The Complexity of Computing the Optimal
Composition of Differential Privacy

Jack Murtagh®) and Salil Vadhan

Center for Research on Computation and Society,
John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA
{jmurtagh,salil}@seas.harvard.edu

Abstract. In the study of differential privacy, composition theorems
(starting with the original paper of Dwork, McSherry, Nissim, and Smith
(T'CC’06)) bound the degradation of privacy when composing several dif-
ferentially private algorithms. Kairouz, Oh, and Viswanath (ICML’15)
showed how to compute the optimal bound for composing k arbitrary
(e, 0)-differentially private algorithms. We characterize the optimal com-
position for the more general case of k arbitrary (e1,01),..., (€, d0k)-
differentially private algorithms where the privacy parameters may differ
for each algorithm in the composition. We show that computing the opti-
mal composition in general is #P-complete. Since computing optimal
composition exactly is infeasible (unless FP=#P), we give an approxi-
mation algorithm that computes the composition to arbitrary accuracy
in polynomial time. The algorithm is a modification of Dyer’s dynamic
programming approach to approximately counting solutions to knapsack
problems (STOC’03).

Keywords: Differential privacy + Composition - Computational com-
plexity - Approximation algorithms

1 Introduction

Differential privacy is a framework that allows statistical analysis of private data-
bases while minimizing the risks to individuals in the databases. The idea is that
an individual should be relatively unaffected whether he or she decides to join
or opt out of a research dataset. More specifically, the probability distribution
of outputs of a statistical analysis of a database should be nearly identical to
the distribution of outputs on the same database with a single person’s data
removed. Here the probability space is over the coin flips of the randomized dif-
ferentially private algorithm that handles the queries. To formalize this, we call

A full version of this paper is available on arXiv [10].
J. Murtagh—Supported by NSF grant CNS-1237235 and a grant from the Sloan Foun-
dation.
S. Vadhan— Supported by NSF grant CNS-1237235, a grant from the Sloan Founda-
tion, and a Simons Investigator Award.

© International Association for Cryptologic Research 2016

E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part I, LNCS 9562, pp. 157-175, 2016.
DOI: 10.1007/978-3-662-49096-9 _7

158 J. Murtagh and S. Vadhan

two databases Dy, D1 with n rows each neighboring if they are identical on at
least n — 1 rows, and define differential privacy as follows:

Definition 1.1 (Differential Privacy [2,3]). A randomized algorithm M is
(¢, 0)-differentially private if for all pairs of neighboring databases Do and D,
and all output sets S C Range(M)

Pr[M(Dy) € S] < e‘Pr[M(D;) € S|+ 6
where the probabilities are over the coin flips of the algorithm M.

In the practice of differential privacy, we generally think of € as a small, non-
negligible, constant (e.g. ¢ = .1). We view ¢ as a “security parameter” that is
cryptographically small (e.g. & = 273%). One of the important properties of differ-
ential privacy is that if we run multiple distinct differentially private algorithms
on the same database, the resulting composed algorithm is also differentially
private, albeit with some degradation in the privacy parameters (¢,¢). In this
paper, we are interested in quantifying the degradation of privacy under com-
position. We will denote the composition of k differentially private algorithms
.2\417]\427 ey Mk as (Ml, Mg, ey Mk) where

(My, My, ..., My)(x) = (M (z), Ma(x), ..., Mi(z)).

A handful of composition theorems already exist in the literature. The first basic
result says:

Theorem 1.2 (Basic Composition [2]). For every e > 0, 6 € [0,1], and
(e, 9)-differentially private algorithms My, Ma, ..., My, the composition (M,
Mo, ..., My) satisfies (ke, ko)-differential privacy.

This tells us that under composition, the privacy parameters of the individual
algorithms “sum up,” so to speak. We care about understanding composition
because in practice we rarely want to release only a single statistic about a
dataset. Releasing many statistics may require running multiple differentially
private algorithms on the same database. Composition is also a very useful tool
in algorithm design. Often, new differentially private algorithms are created by
combining several simpler algorithms. Composition theorems help us analyze the
privacy properties of algorithms designed in this way.

Theorem 1.2 shows a linear degradation in global privacy as the number of
algorithms in the composition (k) grows and it is of interest to improve on this
bound. If we can prove that privacy degrades more slowly under composition,
we can get more utility out of our algorithms under the same global privacy
guarantees. Dwork, Rothblum, and Vadhan gave the following improvement on
the basic summing composition above [5].

Theorem 1.3 (Advanced Composition [5]). For every e > 0,4,8' >0, k €
N, and (e, d)-differentially private algorithms My, My, ..., My, the composition
(My, Ms, ..., My) satisfies (eg, kd + &')-differential privacy for

€g=1/2kIn(1/¢") - e+k-€e-(ec—1).

The Complexity of Computing the Optimal Composition 159

Theorem 1.3 shows that privacy under composition degrades by a function
of O(y/kIn(1/6")) which is an improvement if 6’ = 2=9®*) Tt can be shown
that a degradation function of 2(1/k1n(1/9)) is necessary even for the simplest
differentially private algorithms, such as randomized response [11].

Despite giving an asymptotically correct upper bound for the global privacy
parameter, €;, Theorem 1.3 is not exact. We want an exact characterization
because, beyond being theoretically interesting, constant factors in composition
theorems can make a substantial difference in the practice of differential privacy.
Furthermore, Theorem 1.3 only applies to “homogeneous” composition where
each individual algorithm has the same pair of privacy parameters, (e, d). In
practice we often want to analyze the more general case where some individual
algorithms in the composition may offer more or less privacy than others. That

is, given algorithms My, M, ..., M}, we want to compute the best achievable
privacy parameters for (My, Mo, ..., My). Formally, we want to compute the
function:

OptComp(Mq, M, ..., My, 6,) = inf{eg: (M1, My, ..., My) is (eg4,94)-DP}.

It is convenient for us to view d, as given and then compute the best ¢,
but the dual formulation, viewing €, as given, is equivalent (by binary search).
Actually, we want a function that depends only on the privacy parameters of
the individual algorithms:

OptComp((e1,01), (€2,02), .. -, (€k, 0k), 0g) =
sup{OptComp(M;, Ma, ..., My, 04): M; is (e;,0;)-DP Vi € [k]}.

In other words we want OptComp to give us the minimum possible €, that
maintains privacy for every sequence of algorithms with the given privacy para-
meters (¢€;, 0;). This definition refers to the case where the sequence of algorithms
(My, ..., M) and the pair of neighboring databases (D, D7) on which they are
applied are fixed, but we show that the same optimal bound holds even if the
algorithms and databases are chosen adaptively, i.e. M; and databases (Dg, D1)
are chosen adaptively based on the outputs of My,..., M;_1. (See Sect.2 for a
formal definition.)

A result from Kairouz, Oh, and Viswanath [9] characterizes OptComp for
the homogeneous case.

Theorem 1.4 (Optimal Homogeneous Composition [9]). For everye > 0
and ¢ € [0,1), OptComp((€,0)1, (€,0)2, ..., (€,0)k,04) = (k — 2t)e, where i is the
largest integer in {0,1,...,|k/2]} such that

i-1 /L)
2 : (k—Ue _ (k—2i+l)e
=0 (l> (e ‘) 1- 69
<1-

(1+ e)F S

With this theorem the authors exactly characterize the composition behavior
of differentially private algorithms with a polynomial-time computable solution.

160 J. Murtagh and S. Vadhan

The problem remains to find the optimal composition behavior for the more
general heterogeneous case. Kairouz, Oh, and Viswanath also provide an upper
bound for heterogeneous composition that generalizes the O(y/k1n(1/4")) degra-
dation found in Theorem 1.3 for homogeneous composition but do not comment
on how close it is to optimal.

1.1 Owur Results

We begin by extending the results of Kairouz, Oh, and Viswanath [9] to the
general heterogeneous case.

Theorem 1.5 (Optimal Heterogeneous Composition). Foralley, ..., e >
0 and d1,...,60k,904 € [0,1),OptComp((€1,91), (e2,02), ..., (€k, 0k), 64) equals the
least value of 4 such that

> e

1 ; > e
: Z max < ei€s —e% . %S (p < 1-—

e
[Tizy (L +e) SC{L,...k}

,59

1917 (D)
Hi:l (1 - 52‘)

Theorem 1.5 exactly characterizes the optimal composition behavior for any
arbitrary set of differentially private algorithms. It also shows that optimal com-
position can be computed in time exponential in k by computing the sum over
S C {1,...,k} by brute force. Of course in practice an exponential-time algo-
rithm is not satisfactory for large k. Our next result shows that this exponential
complexity is necessary:

Theorem 1.6. Computing OptComp is # P-complete, even on instances where
0h=0,=...=0, =0 and Zie[k] €; < € for any desired constant € > 0.

Recall that #P is the class of counting problems associated with decision
problems in NP. So being # P-complete means that there is no polynomial-time
algorithm for OptComp unless there is a polynomial-time algorithm for count-
ing the number of satisfying assignments of boolean formulas (or equivalently
for counting the number of solutions of all NP problems). So there is almost
certainly no efficient algorithm for OptComp and therefore no analytic solution.
Despite the intractability of exact computation, we show that OptComp can be
approximated efficiently.

Theorem 1.7. There is a polynomial-time algorithm that given ey, ..., € >
0,01,...0k,04 €[0,1), and n > 0, outputs €* where

OptComp((e1,01), - -, (ex, r), 34) < € < OptComp((er,61), ..., (ex, 0k), e -d5)+n .

The algorithm runs in O (log (% :) i1 el) time assuming constant-time

arithmetic operations.

The Complexity of Computing the Optimal Composition 161

Note that we incur a relative error of n in approximating é, and an additive
error of n in approximating €,. Since we always take €, to be non-negligible or
even constant, we get a very good approximation when 7 is polynomially small
or even a constant. Thus, it is acceptable that the running time is polynomial
in 1/n.

In addition to the results listed above, our proof of Theorem 1.5 also provides
a somewhat simpler proof of the Kairouz-Oh-Viswanath homogeneous composi-
tion theorem (Theorem 1.4 [9]). The proof in [9] introduces a view of differential
privacy through the lens of hypothesis testing and uses geometric arguments.
Our proof relies only on elementary techniques commonly found in the differen-
tial privacy literature.

Practical Application. The theoretical results presented here were motivated
by our work on an applied project called “Privacy Tools for Sharing Research
Data”!. We are building a system that will allow researchers with sensitive
datasets to make differentially private statistics about their data available
through data repositories using the Dataverse? platform [1,8]. Part of this sys-
tem is a tool that helps both data depositors and data analysts distribute a
global privacy budget across many statistics. Users select which statistics they
would like to compute and are given estimates of how accurately each statistic
can be computed. They can also redistribute their privacy budget according to
which statistics they think are most valuable in their dataset. We implemented
the approximation algorithm from Theorem 1.7 and integrated it with this tool
to ensure that users get the most utility out of their privacy budget.

2 Technical Preliminaries

A useful notation for thinking about differential privacy is defined below.

Definition 2.1. For two discrete random variables Y and Z taking values in the
same output space S, the d-approximate max-divergence of Y and Z is defined as:

PrlY € S]—¢

5 _
DOO(YHZ)_méxX In PrZ € S

Notice that an algorithm M is (e, §) differentially private if and only if for all
pairs of neighboring databases, Dy, D1, we have DS (M (Dy)||M(D;)) < e. The
standard fact that differential privacy is closed under “post processing” [3,4]
now can be formulated as:

Fact 2.2. If f: S — R is any randomized function, then

D(f(V)IIf(2)) < DY Z).

1 privacytools.seas.harvard.edu.
2 dataverse.org.

http://privacytools.seas.harvard.edu
http://dataverse.org

162 J. Murtagh and S. Vadhan

Adaptive Composition. The composition results in our paper actually hold for a
more general model of composition than the one described above. The model is
called k-fold adaptive composition and was formalized in [5]. We generalize their
formulation to the heterogeneous setting where privacy parameters may differ
across different algorithms in the composition.

The idea is that instead of running k differentially private algorithms cho-
sen all at once on a single database, we can imagine an adversary adaptively
engaging in a “composition game.” The game takes as input a bit b € {0,1}
and privacy parameters (€1,01), ..., (€x, 0x). A randomized adversary A, tries to
learn b through & rounds of interaction as follows: on the ith round of the game,
A chooses an (;, 0;)-differentially private algorithm M,; and two neighboring
databases D(;), D(;,1)- A then receives an output y; <« M;(D(p)) where
the internal randomness of M; is independent of the internal randomness of
My, ..., M;_1. The choices of M;, Dy; ¢, and D; 1y may depend on yo,...,%;i—1
as well as the adversary’s own randomness.

The outcome of this game is called the view of the adversary, V® which is
defined to be (y1,...,yr) along with A’s coin tosses. The algorithms M; and
databases D(; ¢y, D(;,1) from each round can be reconstructed from V. Now we
can formally define privacy guarantees under k-fold adaptive composition.

Definition 2.3. We say that the sequences of privacy parameters €1, ..., € >
0,01,...,0r € [0,1) satisfy (eg,d4)-differential privacy under adaptive compo-
sition if for every adversary A we have Dig(vouvl) < €4, where V° rep-
resents the view of A in composition game b with privacy parameter inputs
(61, (51), ey (Ek,(sk),

Computing Real-Valued Functions. Many of the computations we discuss involve
irrational numbers and we need to be explicit about how we model such com-
putations on finite, discrete machines. Namely when we talk about computing
a function f : {0,1}* — R, what we really mean is computing f to any desired
number ¢ bits of precision. More precisely, given x, ¢, the task is to compute
a number y € Q such that |f(z) —y| < 3. We measure the complexity of
algorithms for this task as a function of |z| + g.

3 Characterization of OptComp

Following [9], we show that to analyze the composition of arbitrary (e;, d;)-DP
algorithms, it suffices to analyze the composition of the following simple variant
of randomized response [11].

Definition 3.1 ([9]). Define a randomized algorithm M(Eﬁg)Z {0,1} —
{0,1,2,3} as follows, settingaa=1—0:

Pr[]\~4(615) (0)=0=¢ Pr[M(e,é)(l) =0]=0
Pr[M.5(0) =1 =« e Pr(Mcs(1) =1 =0
Pr[M(e,(S) (0) = 2] = 1+16‘ Pr[]\?(fé)(l) = 2] = Q- 1~6F76€‘
Pr[M.s(0) =3] =0 Pr[M 5 (1) =3] =9

The Complexity of Computing the Optimal Composition 163

Note that M(E’(;) is in fact (¢,0)-DP. Kairouz, Oh, and Viswanath showed that
M(E’(;) can be used to simulate the output of every (e, §)-DP algorithm on adja-
cent databases.

Lemma 3.2 ([9]). For every (e,8)-DP algorithm M and neighboring databases

Dy, Dy, there exists a randomized algorithm T such that T (M c 5)(b)) is identi-
cally distributed to M(Dy) for b=0 and b= 1.

Proof. We provide a new proof of this lemma in the full version of the paper
[10].

Since M(e,(;) can simulate any (¢, d) differentially private algorithm and it is
known that post-processing preserves differential privacy (Fact 2.2), it follows
that to analyze the composition of arbitrary differentially private algorithms, it
suffices to analyze the composition of M(ei’(;i)’s:

Lemma 3.3. For all €1,...,¢;, > 0,01,...,05,04 € [0,1),
Optcomp((ela 61)7 LR (€k76/€)7 59) = Optcomp(M(q,(Sl)a AR M(ek,tsk)? 69)

Proof. Since M(€1751)7 cee]\;[(Ek’(;k) are (€1,01),..., (€, 0k)-differentially private,
we have:
OptComp((€1,61), ..., (€x, k), dq)
= sup{OptComp(Mj, ..., My,d,): M, is (¢;,6;)-DP Vi € [k]}
> Optcomp(M(El_’(gl),...,M(ehgk),(sg) .

For the other direction, it suffices to show that for every Mjy,..., M} that
are (€1,01), ..., (ex, O)-differentially private, we have

OptComp(M, ..., My,d,4) < OptComp(M(gl,gl), ceey M(€k76k)) .
That is,
inf{eg: (Mu,..., My) is (eg,04)-DP} <inf{eg: (Mey 5,),- s M, .5,)) 18 (€g,34)-DP}.

So suppose (M(E1,61)v'~~vM(5k,5k)) is (eg,04)-DP. We will show that
(M, ..., My) is also (eg4,d4)-DP. Taking the infimum over €, then completes
the proof.

We know from Lemma 3.2 that for every pair of neighboring data-
bases Dy, D1, there must exist randomized algorithms Ti,...,T; such that
Ti(M(%(gi)(b)) is identically distributed to M;(Dy) for all ¢ € {1,...,k}. By
hypothesis we have

Dgg ((M(ﬂ,é])(o)a R M(ek,ék)(o))H(M(el,&)(l)a R M(ek,ék)(l))) < €g -

Thus by Fact 2.2 we have:
D3¢ ((My(Do), - -, My (Do) |(Mi(D1), - .., Mi(D1))) =

D28 (T1(WEey 5,y (0))s -+ Ty 5,0y ODIT2 (Mg 1) (1), Te(Mey) (1)) < e

164 J. Murtagh and S. Vadhan
Now we are ready to characterize OptComp for an arbitrary set of differen-

tially private algorithms.

Proof (Proof of Theorem 1.5). Given (e1,01),...,(ek,0x) and dy, let M¥(b)
denote the composition (M(eh(;l)(b), e ,M(Ek,(;k)(b)) and let P¥(z) be the prob-
ability mass function of MF¥(b), for b = 0 and b = 1. By Lemma 3.3,
OptComp((€1,61), ..., (ex, k), 6¢) is the smallest value of €, such that:

pk eg . Dk
Og 2 Qg{%{i}é,?a}k{Po (Q) — e - Pr(Q)}-

Given e, the set S C {0,1,2,3}* that maximizes the right-hand side is
S = S(eg) = {w € {0,1,2,3)" | P(2) = e - PL(2) } .
We can further split S(ey) into S(eg) = So(eg) U S1(ey) with
So(ey) = {x € {0,1,2,3}* | Pk(z) = 0}.
Si(eqg) = {:L' € {0,1,2,3}* | P¥(z) > e% - PF(z), and Pf(z) > 0}.
Note that So(e,) N Si(e,) = 0. We have Pf(Sp(e,)) = 0 and PF(So(e,)) =
1— Pr[M*(0) € {1,2,3}*] = 1 — [["_,(1 = &). So

PE(S(cq)) — €0 PE(S(eq)) = P (Soleq)) — e P (So(eg)) + B (S1(cq)) — e P (S (cg))
k
=1 JT(= 60% + BE(Si(eg)) — e Pf (S (eq))-
=1

Now we just need to analyze P (S (e,))—e Pf(S1(ey)). Notice that Sy (e,) €
{1,2}* because for all x € S;(e,), we have Py(z) > Py(x) > 0. So we can write:

Py (Si(eq)) — € - PE(S1(eg))

(1 — (5i)eei (1 — 51)
= Z max H W : H 1+€Ei -

ye{1,2}* i yi=1 iy =2
(1-6) p (-de
€g . ~ 70
¢ H 1+ e ,_H_ 1+es
1 Y= 1 yi=2
_ 4. Sk e
STTE% Y max S e B g
i=1 1+e y€{0,1}* i Vit

Putting everything together yields:
8y = Py (So(eq)) — e P (So(eq)) + Py (S1(eg)) — e Pf (S1(eg))

k k
i —A. €5 Z €4
=1-[Ja-6)+ 11, (1= 6) max egs — e .eigs Y.
1 k X)
paie [Tizy (L +e) SC{L,...k}

The Complexity of Computing the Optimal Composition 165

We have characterized the optimal composition for an arbitrary set of dif-
ferentially private algorithms (Mj, ..., My) under the assumption that the algo-
rithms are chosen in advance and all run on the same database. Next we show
that OptComp under this restrictive model of composition is actually equivalent
under the more general k-fold adaptive composition discussed in Sect. 2.

Theorem 3.4. The privacy parameters €y,...,ex > 0,01,...,0, € [0,1),
satisfy (eq,04)-differential privacy under adaptive composition if and only if
OptComp((€1,01), . .., (€k, Or),dq) < €4.

Proof. First suppose the privacy parameters €1, . .., €k, 01, .. ., 0k satisfy (¢4, dq)-
differential privacy under adaptive composition. Then OptComp((e1,0d1),. ..,
(€x,0r),d4) < €4 because adaptive composition is more general than the compo-
sition defining OptComp.

Conversely, suppose OptComp((€1,91),. .., (€, %), dq) < €4. In particular,
this means OptComp(]\Zf(ehgm...,]\Zf(eky(;k),ég) < €4. To complete the proof,
we must show that the privacy parameters €1, ..., €, 01,...,0; satisfy (eg,04)-
differential privacy under adaptive composition.

Fix an adversary A. On each round i, A uses its coin tosses r and the previoub
outputs yi,...,¥;—1 to select an (¢;,0;) differentially private algorithm M; =
MYV %=1 and neighboring databases Dy = Dy ¥=* Dy = Dp¥ovist,
Let V? be the view of A with the given privacy parameters under composmon
game b for b=0and b = 1.

Lemma 3.2 tells us that there exists an algorithm 7; = T, "¥*"¥"~" such that
T,(M(eh 5,)(b)) is identically distributed to M;(Dy) for both b = 0,1 for all i € [k].

Define T(zl, ooy zi) for z1,.00 2z, € {0,1,2,3} as follows:
1. Randomly choose coins r for A

2. Fori=1,...,k, let y; « T,"Y" Y71 ()

3. Output (r,y1,...,Yx)

Notice that YA“(]\ZI'(El’(;l)(b)7 ce M(Ekygk)(b)) is identically distributed to V? for
both b = 0, 1. By hypothesis we have

D2 (Miey,50)(0): -+ My Oy) (Vs -+ M) (1)) < .
Thus by Fact 2.2 we have:

DI (VOIVY) = D2 (T(Miey5,)(0)s s M) OIT (WM 5y (D) Miey 0 (1)) < e

4 Hardness of OptComp

P is the class of all counting problems associated with decision problems in NP.
It is a set of functions that count the number of solutions to some NP problem.
More formally:

166 J. Murtagh and S. Vadhan

Definition 4.1. A function f: {0,1}* — N is in the class #P if there exists a
polynomial p: N — N and a polynomial time algorithm M such that for every
x € {0,1}*:

1) = [{y e (0,170 Mz, y) =1}

Definition 4.2. A function g is called # P-hard if every function f € #P can
be computed in polynomial time given oracle access to g. That is, evaluations of
g can be done in one time step.

If a function is # P-hard, then there is no polynomial-time algorithm for com-
puting it unless there is a polynomial-time algorithm for counting the number
of solutions of all NP problems.

Definition 4.3. A function f is called # P-easy if there is some function g €
#P such that f can be computed in polynomial time given oracle access to g.

If a function is both #P-hard and # P-easy, we say it is # P-complete. Prov-
ing that computing OptComp is #P-complete can be broken into two steps:
showing that it is #P-easy and showing that it is #P-hard.

Lemma 4.4. Computing OptComp is #P-easy.
Proof. A proof of this statement can be found in the full version of the paper [10].

Next we show that computing OptComp is also #P-hard through a series
of reductions. We start with a multiplicative version of the partition problem
that is known to be # P-complete by Ehrgott [7]. The problems in the chain of
reductions are defined below.

Definition 4.5. #INT-PARTITION is the following problem: given a set Z =

{z1, 22, ..., 2} of positive integers, count the number of partitions P C [k] such
that
icP igP

All of the remaining problems in our chain of reductions take inputs
{wi,...,wr} where 1 < w; < e is the Dth root of a positive integer for all
i € [k] and some positive integer D. All of the reductions we present hold for
every positive integer D, including D = 1 when the inputs are integers. The
reason we choose D to be large enough such that our inputs are in the range
[1, €] is because in the final reduction to OptComp, €; values in the proof are set
to In(w;). We want to show that our reductions hold for reasonable values of €’s
in a differential privacy setting so throughout the proofs we use w;’s € [1, €] to
correspond to ¢;’s € [0, 1] in the final reduction. It is important to note though
that the reductions still hold for any choice of positive integer D and thus any
range of €’'s > 0.

The Complexity of Computing the Optimal Composition 167

Definition 4.6. #PARTITION is the following problem: given a number D €
N and a set W = {wq,wa, ..., wr} of real numbers where for alli € [k], 1 < w; <
e is the Dth root of a positive integer, count the number of partitions P C [k]

such that

H w; — H w; = 0.

icP igP
Definition 4.7. #T-PARTITION s the following problem: given a number
D € N and a set W = {wy,wa,...,wi} of real numbers where for all i € [k],

1 < w; < e is the Dth root of a positive integer and a positive real number T,
count the number of partitions P C [k] such that

Hwiwal-:T.

icP igP
Definition 4.8. #SUM-PARTITION: given a number D € N and a set W =
{wy,wa, ..., wi} of real numbers where for all i € [k], 1 < w; < e is the Dth

root of a positive integer and a real number r > 1, find

Z max Hwi—r-Hwi,O
]

PClk i€P igP

We prove that computing OptComp is # P-hard by the following series of reduc-
tions:

#INT-PARTITION < #PARTITION < #T-PARTITION < #SUM-PARTITION < OptComp.

Since #INT-PARTITION is known to be #P-complete [7], the chain of
reductions will prove that OptComp is # P-hard.

Lemma 4.9. For every constant ¢ > 1, #PARTITION is #P-hard, even on
instances where [[, w; < c.

Proof. Given an instance of #INT-PARTITION, {z1, ..., zx}, we show how to
find the solution in polynomial time using a #PARTITION oracle. Set D =
[log (], zi)] and w; = {/z; Vi € [k]. Note that [[, w; = (], zi)l/D < c. Let
P C [k]:

D

o= T < (TTw) = (ITw

ieP igP ieP igP
ieP igP

There is a one-to-one correspondence between solutions to the #PARTITION
problem and solutions to the given #INT-PARTITION instance. We can solve
#INT-PARTITION in polynomial time with a #PARTITION oracle. There-
fore #PARTITION is # P-hard.

168 J. Murtagh and S. Vadhan

Lemma 4.10. For every constant ¢ > 1, # T-PARTITION 1is #P-hard, even
on instances where [[, w; < c.

Proof. Let ¢ > 1 be a constant. We will reduce from #PARTITION, so consider
an instance of the #PARTITION problem, W = {wy,ws,...,w;}. We may
assume [[, w; < \/c since y/c is also a constant greater than 1.

Set W' = W U {wg+1}, where wi1q = Hlewi. Notice that Hfill w; <
(V)2 = c. Set T = /st (wpg1 — 1). Now we can use a #T-PARTITION
oracle to count the number of partitions @ C {1,...,k + 1} such that

i€Q i€Q

Let P =QN{L,...,k}. We will argue that [];cow; — [[;¢owi = T if and
only if [[,cpw;i = HZE p w;, which completes the proof. There are two cases to
consider: wgy1 € Q and wi1 € Q.

Case 1: wiy1 € Q. In this case, we have:

W41 <H UJL> - H"Ui: Hwi* Hwi:T: w1 (w1 — 1)

iEP iZP i€Q iZQ

— (11 w,,)(H wl> 2—1_[wi = | J] ws < TT wi - 1)(1_[w7> multiplied both sides by [] w;
]

iclk ieP ic[k) ie[k] = icP icP
— H wi — H w; H w; H w; + H w; | =0 factored quadratic in H w;
iep i€ k) iclk] i€P ie (k] iep
= H w; = H wy
icP i€ (k]
aad H w; = H w; .
igpP i€P

So there is a one-to-one correspondence between solutions to the
#T-PARTITION instance W’ where wg+1 € @ and solutions to the original
#PARTITION instance W.

Case 2: wi4+1 € Q. Solutions now look like:

ieP i€[k] ¢ P i€[k] i€[k]

One way this can be true is if w; = 1 for all ¢ € [k]. We can check ahead
of time if our input set W contains all ones. If it does, then there are 2F — 2
partitions that yield equal products (all except P = [k] and P = }) so we can
just output 2 — 2 as the solution and not even use our oracle. The only other
way to satisfy the above expression is for [[,.pw; > Hie[k} w,; which cannot
happen because P C [k]. So there are no solutions in the case that wiy1 € Q.

Therefore the output of the #T-PARTITION oracle on W’ is the solution
to the #PARTITION problem. So #T-PARTITION is # P-hard.

The Complexity of Computing the Optimal Composition 169

Lemma 4.11. For every constant ¢ > 1, #SUM-PARTITION is #P-hard
even on instances where [[, w; < c.

Proof. We will use a #SUM-PARTITION oracle to solve #T-PARTITION
given a set of Dth roots of positive integers W = {wy,...,w;} and a positive
real number T'. Notice that for every z > 0:

w;
sz le—z:> le e
i€P iZP i€P Hlep Wi
[Licp wi
= EleZJrsuchthat%fﬂ:z

Vi

Above, j must be a positive integer, which tells us that the gap in products
from every partition must take a particular form. This means that for a given
D and W, #T-PARTITION can only be non-zero on a discrete set of possible
values of T' = z. Given z, we can find a 2’ > z such that the above has no solutions
in the interval (z,2’). Specifically, solve the above quadratic for §/j (where j
may or may not be an integer), let 7/ = |j+ 1| > j, and 2’ = ¥/’ — HE\)/; We
use this property twice in the proof.

Define P* = {P C [k] | [[;cpwi — [L[;gpwi > 2}. As described above we

can find the interval (T,T") of values above T with no solutions. Then, for every
ce (T,T):

{Pg[kHHwi*Hwi:T}

i€P igP

_ ‘PT\PC

(= (1 1))

We now show how to find > | [] w;— J] wi| for any z > 0 using

Sl=

Sl-

PeP> \ieP igP
the #SUM-PARTITION oracle. Once we have this procedure, we can run
it for z = T and z = c¢ and plug the outputs into the expression above

to solve the #T-PARTITION problem. We want to set the input r to the
#SUM-PARTITION oracle such that:

Hwi—r'HwiZO = Hw,;waiZz.
icP i¢P icP igp

Solving this expression for r gives:

i€[k]

5
2244 J] wi—=2
i€ (k]

ry, =

170 J. Murtagh and S. Vadhan

Below we check that this setting satisfies the requirement.

4 T wi 4 (17,)2
Hwi— e 3" H'wi >0 <= 1—- (HzePwl> 2
< 224+4] wiz>
i€[k]

icP < 2 1A] wiz> igP
i€[k]
<— 22+4Hw¢22nwi+z

>0

i€[k] igP
2
<=>4Hwi24 Hwi +4szi
i€[k] igP iZP
< H wi — H wi > z.
i€EP iZP

So we have P? = {P Ckl [TLepwi =712 [Ligpwi = O} but this does not
necessarily mean that

D (1w Tlwi)= > | 1lwi—r-]]w

PePz \ieP igP PeP= \ieP igP

The sum on the left-hand side without the r, coefficient is what we actually
need to compute. To get this we again use the discreteness of potential solutions
to find 2 # z such that P* = P*". We just pick z” from the interval (z,2') of
values above z that cannot possibly contain solutions to #T-PARTITION.

Running our #SUM-PARTITION oracle for r, and r,» will output:

2 (1wimre 1L ws

peP= \ieP igP
> (Iw o T
peP= \ieP igP

This is just a system of two equations with two unknowns and it can be solved
for 3 pep: [Licpwi and - pcp. [[;¢p wi separately. Then we can reconstruct

> pep: (HieP w; — [Ligp w,»). Running this procedure for z = T and z = ¢
gives us all of the information we need to count the number of solutions to the
#T-PARTITION instance we were given. We can solve #T-PARTITION in
polynomial time with four calls to a #SUM-PARTITION oracle. Therefore
#SUM-PARTITION is # P-hard.

Now we prove that computing OptComp is # P-complete.

Proof (Proof of Theorem 1.6). We have already shown that computing OptComp
is #P-easy. Here we prove that it is also #P-hard, thereby proving #P-
completeness.

The Complexity of Computing the Optimal Composition 171

Given an instance D, W = {wy,...,wi},r of #SUM-PARTITION, where
Vi € [k], w; is the Dth root of an integer and [[, w; < ¢, set ¢; = In(w;) Vi € [k],
01 =02 =...0, =0 and ¢; = In(r). Note that >, ¢; = In (][, w;) < In(c). Since
we can take ¢ to be an arbitrary constant greater than 1, we can ensure that
>, € < € for an arbitrary € > 0.

Again we will use the version of OptComp that takes €, as input and outputs
d4. After using an OptComp oracle to find 6, we know the optimal composition
Eq. 1 from Theorem 1.5 is satisfied:

1 > € > € 1-96
— Z max {eies — €% . %5 ,O} = 1—k7‘q =4y .
[Timy (T +e) SC{1,....k} -

,,,,,

Thus we can compute:

k
E €4 E €4
dg- [(T +e) = Z max{eies —ef - ei?S 7O}
i=1 SC{1,...k}
= Z max Hwi—r-Hwi,O
SC{1,....k} i€S igS

This last expression is exactly the solution to the instance of
#SUM-PARTITION we were given. We solved #SUM-PARTITION in poly-
nomial time with one call to an OptComp oracle. Therefore computing OptComp
is # P-hard.

5 Approximation of OptComp

Although we cannot hope to efficiently compute the optimal composition for a
general set of differentially private algorithms (assuming P#NP or even FP#
#P), we show in this section that we can approximate OptComp arbitrarily well
in polynomial time.

Theorem 1.7 (Restated). There is a polynomial-time algorithm that given
€1,...,€ > 0,01,...05,04 €[0,1), and n > 0, outputs €* where

OptComp((e1,61), - - ., (€k, 0k), 8) < € < OptComp((e1, 1), - . ., (ex, 0x), e~ 28,)+n .

The algorithm runs in O (log (% Zle ei) %2 Zle Ei) time assuming constant-
time arithmetic operations.

We prove this theorem using the following three lemmas:

172 J. Murtagh and S. Vadhan

Lemma 5.1. Given non-negative integers ai,...,ax, B and weights
wi,...,w; € R, one can compute
> lw

SC[H] st i€5
> a;<B
i€S

in time O(Bk).

Notice that the constraint in Lemma 5.1 is the same one that characterizes knap-
sack problems. Indeed, the algorithm we give for computing g [];es wi is a
slight modification of the known pseudo-polynomial time algorithm for counting

knapsack solutions, which uses dynamic programming. Next we show that we
can use this algorithm to approximate OptComp.

Lemma 5.2. Given €i,... e, € > 0,01,...0,04 € [0,1), if & = ajeo Vi €
{1,...,k} for non-negative integers a; and some ey > 0, then there is an algo-
rithm that determines whether or not OptComp((e1,01), ..., (€k,0k),04) < €*

that runs in time O (% Zle ei).

In other words, if the € values we are given are all integer multiples of some
€0, we can determine whether or not the composition of those privacy parameters
is (€*,04)-DP in pseudo-polynomial time for every ¢* > 0. This means that given
any inputs to OptComp, if we discretize and polynomially bound the ¢;’s, then
we can check if the parameters satisfy any global privacy guarantee in polynomial
time. Once we have this, we only need to run binary search over values of €*
to find the optimal one. In other words, we can solve OptComp exactly for a
slightly different set of €;’s. The next lemma tells us that the output of OptComp
on this different set of ¢€;’s can be used as a good approximation to OptComp
on the original €;’s.

Lemma 5.3. For alleq,...,ex,c>0 and d1,...,0;,04 €[0,1):
OptComp((e1 +¢,61),. .., (ex +¢,0k),dq) < OptComp((e1,61), ..., (€k,0k), e ke/2. dg) + ke .
Next we prove the three lemmas and then show that Theorem 1.7 follows.

Proof (Proof of Lemma 5.1). We modify Dyer’s algorithm for approximately
counting solutions to knapsack problems [6]. The algorithm uses dynamic pro-
gramming. Given non-negative integers aq,...,ax, B and weights wq,...,w; €

R, define
F(r,s) = Z sz .
SC[r] s.t. i€S
> a;<s
1€S
We want to compute F'(k, B). We can find this by tabulating F(r,s) for
(0<r <k, 0<s< B) using the recursion:
1 ifr=20
F(r,s)=C¢F(r—1,s)+w.F(r—1,s—a,) ifr>0anda, <s
F(r—1,s) ifr>0and a, > s.

The Complexity of Computing the Optimal Composition 173
Each cell F(r, s) in the table can be computed in constant time given earlier
cells F(r',s") where v < r. Thus filling the entire table takes time O(Bk).

Proof (Proof of Lemma 5.2). Given €y, ..., €, € > 0 such that ¢; = a;ep Vi €
{1,..., k} for non-negative integers a; and some ¢y > 0, and 61, ... dx, g4 € [0, 1),
Theorem 1.5 tells us that answering whether or not

Optcomp((€1761)7 R (eka 6k)75g) S €*

is equivalent to answering whether or not the following inequality holds:

> 1 -9,

1 > e .
— Z max{e"fs — e - eis ,O} <l .
Tici (T e) s (i [z (1—6:)

The right-hand side and the coefficient on the sum are easy to compute given
the inputs so in order to check the inequality, we will show how to compute the
sum. Define

K = TQ[kHZeiZe*—l—Zei

igT ieT
- {TC k] | Ze < (Zq—e*> /2}

k
= {Tg [%] | Zai < B} for B = {(Zq —e*> /QEOJ

and observe that by setting 7' = 5S¢, we have

k
€ * PO € *
SC{1,...,k} TeK ieT i€T

We just need to compute this last expression and we can do it for each
term separately since K is a set of knapsack solutions. Specifically, setting w; =
e~ Vi € [k], Lemma 5.1 tells us that we can compute 37y [1;e wi subject
to > ,cpa; < B, which is equivalent to >, [Liere™-

To compute Y [[;cr e, we instead set w; = e“ and run the same
procedure. Since we used the algorithm from Lemma 5.1, the running time is

O(Bk) = O (ﬁ sk 61-).

Proof (Proof of Lemma 5.3). Let OptComp((e1,1), - . ., (€x, k), e F/2:5,) = €.
From Eq. 1 in Theorem 1.5 we know:

; max eigs - e - 6%:5 “ 0y <1-— ﬂ .
k : < '
[Tio: (14 eci) SC{1,....,k} T, (1=

174 J. Murtagh and S. Vadhan

Multiplying both sides by e¥¢/2 gives:
ke/2 T e) 1 —e—kel2
> max{eies L et . €S ,0} < ekl (1 -
i=1 (e o A7 i1 (1= 65)
< 1-6,
- kL(a—-8)

The above inequality together with Theorem 1.5 means that showing the
following will complete the proof:

> (eite) > (eite)
Z max {e?‘es — efathe . ¢ids ,O}
SC{1,....k}

ke/2 | k €;+c > e > €
<8 knzzl 1 +‘e) Z max{eies _ ¢fa . pigs ’0}.
H¢:1 (1+ec) SC{1,....k}

Since (1 4+ e+¢) /(14) > e/? for every €; > 0, it suffices to show:

> (ei+c) > (eito)

i eq+kc ;
g max{e €s — e - e¥s ,O} <

SC{1,....k}
ke > e 2 e
E e"-max{ ec€sS —e-e¥5 (5.
SC{L,....k}

This inequality holds term by term. If a right-hand term is zero
(Zies eigeg+zi€5 ei), then so is the corresponding left-hand term

(Zies(ei +co)<egtket Y gg(e+ c)) For the nonzero terms, the factor of
ek¢ ensures that the right-hand terms are larger than the left-hand terms.
Proof (Proof of Theorem 1.7). Lemma 5.2 tells us that we can determine whether
a set of privacy parameters satisfies some global differential privacy guarantee if
the € values are discretized. Notice that then we can solve OptComp exactly for
a discretized set of € values by running binary search over values of ¢* until we
find the minimum €* that satisfies (¢*, d4)-DP.

Given €1,...,€;, €%, and an additive error parameter n > 0, set a; =
[%e,J € = #-a; Vi € [k]. With these settings, the a;’s are non-negative inte-
gers and the €; values are all integer multiples of €9 = 1/k. Lemma 5.2 tells
us that we can determine if the new privacy parameters with ¢ values sat-
isfy (€*,04)-DP in time O (% Zle ei). Running binary search over values of

*

€* will then compute OptComp((€},d1),...,(€},0k),0,) = €, exactly in time

g
k 2k
O (log (% Zi:l 6i> % Zi:l 6i> .
Notice that €¢; — n/k < €; < ¢; Vi € [k]. Lemma 5.3 says that the outputted
€, is at most OptComp((€1,01), .. -, (€x; Ok), e 2. 5,) +n as desired.

The Complexity of Computing the Optimal Composition 175

References

10.

11.

Crosas, M.: The dataverse network®): an open-source application for sharing, dis-
covering and preserving data. D-lib Mag. 17(1), 2 (2011)

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, 1., Naor, M.: Our data, our-
selves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486-503. Springer, Heidelberg (2006)

Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265-284. Springer, Heidelberg (2006)

Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3-4), 211-407 (2013)

Dwork, C., Rothblum, G.N., Vadhan, S.: Boosting and differential privacy. In: 51st
IEEE Symposium on Foundations of Computer Science, pp. 51-60. IEEE (2010)
Dyer, M.: Approximate counting by dynamic programming. In: 35th ACM Sym-
posium on Theory of Computing, pp. 693-699. ACM (2003)

Ehrgott, M.: Approximation algorithms for combinatorial multicriteria optimiza-
tion problems. Int. Trans. Oper. Res. 7(1), 5-31 (2000)

King, G.: An introduction to the dataverse network as an infrastructure for data
sharing. Sociol. Methods Res. 36(2), 173-199 (2007)

Kairouz, P., Oh, S., Viswanath. P.: The composition theorem for differential pri-
vacy. In: 32nd International Conference on Machine Learning, pp. 1376-1385 (2015)
Murtagh, J., Vadhan, S.: The Complexity of Computing the Optimal Composition
of Differential Privacy (2015). http://arxiv.org/abs/1507.03113

Warner, S.L.: Randomized response: a survey technique for eliminating evasive
answer bias. J. Am. Stat. Assoc. 60(309), 63-69 (1965)

http://arxiv.org/abs/1507.03113

	The Complexity of Computing the Optimal Composition of Differential Privacy
	1 Introduction
	1.1 Our Results

	2 Technical Preliminaries
	3 Characterization of OptComp
	4 Hardness of OptComp
	5 Approximation of OptComp
	References

