATHAN ULLMAN, AND SALIL VADHAN

Proof of Claim 6.10. We start by making an observation about the distribution
of S(c) = S(c)|C,c, which denotes S(c) when we condition on a fixed choice of a
codebook C and a valid choice of c. Because the nonzero coordinates of c are only in
marked columns of C (those in which xj = 0 or xj = n), the distribution of

S(c)|C,c =

d∑
j=1

cj

(
xjqj −

n− xj
qj

)
depends only on the number of nonzero coordinates of c, and not on their location.
To see that this is the case, consider a 0-marked coordinate j on which cj = 1. The
contribution of j to S(c) is exactly −n/qj . Similarly, for a 1-marked coordinate j on
which cj = −1, the contribution of j to S(c) is exactly −nqj . Thus we can write

S(c) =

d∑
j=1

cj

(
xjqj −

n− xj
qj

)

= −

 ∑
j∈[d]:j is 0-marked and cj = 1

n/qj +
∑

j∈[d]:j is 1-marked and cj = −1

nqj

 .(9)

Each term in the first sum (resp., second sum) is a random variable that depends
only on the distribution of qj conditioned on the the jth column being 0-marked
(resp., 1-marked). Recall that qj is determined by pj . Moreover, conditioned on a
fixed C, the pj ’s are independent. To see this, let Cj denote the jth column of the
codebook C. Recall that each column Cj is generated independently using pj , and
the pj ’s themselves are chosen independently. Letting fX denote the density function
of a random variable X, this means that the joint density

fp1,...,pd(x1, . . . , xd | C1, . . . , Cd) =
Pr[C1, . . . , Cd | x1, . . . , xd]fp1,...,pd(x1, . . . , xd)

Pr[C1, . . . , Cd]

(Bayes’ rule)

=
Pr[C1 | x1]fp1(x1)

Pr[C1]
· . . . · Pr[Cd | xd]fpd(xd)

Pr[Cd]

= fp1(x1 | C1) · · · · · fpd(xd | Cd).

This shows that the conditional random variables pj |Cj are independent. Moreover,
since c only depends on the codebook C and coins of the adversary B, the pj ’s are
still independent when we also condition on c. In fact, the following holds.

Claim 6.11. Conditioned on any fixed choice of C and c, the following distribu-
tions are all identical, independent, and nonnegative: (1) (n/qj | j is 0-marked) for
j ∈ [d], and (2) (nqj | j is 1-marked).

Proof of Claim 6.11. By the discussion above, we know that these random vari-
ables are independent. To see that they are identicially distributed, note that the
distribution pj used to generate the jth column of C is symmetric about 1/2. There-
fore, the probability that column j is 0-marked when its entries are sampled according
to pj is the same as the probability that j is 1-marked when its entries are sampled
according to 1 − pj . Applying Bayes’ rule, again using the fact that pj and 1 − pj
have the same distribution, we see that the random variables (pj | j is 0-marked)
and (1 − pj | j is 1-marked) are identically distributed. The claim follows since

qj =
√

(1− pj)/pj .
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In light of this fact, we can see that the conditional random variable S(c)|C,c is
a sum of i.i.d. random variables and the number of these variables in the sum is
exactly the number of marked columns j on which cj is nonzero. For any t ∈ N and
any non-negative random variable Q, the sum of t + 1 independent draws from Q
stochastically dominates12 the sum of t independent draws from Q. Recall that S(c)
will be negative and we want its magnitude not to be too large. Equivalently, we
want the positive sum in (9) not to be too large. Therefore, the “worst-case” for the
sum (9) is when c has the largest possible number of nonzero coordinates. Recall that
the number of nonzero coordinates of c is exactly the number of errors introduced by
the adversary. Thus, the worst-case adversary B∗ is the one that chooses a random
set of exactly βm marked columns and for the chosen columns j that are 0-marked,
sets cj = 1 and for those that are 1-marked, sets cj = −1. In summary, it suffices to
consider only the single adversary B∗(C) that constructs a feasible c̃ and introduces
errors in a random set of βm of the marked coordinates in C.

Now we proceed to analyzing B∗. We follow Tardos’ approach to analyzing S. A
key step in his analysis is to show that the optimal adversary (for the error-free case)
chooses the jth coordinate of c′ based only on the jth column of C. In our case, the
optimal adversary B∗ introduces errors in a random set of exactly βmmarked columns,
which does not satisfy this independence condition. So instead, we will analyze an
adversary B̂∗ that introduces an error in each marked column independently with
probability β. This adversary may fail to introduce errors in exactly βm random
columns, and thus it is not immediately sufficient to bound Pr [S(c) < −nZ/2] for
c′ ←R B̂∗(C). However, a standard analysis of the binomial distribution shows that
this adversary introduces errors in exactly βm marked columns with probability at
least

1/2
√
m ≥ 1/2

√
d = 1/poly(n, log(1/ξ)),

and conditioned on having βm errors, those errors occur on a uniformly random set
of marked columns. Thus, if we can show that

Pr
c′←RB̂∗(C)

[S(c) < −nZ/2] < ξ
√
n/4,

we must also have

Pr
c′←RB∗(C)

[S(c) < −nZ/2] ≤ poly(n, log(1/ξ)) · ξ
√
n/4 ≤ ξ/2,

provided n, 1/ξ are sufficiently large.
For the remainder of the proof, we will show that indeed Pr [S(c) < −nZ/2] <

ξ
√
n/4 for c′ ←R B∗(C). We do so by bounding the quantity Ep,C

[
e−αS

]
for a suitable

α > 0 that we will choose later, and then by applying Markov’s inequality. Note that
the expectation is taken over both the parameters p = (p1, . . . , pd) and the randomness
of the adversary.

12For random variables X and Y over R, X stochastically dominates Y if for every z ∈ R,
Pr [X ≥ r] ≥ Pr [Y ≥ r].
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E
p,C

[
e−αS

]
=
∑
C

E
p

e−αS d∏
j=1

p
xj
j (1− pj)n−xj


=
∑
C

E
p

 d∏
j=1

p
xj
j (1− pj)n−xje

−αcj
(
xjqj−

n−xj
qj

)
=
∑
C

d∏
j=1

E
p

[
pxj (1− p)n−xje−αcj

(
xjqj−

n−xj
qj

)]
.

The first two equalities are by definition. The third equality follows from observing
that for fixed C, each term in the product depends only on the (independent) choice
of pj and the adversary’s choice of cj , and are thus independent by our choice of

adversary B̃∗. This step is the sole reason why it was helpful to consider an adversarial
strategy that treats columns independently. Now we want to interchange the sum and
product to obtain a product of identical terms, so we can analyze the contribution of
an individual term to the product.

E
p,C

[
e−αS

]
=
∑
C

d∏
j=1

E
p

[
pxj (1− p)n−xje−αcj

(
xjqj−

n−xj
qj

)]

=

(
n∑
x=0

(
n

x

)
E
p

[
px(1− p)n−xe−αc(xq−

n−x
q )
])d

(independence of cj ’s)

=

(
n∑
x=0

(
n

x

)
Ax

)d
,

where

Ax =


(1− β)Ep [(1− p)n] + β Ep

[
(1− p)neαn/q

]
if x = 0,

Ep [px(1− p)n−x] if 1 ≤ x ≤ n− 1,

(1− β)Ep [pn] + β Ep [pneαnq] if x = n.

First, observe that, since the distribution of p is symmetric about 1/2, A0 = An.
Second, if we let

Bx = E
p

[
px(1− p)n−x

]
for every x = 0, 1, . . . , n, then we have

n∑
x=0

(
n

x

)
Ax =

(
n∑
x=0

(
n

x

)
Bx

)
+ 2(An −Bn)

= 1 + 2(An −Bn).

In order to obtain a strong enough bound, we need to show that An − Bn = O(βα).
We can calculate

An −Bn = (1− β)E
p

[pn] + β E
p

[pneαnq]− E
p

[pn]

= β E
p

[pneαnq]− β E
p

[pn] .
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FINGERPRINTING CODES AND THE PRICE OF PRIVACY 1933

Now we apply the approximation eu ≤ 1 + 2u, which holds for 0 ≤ u ≤ 1. To do so,
we choose α =

√
t/n. Since q =

√
(1− p)/p and p ≥ t, we have αnq ≤ 1 for this

choice of α. Thus we have

An −Bn = β E
p

[pneαnq]− β E
p

[pn]

≤ β E
p

[pn(1 + 2αnq)]− β E
p

[pn]

= 2βαE
p

[pnnq] .

Now, to show that An−Bn = O(βα), we simply want to show that Ep [pnnq] = O(1),
which we do by direct calculation:

E
p

[
pnn

√
1− p
p

]
= n

∫ π/2−t′

t′

sin2n r
√

1−sin2 r
sin2 r

π/2− 2t′
dr =

sin2n(π/2− t′)− sin2n(t′)

π − 4t′

=
(1− t)n − tn

π − 4t′
=

(1− 1/300n)n − (1/300n)n

π − 4t′
≤ 1

π
.

The final inequality holds as long as n is larger than some absolute constant. (To
see that this is the case, recall that t′ = arcsin(

√
t) = arcsin(

√
1/300n) = Θ(1/

√
n),

whereas (1− 1/300n)n = 1− Ω(1).) So we have established

An −Bn ≤
2βα

π
.

Plugging this fact into the analysis above, we have

E
p,C

[
e−αS

]
=

(
n∑
x=0

(
n

x

)
Ax

)d
= (1 + 2(An −Bn))

d

≤
(

1 +
4βα

π

)d
≤ e4βαd/π.

Now all that remains is to apply Markov’s inequality to bound this quantity by ξ
√
n/4:

Pr [S < −nZ/2] = Pr [−αS > αnZ/2]

= Pr
[
e−αS > eαnZ/2

]
≤

E
[
e−αS

]
eαnZ/2

≤ e4βαd/π

eαnZ/2

= e4βαd/π−αnZ/2.

To get the desired upper bound, it is sufficient to show

αnZ

2
− 4βαd

π
≥
√
n log(1/ξ)

4
.

We calculate

αnZ

2
− 4βαd

π
= 10

√
tn log(n/ξ)− 400β

π

√
tn log(n/ξ)

=

(
10− 400β

π

)(√
tn log(n/ξ)

)
≥
(

10− 400β

π

) √
n log(n/ξ)

18

≥
√
n log(1/ξ)

4
,
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where the last inequality holds when β < 1/25. This is sufficient to complete the
proof of Claim 6.10.

Combining Claims 6.9 and 6.10 yields Lemma 6.8 as follows. If S(c′) < nZ/2, then
either S(c̃) < nZ or S(c) < nZ/2. Moreover, if c′ ∈ WF 1/25(C), we must have both
c̃ ∈WF 0(C) and a valid c. A union bound thereby gives us Lemma 6.8.

Lemma 6.7 and 6.8 are sufficient to imply Lemma 6.6, that Tardos’ fingerprinting
code is weakly robust. In order to apply our reduction from full robustness to weak
robustness (Lemma 6.4), we need to also establish that with high probability there
are many marked columns in the matrix C ←R Gen for Tardos’ fingerprinting code.

Lemma 6.12. With probability at least 1 − ξ over the choice of C ←R Gen, it
holds that the number of 0-marked columns m0 and the number of 1-marked columns
m1 are both larger than m = 5n3/2 log(n/ξ).

Proof of Lemma 6.12. To estimate the number of marked columns, define for each
j = 1, . . . , d an indicator random variable Dj for whether column j is 0-marked. The
Dj ’s are i.i.d., and have expectation at least

E [Dj |pj < 1/n] Pr[pj < 1/n] >

(
1− 1

n

)n
Pr[rj < arcsin(1/

√
n)] ≥ 1

6
√
n
.

Let D =
∑d
j=1Dj be the total number of 0-marked columns. Then E [D] ≥

10n
√
n log(n/ξ), so by the additive Chernoff bound (Theorem 5.15),

Pr[D < 5n
√
n log(n/ξ)] < exp

(
−2(5n

√
n log(n/ξ))2

d

)
< ξ/2.

A similar argument holds for 1-marked columns. Thus letting m = 5n
√
n log(n/ξ),

the codebook C has at least m 0-marked columns and m 1-marked columns with
probability at least 1− ξ. Now observe that

exp(−Ω(βm2/d)) < exp(−Ω(βn log(n/ξ))) < ξ

for n larger than some absolute constant.

Combining Lemma 6.4 (reduction from robustness to weak robustness), Lemma 6.6
(weak robustness of Tardos’ code), and Lemma 6.12 (Tardos’ code has many marked
columns), suffices to prove Theorem 6.2.

Appendix A. Lower bounds on fingerprinting codes via privacy. By the
contrapositive of Theorem 3.5, upper bounds on the sample complexity of answering
1-way marginals with differential privacy imply a lower bound on the length d of
any fingerprinting code with a given number of users n. As pointed out to us by
Adam Smith, this yields a particularly simple, self-contained proof of Tardos’ [49]
optimal lower bound on the length of fingerprinting codes. Specifically, using the well
known Gaussian mechanism for achieving differential privacy, we can design a simple
adversary AFP that violates the security of any traitor tracing scheme with length
d = o(n2).

Theorem A.1. There is a function n = n(d) = Õ(
√
d) such that for every d,

there is no (n, d)-fingerprinting code with security ξ < 1/6en.

Proof. Before diving into the proof, we will state the following elementary fact
about Gaussian random variables. The fact simply says that a Gaussian random
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variable with suitable variance is “close” to a shifted version of itself in a particular
sense. This same fact is used to show that adding Gaussian noise of suitable variance
provides differential privacy.

Fact A.2. Let c, c′ ∈ Rd satisfy ‖c − c′‖2 ≤
√
d/n, δ > 0 be a parameter, and

let σ2 = 2d ln(1/δ)/n2. Let z ∈ Rd be a random vector where each coordinate is an
independent draw from a Gaussian distribution with mean 0 and variance σ2. Then
for any (measurable) set T ⊆ Rd,

Pr
z

[c+ z ∈ T ] ≥ (1/e) Pr
z

[c′ + z ∈ T ]− δ.

Now we proceed with the proof. Fix any choice of d. Assume towards a contradic-
tion that there is an (n, d)-fingerprinting code (Gen,Trace) with security ξ < 1/6en
for n=

⌈√
18d ln(6en) ln(3d/2)

⌉
. Observe that n = n(d) = Õ(

√
d) as promised in the

theorem.
Let AFP (CS) be the following adversary. Define the vector c ∈ [0, 1]d as

c =
1

n

∑
i∈S

ci.

Now, let z ∈ Rd be a d-dimensional Gaussian where every coordinate is independent
with mean 0 and variance σ2 = 2d ln(1/δ)/n2 for δ = 1/6en. Finally, let c′ be ĉ with
each coordinate rounded to {0, 1}, and output the pirated codeword c′.

First we claim that AFP outputs feasible codewords with at least constant prob-
ability.

Claim A.3. For every S such that |S| ≥ n − 1, and every codebook C = (cij) ∈
{0, 1}n×d,

Pr
c′←RAFP (CS)

[c′ ∈ F (CS)] ≥ 2/3.

Proof of Claim A.3. By a standard tail bound for the Gaussian, we have

Pr
[
∀ j, |zj | < σ

√
ln(3d/2)

]
≥ 2/3.

Thus, by our choice of σ and n ≥
√

18d ln(1/δ) ln(3d/2) we have Pr [∀ j, |zj | < 1/3] ≥
2/3. Now the claim follows easily. Specifically, if cij = 1 for every i ∈ S, then
(1/n)

∑
i∈S cij ≥ 1− 1/n, so ĉj > 2/3− 1/n and c′j = 1. A similar argument applies

if cij = 0 for every i ∈ S.

Now it remains to show that AFP cannot be traced successfully. By assumption
(Gen,Trace) has security ξ < 1/6en < 1/3. Then we have in particular

Pr
C←RGen

c′←RAFP (C)

[c′ ∈ F (C) ∧ Trace(C, c′) = ⊥] < ξ.

Combining with Claim A.3 we have

Pr
C←RGen

c′←RAFP (C)

[Trace(C, c′) ∈ [n]] > 1− 1/3− ξ > 1/3.

Therefore, there exists i∗ ∈ [n] such that

(10) Pr
C←RGen

c′←RAFP (C)

[Trace(C, c′) = i∗] > 1/3n.
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To complete the proof, it now suffices to show that if S = [n] \ {i∗}, then

Pr
C←RGen

c′←RAFP (CS)

[Trace(C, c′) = i∗] ≥ 1/6en > ξ,

which will contradict the security of the fingerprinting code.
To do so, first observe that if

c =
1

n

∑
i∈[n]

ci and cS =
1

n

∑
i∈S

ci,

then ‖cj−cSj ‖2 ≤
√
d/n. Now, in case the tracing algorithm is randomized, let Tracer

denote the tracing algorithm when run with its random coins fixed to r. For any
string of random coins r, define the set Tr = {t ∈ Rd | Tracer(C, round(t)) = i∗}.
Here, round(·) is the function that rounds each entry of its input to {0, 1}.13

By Fact A.2 (with δ = 1/6en > ξ), for every r,

Pr
z

[
cS + z ∈ Tr

]
≥ (1/e) Pr

z
[c+ z ∈ Tr]− ξ.

Applying (10), and averaging over C ←R Gen and r, we have

Pr
C←RGen

c′←RAFP (CS)

[Trace(C, c′) = i∗] ≥ (1/e)(1/3n)− 1/6en = 1/6en > ξ,

which is the desired contradiction. This completes the proof.
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