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1 Introduction

Clustering – the task of grouping data points by their similarity – is one of the most commonly used
techniques for exploring data, for identifying structure in uncategorized data, and for performing
a variety of machine learning and optimization tasks. We present a new differentially private
algorithm for a clustering-related task: Given a collection S of n points in the d-dimensional
Euclidean space R

d and a parameter t reflecting a target number of points, our goal is to find a
smallest ball containing at least t of the input points, while preserving differential privacy.

1.1 Problem and motivation

We recall the definition of differential privacy. We think of a dataset as consisting of n rows from a
data universe U , where each row corresponds to one individual. Differential privacy requires that
no individual’s data has a significant effect on the distribution of what we output.

Definition 1.1. A randomized algorithm M : Un → Y is (ǫ, δ) differentially private if for every
two datasets S, S′ ∈ Un that differ on one row, and every set T ⊆ Y , we have

Pr[M(S) ∈ T ] ≤ eǫ · Pr[M(S′) ∈ T ] + δ.

The common setting of parameters is to take ǫ to be a small constant and δ to be negligible in
n, e.g., δ = 1/nlogn. For the introduction, we will assume that that δ < 1/(nd).

In this work we study the following problem under differential privacy:

Definition 1.2. A 1-cluster problem C = (Xd, n, t) consists of a d-dimensional domain Xd (where
X ⊆ R is finite and totally ordered), and parameters n ≥ t. We say that an algorithm M solves
(Xd, n, t) with parameters (∆, w) if for every input database S ∈ (Xd)n, algorithm M(S) outputs
a center c and a radius r s.t. the following holds with high probability:

1. The ball of radius r around c contains at least t−∆ input points (from S).

2. Let ropt be the radius of the smallest ball in Xd containing at least t input points. Then
r ≤ w · ropt.

The 1-cluster problem is very natural on its own, and furthermore, an algorithm for solving the
1-cluster problem can be used as a building block in other applications:

Data exploration. The 1-cluster problem has direct implications to performing data exploration
privately, and, specifically to clustering. For example, one can think of an application involving
map searches where one is interested in privately locating areas of certain “types” or “classes” of a
given population to gain some insight of their concentration over different geographical areas.

Outlier detection. Consider using a solution to the 1-cluster problem to locate a small ball
containing, say, 90% of the input points. This can be used as a basic private identification of
outliers: The outcome of the algorithm can be viewed as defining a predicate h that evaluates to
one inside the found ball and to zero otherwise. h can hence be useful for screening the inputs
to a private analysis of the set of outlier points in the data. Outliers can skew and mislead the
training of classification and regression algorithms, and hence, excluding them from further (privacy
preserving) analysis can increase accuracy.
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Furthermore, outlier detection can help in reducing the noise level required for the differentially
private analysis itself, which in many cases would result in a dramatic improvement in accuracy.
To see how this would happen, recall that the most basic construction of differentially private al-
gorithms is via the framework of global sensitivity [8] (see also Section 2 below). Noise is added
to the outcome of a computation, and the noise magnitude is scaled to the sensitivity of the com-
putation, i.e., the worst-case difference that a change of a single entry of the database may incur.
Restricting the input space to a ball of (hopefully) a small diameter typically results in a smaller
global sensitivity, and hence also significantly less noise.

Sample and aggregate. Maybe most importantly, an algorithm for the 1-cluster problem can
be used in the Sample and Aggregate technique [16]. This generic technique allows using “off the
shelf”, non-privacy preserving, analyses and transforms their outcome so as to preserve differential
privacy.

Consider a (non-private) analysis f mapping databases to (a finite subset of) Rd, and assume
that f can be well approximated by evaluating f on a random subsample taken from the database.
In the sample and aggregate framework, instead of applying the analysis f on the entire dataset,
it is applied on several (say k) random sub-samples of the input dataset, obtaining k outputs
S = {x1, x2, . . . , xk} in R

d. The outputs are then aggregated to give a privacy-preserving result z
that is “close” to some of the points in S. If f has the property that results that are in the vicinity
of “good” results are also “good”, then z will also be a “good” result. Furthermore, it suffices
that (only) the aggregation procedure would be differentially private to guarantee that the entire
construction satisfies differential privacy.

Using their aggregation function (discussed below), Nissim et al. constructed differentially pri-
vate algorithms for k-means clustering and for learning mixtures of Gaussians [16]. Smith used
the paradigm in dimension d = 1 to construct private statistical estimators [18]. One of the most
appealing features of the paradigm is it that allows transforming programs that were not built with
privacy in mind into differentially private analyses. For example, GUPT [15] is an implementation
of differential privacy that uses differentially private averaging for aggregation. The development
of better aggregators enables making the sample and aggregate paradigm more effective.

1.2 Existing techniques

As we will show (by reduction to a lower bound of Bun et al. [4]), solving the 1-cluster problem on
infinite domains is impossible under differential privacy (for reasonable choices of parameters), so
any private solution must assume a finite universe Xd ⊆ R

d. We will consider the case that Xd is a
discrete grid, identified with the real d dimensional unit cube quantized with grid step 1/(|X| − 1).

We now list a few existing techniques that can be used to solve the 1-cluster problem (Xd, n, t):

Private aggregation. Nissim, Raskhodnikova, and Smith [16] introduced an efficient algorithm
capable of identifying a ball of radius O(ropt ·

√
d/ǫ) containing at least t points, provided that

t ≥ 0.51n ≥ O(d
2

ǫ2
log2 |X|).1 There are three downsides here: (1) The error in the radius of the

1The results of [16] do not assume a finite discrete grid universe. Instead, they allow both a multiplicative
and an additive error in the radius of the found ball. The additive error in the radius is eliminated whenever
n ≥ O( d

2

ǫ2
log2 |X|). More specifically, let z0 denote the center of the smallest ball containing t > 0.51n input points.

The algorithm of [16] computes a center z s.t. that the error vector (z0 − z) has magnitude O(
ropt
ǫ

) + 1
ǫ
· e−Ω(ǫ

√
n/d)

in each coordinate.
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Needed cluster size – t
Additive loss in cluster size – ∆

Approximation factor
in radius – w

Running time

Private
aggregation [16]

t ≥ max
{

0.51n,O(d
2

ǫ2
log2 |X |)

}

∆ = 0
w = O(

√
d/ǫ) poly(n, d, log |X |)

Exponential
mechanism [14]

t ≥ ∆ = Õ(d) · log2(|X |)/ǫ w = 1 poly(n, |Xd|)

Query release
for threshold
functions [3, 4]
(d = 1 only)

t ≥ ∆ = 1
ǫ
· 2(1+o(1)) log∗ |X| · log(1

δ
)

(ignoring polylog(n) factors)
w = 1 poly(n, log |X |)

This work t ≥
√
d

ǫ
log1.5

(

1
δ

)

· 2O(log∗(|X|d))

∆ = 1
ǫ
log
(

1
δ

)

· 2O(log∗(|X|d))
w = O(

√
logn) poly(n, d, log |X |)

Table 1: Comparing different solutions from past work and our result.

found ball grows with
√
d, which might be unacceptable in high dimensions. (2) The database size

n needs to be as big as d2 log2 |X|. (3) The algorithm can only identify a majority size cluster.
If, e.g., the input points are split between several small balls such that none of them contains a
majority of the points, then the algorithm results in an uninformative center z chosen almost at
random.

Exponential mechanism. One of the first ideas for solving the 1-cluster problem is to use the
exponential mechanism of McSherry and Talwar [14] to choose among all balls: Given a radius r
s.t. there exists a ball of radius r in Xd containing t points, the exponential mechanism is capable
of identifying a ball of radius r containing t− O(log(|X|d)/ǫ) points. Privately finding the radius
r could be done using a binary search, which would increase the loss in the size of the cluster
by a factor of O(log(

√
d|X|)). Overall, this strategy results in a ball of radius ropt containing

t − Õ(d) · log2(|X|)/ǫ input points. Thus, the exponential mechanism can identify clusters even
when they do not contain a majority of the points. However, we are seeking for an algorithm with
running time poly(n, d, log |X|), while the exponential mechanism runs in time poly(n, |Xd|).

Query release for threshold functions. For the special case where d = 1, the 1-cluster problem
can be solved using algorithms for “query release for threshold functions”: On input a database
S ∈ Xn, a query release mechanism for threshold functions privately computes a database S′ ∈ X
such that for every interval I ⊆ X it holds that the number of points in S′ differs from the number
of points in S that lie in I by at most ∆. Searching for a smallest interval in S′ containing
& t points results in an interval of length 2ropt (that is, of radius ropt) containing at least t −
O(∆) input points. Known algorithms for query release for threshold functions [3, 4] achieve
∆ = max

{

2(1+o(1)) log∗ |X| · log(1δ ),polylog(n)
}

/ǫ. Note that the dependency on |X| has improved
substantially from the polylog |X| of the above methods. Bun et al.[4] also showed that ∆ must be
at least Ω(log∗ |X|) and hence this problem is impossible to solve for infinite X (we show a similar
lower bound for the 1-cluster problem).
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1.3 Our contributions

We present an algorithm for the 1-cluster problem that achieves (almost) the best of all the above.
Namely, it (a) handles a minority size cluster, of size only sublinear in d (better than all the above)
and sublogarithmic in |X| (as with query release), and loses even less than that in the size of the
cluster; and (b) avoids paying dΩ(1) factors in the error of the radius (instead paying O(

√
log n)).

See Table 1 for a comparison with past work.

Theorem 3.2 (Informal). There exists an efficient (ǫ, δ)-differentially private algorithm that, given
a set S of n points in a discretized d-dimensional cube Xd, and a parameter t, outputs a ball of
radius O

(√
log n · ropt

)

of size at least t− 1
ǫ log

(

1
δ

)

· 2O(log∗(|X|d)), provided that

t ≥
√
d

ǫ
log1.5

(

1

δ

)

· 2O(log∗(|X|d)).

We note that the algorithm of [16] works in general metric output spaces, whereas ours is
restricted to R

d. We leave open the question of extending our construction to more general settings.

2 Preliminaries

Notations. Throughout the paper, we use X to denote a finite totally ordered data universe,
and use Xd for the corresponding d-dimensional domain. We will identify Xd with the real d-
dimensional unit cube, quantized with grid step 1/(|X| − 1). Datasets are (ordered) collections of
elements from some data universe U (e.g., U = X or U = Xd). Two datasets S, S′ ∈ Un are called
neighboring if they differ on at most one entry, i.e., S′ = (S−i, x

′
i) for some 1 ≤ i ≤ |S| and x′i ∈ U .

We will construct algorithms that use several differentially private mechanisms as subroutines,
and analyze the overall privacy using the following composition theorem:

Theorem 2.1 ([6, 7]). A mechanism that permits k adaptive interactions with (ǫ, δ)-differentially
private mechanisms (and does not access the database otherwise) is (kǫ, kδ)-differentially private.

2.1 The framework of global sensitivity [8]

Definition 2.2 (Lp-Sensitivity). A function f mapping databases to R
d has Lp-sensitivity k if

‖f(S)− f(S′)‖p ≤ k for all neighboring S, S′.

The most basic constructions of differentially private algorithms are obtained by adding noise
calibrated to the global sensitivity of the computation. We will use the Laplace mechanism of [8]
to obtain noisy estimations to counting queries (e.g., how many points in S have 0 on their first
coordinate? Such a query has sensitivity 1 since changing one database element can change the
count by at most 1).

Theorem 2.3 (Laplace mechanism [8]). A random variable is distributed as Lap(λ) if its probability

density function is f(y) = 1
2λ exp(− |y|

λ ). Let ǫ > 0, and let f : U∗ → R
d be a function of L1-

sensitivity k. The mechanism A that on input D ∈ U∗ adds independently generated noise with
distribution Lap(kǫ ) to each of the d output terms of f(D) preserves (ǫ, 0)-differential privacy.
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We will also use the Gaussian mechanism to obtain (noisy) averages of vectors in R
d. See

Appendix A for details.

Theorem 2.4 (Gaussian Mechanism [6]). Let ǫ, δ ∈ (0, 1), and let f : U∗ → R
d be a function

of L2-sensitivity k. Denote σ ≥ k
ǫ

√

2 ln(1.25/δ). The mechanism A that on input D ∈ U∗ adds
independently generated noise with distribution N (0, σ2) to each of the d output terms of f(D)
preserves (ǫ, δ)-differential privacy.

2.2 Stability based techniques [7, 19, 3]

Given a database S ∈ U∗, consider the task of choosing a “good” solution out of a possible set of
solutions F , and assume that this “goodness” is quantified using a quality function q : U∗×F → N

assigning “scores” to solutions from F (w.r.t. the given database S). One of the most useful
constructions in differential privacy – the exponential mechanism [14] – shows that such scenarios
are compatible with differential privacy, and that an approximately optimal solution f ∈ F can be
privately identified provided that q has low-sensitivity and that |S| & log |F |.

By limiting our attention to cases where the number of possible solutions with “high” scores
is limited, it is possible to relax the requirement that |S| & log |F |, using what has come to be
known as stability based techniques. In this work we use stability based techniques for the following
task: Given a dataset S ∈ Un and a partition P of U , find a set p ∈ P containing (approximately)
maximum number of elements of S. This task can be privately solved using algorithms for query
release for point functions.

Theorem 2.5 ([3, 20]). Fix ǫ, δ. Let U be a data universe, let P be a partition of U , and let S ∈ Un

be an input database. There exists an (ǫ, δ)-differentially private algorithm s.t. the following holds.
Let T denote the maximum number of input elements (from S) that are contained in a set in P . If
T ≥ 2

ǫ log(
4n
βδ ), then with probability at least (1 − β) the algorithm returns a set q ∈ P containing

at least T − 4
ǫ log(

2n
β ) elements from S.

3 Our algorithms

In this paper we explore the following problem under differential privacy:

Definition 3.1 (The Problem of a Minimal Ball Enclosing t Points). Given a set of n points in the
Euclidean space R

d and an integer t ≤ n, the goal is to find a ball of minimal radius ropt enclosing
at least t input points.

To enhance readability, we are using this section as an informal presentation of our results,
giving most of the ideas behind our construction. We will also briefly discuss some intuitive ideas
which fail to solve the task at hand, but are useful for the presentation. Any informalities made
hereafter will be removed in the sections that follow.

We start by recalling known facts (without concern for privacy) about the problem of a minimal
ball enclosing t points:

1. It is NP-hard to solve exactly [17].

2. Agarwal et al. [1] presented an approximation scheme (PTAS) which computes a ball of radius
(1 + α)ropt containing t points in time O(n1/αd).
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3. There is a trivial algorithm for computing a ball of radius 2ropt containing t points: Consider
only balls centered around input points, and return the smallest ball containing t points.

Indeed, let B denote a ball of radius ropt enclosing at least t input points, and observe that
a ball of radius 2ropt around any point in B contains all of B. Hence, there exists a ball of
radius 2ropt around an input point containing at least t points.

We present a (roughly)
√
log n-approximation algorithm satisfying differential privacy:

Theorem 3.2. Let n, t, β, ǫ, δ be s.t.

t ≥ O

(√
d

ǫ
log

(

1

β

)

log

(

nd

βδ

)

√

log

(

1

βδ

)

· 9log∗(2|X|
√
d)

)

.

There exists a poly(n, d, 1/β, log |X|)-time (ǫ, δ)-differentially private algorithm that solves the 1-
cluster problem (Xd, n, t) with parameters (∆, w) and error probability β, where w = O

(√
log n

)

and

∆ = O

(

1

ǫ
log
(n

δ

)

log

(

1

β

)

· 9log∗(2|X|
√
d)

)

.

In words, there exists an efficient (ǫ, δ)-differentially private algorithm that (ignoring logarithmic
factors) is capable of identifying a ball of radius Õ(ropt) containing t− Õ(1ǫ ) points, provided that

t ≥ Õ(
√
d/ǫ).

Remark 3.3. For simplicity, in the above theorem we identified Xd with the real d-dimensional
unit cube, quantized with grid step 1/(|X| − 1). Our results trivially extend to domains with grid
step ℓ and axis length L = maxX −minX by replacing |X| with L/ℓ.

Remark 3.4. Observe that the parameters t,∆ in Theorem 3.2 have some dependency on the
domain size |X|. Although this dependency is very weak, it implies that our construction cannot be
applied to instances with infinite domains. In Section 5 we show that this is a barrier one cannot
cross with differential privacy, and that privately solving the 1-cluster problem on infinite domains
is impossible (for reasonable choices of parameters).

Observation 3.5. Our construction could be used as a heuristic for solving a k-clustering-type
problem: Letting t = n/k, we can iterate our algorithm k times and find a collection of (at most) k
balls that cover most of the data points. Using composition to argue the overall privacy guarantees,

we can have (roughly) k . (ǫn)2/3

d1/3
.

Towards proving Theorem 3.2 we design two algorithms. The first, GoodRadius, is given as
input a collection S of n points and a parameter t, and returns a radius r such that there exists a
ball of radius r containing & t of the points in S and, furthermore, r is within a constant factor of
the smallest such ball.

The second algorithm, GoodCenter, is given as input the set S of input points, a parameter t,
and a radius r computed by GoodRadius. The algorithm outputs a center z of a ball of radius Õ(r)
containing & t of the points in S. So, a simplified overview of our construction is:

Input: A set S of n points in Xd, and an integer t ≤ n.

Step 1: Identify a radius r = O(ropt) s.t. there is a ball of radius r containing & t input points.

Step 2: Given r, locate a ball of radius O
(√

log n · r
)

containing & t input points.

6



3.1 Finding the cluster radius: algorithm GoodRadius

Let S = (x1, . . . , xn) be a database containing n points in Xd. Given S and t ≤ n, our current
task is to approximate the minimal radius ropt for which there is a ball of that radius containing
at least t points from S.

We start with the following notations: For a radius r ≥ 0 and a point p ∈ R
d, let Br(p) denote the

number of input points contained in a ball of radius r around p. That is, Br(p) = |{i : ‖xi−p‖2 ≤ r}|.
Recall that we are looking for (a radius of) a ball containing & t points from S, and that a ball

containing t points is just as good as a ball of the same radius containing 100t points. Hence, we
modify our notation of Br(p) to cap counts at t:

B̄r(p) = min
{

Br(p) , t
}

.

Using that notation, our goal is to approximate ropt = min
{

r ≥ 0 : ∃p ∈ R
d s.t. B̄r(p) ≥ t

}

.
Recall that a direct computation of ropt is NP-hard, and let us turn to the simple 2-approximation
algorithm that considers only balls centered at input points. To that end, for every r ≥ 0 define
L(r) as the maximum number of input points contained in a ball of radius r around some input
point (capped at t). That is,

L(r) = max
xi∈S

{

B̄r(xi)
}

.

As we next explain, using that notation, it suffices to compute a radius r s.t.

(i) L(r) & t and (ii) L(r/2) < t.

We now argue that such an r satisfies the requirements of GoodRadius. By (i) there exists a ball
of radius r containing & t input points, so we just need to argue that r ≤ O(ropt). Assume towards
contradiction that ropt < r/4, and hence there exists a subset D ⊆ S of t input points which are
contained in a ball of radius r/4. Observe that a ball radius r/2 around any point in D contains
all of D, and therefore L(r/2) ≥ t, contradicting (ii).

So we only need to compute a radius r satisfying properties (i) and (ii) above. However, the
function L has high sensitivity, and hence it is not clear how to privately estimate L(r) for a given
radius r. To see why L has high sensitivity, consider a set S consisting of the unit vector ~e1 along
with t/2 copies of the zero vector and t/2 copies of the vector 2 · ~e1. So, a ball of radius 1 around ~e1
contains all of the points, and L(1) = t. However, if we were to switch the vector ~e1 to 2 · ~e1, then
the ball around ~e1 is no longer valid (since we only consider balls centered around input points),
and every existing ball of radius 1 contains at most t/2 point. So the sensitivity of the function L
is Ω(t).

In order to reduce the sensitivity of L we now redefine it using averaging (a related idea was
also used in [16]). For r ≥ 0 redefine L as

L(r) =
1

t
max

distinct i1,...,it∈[n]

{

B̄r(xi1) + . . . + B̄r(xit)
}

.

That is, to compute L(r) we construct a ball of radius r around every input point, count the number
of points contained in every such ball (counts are capped at t), and compute the average of the t
biggest counts.

To see that the redefined function L(r) has low sensitivity, consider a set of n input points and
a ball of radius r around every input point. Adding a new input point can increase by at most 1

7



the number of points contained within every existing ball. In addition, we now have a new ball
centered around the new input point, and as we cap counts at t, we count at most t points in this
ball. Overall, adding the new input point can increase L(r) by at most t · 1t + t

t = 2. The function
L(r) has therefore sensitivity O(1).

Utility wise, we are still searching for an r s.t.

(i) L(r) & t and (ii) L(r/2) < t.

Again, such an r is useful since, by (i), there exists a ball of radius r containing & t input points,
and by (ii) we have that r ≤ 4ropt: Otherwise (if ropt < r/4) there exists a subset D ⊆ S of t
points which are contained in a ball of radius r/4. A ball of radius r/2 around every point in D
contains all of D and therefore there are t balls of radius r/2 containing t points. Hence, L(r/2) ≥ t,
contradicting (ii).

So, the function L has low sensitivity, and we are searching for an r s.t. L(r) & t and L(r/2) < t.
This can easily be done privately using binary search with noisy estimates of L for the comparisons,
but as there are (roughly) log(

√
d|X|) comparisons such a binary search would only yield a radius r

s.t. L(r) & t− log(
√
d|X|).2 In Section 4.1 we will use a tool from [3] (recursion on binary search)

to improve the guarantee to L(r) & t− 9log
∗(
√
d|X|).

Lemma 3.6 (Algorithm GoodRadius). Let S ∈ (Xd)n be a database containing n points from Xd

and let t, β, ǫ, δ be parameters. There exists a poly(n, d, log |X|)-time (ǫ, δ)-differentially private
algorithm that on input S outputs a radius r ∈ R s.t. with probability at least (1− β):

1. There is a ball in Xd of radius r containing at least t−O
(

1
ǫ log(

1
βδ ) · 9log

∗(|X|·d)
)

input points.

2. Let ropt denote the radius of the smallest ball in Xd containing at least t points from S. Then
r ≤ 4 · ropt.

3.2 Locating a cluster: algorithm GoodCenter

Let r be the outcome of Algorithm GoodRadius (so r = O(ropt) and there exists a ball of radius
r containing & t input points). Given the radius r, our next task is to locate, with differential
privacy, a small ball in R

d containing & t input points. We begin by examining two intuitive (but
unsuccessful) suggestions for achieving this goal.

First Attempt. One of the first ideas for using the given radius r in order to locate a small ball
is the following: Divide each axis into intervals of length ≈ r, identify (for every axis) a “heavy”
interval containing lots of input points, and return the resulting axis-aligned box. Such a “heavy”
interval could be privately identified (on every axis) using known stability-based techniques [7, 19, 3].

The main problem with our first attempt is that the resulting box might be empty. This is
illustrated in Figure 1, where a “heavy” interval is identified on each axis s.t. their intersection is
empty.

2Alternatively, an r s.t. L(r) & t and L(r/2) < t could be privately computed using the sparse vector technique,
which also yields a radius r s.t. L(r) & t− log(

√
d|X|).
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Figure 1: An illustration of “heavy” intervals s.t. their intersection is empty.

Second Attempt. The failure point of our first strategy was the attempt to locate the cluster
in an axis by axis manner. Trying to avoid that pitfall, consider the following idea for identifying
a “heavy” box in R

d: Let us denote by P ⊆ S the guaranteed set of & t input points which are
contained in a ball of radius r in R

d. Observe that the set P is of diameter 2r, and divide each axis
into randomly shifted intervals of length ≈ 4dr. For every axis we have that the projection of P
onto that axis is contained within one interval w.p. & 1− 1/(2d), and using the union bound, this
is the case for all axes simultaneously w.p. & 1/2. That is, without looking at the data, we have
partitioned R

d into disjoint boxes of side length ≈ 4dr s.t. at least one of them contains & t input
points, and such a “heavy” box can be privately identified using known stability-based techniques.
While the resulting box is indeed “heavy”, it is of side-length ≈ dr (i.e., of diameter ≈ d1.5r), which
is not what we are looking for.

Towards a Solution. Assume (for now) that we have privately identified a (concisely described)
subset X ′ of X such that S′ = S ∩X ′ has & t points and is contained in a ball of radius r. Our
current goal is, therefore, to identify a small ball enclosing all of S′. One option (which still does not
preserve privacy, but has potential) it the following: Compute the average c of the points in S′ and
return a ball of radius r around c. This option has merit since computing the average of input points
can be made private by adding random noise to every coordinate, with magnitude proportional to
the diameter of our subset S′ divided by its size |S′| & t (the intuition is that random noise of
that magnitude masks any possible change limited to one input element, see Theorem 2.4). In
our case, we would like to use r (the diameter of S′) as such a bound, and hence obtain a ball of
radius (roughly) 2r. However, all of our discussion above only holds with high probability, say with
probability 1−β. In particular, the diameter of S′ is only bounded with probability 1−β. In order
for the privacy analysis to go through, we need this bound to hold with probability at least 1− δ,
i.e., set β = δ. Since δ is typically a negligible function of n, and since our running time depends
on 1/β, this is unacceptable.

As we next explain, our first (failed) attempt comes in handy for bounding the necessary noise
magnitude. For the intuition, recall that our first attempt failed because we were misled by points
outside the small cluster. By limiting our attention only to points in S′ (which are clustered), this
is no longer an issue.

Assume that the set S′ contains & t points and that its diameter is r, and consider the following
procedure: Partition every axis of Rd into intervals of length r. On every axis, at least one such
interval contains (the projection of) & t/2 points, and we can find such a “heavy” interval I using
known stability-based techniques. Afterwards, we can extend its length by r to the left and to the
right to obtain an interval Î of length 3r containing all of S′. See Figure 2 for an illustration. So,

9



I {
Î

Figure 2: An illustration of an interval I of containing some of the points of S′, and the corresponding
interval Î of length 3|I| containing all of S′ (since S′ is of diameter r = |I|).

on every axis we identified an interval of length 3r containing all of the points in S′. Hence, the
intersection of all those intervals is a box B of diameter ≈

√
dr containing all of S′.

The thing that works in our favor here is that the above procedure always returns a box B of
diameter ≈

√
dr, even if our assumptions on the set S′ are invalid (in which case the box B might

be empty, but its diameter is the same). Now consider the set S̃ where we truncate all points in
S′ to lie in B. Observe that (w.h.p.) we have that S′ ⊆ B and S̃ = S′, and that, in any case, the
diameter of S̃ is at most ≈

√
dr. We can therefore privately release the noisy average of the points

in S̃. Assuming that |S′| is big enough, the incurred noise is of magnitude . r, which results in a
ball of radius O(r) containing all of S′.

To summarize, it suffices to privately “ignore” all input points but & t points falling in some
ball of radius ≈ r.

Final Step. Our final task is to identify a subset S′ ⊆ S of ≈ t input elements that are contained
in a ball of radius roughly r. Using the Johnson-Lindenstrauss transform we project our input
points onto R

k, where k ≈ log(n) (w.h.p. point distances are preserved up to a constant factor).
We denote the projection of a point x ∈ R

d as f(x) ∈ R
k. By the properties of the JL-transform,

it suffices to identify a part of the input S′ ⊆ S s.t. its projection f(S′) := {f(x) : x ∈ S′} is
contained within a ball of radius ≈ r in R

k.
As we next explain, our second (unsuccessful) attempt could be used to identify such a subset

S′ ⊆ S. The intuition is that our second attempt incurred an unacceptable error factor of poly(d)
in the cluster radius when locating the ball in R

d, and this error factor is mitigated by locating the
ball in the lower-dimensional space R

k (where k = O(log n)).
As above, let P ⊆ S be the guaranteed set of & t input points contained within a ball of radius

r in R
d. Note that (w.h.p.) the set f(P ) := {f(x) : x ∈ P} is contained within a ball of radius . r

in R
k, and assume that this is the case. Partition every axis i of Rk into randomly shifted intervals

Ii = {Iij}j∈Z of length ≈ 4r. On every axis i, with probability & 1/2 the projection of f(P ) on the

ith axis is completely contained within one interval in Ii. With probability & 0.5k = 1/poly(n),
this is the case for all of the k axes simultaneously, and f(P ) is completely contained within an axis
aligned box whose projection onto every axis i of Rk is in Ii. In other words, we have partitioned R

k

into disjoint k-dimensional axis aligned boxes of side-length ≈ 4r s.t. with noticeable probability (we
will later use repetitions to amplify this probability, and use the sparse vector technique to privately
choose one of the repetitions) at least one of them contains & t (projected) input points. Such a
“heavy” rectangle B could be privately identified using stability based techniques (its diameter is

10



≈ r
√
k ≈ r

√
log n). Finally, we define the set S′ = {x ∈ S : f(x) ∈ B} as the set of points that

are mapped (by the JL transform) into the rectangle B. We now have that S′ contains & t input
elements, since the box B is “heavy” in R

k, and the diameter S′ is . r
√
log n, since that is the

diameter of B = f(S′). The complete construction appears in Algorithm GoodCenter (algorithm 2).

Lemma 3.7 (Algorithm GoodCenter). Let S ∈ (Rd)n be a database containing n points in R
d, and

let r, t, β, ǫ, δ be parameters s.t. t ≥ O
(√

d
ǫ log( 1β ) log(

nd
βǫδ )

√

log( 1
βδ )
)

. There exists a poly(n, d, 1/β)-

time (ǫ, δ)-differentially private algorithm that on input S, r, t outputs a point z ∈ R
d s.t. the follow-

ing holds. If there exists a ball of radius r in R
d containing at least t points from S, then with proba-

bility at least 1−β, the ball of radius O
(

r
√
log n

)

around z contains at least t−O
(

1
ǫ log(

1
β ) log(

n
βǫδ )

)

of the points in S.

4 Details of analysis

4.1 Algorithm GoodRadius

As we explained in Section 3.1, it is possible to compute an approximation for the optimal radius
using a binary search on a carefully chosen low sensitivity function. We use the following tool
from [3] in order to reduce the sample cost of that binary search.

Definition 4.1. A function Q(·) over a totally ordered domain is quasi-concave if for every i ≤
ℓ ≤ j we have Q(ℓ) ≥ min{Q(i), Q(j)}.
Definition 4.2 ([3]). A Quasi-Concave Promise Problem consists of an ordered set F of possible
solutions, a database S ∈ Un, a sensitivity-1 quality function Q : Un × F → R, an approximation
parameter α, and another parameter p (called a quality promise).

If Q(S, ·) is quasi-concave and if there exists a solution f ∈ F for which Q(S, f) ≥ p then a
good output for the problem is a solution g ∈ F satisfying Q(S, g) ≥ (1− α)p. The outcome is not
restricted otherwise.

We will use Algorithm RecConcave from [3] to solve quasi-concave promise problems while
preserving differential privacy:

Theorem 4.3 (Algorithm RecConcave [3]). Let U be a domain, let F be a totally ordered (finite)
set of solutions, and let Q : Un × F → R be a sensitivity-1 quality function. Let α, β, ǫ, δ be
parameters. There exists an (ǫ, δ)-differentially private algorithm s.t. the following holds. On input
a database S and a quality promise p for which Q(S, ·) is quasi-concave and

max
f∈F
{Q(S, f)} ≥ p ≥ 8log

∗ |F | · 36 log
∗ |F |

αǫ
log
(12 log∗ |F |

βδ

)

,

the algorithm outputs a solution f ∈ F s.t. Q(S, f) ≥ (1− α)p with probability at least (1− β).

Remark 4.4. The computational efficiency of algorithm RecConcave depends on the quality func-
tion Q. It can be made efficient in cases where for every database S ∈ Un, the totally ordered set
of solutions F can be partitions into k = poly(n) intervals of sequential solutions F1, F2, . . . , Fk s.t.
for every i and for every f, f ′ ∈ Fi we have Q(S, f) = Q(S, f ′). In such cases, the algorithm runs
in time poly(n, log |F |), assuming that the partition of F , and that evaluating Q, can be done in
time poly(n, log |F |).
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Algorithm 1 GoodRadius

Input: Database S ∈ (Xd)n, desired ball volume t, failure probability bound β, and privacy
parameters ǫ, δ.

Algorithm used: Algorithm RecConcave for privately solving quasi-concave problems.
We denote the minimal quality promise needed for algorithm RecConcave (for our choice

of parameters) as Γ = 8log
∗(2|X|

√
d) · 144 log∗(2|X|

√
d)

ǫ log
(

24 log∗(2|X|
√
d)

βδ

)

.

Notation: For x ∈ Xd and 0 ≤ r ∈ R let Br(x, S) denote the number of input points
contained in a ball of radius r around x. For r < 0, let Br(x, S) = 0. Let B̄r(x, S) =
min{Br(x, S), t}.

1. For r ∈ R define L(r, S) = 1
t max
distinct i1,...,it∈[n]

(

B̄r(xi1 , S) + . . .+ B̄r(xit , S)
)

.

% That is, for every input point x ∈ S we count the number of input points contained in a ball of radius

r around x, capped at t. We define L(r, S) as the average of the t largest counts.

% Note that L(·, S) is a non-decreasing function.

2. Let L̃(0, S) = L(0, S) + Lap(4/ǫ). If L̃(0, S) > t − 2Γ − 4
ǫ ln(2/β), then halt and return

z = 0.
% Step 2 handles the case where there exists a cluster of radius zero containing & t of the input points.

3. Define the quality function Q(r, S) = 1
2 min {t− L (r/2, S) , L(r, S) − t+ 4Γ} .

4. Apply algorithm RecConcave with privacy parameters ( ǫ2 , δ), utility parameters

(α= 1
2 ,

β
2 ), quality function Q, and quality promise Γ to choose and return z ∈

{

0, 1
2|X| ,

2
2|X| ,

3
2|X| , . . . ,

⌈√
d
⌉}

.

% For simplicity, we identify Xd with the real d-dimensional unit cube, quantized with grid step

1/(|X| − 1). Our results trivially extend to domains with grids steps ℓ by choosing the output out of
{

0, ℓ
2
, 2ℓ

2
, 3ℓ

2
, . . . ,

⌈

|X|ℓ
√
d
⌉}

.

We now proceed with the privacy analysis of algorithm GoodRadius.

Lemma 4.5. Algorithm GoodRadius preserves (ǫ, δ)-differential privacy.

Proof. Algorithm GoodRadius interacts with its input database in step 2 using the Laplace mech-
anism and in step 4 using algorithm RecConcave. In order to show that those two interactions
preserve privacy, we will now argue that L(r, ·) is of sensitivity 2 (for every fixed r). To see why
this is intuitively correct, consider a set of n input points and a ball of radius r around every input
point. Adding a new input point can increase by at most 1 the number of points contained within
every such ball. In addition, we now have a new ball centered around the new input point, and as
we cap counts at t, we count at most t points in this ball. Overall, adding the new input point can
increase L(r, ·) by at most t · 1t + t

t = 2.
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More formally, let S, S′ be two neighboring databases and assume that S′ = S \ {y} ∪ {y′} and
that S = S′ \ {y′} ∪ {y}. We have that

L(r, S) = max
distinct

x1,...,xt∈S

1

t

t
∑

i=1

B̄r(xi, S)

≤ max
distinct

x1,...,xt−1∈S\{y}

1

t

(

t+

t−1
∑

i=1

B̄r(xi, S)
)

= max
distinct

x1,...,xt−1∈S′\{y′}

1

t

(

t+

t−1
∑

i=1

B̄r(xi, S)
)

≤ max
distinct

x1,...,xt−1∈S′\{y′}

1

t

(

t+

t−1
∑

i=1

[B̄r(xi, S′) + 1]

)

≤ max
distinct

x1,...,xt−1∈S′

1

t

(

t+

t−1
∑

i=1

[B̄r(xi, S′) + 1]

)

≤ L(r, S′) + 2.

Similarly, L(S, r) ≥ L(S′, r) − 2, and L(r, ·) is of sensitivity 2. Hence, the use of the laplace
mechanism on step 2 preserves ( ǫ2 , 0)-differential privacy. Moreover, 1

2L(r, ·) is of sensitivity 1,
and, therefore, Q(r, ·) is of sensitivity 1 (defined as the minimum of two sensitivity 1 expressions).
The application of algorithm RecConcave preserves ( ǫ2 , δ)-differential privacy. Overall, algorithm
GoodRadius is (ǫ, δ)-differentially private by Composition Theorem 2.1.

We now turn to proving the correctness of algorithm GoodRadius.

Lemma 4.6. Let GoodRadius be executed on a database S containing n points in Xd and on
parameters t, β, ǫ, δ, and let Γ be as defined in algorithm GoodRadius. With probability at least
(1−β), the output z satisfies: (1) There exists a ball in Xd of radius z containing at least (t−4Γ−
4
ǫ ln(1/β)) input points from S. (2) Let ropt denote the radius of the smallest ball in Xd containing
at least t input points from S. Then z ≤ 4ropt.

Proof. Note that if L(0, S) ≥ t−2Γ, then GoodRadius fails to output z = 0 in step 2 with probability
at most β/2. We continue the proof assuming that L(0, S) < t− 2Γ.

We now argue that algorithm RecConcave returns (w.h.p.) a value z s.t. Q(z, S) is significant.
We need to show that Q(·, S) is quasi-concave, and that there exists an r s.t. Q(r, S) ≥ Γ. To
see that Q(·, S) is quasi-concave, note that L(·, S) is non-decreasing (as a function of r), and that,
hence, for every r1 < r2 < r3

Q(r2, S) = min

{

t− L(r2/2, S)

2
,
L(r2, S)− t+ 4Γ

2

}

≥ min

{

t− L(r3/2, S)

2
,
L(r1, S)− t+ 4Γ

2

}

≥ min {Q(r3, S), Q(r1, S)} .
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To see that there exists an r s.t. Q(r, S) ≥ Γ, recall that L(0, S) = L
(

1
2|X| , S

)

< t − 2Γ, and

note that L(
√
d, S) = n ≥ t. Now consider the smallest r ∈

{

0, 1
2|X| ,

2
2|X| ,

3
2|X| , . . . ,

⌈√
d
⌉}

s.t.

L(r, S) ≥ t− 2Γ. For that r it holds that

Q(r, S) =
1

2
min{t− L(r/2, S), L(r, S) − t+ 4Γ} ≥ 1

2
min{2Γ, 2Γ} = Γ.

By the properties of algorithm RecConcave, with probability at least (1− β/2) the output z is
s.t. Q(z, S) ≥ Γ

2 . Hence, by the definition of Q we have that

(a) L(z, S) ≥ t− 4Γ and (b) L(z/2, S) ≤ t− Γ

2
.

Recall that L(z, S) averages B̄z(x, S) over t points x ∈ S. Hence, by (a), there exists a ball of
radius z in Xd that contains at least t− 4Γ input points from S.

Let P ⊆ S be a set of t input points, and assume towards contradiction that there is a ball of
radius z/4 in Xd that contains all of the points in P . Now note that a ball of radius z/2 around
every point in P contains all of the points in P . Hence, L(z/2, S) ≥ t. This contradicts (b). We
conclude that Algorithm GoodRadius returns a good radius with probability at least 1− β.

4.2 Additional preliminaries

Before formally presenting algorithm GoodCenter, we introduce several additional tools.

4.2.1 Composition theorems

Recall that the privacy guaranties in composition theorem 2.1 deteriorates linearly with the number
of interactions. By bounding the expected privacy loss in each interaction (as opposed to worst-case),
Dwork et al. [11] showed the following stronger composition theorem, where privacy deteriorates
(roughly) as

√
kǫ+ kǫ2 (rather than kǫ).

Theorem 4.7 ([11]). Let ǫ, δ, δ′ > 0. A mechanism that permits k adaptive interactions with
(ǫ, δ)-differentially private mechanisms (and does not access the database otherwise) is (ǫ′, kδ+ δ′)-
differentially private, for ǫ′ = 2kǫ2 + ǫ

√

2k ln(1/δ′).

4.2.2 The sparse vector technique [9]

Consider a large number of low sensitivity functions f1, f2, . . . , fk, which are given (one by one) to
a data curator (holding a database S). Given a dataset S, Algorithm AboveThreshold by Dwork
et al. [9] identifies the queries fi whose value fi(S) is greater than some threshold t:

Theorem 4.8 (Algorithm AboveThreshold). There exists an (ǫ, 0)-differentially private algorithm
A such that for k rounds, after receiving a sensitivity-1 query fi : U∗ → R, algorithm A either
outputs ⊤ and halts, or outputs ⊥ and waits for the next round. If A was executed with a database
S ∈ U∗ and a threshold parameter t, then the following holds with probability (1−β): (i) If a query
fi was answered by ⊤ then fi(S) ≥ t − 8

ǫ log(2k/β); (ii) If a query fi was answered by ⊥ then
fi(S) ≤ t+ 8

ǫ log(2k/β).
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4.2.3 Geometric tools

We will use the following technical lemma to argue that if a set of points P is contained within a
ball of radius r in R

d, then by randomly rotating the Euclidean space we get that (w.h.p.) P is
contained within an axis-aligned rectangle with side-length ≈ r/

√
d.

Lemma 4.9 (e.g., [21]). Let P ∈ (Rd)m be a set of m points in the d dimensional Euclidean space,
and let Z = (z1, . . . , zd) be a random orthonormal basis for R

d. Then,

Pr
Z

[

∀x, y ∈ P : ∀1 ≤ i ≤ d : |〈x− y, zi〉| ≤ 2
√

ln(dm/β)/d · ‖x− y‖2
]

≥ 1− β.

We will use the Johnson Lindenstrauss transform to embed a set of points S ∈ R
d in R

k, k ≪ d
while preserving point distances.

Lemma 4.10 (JL transform [12]). Let S ⊆ R
d be a set of n points, and let η ∈ (0, 1/2). Let A be a

k× d matrix whose entries are iid samples from N (0, 1), and define f : Rd → R
k as f(x) = 1√

k
Ax.

Then,

Pr
A

[

∀x, y ∈ S it holds that:
(1− η)‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1 + η)‖x − y‖22

]

≥ 1− 2n2 exp

(

−η2k

8

)

.

4.3 Algorithm GoodCenter

Given the outcome of Algorithm GoodRadius, we now show that algorithm GoodCenter privately
locates a small ball containing & t points. We start with its privacy analysis.

Lemma 4.11. Algorithm GoodCenter preserves (ǫ, δ)-differential privacy.

Proof. Algorithm GoodCenter interacts with its input database on steps 2, 5, 7, 9c, 11. Steps 2, 5
initialize and use Algorithm AboveThreshold, which is ( ǫ4 , 0)-differentially private. Step 7 invokes

the algorithm from Theorem 2.5 (to choose a “heavy” box B), which is ( ǫ4 ,
δ
4 )-private. Step 9c makes

d applications of the algorithm from Theorem 2.5. By theorem 4.7 (composition), this preserves
( ǫ4 ,

δ
4)-differential privacy. Step 11 invokes the Gaussian mechanism, which is ( ǫ4 ,

δ
4)-private. Overall,

GoodCenter is (ǫ, δ)-differentially private by composition.

We now proceed with the utility analysis of algorithm GoodCenter.

Lemma 4.12. Let GoodCenter be executed on a database S containing n points in R
d with r, t, β, ǫ, δ

s.t.

t ≥ O

(√
d

ǫ
log

(

nd

βδ

)

√

log(
1

δ
)

)

.

If there exists a ball of radius r in R
d containing at least t points from S, then with probability at

least 1−β, the output ŷ in Step 11 is s.t. at least t−O
(

1
ǫ log(

n
β )
)

of the input points are contained

in a ball of radius O
(

r
√

log(nβ )
)

around ŷ.

Remark 4.13. The dependency in 1/β can easily be removed from the radius of the resulting ball
by applying GoodCenter with a constant β and amplifying the success probability using repetitions.
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Proof. First note that by Theorem 4.10 (the JL transform), with probability at least 1 − β, for
every x, y ∈ S it holds that ‖x − y‖ and ‖f(x) − f(y)‖ are similar up to a multiplicative factor of
(1± 1

2). We continue the proof assuming that this is the case. Hence, there exists a ball of radius
3r in R

k containing at least t points from {f(x) : x ∈ S}. Denote this set of (at least t) projected
points as W .

Clearly, the projection of the set W onto any axis of Rk lies in an interval of length 3r. Recall
that on Step 3a we partition every axis into randomly shifted intervals {Ai

j} of length 300r. Hence,

for every axis i with probability 0.99 it holds that the projection of W onto the ith axis is contained
within one of the {Ai

j}’s. The probability that this holds simultaneously for all of the k axes is

0.99k ≥ β
2n . Note that in such a case there exists a rectangle in {B~j} containing all of the points in

W , and hence, the corresponding query q (defined on step 5) satisfies q(S) ≥ t. So, every (randomly
constructed) query q satisfies q(S) ≥ t with probability β/(2n).

Although the iteration of steps 3–6 might be repeated less than 2n log(1/β)/β times, imagine
that all of the (potential) 2n log(1/β)/β queries were prepared ahead of time (and some may have
never issued to AboveThreshold). With probability at least (1−β) at least one such query q satisfies
q(S) ≥ t. We continue with the proof assuming that this is the case. Thus, by the properties
of algorithm AboveThreshold, with probability at least (1 − β), the loop on Step 6 ended with
AboveThreshold returning ⊤. Moreover, in that iteration we have that q(S) ≥ t− 200

ǫ log(2n/β).
Thus, by the definition of q, after Step 6 there exists a rectangle in {B~j} containing at least

t− 200
ǫ log(2n/β) projected input elements.

By Theorem 2.5, with probability at least (1− β), the box B chosen on step 7 contains at least
t− 216

ǫ log(2nβ ) projected input elements. We continue the proof assuming that this is the case, and
denote the set of input points from S that are mapped into B as D.

Note that B is a box of diameter 300r
√
k. Hence, by our assumption on the projection f , for

any x, y ∈ D it holds that ‖x− y‖ ≤ 450r
√
k. On Step 8 we generate a random basis Z of Rd. By

Lemma 4.9, with probability at least 1−β, for every x, y ∈ S and for every z ∈ Z it holds that the

projection of (x − y) onto z is of length at most 2
√

ln(dnβ )/d · ‖x − y‖. Assuming that this is the

case, the projection of D onto any axis z ∈ Z lies in an interval of length p = 900r
√

k ln(dnβ )/d.

Therefore, when partitioning every axis zi ∈ Z into intervals Ii of length p (on step 9a), at least one

interval I ∈ Ii contains at least half of the points in D. Assuming that |D| ≥ 40
√
d

ǫ log(6ndβδ )
√

ln(8δ ),

for every axis i Theorem 2.5 ensures that with probability at least (1 − β/d) the chosen interval
Ii ∈ Ii (on step 9c) contains at least one input elements from D. Recall that the projection of D
onto any axis zi lies in an interval of length p. Hence, letting Îi be Ii after extending it by p on
each side, we ensure that Îi contains all of the points in D. So, the box in R

d whose projection
onto every axis zi is Îi contains all of the points in D. Recall that (on step 10) we defined C to be
the bounding sphere of that box, and hence, C contains all of D, and D′ = D ∩ C = D.

Let y denote the average of the point in D′ = D, and observe that a ball of radius 450r
√
k

around y contains all of the points in D. The output on step 11 is computed using the Gaussian
mechanism as the noisy average of the points in D′ = D, where the noise magnitude in every

coordinate is proportional to the diameter of C (which is 5400r
√

k · ln(dnβ )). By the properties of

the Gaussian mechanism (see appendix A), with probability at least (1− β) the output ŷ satisfies
ŷ = y + η, where η is a random noise vector whose every coordinate is distributed as N (0, σ2) for

some σ ≤ 345600r
ǫ|D′|

√

2k ln(dnβ ) ln(8δ ). Observe that ‖η‖22 is the sum of the squares of d independent
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normal random variables η1, . . . , ηd. Using tail bounds for the normal distribution, provided that

|D| ≥ 691200
√
d

ǫ ln(2ndβ )
√

ln(8δ ), with probability at least (1 − β) we have that every |ηi| is at most

r
√

k/d. Assuming that this is the case, we get that ‖η‖2 ≤ r
√
k, and hence ‖ŷ− y‖2 ≤ r

√
k. Using

the triangle inequality, we get that a ball of radius 451r
√
k around the output ŷ contains all of the

points in D, where |D| ≥ t− 216
ǫ log(2nβ ).

Overall, assuming that t ≥ 691416
√
d

ǫ log(6ndβδ )
√

log(8δ ), with probability at least (1 − 8β), the

output ŷ is s.t. at least t − 216
ǫ log(2nβ ) of the input points are contained inside a ball of radius

451r
√
k around ŷ.

Theorem 3.2 now follows by combining lemmas 4.6, 4.5, 4.11, and 4.12.

5 On the impossibility of solving the 1-Cluster problem on infinite
domains

In this section we will show that solving the 1-cluster problem on infinite domains (with reason-
able parameters) is impossible under differential privacy. Our lower bound is obtained through a
reduction from the simple interior point problem defined below.

Definition 5.1. An algorithm A : Xn → X solves the interior point problem on X with error
probability β if for every D ∈ Xn,

Pr[minD ≤ A(D) ≤ maxD] ≥ 1− β,

where the probability is taken over the coins of A. The sample complexity of the algorithm A is the
database size n.

We call a solution x with minD ≤ x ≤ maxD an interior point of D. Note that x need not be
a member of the database D. As was shown in [4], privately solving the interior point problem on
a domain X requires sample complexity that grows with |X|. In particular, privately solving this
problem over an infinite domain is impossible.

Theorem 5.2 ([4]). Fix any constant 0 < ǫ < 1/4. Let δ(n) ≤ 1/(50n2). Then for every positive
integer n, solving the interior point problem on X with probability at least 3/4 and with (ǫ, δ(n))-
differential privacy requires sample complexity n ≥ Ω(log∗ |X|).

As we will now see, solving the 1-Cluster problem over a domain X (or over Xd for any d ≥ 1)
implies solving the interior point problem on X.

Theorem 5.3. Let β, ǫ, δ, n, t,∆, w be such that ∆ < t ≤ n. If there exists an (ǫ, δ)-private
algorithm that solves the 1-cluster problem (X,n, t) with parameters (∆, w) and error probability β,
then there exist a (2ǫ, 2δ)-private algorithm that solves the interior point problem on X with error
probability 2β using sample complexity

m = n+ 8log
∗(4w) · 144 log

∗(4w)
ǫ

log
(12 log∗(4w)

βδ

)

.
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Algorithm 2 GoodCenter

Input: Database S ∈ R
d containing n points, radius r, desired number of points t, failure proba-

bility β, and privacy parameters ǫ, δ.

1. Let k = 46 log(2n/β) and let f : Rd → R
k be a mapping as in Theorem 4.10 (the JL transform).

2. Instantiate algorithm AboveThreshold (Theorem 4.8) with database S, privacy parameter
ǫ/4, and threshold t− 100

ǫ log(2n/β).

3. For every axis 1 ≤ i ≤ k of Rk:

(a) Choose a random ai ∈ [0, 300r]. For j ∈ Z, let Ai
j be the interval [ai + j · 300r, ai + (j +

1) · 300r).
% {Ai

j}j∈Z is a partition of the ith axis into (randomly shifted) intervals of length 300r.

4. For every ~j = (j1, . . . , jk) ∈ Z
k let B~j ⊆ R

k be the box whose projection on every axis i is Ai
ji
.

5. Issue query q(S) = max~j |f(S) ∩B~j| to AboveThreshold. Denote the received answer as a.
% That is, q(S) is the maximal number of (projected) input points that are contained within one box.

6. If this step was reached more than 2n log(1/β)/β times, then halt and fail. Otherwise, if
a = ⊥ then goto Step 3.

% That is, for at most 2n log(1/β)/β rounds, we define a partition of Rk into disjoint rectangles {B~j}, and
query algorithm AboveThreshold to identify an iteration in which there is a rectangle in {B~j} containing

& t points.

7. Use Theorem 2.5 (stability based techniques) with privacy parameters ( ǫ4 ,
δ
4) to choose a box

B ∈ {B~j} approximately maximizing |f(S) ∩B|. Denote D = {x ∈ S : f(x) ∈ B}.
% That is, D is the set of input points from S that are mapped into B by the mapping f .

8. Let Z = (z1, . . . , zd) be a random orthonormal basis of Rd, and denote p = 900r
√

k ln(dnβ )/d.

9. For each basis vector zi ∈ Z:

(a) Partition the axis in direction zi into intervals Ii = {[j · p , (j + 1) · p) : j ∈ Z}.
(b) Define the quality q(I) of every I ∈ Ii as the number of points x ∈ D s.t. their projection

onto zi falls in I.

(c) Use Theorem 2.5 (stability based techniques) with privacy parameters

(

ǫ

10
√

d ln(8/δ)
, δ
8d

)

to choose an interval Ii ∈ Ii with large q(·), and let Îi denote that chosen interval after
extending it by p on each side (that is Îi is of length 3p).

10. Let c be the center of the box in R
d whose projection on every axis zi ∈ Z is Îi, and let C be

the ball of radius 2700r
√

k ln(dnβ ) around c. Define D′ = D ∩C.

% Observe that we defined D′ = D ∩ C, even though we expect that D ⊆ C. This will be useful in the

privacy analysis, as we now have a deterministic bound on the diameter of D′.

11. Use the Gaussian mechanism with privacy parameters ( ǫ4 ,
δ
4) to compute and return the noisy

average of the points in D′ (see Appendix A for details).
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Algorithm 3 IntPoint

Input: Database S ∈ Xm containing m points from X.

Algorithm used: Algorithm A for privately solving the 1-cluster problem (X,n, t) with
parameters (∆, w) and error probability β.

1. Sort the entries of S and let D be a multiset containing the middle n entries of S.

2. Apply A on D to obtain a center c ∈ X and a radius r ∈ R. Let I ⊆ X denote the interval
of length 2r centered at c. If r = 0 (i.e., I contains only the point c), then halt and return
c.

% If A succeeded, then the interval I contains at least 1 input points from D.

3. Partition I into intervals of length r/w, and let J be the set of all edge points of the
resulting intervals.

% As I contains points from D, at least one of the above intervals contains points from D. We will

show that this interval cannot contain all of D, and hence, one of its two edge points is an interior

point of D (and of S).

4. Define q : X∗ ×X → N as q
(

(x1, . . . , xn), a
)

= min
{

|{i : xi ≤ a}| , |{i : xi ≥ a}|
}

. Apply
algorithm RecConcave on the database S with privacy parameters (ǫ, δ), utility parameters
(α= 1

2 , β), quality function q, and quality promise m−n
2 to choose and return j ∈ J .

% If a point j∗ ∈ J is an interior point of D, then it is also an interior point of S with quality

q(S, j∗) ≥ m−n
2

(since D contains the middle n elements of S). Hence, w.h.p., algorithm RecConcave

identifies an interior point of S.

Roughly speaking, Theorem 5.3 states that any solution for the 1-cluster problem (with a
reasonable parameter w) implies a solution for the interior point problem. Let us introduce the
following notation for iterated exponentials:

tower(0) = 1 and tower(j) = 2tower(j−1).

Corollary 5.4. Fix any constants 0 < ǫ, β < 1/8, and let δ(n) ≤ 1/(200n2). Also let ∆, t, w be
s.t. ∆ < t ≤ n and w ≤ 1

4 tower(log(n
1/5/40)). For every (ǫ, δ)-differentially private algorithm that

solves the 1-cluster problem (X,n, t) with parameters (∆, w) and error probability β, it holds that
n ≥ Ω(log∗ |X|).

Hence, in any solution to the 1-cluster problem where w is smaller than an exponential tower in
n, the sample size n must grow with |X|. In particular, privately solving such 1-cluster problems
over infinite domains is impossible.

Proof of Corollary 5.4. Denote δ(n) = 1/(200n2), and let A be a (ǫ= 1
10 , δ(n))-differentially private

algorithm that solves the 1-cluster problem (X,n, t) with parameters (∆, w) and error probabil-
ity β= 1

10 , where ∆ < t ≤ n and w ≤ 1
4 tower(log(n

1/5/40)). By Theorem 5.3, there exist a
(2ǫ=1

5 , 2δ(n))-differentially private algorithm that solves the interior point problem on X with
error probability 2β=1

5 using sample complexity

m = n+ 8log
∗(4w) · 1440 log∗(4w) log

(

24000n2 log∗(4w)
)

.
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Using the assumption that w ≤ 1
4 tower(log(n

1/5/40)), we get that m ≤ 2n, and therefore 2δ(n) =
1

100n2 ≤ 1
50m2 . Theorem 5.2 now states that m ≥ Ω(log∗ |X|), and hence, n ≥ Ω(log∗ |X|).

Proof of Theorem 5.3. The proof is via the construction of algorithm IntPoint. For the privacy
analysis, observe that on step 1 the algorithm constructs a database D containing the n middle
elements of the input database S. Fix two neighboring databases S1, S2 of size m, and consider
the databases D1,D2 containing the middle n elements of S1, S2 respectively. As S1, S2 differ in at
most one element, so does D1,D2 (our algorithms ignore the order of their input database). Hence,
applying a private computation onto D preserves privacy. Algorithm IntPoint interacts with D
using algorithm A (on step 1), and interacts with S using algorithm RecConcave (on step 4). Hence,
by composition (see Theorem 2.1), Algorithm IntPoint is (2ǫ, 2δ)-differentially private.

As for the utility analysis, let S ∈ Xm be an instance to the interior point problem, and consider
the execution of algorithm IntPoint on S. Let D be the multiset defined on step 1 of the execution,
and let c, r, I be the center, the radius, and the interval obtained on step 2. By the properties of
algorithm A, with probability 1 − β, the interval I (of length 2r centered at c) contains at least
t−∆ ≥ 1 input points from D, and moreover, 2r ≤ 2w ·ropt where 2ropt is the length of the smallest
interval containing t points from D. That is, every interval containing t points from D is of length
at least 2r/w. We continue with the analysis assuming that this is the case.

If r = 0, then the interval I contains only the point c, and c is therefore an interior point of D
(and of S). We hence proceed with the analysis assuming that r > 0.

On step 3 we partition the interval I (of length 2r) into intervals of length r/w. Let us denote
them as I = {Ii}. Since I contains at least 1 point from D, there exists an interval Iℓ ∈ I that
contains a point from D. In addition, Iℓ is of length r/w, and can hence contain at most t − 1
points from D. So, there exists an interval Iℓ ∈ I containing some of the points in D, but not all
of them. One of its edge points must be, therefore, an interior point of D. Thus, the set J of all
end points of the intervals in I (defined on step 3) contains an interior point of D.

Recall that the input database S contains at least m−n
2 elements which are bigger than the

elements in D and m−n
2 elements which are smaller. Hence, there exists a point j∗ ∈ J s.t.

q(S, j∗) ≥ m−n
2 , and the quality promise given to algorithm RecConcave is valid. Observe that

|J | ≤ 4w (this is the size of the solution set given to algorithm RecConcave). Hence, assuming
that

m ≥ n+ 8log
∗(4w) · 144 log

∗(4w)
ǫ

log
(12 log∗(4w)

βδ

)

,

with probability at least 1− β, the output j ∈ J is s.t. q(S, j) ≥ m−n
4 , and j is an interior point of

S as required.

6 Sample and aggregate

Consider f : U∗ → Xd mapping databases to Xd. Fix a database S ∈ U∗, and assume that evaluat-
ing f on a random sub-sample S′ (containing iid samples from S) results in a good approximation
to f(S). Our goal is to design a private analogue to f .

Definition 6.1. Fix a function f : U∗ → Xd and a database S ∈ U∗. A point c ∈ Xd is an
(m, r, α)-stable point of f on S if for a database S′ containing m iid samples from S we have
Pr[‖f(S′) − c‖2 ≤ r] ≥ α. If such a point c exists,we say that f is (m, r, α)-stable on S. We will
call r the radius of the stable point c.
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In the sample and aggregate framework [16], the goal is to privately identify an (m, r, α)-stable
point of a function f on the given input database S. Intuitively, if r is small and α is large, then
such a point would be a good (private) substitute for (the non-private value) f(S). Note that a
stable point with small r and with large α might not exist.

Theorem 6.2 ([16] restated, informal). Fix a desired stability parameter m, and let n ≥ 4d2m.
There exists an efficient differentially private algorithm that given a database S ∈ Un and a function

f : U∗ → Xd, identifies an
(

m,O(
√
d · ropt) +

√
d · e−Ω(

√
n
m

1
d), 0.51

)

-stable point of f on S, where

ropt is the smallest r s.t. f is (m, r, 0.51)-stable on S.

Note the following caveats in Theorem 6.2: (1) The function f might only be (m, r, 0.51)-stable
on S for very large values of r, in which case the similarity to (the non-private) f(S) is lost.
(2) The error in the radius of the stable point grows with

√
d, which might be unacceptable in high

dimensions.3 Using Theorem 3.2 it is possible to avoid those two caveats.

Theorem 6.3. Fix privacy parameters ǫ, δ, failure parameter β, and desired stability parameters
m,α. Let

n

m
≥ O





√
d · log

(

1
β

)

α ·min{α, ǫ} log
(

nd

αβǫδ

)

√

log

(

1

αβǫδ

)

· 9log∗(2|X|
√
d)



 .

There exists an efficient (ǫ, δ)-differentially private algorithm that given a database S ∈ Un and a
function f : U∗ → Xd, with probability at least (1− β), identifies an (m,O(ropt ·

√
log n), α8 )-stable

point of f on S, where ropt is the smallest r s.t. f is (m, r, α)-stable on S.

Theorem 6.3 is proved using algorithm SA. Similarly to [16], the idea is to apply f onto k random
subsamples of the input database S (obtaining outputs Y = {y1, y2, . . . , yk} in Xd), and then to
privately identify a point z ∈ Xd which is close to points in Y . We will use the following lemma to
argue that the random subsampling step maintains privacy:

Lemma 6.4 ([13, 4]). Fix ǫ ≤ 1 and let A be an (ǫ, δ)-differentially private algorithm operating
on databases of size m. For n ≥ 2m, construct an algorithm Ã that on input a database D of
size n subsamples (with replacement) m rows from D and runs A on the result. Then Ã is (ǫ̃, δ̃)-
differentially private for ǫ̃ = 6ǫm/n and δ̃ = exp(6ǫm/n)4mn · δ.

Lemma 6.5. Algorithm SA is (ǫ, δ)-differentially private.

Proof. Let A denote an algorithm identical to SA, except without the iid sampling on step 1 (the
input to A is the database D), and observe that A preserve (ǫ, δ)-differential privacy. To see this,
let D,D′ be two neighboring databases, and consider the execution of A on D and D′. Next, note
that there is at most one index i s.t. Di differs from D′

i. Hence, Y and Y ′ are neighboring databases,
and privacy is preserved by the properties of algorithmM.

Algorithm SA (including the iid sampling) is (ǫ, δ)-differentially private by Lemma 6.4 (iid
sampling).

3Let c be an (m, r, 0.51)-stable point of f on S. In [16], the returned point c′ is s.t. that the error vector (c− c′)

has magnitude O(ropt) + e−Ω(
√

n
m

1

d ) in each coordinate.
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Algorithm 4 SA

Input: Database S containing n elements from U , function f : U∗ → Xd, privacy param-
eters ǫ, δ, failure parameter β, and desired stability parameters m,α. We denote k , n

9m .

Algorithm used: An (ǫ ≤ α
72 , δ ≤

βǫ
3 )-private algorithm M for solving the 1-cluster

problem (Xd, k, t) for every t ≥ tmin, with parameters (∆≤t/2, w) and error probability β
3 .

1. LetD be the outcome of n/9 iid samples from S. Partition D into k databases D1,D2, ...,Dk

of size m each.

2. Let Y = {y1 = f(D1), y2 = f(D2), . . . , yk = f(Dk)}.
3. ApplyM on the database Y with parameter t = αk

2 to get a point z. Output z.

In the utility analysis of algorithm SA we first show that a ball around the returned point z ∈ Xd

contains & α fraction of points in Y = {y1 = f(D1), y2 = f(D2), . . . , yk = f(Dk)}. Afterwards, we
will argue that this ball also contains & α mass of the underlying distribution (i.e., the distribution
defined by applying f on a random subsample of S). The straightforward approach for such an
argument would be to use VC bounds stating that for any ball (in particular, the ball around z) it
holds that the fraction of points from Y in it is close to the weight of the ball w.r.t. the underlying
distribution. However, for this argument to go through we would need |Y | to be as big as the
VC dimension of the class of d-dimensional balls, which is d + 1. This seems wasteful since our
private algorithm for locating the ball only requires the generation of a small cluster of size ≈

√
d.

Instead, will make use of the inherent generalization properties of differential privacy, first proven
by Dwork et al. [5]. Specifically, we will use the following theorem of Bassily et al. [2] stating that
any predicate computed with differential privacy automatically provides generalization:

Theorem 6.6 ([2]). Let ǫ ∈ (0, 1/3), δ ∈ (0, ǫ/4), and n ≥ 1
ǫ2
log(4ǫδ ). Let A : Un → 2U be an

(ǫ, δ)-differentially private algorithm that operates on a database of size n and outputs a predicate
h : U → {0, 1}. Let D be a distribution over U , let S be a database containing n i.i.d. elements
from D, and let h← A(S). Then,

Pr
S,A

[|h(S)− h(D)| > 18ǫ] ≤ δ

ǫ
,

where h(S) is the empirical average of h on S, and h(D) is the expectation of h over D.

Lemma 6.7. Let SA be executed on a function f and on a database S of size n such that f is
(m, r, α)-stable on S. Assume SA has access to an (ǫ ≤ α

72 , δ ≤
βǫ
3 )-private algorithmM for solving

the 1-cluster problem (Xd, k, t) for every t ≥ tmin with parameters (∆≤t/2, w) and error probability
β
3 . With probability at least (1− β), the output z is an (m,wr, α8 )-stable point of f on S, provided
that

n ≥ m ·O
(

tmin

α
+

1

α2
log

(

12

β

))

.

Proof. Let algorithm SA be executed on a function f and on a database S such that f is (m, r, α)-
stable on S. Let c ∈ Xd be a stable point of f on S, and let Br(c, Y ) denote the number of points
in Y within distance r from c.
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By the definition of the stable point c, for every yi (defined on step 2) we have that Pr[‖yi−c‖2 ≤
r] ≥ α. Hence, by the Chernoff bound, Pr[Br(c, Y ) < αk

2 ] ≤ exp(−αk
8 ) ≤ β/3.

Assume that Br(c, Y ) ≥ αk
2 , i.e., there are at least αk

2 = t points in Y within distance r from c.
Hence, by the properties of algorithm M, with probability at least (1 − β/3) the output z is s.t.
Bwr(z, Y ) ≥ t

2 = αk
4 .

We now argue that the ball of radius wr around z not only contains a lot of points from Y ,
but is also “heavy” w.r.t. the underlying distribution (i.e., the distribution defined by applying f
on a random subsample of S). To that end, consider the predicate h : Xd → {0, 1} defined as
h(x) = 1 iff ‖x− z‖2 ≤ wr. That is, h evaluates to 1 exactly on points inside the ball of radius wr
around z. So h(Y ) ≥ α

4 . By Theorem 6.6, assuming that k ≥ 5184
α2 log(12β ), with probability at least

1 − δ/ǫ ≥ 1 − β/3 we have that for a random subsample S′ containing m i.i.d. samples from S, it
holds that Pr[h(f(S′)) = 1] = Pr[‖f(S′)− z‖2 ≤ wr] ≥ α

4 − 18ǫ ≥ α
8 .

All in all, provided that n = 9mk ≥ 18m
α tmin +

46646m
α2 log(12β ), with probability at least (1− β),

the output z is an (m,wr, α8 )-stable point of f on S.

Theorem 6.3 now follows from combining lemmas 6.5, and 6.7 with Theorem 3.2.
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A Noisy average of vectors in R
d

Theorem 2.4 (The Gaussian Mechanism [6]). Let ǫ, δ ∈ (0, 1), and let f : X∗ → R
d be a function

of L2-sensitivity k. Denote σ ≥ k
ǫ

√

2 ln(1.25/δ). The mechanism A that on input D ∈ X∗ adds
independently generated noise with distribution N (0, σ2) to each of the d output terms of f(D)
preserves (ǫ, δ)-differential privacy.
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We will use the Gaussian mechanism to obtain (noisy) averages of vectors in R
d: Let g : Rd →

{0, 1} be a predicate over vectors in R
d, and denote

∆g = max
v ∈ R

d s.t.
g(v) = 1

‖v‖2.

Given a multiset of vectors V , we are interested in approximating
∑

v∈V :g(v)=1 v

|{v∈V :g(v)=1}| . Since both the
numerator and the denominator have bounded L2-sensitivity, we could estimate each of them sepa-
rately using the Gaussian mechanism. Alternatively, we could directly analyze the L2-sensitivity of

g(V ) ,
∑

v∈V :g(v)=1 v

|{v∈V :g(v)=1}| and apply the Gaussian mechanism directly to g(V ). This has the advantage

of having only an additive Gaussian error, rather than a noisy numerator/denominator. It is easier
to analyze.

We now bound the L2 sensitivity of g(V ). Let V be a multiset of vectors in R
d and let

V ′ = V ∪ {u} for some vector u. If g(u) = 0 then g(V ) = g(V ′) and ‖g(V ) − g(V ′)‖2 = 0. We
assume therefore that g(u) = 1.

Let m = |{v ∈ V : g(v) = 1}|. We need to analyze the L2 norm of the vector ν =
1
m

(

∑

v∈V :g(v)=1 v
)

− 1
m+1

(

u+
∑

v∈V :g(v)=1 v
)

. To that end, observe that the ith coordinate of

ν is

νi =
1

m





∑

v∈V :g(v)=1

vi



− 1

m+ 1



ui +
∑

v∈V :g(v)=1

vi





=

(

∑

v∈V :g(v)=1 vi

)

−mui

m(m+ 1)

=
g(V )i − ui
m+ 1

.

Hence,

‖ν‖2 =
√

(ν1)2 + · · · (νd)2 =
1

m+ 1

√

〈u, u〉 − 2〈u, g(V )〉+ 〈g(V ), g(V )〉 ≤ 2∆g

m+ 1
,

where the last inequality is since

|〈u, g(V )〉| = |u1 · g(V )1 + · · ·+ ud · g(V )d|

=

∣

∣

∣

∣

∣

∣

u1
m





∑

v∈V :g(v)=1

v1



+ · · ·+ ud
m





∑

v∈V :g(v)=1

vd





∣

∣

∣

∣

∣

∣

≤ 1

m

∑

v∈V :g(v)=1

|〈u, v〉|

≤ 1

m

∑

v∈V :g(v)=1

‖u‖2 · ‖v‖2 ≤ (∆g)
2,

and similarly

|〈g(V ), g(V )〉| =

∣

∣

∣

∣

∣

∣

〈

1

m

∑

v∈V :g(v)=1

v, g(V )

〉

∣

∣

∣

∣

∣

∣

=
1

m

∣

∣

∣

∣

∣

∣

∑

v∈V :g(v)=1

〈v, g(V )〉

∣

∣

∣

∣

∣

∣

≤ (∆g)
2.
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Algorithm 5 NoisyAVG

Input: Multiset V of vectors in R
d, predicate g, parameters ǫ, δ.

1. Set m̂ = |{v ∈ V : g(v) = 1}|+ Lap(2/ǫ) − 2
ǫ ln(2/δ). If m̂ ≤ 0 then output ⊥ and halt.

2. Denote σ =
8∆g

ǫm̂

√

2 ln(8/δ), and let η ∈ R
d be a random noise vector with each coordinate

sampled independently from N (0, σ2). Return g(V ) + η.

So, for any V and V ′ = V ∪ {u} we have that ‖g(V ) − g(V ′)‖2 ≤ 2∆g

m+1 , where m = |{v ∈ V :
g(v) = 1}|. Therefore, for any two neighboring sets V1 = V ∪ {u} and V2 = V ∪ {v} we have that

‖g(V1)− g(V2)‖2 ≤ 4∆g

m+1 by the triangle inequality.
We will use algorithm NoisyAVG (algorithm 5) for privately obtaining (noisy) averages of vectors

in R
d.

Observation A.1. Let V and g be s.t. m = |{v ∈ V : g(v) = 1}| ≥ 16
ǫ ln( 2

βδ ). With probability at
least (1 − β) algorithm NoisyAVG(V ) returns g(V ) + η where η is a vector whose every coordinate

is sampled i.i.d. from N (0, σ2) for some σ ≤ 16∆g

ǫm

√

2 ln(8/δ).

Observation A.2. The requirement that maxv:g(v)=1 ‖v‖2 ≤ ∆g could easily be replaced by

max
u,v:g(u)=g(v)=1

‖u− v‖2 ≤ ∆g.

That is, the predicate g may define a subset of Rd of diameter ≤ ∆g, not necessarily around the
origin.

Proof. Let c ∈ R
d be s.t. g(c) = 1 and ‖c − v‖2 ≤ ∆g for every v ∈ R

d s.t. g(v) = 1. Given a
vector set V , we could apply algorithm NoisyAVG on the set Ṽ = {v− c : v ∈ V } with the predicate
g̃ : Rd → {0, 1} s.t. g̃(v) = g(v + c), and add the vector c to the result.

Theorem A.3. Algorithm NoisyAVG is (ǫ, δ)-differentially private.

Proof. For a given parameter σ, let us denote by η(σ) a random vector whose every coordinate
is sampled iid from N (0, σ2). Now fix two neighboring sets V, V ′ and a predicate g. Denote

m = |{v ∈ V : g(v) = 1}|, and recall that ‖g(V ) − g(V ′)‖2 ≤ 4∆g

m . The standard analysis of the

Gaussian mechanism (see, e.g., [10]) shows that for any F ⊆ R
d and for any σ ≥ 8∆g

ǫm

√

2 ln(8/δ) it
holds that

Pr
η(σ)

[g(V ) + η(σ) ∈ F ] ≤ eǫ/2 · Pr
η(σ)

[g(V ′) + η(σ) ∈ F ] +
δ

6
.

We will use m̂(V ) to denote m̂ as it is on step 1 of the execution of NoisyAVG on V . Note that
Pr[m̂(V ) > m] = Pr[Lap(2ǫ ) >

2
ǫ ln(2/δ)] ≤ δ

2 . Hence, for any set of outputs F s.t. ⊥ /∈ F we have
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that

Pr[NoisyAVG(V ) ∈ F ]

=

∫ ∞

0
Pr[m̂(V ) = m̃] · Pr[NoisyAVG(V ) ∈ F |m̂(V ) = m̃]dm̃

≤ δ

2
+

∫ m

0
Pr[m̂(V ) = m̃] · Pr[NoisyAVG(V ) ∈ F |m̂(V ) = m̃]dm̃

=
δ

2
+

∫ m

0
Pr[m̂(V ) = m̃] · Pr

[

g(V ) + η

(

8
√
2

ǫm̃

√

ln(
8

δ
)

)

∈ F

]

dm̃

≤ δ

2
+

∫ m

0
eǫ/2 · Pr[m̂(V ′) = m̃] ·

(

eǫ/2 Pr

[

g(V ′) + η

(

8
√
2

ǫm̃

√

ln(
8

δ
)

)

∈ F

]

+
δ

6

)

dm̃

≤ δ

2
+

∫ ∞

0
eǫ/2 · Pr[m̂(V ′) = m̃] ·

(

eǫ/2 Pr
[

NoisyAVG(V ′) ∈ F |m̂(V ′) = m̃
]

+
δ

6

)

dm̃

≤ δ + eǫ · Pr[NoisyAVG(V ′) ∈ F ].

For a set of outputs F s.t. ⊥ ∈ F we have

Pr[NoisyAVG(V ) ∈ F ] = Pr[NoisyAVG(V ) = ⊥] + Pr[NoisyAVG(V ) ∈ F \ {⊥}]
≤ eǫ Pr[NoisyAVG(V ′) = ⊥] + eǫ Pr[NoisyAVG(V ′) ∈ F \ {⊥}] + δ

= eǫ Pr[NoisyAVG(V ′) ∈ F ] + δ.
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