
Chapter 7
The Complexity of Differential Privacy

Salil Vadhan

Abstract Differential privacy is a theoretical framework for ensuring the privacy
of individual-level data when performing statistical analysis of privacy-sensitive
datasets. This tutorial provides an introduction to and overview of differential pri-
vacy, with the goal of conveying its deep connections to a variety of other topics in
computational complexity, cryptography, and theoretical computer science at large.
This tutorial is written in celebration of Oded Goldreich’s 60th birthday, starting
from notes taken during a minicourse given by the author and Kunal Talwar at the
26th McGill Invitational Workshop on Computational Complexity [1].
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7.1 Introduction and Definition

7.1.1 Motivation
Suppose you are a researcher in the health or social sciences who has collected a
rich dataset on the subjects you have studied, and want to make the data available to
others to analyze as well. However, the dataset has sensitive information about your
subjects (such as disease diagnoses, financial information, or political affiliations),
and you have an obligation to protect their privacy. What can you do?

The traditional approach to such privacy problems is to try to “anonymize” the
dataset by removing obvious identifiers, such as name, address, and date of birth,
and then share the anonymized dataset. However, it is now well understood that
this approach is ineffective, because the data that remains is often still sufficient to
determine who is who in the dataset, given appropriate auxiliary information. This
threat is not hypothetical; there have now been many high-visibility demonstrations
that such “re-identification” attacks are often quite easy to carry out in practice,
using publicly available datasets as sources of auxiliary information [84].

A more promising approach is to mediate access to the data through a trusted
interface, which will only answer queries posed by data analysts. However, ensur-
ing that such a system protects privacy is nontrivial. Which queries should be per-
mitted? Clearly, we do not want to allow queries that target a particular individual
(such as “Does Sonny Rollins have sensitive trait X?”), even if they are couched as
aggregate queries (e.g., “How many people in the dataset are 84-year-old jazz saxo-
phonists with trait X?”). Even if a single query does not seem to target an individual,
a combination of results from multiple queries can do so (e.g., “How many people
in the dataset have trait X?” and “How many people in the dataset have trait X and
are not 84-year-old jazz saxophonists?”). These attacks can sometimes be foiled by
only releasing approximate statistics, but Dinur and Nissim [31] exhibited powerful
“reconstruction attacks” which showed that, given sufficiently many approximate
statistics, one can reconstruct almost the entire dataset. Thus, there are fundamental
limits to what can be achieved in terms of privacy protection while providing useful
statistical information, and we need a theory that can assure us that a given release
of statistical information is safe.

Cryptographic tools such as secure function evaluation and functional encryption
do not address these issues. The kind of security guarantee such tools provide is that
nothing is leaked other than the outputs of the functions being computed. Here we
are concerned about the possibility that the outputs of the functions (i.e., queries) al-
ready leak too much information. Indeed, addressing these privacy issues is already
nontrivial in a setting with a trusted data curator, whereas the presence of a trusted
third party trivializes most of cryptography.

Differential privacy is a robust definition of privacy protection for data-analysis
interfaces that:

• ensures meaningful protection against adversaries with arbitrary auxiliary in-
formation (including ones that are intimately familiar with the individuals they
are targeting),
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• does not restrict the computational strategy used by the adversary (in the spirit
of modern cryptography), and

• provides a quantitative theory that allows us to reason about how much statisti-
cal information is safe to release and with what accuracy.

Following the aforementioned reconstruction attacks of Dinur and Nissim [31],
the concept of differential privacy emerged through a series of papers by Dwork
and Nissim [35], Blum, Dwork, McSherry, and Nissim [13], and Dwork, McSherry,
Nissim, and Smith [48], with the latter providing the elegant indistinguishability-
based definition that we will see in the next section.

In the decade since differential privacy was introduced, a large algorithmic litera-
ture has developed showing that differential privacy is compatible with a wide vari-
ety of data-analysis tasks. It also has attracted significant attention from researchers
and practitioners outside theoretical computer science, many of whom are inter-
ested in bringing differential privacy to bear on real-life data-sharing problems. At
the same time, it has turned out to be extremely rich from a theoretical perspective,
with deep connections to many other topics in theoretical computer science and
mathematics. The latter connections are the focus of this tutorial, with an emphasis
on connections to topics in computational complexity and cryptography. For a more
in-depth treatment of the algorithmic aspects of differential privacy, we recommend
the monograph of Dwork and Roth [36].

7.1.2 The Setting
The basic setting we consider is where a trusted curator holds a dataset x about n
individuals, which we model as a tuple x ∈ X n, for a data universe X . The interface
to the data is given by a (randomized) mechanism M : X n × Q → Y , where Q is
the query space and Y is the output space of M. To avoid introducing continuous
probability formalism (and to be able to discuss algorithmic issues), we will assume
that X , Q, and Y are discrete.

The picture we have in mind is as follows:

X n 3

x1

x2

...

xn

−→ M

q
←−

q(x)
−→

Analyst/

adversary

for a dataset x = (x1, . . . , xn).

7.1.3 Counting Queries
A basic type of query that we will examine extensively is a counting query, which is
specified by a predicate on rows q : X → {0, 1}, and is extended to datasets x ∈ X n

by counting the fraction of people in the dataset satisfying the predicate:
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q(x) =
1
n

n∑
i=1

q(xi) ,

(Note that we abuse notation and use q for both the predicate on rows and the func-
tion that averages q over a dataset.) The examples mentioned above in Section 7.1.1
demonstrate that it is nontrivial to ensure privacy even when answering counting
queries, because answers to several counting queries can be combined to reveal in-
formation about individual rows.

There are several specific families of counting queries that are important for sta-
tistical analysis and will come up many times in this tutorial:

Point Functions (Histograms): Here X is an arbitrary set and for each y ∈ X we
consider the predicate qy : X → {0, 1} that evaluates to 1 only on input y.
The family Qpt = Qpt(X ) consists of the counting queries corresponding to
all point functions on data universe X . (Approximately) answering all of the
counting queries in Qpt amounts to (approximately) computing the histogram
of the dataset.

Threshold Functions (CDFs): Here X is a totally ordered set, and we consider the
set Qthr = Qthr(X ) of threshold functions. That is, for each y ∈ X , Qthr contains
counting query corresponding to the function qy(z) that outputs 1 iff z ≤ y.
(Approximately) answering all of the counting queries in Qthr is tantamount to
(approximating) the cumulative distribution function of the dataset.

Attribute Means (1-way Marginals): Here X = {0, 1}d, so each individual has
d Boolean attributes, and Qmeans = Qmeans(d) contains the counting queries
corresponding to the d coordinate functions q j : {0, 1}d → {0, 1} defined by
q j(w) = w j for j = 1, . . . , d. Thus, (approximately) answering all of the queries
in Qmeans = Qmeans(d) amounts to (approximately) computing the fraction of
the dataset possessing each of the d attributes. These are also referred to as the
(1-way) marginal statistics of the dataset.

Conjunctions (Contingency Tables): Here again X = {0, 1}d, and for an inte-
ger t ∈ {0, 1, 2, . . . , d}, we consider the family Qconj

t = Qconj
t (d) of count-

ing queries corresponding to conjunctions of t literals. For example, Qconj
2 (5)

contains the function q(w) = w2 ∧ ¬w4, which could represent a query like
“what fraction of individuals in the dataset have lung cancer and are non-
smokers?”. Notice that Qconj

1 (d) consists of the queries in Qmeans(d) and their
negations, and Qconj

d (d) contains the same queries as Qpt({0, 1}d). We have
|Qconj

t (d)| =
(

d
t

)
· 2t = dΘ(t) when t ≤ d1−Ω(1). We also consider the family

Qconj = Qconj(d) = ∪d
t=0Q

conj
t (d), which is of size 3d. The counting queries

in Qconj
t are also called t-way marginals and answering all of them amounts

to computing the t-way contingency table of the dataset. These are important
queries for statistical analysis, and indeed the answers to all queries in Qconj is
known to be a “sufficient statistic” for “logit models.”

Arbitrary Queries: Sometimes we will not impose any structure on the data uni-
verse X or query family Q except possibly to restrict attention to families of
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efficiently computable queries. For the latter, we encode elements of both X
and Q as strings, so X = {0, 1}d, Q = {qy : X → {0, 1}}y∈{0,1}s for some
s, d ∈ N, where qy(w) = Eval(y,w) for some polynomial-time evaluation func-
tion Eval : {0, 1}s × {0, 1}d → {0, 1}.

7.1.4 Differential Privacy
The definition of differential privacy requires that no individual’s data has much
effect on what an adversary sees. That is, if we consider any two datasets x and x′

that differ on one row (which we will denote x ∼ x′), the output distribution of M
on x should be “similar” to that of M on x′. Specifically, we require that

∀T ⊆ Y , Pr[M(x, q) ∈ T ] ≤ (1 + ε) · Pr[M(x, q) ∈ T ] .

The reverse relationship (Pr[M(x′, q) ∈ T ] ≤ (1 + ε) · Pr[M(x, q) ∈ T ]) follows by
symmetry, swapping x and x′. The choice of a multiplicative measure of closeness
between distributions is important, and we will discuss the reasons for it later. It is
technically more convenient to use eε instead of (1 + ε), because the former behaves
more nicely under multiplication (eε1 · eε2 = eε1+ε2 ). This gives the following formal
definition:

Definition 7.1.1 ((Pure) differential privacy [48]). For ε ≥ 0, we say that a ran-
domized mechanism M : X n ×Q→ Y is ε-differentially private if, for every pair of
neighboring datasets x ∼ x′ ∈ X n (i.e., x and x′ differ in one row) and every query
q ∈ Q, we have

∀T ⊆ Y , Pr[M(x, q) ∈ T ] ≤ eε · Pr[M(x′, q) ∈ T ] .

Equivalently,

∀y ∈ Y , Pr[M(x, q) = y] ≤ eε · Pr[M(x′, q) = y] .

Here we typically take ε as small, but nonnegligible (not cryptographically small),
for example, a small constant, such as ε = 0.1. Smaller ε provides better privacy,
but as we will see, the definition is no longer useful when ε < 1/n. We will also
think of n as known and public information, and we will study asymptotic behavior
as n→ ∞.

We will often think of the query as fixed, and remove q from notation. In this
section, we consider answering only one query; a major focus of subsequent sections
will be the problem of answering many queries.

7.1.5 Basic Mechanisms
Before discussing the definition further, let us see some basic constructions of dif-
ferentially private mechanisms.
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Randomized response. Let q : X → {0, 1} be a counting query, and x ∈ X n be a
dataset. For each row xi, let

yi =

q(xi) with prob. (1 + ε)/2 ,
¬q(xi) with prob. (1 − ε)/2

and
M(x1, . . . , xn) = (y1, . . . , yn) .

If x ∼ x′ are datasets that differ on the i-th row, their output distributions differ only
if q(xi) , q(x′i ), in which case the outputs differ only in the i-th components, denoted
yi and y′i , respectively. We have

Pr[yi = q(xi)]
Pr[y′i = q(xi)]

=
(1 + ε)/2
(1 − ε)/2

= eO(ε) .

And Pr[yi = q(x′i )] ≤ Pr[y′i = q(x′i )]. Thus, randomized response is O(ε)-differentially
private.

We can use the result of randomized response to estimate the value of the count-
ing query q(x) as follows. Note that E[yi] = ε·q(xi)+(1−ε)/2. Thus, by the Chernoff

bound, with high probability we have∣∣∣∣∣∣∣1n ∑
i

1
ε
·

(
yi −

(1 − ε)
2

)
− q(x)

∣∣∣∣∣∣∣ ≤ O
(

1
√

n · ε

)
.

As n→ ∞, we get an increasingly accurate estimate of the average.
An advantage of randomized response is that it does not require a trusted, central-

ized data curator; each subject can carry out the randomization on her own and pub-
licly announce her noisy bit yi. Indeed, this method was introduced in the 1960s by
Warner [108] for carrying out sensitive surveys in the social sciences, where partici-
pants may not feel comfortable revealing information to the surveyor. In Section 7.9,
we will discuss the “local model” for differential privacy, which encompasses gen-
eral mechanisms and interactive protocols where subjects ensure their own privacy
and need not trust anyone else.

The Laplace mechanism [48]. Let q be a counting query; it is natural to try to
protect privacy by simply adding noise. That is, M(x) = q(x) + noise. But how
much noise do we need to add, and according to what distribution?

Note that, if x ∼ x′, we have |q(x) − q(x′)| ≤ 1/n. This suggests “noise” of
magnitude 1/(εn) should be enough to make M(x) and M(x′) “ε-indistinguishable”
in the sense required by differential privacy.

Which distribution will satisfy the multiplicative definition of differential pri-
vacy? Recall that, at every output y, the density of the output distribution should be
the same under x and x′ up to a factor of eε. The density of M(x) at y is the density
of the noise distribution at z = y − q(x), and the density of M(x′) at y is the density
of the noise distribution at z′ = y − q(x′); again |z − z′| ≤ 1/n. So we see that it
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suffices for the density of the noise distribution to change by a factor of at most eε

over intervals of length 1/n.
This leads us to the Laplace distribution Lap(σ):

the density of Lap(σ) at z ∝ e−|z|/σ.

If we set σ = 1/εn, then we see that the ratio of densities is as we want: for z ≥ 0,
we have

density of Lap(1/εn) at z + 1/n
density of Lap(1/εn) at z

= e1/(nσ) = e−ε .

(For z ≤ −1/n, the ratio of densities is eε, and for z ∈ (−1/n, 0), it is between e−ε

and eε.)
It may seem more natural to use Gaussian noise, but it does not quite achieve

the definition of differential privacy that we have given: in the tail of a Gaussian,
the density changes by an unbounded multiplicative factor over intervals of fixed
width. Later, we will see a relaxation of differential privacy (called (ε, δ)-differential
privacy) that is achieved by adding Gaussian noise of appropriate variance.

Lap(σ) has mean 0 and standard deviation
√

2 ·σ, and has exponentially vanish-
ing tails:

Pr[|Lap(σ)| > σt] ≤ e−t .

The Laplace mechanism is not specific to counting queries; all we used was that
|q(x) − q(x′)| ≤ 1/n for x ∼ x′. For an arbitrary query q : X n → R, we need to scale
the noise to its global sensitivity:

GSq = max
x∼x′
|q(x) − q(x′)|.

Then we have:

Definition 7.1.2 (The Laplace mechanism). For a query q : X n → R, a bound
B, and ε > 0, the Laplace mechanism Mq,B over data universe X takes a dataset
x ∈ X n and outputs

Mq,B(x) = q(x) + Lap(B/ε).

From the discussion above, we have:

Theorem 7.1.3 (Properties of the Laplace mechanism).
1. If B ≥ GSq, the Laplace mechanism Mq,B is ε-differentially private.
2. For every x ∈ X n and β > 0,

Pr[|Mq,B(x) − q(x)| > (B/ε) · ln(1/β)] ≤ β.

As noted above, for a counting query q, we can take B = 1/n, and thus with high
probability we get error O(1/(εn)), which is significantly better than the bound of
O(1/ε

√
n) given by randomized response.

Global sensitivity is also small for a variety of other queries of interest:
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1. For q(x) = max{q1(x), q2(x), . . . , qt(x)}, we have GSq ≤ maxi{GSqi }.
2. For q(x) = d(x,H) where H ⊆ X n and d is Hamming distance,1 we have GSq ≤

1. (“Is my data set close to one that satisfies my hypothesis H?”).
3. A statistical query (sometimes called a linear query in the differential privacy

literature) is a generalization of a counting query to averaging a real-valued
function on the dataset. That is, we are given a bounded function q : X → [0, 1],
and are interested in the query:

q(x) =
1
n

n∑
i=1

q(xi) .

Then GSq ≤ 1/n.

We promised that we would only work with discrete probability, but the Laplace
distribution is continuous. However, one can discretize both the query values q(x)
and the Laplace distribution to integer multiples of B (yielding a scaled version of
a geometric distribution) and Theorem 7.1.3 will still hold. We ignore this issue in
the rest of the tutorial for the sake of simplicity (and consistency with the literature,
which typically refers to the continuous Laplace distribution).

7.1.6 Discussion of the Definition
We now discuss why differential privacy utilizes a multiplicative measure of simi-
larity between the probability distributions M(x) and M(x′).

Why not statistical distance? The first choice that one might try is to use statistical
difference (total variation distance). That is, we require that, for every x ∼ x′, we
have

SD(M(x),M(x′)) def
= max

T⊆Y

∣∣∣Pr[M(x) ∈ T ] − Pr[M(x′) ∈ T ]
∣∣∣ ≤ δ.

ε-Differential privacy implies the above definition with δ = 1 − e−ε ≤ ε, but not
conversely.

We claim that, depending on the setting of δ, such a definition either does not
allow for any useful computations or does not provide sufficient privacy protection.

δ ≤ 1/2n: Then by a hybrid argument, for all pairs of datasets x, x′ ∈ X n (even
nonneighbors), we have SD(M(x),M(x′)) ≤ nδ ≤ 1/2. Taking x′ to be a fixed
(e.g., all-zeroes) dataset, this means that, with probability 1/2 on M(x), we get
an answer independent of the dataset x and the mechanism is useless.

δ ≥ 1/2n: In this case, the mechanism “with probability 1/2, output a random row
of the dataset” satisfies the definition. We do not consider a mechanism that
outputs an individual’s data in the clear to be protecting privacy.

1 The Hamming distance d(x, x′) between two datasets x, x′ ∈ X n is the number of rows on which
x and x′ differ.
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However, it turns out to be quite useful to consider the following relaxation of
differential privacy, which incorporates a negligible statistical distance term δ in
addition to the multiplicative ε:

Definition 7.1.4 ((Approximate) differential privacy). For ε ≥ 0, δ ∈ [0, 1], we
say that a randomized mechanism M : X n × Q → Y is (ε, δ)-differentially private
if, for every two neighboring datasets x ∼ x′ ∈ X n (x and x′ differ in one row) and
every query q ∈ Q, we have

∀T ⊆ Y , Pr[M(x, q) ∈ T ] ≤ eε · Pr[M(x′, q) ∈ T ] + δ . (7.1)

Here, we will insist that δ is cryptographically negligible (in particular, δ ≤ n−ω(1));
it can be interpreted as an upper bound on the probability of catastrophic failure
(e.g., the entire dataset being published in the clear). This notion is often called
approximate differential privacy, in contrast with pure differential privacy as given
by Definition 7.1.1. Note that, unlike pure differential privacy, with approximate
differential privacy it is not sufficient to verify Inequality (7.1) for sets T of size 1.
(Consider a mechanism that outputs the entire dataset along with a random number
from {1, . . . , d1/δe}; then Pr[M(x, q) = y] ≤ δ ≤ eε · Pr[M(x′, q) = y] + δ for all y,
but clearly does not provide any kind of privacy or satisfy Definition 7.1.4.)

More generally, we will call two random variables Y and Y ′ taking values in Y
(ε, δ)-indistinguishable if:

∀T ⊆ Y , Pr[Y ∈ T ] ≤ eε · Pr[Y ′ ∈ T ] + δ, and
Pr[Y ′ ∈ T ] ≤ eε · Pr[Y ∈ T ] + δ

Setting ε = 0 is equivalent to requiring that SD(Y,Y ′) ≤ δ. (ε, δ)-Indistinguishability
has the following nice characterization, which allows us to interpret (ε, δ)-differential
privacy as “ε-differential privacy with probability at least 1 − δ”:

Lemma 7.1.5 (Approximate DP as smoothed2 DP [19]). Two random variables
Y and Y ′ are (ε, δ)-indistinguishable if and only if there are events E = E(Y) and
E′ = E′(Y ′) such that:

1. Pr[E],Pr[E′] ≥ 1 − δ, and
2. Y |E and Y ′|E′ are (ε, 0)-indistinguishable.

Proof: We prove the “if” direction, and omit the converse (which is rather techni-
cal). For every set T , we have

Pr[Y ∈ T ] ≤ Pr[Y ∈ T |E] · Pr[E] + Pr[E]
≤ Pr[Y ∈ T |E] · (1 − δ) + δ

≤ eε · Pr[Y ′ ∈ T |E′] · (1 − δ) + δ

≤ eε · Pr[Y ′ ∈ T |E′] · Pr[E′] + δ

≤ eε · Pr[Y ′ ∈ T ] + δ

�

2 The terminology “smoothed” was coined by [91] for similar variants of entropy measures.
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A Bayesian interpretation. Although statistical distance is not a good choice (on
its own), there are many other choices of distance measures, and we still have not
justified why a multiplicative measure is a particularly good choice. One justifi-
cation comes from a Bayesian interpretation of the definition of differential pri-
vacy [48, 33, 65]. Consider a prior distribution (X, X′) on neighboring datasets, mod-
eling an adversary’s prior on a real dataset X and a dataset X′ that would have been
obtained if a particular individual had not participated. Given an output y←M(X),
the adversary will have a posterior belief on the dataset, given by the conditional dis-
tribution X|M(X)=y. We will argue that differential privacy implies that this posterior
is close to the posterior that would have been obtained if the mechanism had been
run on X′ instead, which we think of as capturing “ideal” privacy for the individual.

Proposition 7.1.6 (DP implies Bayesian privacy). Let M : X n → Y be any ε-
differentially private mechanism and let (X, X′) be any joint distribution on X n ×

X n such that Pr[X ∼ X′] = 1. Then for every dataset x ∈ X n and output y ∈
Supp(M(X)) = Supp(M(X′)),3

SD(X|M(X)=y, X|M(X′)=y) ≤ 2ε.

A special case of the proposition is when we fix X′ = x′ to be constant (so that
there is nothing to learn from X′) and X = (Xi, x′−i) is varying only in the data of
one individual. Then the proposition says that in such a case (where the adversary
knows all but the i-th row of the dataset), the adversary’s posterior on Xi is close to
its prior. Indeed,

SD(Xi|M(X)=y, Xi) = SD(Xi|M(X)=y, Xi|M(X′)=y′ ) = SD(X|M(X)=y, X|M(X′)=y′ ) ≤ 2ε.

That is, whatever an adversary could have learned about an individual, it could have
learned from the rest of the dataset.
Proof: By Bayes’ rule,

Pr[X = x|M(X) = y] =
Pr[M(X) = y|X = x] · Pr[X = x]

Pr[M(X) = y]

≤
eε · Pr[M(X′) = y|X = x] · Pr[X = x]

e−ε · Pr[M(X′) = y]
= e2ε · Pr[X = x|M(X′) = y].

By symmetry (swapping X and X′), we also have Pr[X = x|M(X′) = y] ≤ e2ε ·

Pr[X = x|M(X) = y]. Having all probability masses equal up to a multiplicative
factor of e2ε implies that the statistical distance is at most 1 − e−2ε ≤ 2ε. �

There is also a converse to the proposition: if M guarantees that the two posterior
distributions are close to each other (even in statistical difference), then M must be
differentially private. In fact, this will hold even for the special case mentioned above
where X′ is constant.

Proposition 7.1.7 (Bayesian privacy implies DP). Let M : X n → Y be any ran-
domized mechanism, and let x0 ∼ x1 ∈ X n be two neighboring datasets. Define the

3 Supp(Z) is defined to be the support of random variable Z, i.e., {z : Pr[Z = z] > 0}.
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joint distribution (X, X′) to equal (x0, x0) with probability 1/2 and to equal (x1, x0)
with probability 1/2. Suppose that, for some y ∈ Supp(M(x0) ∩ Supp(M(x1)),

SD(X|M(X)=y, X|M(X′)=y) ≤ ε ≤ 1/4. (7.2)

Then

e−O(ε) · Pr[M(x1) = y] ≤ Pr[M(x0) = y] ≤ eO(ε) · Pr[M(x1) = y].

In particular, if for all pairs x0 ∼ x1 of neighboring datasets, we have that
Supp(M(x0)) = Supp(M(x1)) and (7.2) holds for all outputs y ∈ Supp(M(x0)),
then M is O(ε)-differentially private.

Note that, for the joint distributions (X, X′) in Proposition 7.1.7, we have Pr[X ∼
X′] = 1, so this is indeed a converse to Proposition 7.1.7.
Proof: Since X′ is constant, X|M(X′)=y is the same as the prior X (namely, uniformly
random from {x0, x1}). Thus, by hypothesis, for b = 0, 1, we have

1
2
− ε ≤ Pr[X = xb|M(X) = y] ≤

1
2

+ ε.

On the other hand, by Bayes’ rule,

Pr[M(xb) = y] = Pr[M(X) = y|X = xb]

=
Pr[X = xb|M(X) = y] · Pr[M(X) = y]

Pr[X = xb]

∈

[
(1/2) − ε

1/2
· Pr[M(X) = y],

(1/2) + ε

1/2
· Pr[M(X) = y]

]
.

Thus, Pr[M(x0) = y]/Pr[M(x1) = y] is between (1/2 − ε)/(1/2 + ε) = e−O(ε) and
(1/2 + ε)/(1/2 − ε) = eO(ε). �

There are also (ε, δ) analogues of the above propositions, where we require that,
with all but negligible probability (related to δ), the posterior probability distribu-
tions should be close to each other [65].

Interpretations of the Definition. We can now provide some more intuitive inter-
pretations of (and cautions about) the definition of differential privacy:

• Whatever an adversary learns about you, she could have learned from the rest of
the dataset (in particular, even if you did not participate). Note that this does not
say that the adversary does not learn anything about you; indeed, learning about
the population implies learning about individuals. For example, if an adversary
learns that smoking correlates with lung cancer (the kind of fact that differential
privacy is meant to allow learning) and knows that you smoke, it can deduce
that you are more likely to get lung cancer. However, such a deduction is not
because of the use of your data in the differentially private mechanism, and thus
may not be considered a privacy violation.
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• The mechanism will not leak a significant amount of information specific to an
individual (or a small group, as we will see in the next section). Consequently,
differential privacy is not an achievable privacy notion if the goal of the analysis
is to take an action on a specific individual in the dataset (e.g., to identify a
candidate for a drug trial, a potential terrorist, or a promising customer).

The above interpretations hold regardless of what auxiliary information or compu-
tational strategy the adversary uses. Indeed, the definition provides an information-
theoretic form of security. In Section 7.10, we will consider a computational ana-
logue of differential privacy, where we restrict to polynomial-time adversaries.

Variants of the definition and notation. In our treatment, the dataset is an ordered
n-tuple x ∈ X n, where n is known and public (not sensitive information).

A common alternative treatment is to consider datasets x that are multisets of ele-
ments of X , without a necessarily known or public size. Then, a convenient notation
is to represent x as a histogram – that is, as an element of NX . In the multiset defi-
nition, the distance between two datasets is the symmetric difference |x∆x′|, which
corresponds to `1 distance in histogram notation. Thus, neighboring datasets (at dis-
tance 1) are ones that differ by addition or removal of one item. Differential privacy
under this definition has a nice interpretation as hiding whether you participated in
a dataset at all (without having to replace you by an alternate row to keep the dataset
size the same).

There is not a big difference between the two notions, as one can estimate n = |x|
with differential privacy (it is just a counting query), the distance between two un-
ordered datasets of the same size under addition/removal versus substitution differ
by at most a factor of 2, and one can apply a differentially private mechanism de-
signed for ordered tuples to an unordered dataset by randomly ordering the elements
of the dataset.

7.1.7 Preview of the Later Sections
The primary goal of this tutorial is to illustrate connections of differential privacy
to computational complexity and cryptography. Consequently, our treatment of the
algorithmic foundations of differentially private is very incomplete, and we recom-
mend the monograph of Dwork and Roth [36] for a thorough treatment, including
more proofs and examples for the background material that is only sketched here.
We also focus heavily on counting queries in this tutorial, because they suffice to
bring out most of the connections we wish to illustrate. However, the algorithmic
literature on differential privacy now covers a vast range of data-analysis tasks, and
obtaining a thorough complexity-theoretic understanding of such tasks is an impor-
tant direction for future work.

The topics that will be covered in the later sections are as follows:

Section 7.2: We will describe composition theorems that allow us to reason about
the level of differential privacy provided when many differentially private algo-
rithms are executed independently. In particular, this will give us algorithms to
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answer nearly n2 counting queries accurately while satisfying differential pri-
vacy.

Section 7.3: We will briefly survey some alternatives to using global sensitivity to
calibrate the level of noise added for differentially private estimates; sometimes
we can get away with adding noise that is proportional to the sensitivity of the
query in a local neighborhood of our dataset x (but we need to be careful in
doing so).

Section 7.4: We will present some remarkable algorithms that can answer many
more than n2 counting queries with differential privacy. These algorithms are in-
spired by ideas from computational learning theory, such as Occam’s razor and
the multiplicative weights method. Unfortunately, these algorithms are compu-
tationally quite expensive, requiring time that is polynomial in the size of the
data universe X (which in turn is exponential in the bit-length of row elements).

Section 7.5: We will prove a number of information-theoretic lower bounds on dif-
ferential privacy, showing that it is impossible to answer too many queries with
too much accuracy. Some of the lower bounds will be based on combinatorial
and geometric ideas (such as “discrepancy”), and others will be on fingerprint-
ing codes, which were developed as a tool in cryptography (for secure digital
content distribution).

Section 7.6: We will turn to computational hardness results for differential privacy,
giving evidence that there is no way in general to make the algorithms of Sec-
tion 7.4 computationally efficient. These hardness results will be based on cryp-
tographic constructs (such as traitor-tracing schemes and digital signatures), and
one result will also use probabilistically checkable proofs.

Section 7.7: Next, we will turn to some additional algorithms that bypass the hard-
ness results of Section 7.6 by focusing on specific, structured families of count-
ing queries (and use alternative output representations). The methods employed
include low-degree approximations of Boolean functions (via Chebychev poly-
nomials) and convex geometry and optimization (semidefinite programming,
Gaussian width, Grothendieck’s inequality).

Section 7.8: We will then look at PAC learning with differential privacy, showing
both some very general but computationally inefficient positive results, as well
as some efficient algorithms. We will then see how methods from communica-
tion complexity have been used to show that the sample complexity of differen-
tially private PAC learning (with pure differential privacy) is inherently higher
than that of nonprivate PAC learning.

Section 7.9: In this section, we will explore generalizations of differential privacy
to the case where the data is distributed among multiple parties, rather than all
being held by a single trusted curator. We will show, using connections to ran-
domness extractors and to information complexity, that sometimes distributed
differential privacy cannot achieve the same level of accuracy attained in the
centralized model.

Section 7.10: The aforementioned limitations of multiparty differential privacy can
be avoided by using cryptography (namely, secure multiparty computation) to
implement the trusted curator. However, this requires a relaxation of differential
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privacy to computationally bounded adversaries. We will present the definition
of computational differential privacy, and point out its connection to the notion
of “pseudodensity” studied in the theory of pseudorandomness.

7.2 Composition Theorems for Differential Privacy

7.2.1 Postprocessing and Group Privacy
One central property of differential privacy, which we will use throughout the tuto-
rial, is that it is preserved under “postprocessing”:

Lemma 7.2.1 (Postprocessing). If M : X n → Y is (ε, δ)-differentially private
and F : Y → Z is any randomized function, then F ◦M : X n → Z is (ε, δ)-
differentially private.

Proof: Consider F to be a distribution on deterministic functions f : Y → Z .
Then, for every x ∼ x′ ∈ X n and every subset T ⊆ Z , we have

Pr[(F ◦M)(x) ∈ T ] = E
f←F

[Pr[M(x) ∈ f −1(T )]]

≤ E
f←F

[eε · Pr[M(x′) ∈ f −1(T )] + δ]

= eε · Pr[(F ◦M)(x′) ∈ T ] + δ.

�

Another useful property, alluded to in Section 7.1.6, is that differential privacy
provides protection for small groups of individuals. For x, x′ ∈ X n, let d(x, x′) de-
note the Hamming distance between x and x′, or in other words the number of rows
that need to be changed to go from x to x′ (so x ∼ x′ iff d(x, x′) ≤ 1).

Then the “group privacy” lemma for differential privacy is as follows:

Lemma 7.2.2 (Group privacy). If M is an (ε, δ)-differentially private mechanism,
then for all pairs of datasets x, x′ ∈ X n, M(x) and M(x′) are (kε, k · ekε · δ)-
indistinguishable for k = d(x, x′).

Proof: We use a hybrid argument. Let x0, x1, x2, . . . , xk be such that x0 = x and
xk = x′ and for each i such that 0 ≤ i ≤ k − 1, xi+1 is obtained from xi by changing
one row. Then, for all T ⊆ Y , since M is (ε, δ)-differentially private,

Pr[M(x0) ∈ T ] ≤ eε Pr[M(x1) ∈ T ] + δ

≤ eε (eε Pr[M(x2) ∈ T ] + δ) + δ

...

≤ ekε · Pr[M(xk) ∈ T ] + (1 + eε + e2ε + · · · + e(k−1)·ε) · δ
≤ ekε · Pr[M(xk) ∈ T ] + k · ekε · δ.

�
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Note that, when δ = 0, ε-differential privacy provides nontrivial guarantees for
datasets x, x′ even at distance n, namely (nε, 0)-indistinguishability, which in partic-
ular implies that M(x) and M(x′) have the same support. In contrast, when δ > 0,
we only get nontrivial guarantees for datasets at distance k ≤ ln(1/δ)/ε; when k is
larger, k · ekε · δ is larger than 1. This gap is a source of the additional power of
(ε, δ)-differential privacy (as we will see).

7.2.2 Answering Many Queries
Now we consider a different form of composition, where we independently execute
several differentially private mechanisms. Let M1,M2, . . . ,Mk be differentially
private mechanisms. Let

M(x) = (M1(x),M2(x), . . . ,Mk(x)),

where each Mi is run with independent coin tosses; for example, this is how we
might obtain a mechanism answering a k-tuple of queries.

The basic composition lemma says that the privacy degrades at most linearly with
the number of mechanisms executed.

Lemma 7.2.3 (Basic composition). If M1, . . . ,Mk are each (ε, δ)-differentially
private, then M is (kε, kδ)-differentially private.

However, if we are willing to tolerate an increase in the δ term, the privacy pa-
rameter ε only needs to degrade proportionally to

√
k:

Lemma 7.2.4 (Advanced composition [42]). If M1, . . . ,Mk are each (ε, δ)-differ-
entially private and k < 1/ε2, then for all δ′ > 0, M is

(
O(

√
k log(1/δ′)) ·ε, kδ+δ′

)
-

differentially private.

We now prove the above lemmas, starting with basic composition.
Proof of Lemma 7.2.3: We start with the case δ = 0. Fix datasets x, x′ such that
x ∼ x′. For an output y ∈ Y , define the privacy loss to be

Lx→x′
M (y) = ln

(
Pr[M(x) = y]
Pr[M(x′) = y]

)
= −Lx′→x

M (y).

When Lx→x′
M (y) is positive, the output y is “evidence” that the dataset is x rather than

x′; and conversely when it is negative.
Notice that ε∗-differential privacy of M is equivalent to the statement that, for

all x ∼ x′ and all y ∈ Supp(M(x)) ∪ Supp(M(x′)),

|Lx→x′
M (y)| ≤ ε∗.

Now, for M = (M1,M2, . . . ,Mk) and y = (y1, y2, . . . , yk), we have
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Lx→x′
M (y) = ln

(
Pr[M1(x) = y1 ∧M2(x) = y2 ∧ · · · ∧Mk(x) = yk]

Pr[M1(x′) = y1 ∧M2(x′) = y2 ∧ · · · ∧Mk(x′) = yk]

)
= ln

 ∏k
i=1 Pr[Mi(x) = yi]∏k
i=1 Pr[Mi(x′) = yi]


=

k∑
i=1

Lx→x′
Mi

(yi),

so ∣∣∣Lx→x′
M (y)

∣∣∣ ≤ k∑
i=1

∣∣∣Lx→x′
Mi

(yi)
∣∣∣ ≤ k · ε.

For the case that δ > 0, we use Lemma 7.1.5. Specifically, since Mi(xi) and
Mi(x′i ) are (ε, δ)-indistinguishable, there are events Ei and E′i of probability at least
1 − δ such that, for all yi, we have∣∣∣∣∣∣ln

(
Pr[M(xi) = yi|Ei]
Pr[M(x′i ) = yi|E′i ]

)∣∣∣∣∣∣ ≤ ε.
Thus, in the above analysis, we instead condition on the events E = E1∧E2∧· · ·∧Ek

and E′ = E′1 ∧ E′2 ∧ · · · ∧ E′k, redefining our privacy losses as

Lxi→x′i
Mi

(yi) = ln
(

Pr[Mi(xi) = yi|Ei]
Pr[M(x′i ) = yi|E′i ]

)
,

Lx→x′
M (y) = ln

(
Pr[M(x) = y|E]

Pr[M(x′) = y|E′]

)
.

Then we still have ∣∣∣Lx→x′
M (y)

∣∣∣ ≤ k∑
i=1

∣∣∣Lx→x′
Mi

(yi)
∣∣∣ ≤ k · ε.

By a union bound, the probability of the events E and E′ are at least 1 − k · δ, so by
Lemma 7.1.5, M(x) and M(x′) are (kε, kδ)-indistinguishable, as required. �

We now move on to advanced composition.
Proof sketch of Lemma 7.2.4: We again focus on the δ = 0 case; the extension
to δ > 0 is handled similarly to the proof of Lemma 7.2.3. The intuition for how we
can do better than the linear growth in ε is that some of the yi’s will have positive
privacy loss (i.e., give evidence for dataset x) while some will have negative privacy
loss (i.e., give evidence for dataset x′), and the cancellations between these will lead
to a smaller overall privacy loss.

To show this, we consider the expected privacy loss

E
yi←Mi(x)

[Lx→x′
Mi

(yi)].

By definition, this equals the Kullback–Leibler divergence (a.k.a. relative entropy)
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D(Mi(x) ‖Mi(x′)),

which is known to always be nonnegative.
We first prove the following claim, which shows that the expected privacy loss

of a differentially private mechanism is quite a bit smaller than the upper bound on
the maximum privacy loss of ε:

Claim 7.2.5. If Mi is ε-differentially private, where ε ≤ 1, then

E
yi←Mi(x)

[Lx→x′
Mi

(yi)] ≤ 2ε2.

Proof of claim: We will show that

D(Mi(x)‖Mi(x′)) + D(Mi(x′)‖Mi(x)) ≤ 2ε2,

and then the result follows by the nonnegativity of divergence. Now,

D(Mi(x)‖Mi(x′)) + D(Mi(x′)‖Mi(x)) = E
yi←Mi(x)

[Lx→x′
Mi

(yi)] + E
yi←Mi(x′)

[Lx′→x
Mi

(yi)]

= E
yi←Mi(x)

[Lx→x′
Mi

(yi)] − E
yi←Mi(x′)

[Lx→x′
Mi

(yi)],

and using the upper bound of ε on privacy loss we get that

E
yi←Mi(x)

[Lx→x′
Mi

(yi)] − E
yi←Mi(x′)

[Lx→x′
Mi

(yi)]

≤ 2 ·
(

max
yi∈Supp(Mi(x))∪Supp(Mi(x′))

∣∣∣Lx→x′
Mi

(yi)
∣∣∣) · SD(Mi(x),Mi(x′))

≤ 2ε · (1 − e−ε)
≤ 2ε2,

where SD is statistical distance, and we use the fact that (ε, 0)-indistinguishability
implies a statistical distance of at most 1 − e−ε. �

Thus by linearity of expectation, for the overall expected privacy loss, we have

E
y←M(x)

[Lx→x′
M (y)] = k · O(ε2) def

= µ.

Applying the Hoeffding bound for random variables whose absolute value is bounded
by ε, we get that, with probability at least 1 − δ′ over y←M(x),

Lx→x′
M (y) ≤ µ + O

( √
k log(1/δ′)

)
· ε ≤ O

( √
k log(1/δ′)

)
· ε

def
= ε′,

where the second inequality uses the assumption that k < 1/ε2 (so kε2 ≤
√

kε2 and
hence µ ≤ O(

√
k) · ε).

Now for any set T , we have



364 Salil Vadhan

Pr[M(x) ∈ T ] ≤ Pr
y←M(x)

[
Lx→x′
M (y) > ε′

]
+

∑
y∈T :Lx→x′

M (y)≤ε′

Pr[M(x) = y]

≤ δ′ +
∑

y∈T :Lx→x′
M (y)≤ε′

eε
′

· Pr[M(x′) = y]

≤ δ′ + eε
′

· Pr[M(x′) ∈ T ],

so M is indeed (ε′, δ′)-differentially private. �
It should be noted that, although Lemma 7.2.4 is stated in terms of queries being

asked simultaneously (in particular, nonadaptively), a nearly identical proof (appeal-
ing to Azuma’s inequality, instead of Hoeffding) shows that an analogous conclu-
sion holds even when the queries (i.e., mechanisms) are chosen adaptively (i.e., the
choice of Mi+1 depends on the outputs of M1(x), . . . ,Mi(x)).

Observe that, if we have a set Q of k = |Q| counting queries and we wish to
obtain a final privacy of (ε, δ′), then we can achieve this by first adding Laplace
noise to achieve an initial privacy guarantee of ε0 for each query and then use the
composition theorems. To use the basic composition lemma, we would have to set

ε0 =
ε

k
,

so the Laplace noise added per query has scale

O
(

1
ε0n

)
= O

(
k
εn

)
.

To obtain a bound on the maximum noise added to any of the queries, we can do
a union bound over the k queries. Setting β = 1/O(k) in Theorem 7.1.3, with high
probability, the maximum noise will be at most

α = O
(

k · log k
εn

)
.

Steinke and Ullman [99] showed how to save the log k factor by carefully correlating
the noise used for the k queries, and thus showed:

Theorem 7.2.6 (Arbitrary counting queries with pure differential privacy [99]).
For every set Q of counting queries and ε > 0, there is an ε-differentially private
mechanism M : X n → RQ such that, on every dataset x ∈ X n, with high probability
M(x) answers all the queries in Q to within additive error

α = O
(
|Q|
εn

)
.

Thus, taking ε to be constant, we can answer any |Q| = o(n) counting queries with
vanishingly small error, which we will see is optimal for pure differential privacy
(in Section 7.5.2).

Similarly, to use the advanced composition theorem, we would have to set
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ε0 =
ε

c ·
√

k · log(1/δ)
,

yielding a maximum error of

α = O
(

log k
ε0n

)
= O

 √
k · log(1/δ) · log k

εn

 .
Again, it is known how to (mostly) remove the log k factor:

Theorem 7.2.7 (Arbitrary counting queries with approximate differential pri-
vacy [99]). For every set Q of counting queries over data universe X , and ε, δ > 0,
there is an (ε, δ)-differentially private mechanism M : X n → Rk such that, on every
dataset x ∈ X n, with high probability M(x) answers all the queries to within error

α = O

 √
|Q| · log(1/δ) · log log |Q|

εn

 .
Again taking ε to be constant and δ to be negligible (e.g., δ = 2− log2(n)), we can
take k = |Q| = Ω̃(n) and obtain error o(1/

√
n) (smaller than the sampling error!),

which we will see is essentially optimal for any reasonable notion of privacy (in
Section 7.5.1). If we want error o(1), we can take k = Ω̃(n2), which is known to
be optimal for differential privacy if the answers are not coordinated based on the
queries [43] or if the data universe is large (as we will see in Section 7.5). However,
in Section 7.4, we will see some beautiful algorithms that can answer many more
than n2 queries if the data universe is not too large (forcing the queries to have some
implicit relationships) by carefully coordinating the noise between the queries.

Optimal composition. Remarkably, Kairouz, Oh, and Viswanath [64] have given an
optimal composition theorem for differential privacy, which provides an exact char-
acterization of the best privacy parameters that can be guaranteed when composing a
number of (ε, δ)-differentially private mechanisms. The key to the proof is showing
that an (ε, δ) generalization of randomized response (as defined in Section 7.1.5) is
the worst mechanism for composition. Unfortunately, the resulting optimal compo-
sition bound is quite complex, and indeed is even #P-complete to compute exactly
when composing mechanisms with different (εi, δi) parameters [82]. Thus, for the-
oretical purposes, it is still most convenient to use Lemmas 7.2.3 and 7.2.4, which
give the right asymptotic behavior for most settings of parameters that tend to arise
in theoretical applications.

7.2.3 Histograms
The bounds of Theorems 7.2.6 and 7.2.7 are for arbitrary, worst-case families of
counting queries. For specific families of counting queries, one may be able to
do much better. A trivial example is when the same query is asked many times;
then we can compute just one noisy answer, adding noise Lap(1/ε), and give the
same answer for all the queries. A more interesting example is the family Qpt of
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point functions on a data universe X , as defined in Section 7.1.3. Answering all |X |
queries in Qpt (i.e., estimating the histogram of the dataset) using the above theo-
rems would incur error at least

√
|X |/εn. However, it turns out that we can achieve

error O(log |X |)/εn.

Proposition 7.2.8 (Laplace histograms). For every finite data universe X , n ∈ N,
and ε > 0, there is an ε-differentially private mechanism M : X n → RX such that,
on every dataset x ∈ X n, with high probability M(x) answers all of the counting
queries in Qpt(X ) to within error

O
(

log |X |
εn

)
.

Proof sketch: Recall that Qpt(X ) contains a query qy for each y ∈ X , where on a
row w ∈ X , qy(w) is 1 iff w = y. The mechanism M adds independent noise dis-
tributed according to Lap(2/εn) to the result of each query qy ∈ Qpt. This ensures
that each individual noisy answer is ε/2-differentially private. To show that we ob-
tain ε-differential privacy overall, the key observation is that, for two neighboring
datasets x, x′, there are only two queries qy, qy′ ∈ Qpt on which x and x′ differ (cor-
responding to the values that x and x′ have in the row where they differ). Thus, the
proof of basic composition lemma (Lemma 7.2.3) implies that M(x) and M(x′) are
(2 · (ε/2), 0)-indistinguishable, as desired. �

We can also use the output of this mechanism to answer an arbitrary counting
query q : X → {0, 1}, noting that q(x) =

∑
y∈X qy(x) · q(y). The above mechanism

gives us ay = qy(x) + Lap(2/εn) for every y ∈ X , from which we can compute
the quantity a =

∑
y∈X ay · q(y), which has expectation q(x) and standard deviation

O(
√
|X |/εn). For answering multiple queries, we can apply Chernoff/Hoeffding and

union bounds,4 yielding the following:

Theorem 7.2.9 (Arbitrary counting queries via the Laplace histogram). For ev-
ery set Q of counting queries on data universe X , n ∈ N, and ε > 0, there is
an ε-differentially private mechanism M : X n → RQ such that on every dataset
x ∈ X n, with high probability M(x) answers all the queries to within error

O

 √
|X | · log |Q|

εn

 .
Note that the dependence on k = |Q| has improved from

√
k obtained by advanced

composition or Theorem 7.2.7 to
√

log k, at the price of introducing a (rather large)
dependence on |X |. Thus, for a family Q of counting queries on data universe X , it is

4 A bit of care is needed since the Lap(2/εn) noise random variables are not bounded. This can be
handled by first arguing that, with high probability, at most a 2−Θ(t) fraction of the noise random
variables have magnitude in the range [t/εn, 2t/εn). Then, conditioned on the magnitudes of the
noise random variables (but not their signs), we can group the random variables according to their
magnitudes (up to a factor of 2) and apply Hoeffding to each group separately.
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better to use the Laplace histogram when |X | � |Q| and it is better to use advanced
composition or Theorem 7.2.7 when |X | > |Q|.

Let us summarize the best error bounds we have seen so far for the example
families of counting queries given in Section 7.1.3.

Table 7.1: Error bounds for specific query families on a data universe X of size
D = 2d (e.g., X = {0, 1}d or X = {1, 2, . . . ,D}).

Query family Q |Q| (ε, 0)-dp Ref. (ε, δ)-dp Ref.

Qpt D O
(

d
εn

)
Prop. 7.2.8 O

(
d
εn

)
Prop. 7.2.8

Qthr D Õ(
√

D)
εn Thm. 7.2.9 Õ(

√
D)

εn Thm. 7.2.9

Qconj 3d Õ(
√

D)
εn Thm. 7.2.9 Õ(

√
D)

εn Thm. 7.2.9

Qmeans d O
(

d
εn

)
Thm. 7.2.6 O

( √
d log(1/δ)·log log d

εn

)
Thm. 7.2.7

Qconj
t for t � d O(dt) O

(
dt

εn

)
Thm. 7.2.6 O

(
dt/2 ·
√

log(1/δ)·log log d
εn

)
Thm. 7.2.7

We will see substantial improvements to most of these bounds in later sections.

7.3 Alternatives to Global Sensitivity
In this section, we consider the question of whether we can do better than adding
noise Lap(GSq /ε), where GSq denotes the global sensitivity of query q (cf. Theo-
rem 7.1.3).

As a first attempt, let us define a notion of “local sensitivity” at x:

LSq(x) = max
{
q(x) − q(x′)| : x′ ∼ x

}
.

The difference from global sensitivity is that we only take the maximum over
datasets x′ that are neighbors to our input dataset x, rather than taking the maxi-
mum over all neighboring pairs x′ x̃′′.

Naively, we might hope that M(x) = q(x) + Noise(O(LSq(x))) might provide
differential privacy. Indeed, the local sensitivity provides a lower bound on the error
we need to introduce:

Proposition 7.3.1 (Local sensitivity lower bound). Let q : X n → R be a real-
valued query and M : X n → Y be an (ε, δ)-differentially private mechanism. Then

1. For every x0 ∼ x1 ∈ X n, there is a b ∈ {0, 1} such that

Pr
[
|M(xb) − q(xb)| <

|q(x0) − q(x1)|
2

]
≤

1 + δ

1 + e−ε
=

1
2

+ O(δ + ε).
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2. For every x ∈ X n, there is some x′ at Hamming distance at most 1 from x such
that

Pr
[
|M(x′) − q(x′)| <

LSq(x)
2

]
≤

1 + δ

1 + e−ε
=

1
2

+ O(δ + ε).

Proof:
1. Let Gb =

{
y ∈ R : |y − q(xb)| < |q(x0)−q(x1)|

2

}
and

p = min {Pr [M(x0) ∈ G0] ,Pr [M(x1) ∈ G1]}. Then:

1 − p ≥ Pr [M(x0) < G0]
≥ Pr [M(x0) ∈ G1]
≥ e−ε · Pr [M(x1) ∈ G1] − δ
≥ e−ε · p − δ.

Solving, we deduce that p ≤ (1 + δ)/(1 + e−ε).
2. Follows from part 1 by taking x0 = x and x1 ∼ x such that LSq(x) = |q(x) −

q(x1)|. �

The problem with trying to use the local sensitivity to calibrate the noise is that
we do not want the amount of noise to itself distinguish between neighboring x and
x′. For instance, let x be such that q(x) = q(x′) = 0 for all x′ ∼ x, but where there
is one such neighbor x′ ∼ x where x′ has a neighbor x′′ such that q(x′′) = 109.
LSq(x) = 0, but LSq(x′) is large, and answering queries noisily based on LSq would
violate privacy because it distinguishes between x and x′.

Still, perhaps one could hope to provide only a small amount of noise if LSq

is small everywhere “near” x. For example, consider the query that asks for the
median of n points {x1, x2, . . . xn} ⊆ [0, 1]. The global sensitivity for this query is
high. Indeed, consider the instance x where (n + 1)/2 entries are 1 and (n − 1)/2
entries are 0 (and thus the median is 1), as compared with the neighboring instance
x′ where one entry is changed from 1 to 0 (and thus the median is 0).

On the other hand, if there are many data points near the median, then it would
follow that the local sensitivity is small, not only at x but also at all datasets close
to x. For such instances x, we could indeed get away with adding only a small
amount of noise, while maintaining privacy. This is the type of situation that we will
investigate. There are several related approaches that have been taken along these
lines, which we will discuss:

1. Smooth sensitivity [86]
2. Propose–test–release [34]
3. Releasing stable values [96]
4. Privately bounding local sensitivity [68]

We remark that yet another approach, called restricted sensitivity, aims to add even
less noise than the local sensitivity [12, 68, 27, 89]. The observation is that Propo-
sition 7.3.1 does not say that the error on x must be at least LSq(x)/2; rather it says
that the error must be at least LSq(x)/2 on x or one of its neighbors. Thus if we have
a hypothesis that our dataset belongs to some set H ⊆ X n (e.g. in the case of a social



7 The Complexity of Differential Privacy 369

network, we might believe that the graph is of bounded degree), it might suffice to
add noise proportional to the restricted sensitivity, where we maximize |q(x)−q(x′)|
over x ∼ x′ ∈ H, which can be much smaller than even the local sensitivity. The
noise will still need to be at least LSq(x)/2 on some neighbors x′ of x, but these can
be neighbors outside of H.

7.3.1 Smooth Sensitivity
Define smooth sensitivity of query q : X n → R at x as follows:

SSεq(x) = max{LSq(x′) · e−εd(x,x′) : x′ ∈ X n},

where d(x, x′) denotes Hamming distance. Intuitively, we are smoothing out the
local sensitivity, so that it does not change much between neighboring datasets.

Nissim, Raskhodnikova, and Smith [86] introduced the notion of smooth sensi-
tivity and showed that:

• Adding noise O(SSεq(x)/ε) (according to a Cauchy distribution) is sufficient for
ε-differential privacy.

• SSq can be computed efficiently when q is the median query (despite the fact
that it is defined as the maximum over a set of size |X |n), as well as for a variety
of graph statistics (under edge-level differential privacy, cf. Section 7.3.4).

Zhang et al. [111] gave an alternative approach to “smoothing out” local sensitivity,
which empirically provides improvements in accuracy.

7.3.2 Propose–Test–Release
A different way to provide less noise is to simply not allow certain queries. That
is: rather than using Laplace noise at a level that is high enough no matter what
possible dataset might be queried, an alternative is to initially propose an amount
of noise that seems tolerable, and then test whether answering a query with this
amount of noise would violate privacy (namely, if the noise magnitude is less than
the local sensitivity in a neighborhood of the current dataset). If the test passes, then
we release a noisy answer. But perhaps we detect that adding this (small) amount of
noise would violate privacy. In that case, we simply refuse to answer. Of course, we
should carry out the test in a differentially private manner.

More precisely, propose–test–release consists of the following three steps (pa-
rameterized by a query q : X n → R and ε, δ, β ≥ 0), yielding a mechanism
M : X n → R ∪ {⊥} that does the following on a dataset x ∈ X n:

1. Propose a target bound β on local sensitivity.
2. Let d̂ = d(x, {x′ : LSq(x′) > β})+Lap(1/ε), where d denotes Hamming distance.
3. If d̂ ≤ ln(1/δ)/ε, output ⊥.
4. If d̂ > ln(1/δ)/ε, output q(x) + Lap(β/ε).

Proposition 7.3.2 (Propose–test–release [34]). For every query q : X n → R and
ε, δ, β ≥ 0, the above algorithm is (2ε, δ)-differentially private.
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Proof: Consider any two neighboring datasets x ∼ x′. Because of the Laplacian
noise in the definition of d̂ and the fact that Hamming distance has global sensitivity
at most 1, it follows that

Pr[M(x) = ⊥] ∈ [e−ε · Pr[M(x′) = ⊥], eε · Pr[M(x′) = ⊥]]. (7.3)

Also, for those outputs that are not ⊥, we have two cases:

Case 1: LSq(x) > β. In this case, d(x, {x′′ : LSq(x′′) > β}) = 0, so the probability
that d̂ will exceed ln(1/δ)/ε is at most δ. Thus, for every set T ⊆ R ∪ {⊥}, we have

Pr[M(x) ∈ T ] ≤ Pr[M(x) ∈ T ∩ {⊥}] + Pr[M(x) , ⊥]
≤ eε · Pr[M(x′) ∈ T ∩ {⊥}] + δ

≤ eε · Pr[M(x′) ∈ T ] + δ,

where the second inequality follows from (7.3), noting that T ∩ {⊥} equals either
{⊥} or ∅.

Case 2: LSq(x) ≤ β. In this case, |q(x) − q(x′)| ≤ β, which in turn implies the (ε, 0)-
indistinguishability of q(x)+Lap(β/ε) and q(x′)+Lap(β/ε). Thus, by (7.3) and basic
composition, we have (2ε, 0)-indistinguishability overall. �

Notice that, like smooth sensitivity, the naive algorithm for computing d(x, {x′ :
LSq(x′) > β}) enumerates over all datasets x′ ∈ X n. Nevertheless, for the median
function, it can again be computed efficiently.

7.3.3 Releasing Stable Values
A special case of interest in propose–test–release is when β = 0. Then it can be
verified that d(x, {x′ : LSq(x′) > β}) = d(x, {x′ : q(x′) , q(x)}) − 1, so the algorithm
is testing whether the function q is constant in a neighborhood of x (of radius roughly
ln(1/δ)/ε), and if so, it outputs q with no noise; that is, if q is stable around x, then
we can safely release the value q(x) (exactly, with no noise!), provided our test of
stability is differentially private. This also applies to, and indeed makes the most
sense for, discrete-valued functions q : X n → Y . In more detail, the mechanism
works as follows on x ∈ X n:

1. Let d̂ = d(x, {x′ : q(x′) , q(x)})+Lap(1/ε), where d denotes Hamming distance.
2. If d̂ ≤ 1 + ln(1/δ)/ε, output ⊥.
3. Otherwise output q(x).

Similarly to Proposition 7.3.2, we have:

Proposition 7.3.3 (Releasing stable values). For every query q : X n → Y and
ε, δ > 0, the above algorithm is (ε, δ)-differentially private.

Consider, for example, the mode function q : X n → X , where q(x) is defined
to be the most frequently occurring data item in x (breaking ties arbitrarily). Then
d(x, {x′ : q(x′) , q(x)}) equals half of the gap in the number of occurrences between
the mode and the second most frequently occurring item (rounded up). So we have:



7 The Complexity of Differential Privacy 371

Proposition 7.3.4 (Stability-based mode). For every data universe X , n ∈ N, and
ε, δ ≥ 0, there is an (ε, δ)-differentially private algorithm M : X n → X such that,
for every dataset x ∈ X n where the difference between the number of occurrences of
the mode and the second most frequently occurring item is larger than 4dln(1/δ)/εe,
M(x) outputs the mode of x with probability at least 1 − δ.

If instead we had used the Laplace Histogram of Proposition 7.2.8 (outputting
the bin y ∈ X with the largest noisy count), we would require a gap of Θ(log |X |)/ε
in the worst case, so the stability-based method is better when |X | is large compared
with 1/δ. Indeed, let us now show how stability-based ideas can in fact produce
noisy histograms with an error bound of O(log(1/δ))/εn.

Theorem 7.3.5 (Stability-based histograms [24]). For every finite data universe
X , n ∈ N, ε ∈ (0, ln n), and δ ∈ (0, 1/n), there is an (ε, δ)-differentially private
mechanism M : X n → RX such that, on every dataset x ∈ X n, with high probability
M(x) answers all of the counting queries in Qpt(X ) to within error

O
(

log(1/δ)
εn

)
.

The intuition for the algorithm is that, if we only released noisy answers for point
functions qy that are nonzero on the dataset x, the error bound in Proposition 7.2.8
would improve from O(log |X |)/εn to O(log n)/εn ≤ O(log(1/δ))/εn, since at most
n point functions can be nonzero on any dataset (namely those corresponding to
the rows of the dataset). However, revealing which point functions are nonzero
would not be differentially private. Thus, we only release the point functions that
are far from being zero (i.e., ones where the query is nonzero on all datasets at
noisy distance at most O(log(1/δ)/ε) from the given dataset, analogously to Propo-
sition 7.3.3).
Proof: The algorithm is the same as the Laplace histogram of Proposition 7.2.8,
except that we do not add noise to counts that are zero, and reduce all noisy counts
that are smaller than O(log(1/δ)/εn to zero.

Specifically, given a dataset x ∈ X n, the algorithm works as follows:

1. For every point y ∈ X :

a. If qy(x) = 0, then set ay = 0.
b. If qy(x) > 0, then:

i. Set ay ← qy(x) + Lap(2/εn).
ii. If ay < 2 ln(2/δ)/εn + 1/n, then set ay ← 0.

2. Output (ay)y∈X .

Now let us analyze this algorithm.

Utility: The algorithm gives exact answers for queries qy where qy(x) = 0. There
are at most n queries qy with qy(x) > 0 (namely, ones where y ∈ {x1, . . . , xn}). By
the tails of the Laplace distribution and a union bound, with high probability, all
of the noisy answers qy(x) + Lap(2/εn) computed in step 1(b)i have error at most
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O((log n)/εn) ≤ O(log(1/δ)/εn). Truncating the small values to zero in step 1(b)ii
introduces an additional error of up to 2 ln(1/δ)/εn + 1/n = O(log(1/δ)/εn).

Privacy: Consider two neighboring datasets x ∼ x′, where dataset x′ is obtained
by replacing row xi with x′i . Then the only point queries that differ on x and x′ are
qxi and qx′i . Since the answers to different queries qy are independent, we can an-
alyze the answer to each query separately and then apply composition. Consider
the answers axi (x) and axi (x′) to query qxi on datasets x and x′, respectively. We
know that qxi (x) > 0 (since row xi is in x). If we also have qxi (x′) > 0, then axi (x)
and axi (x′) are (ε/2, 0)-indistinguishable by the differential privacy of the Laplace
mechanism. (We can view the truncation step as postprocessing.) If qxi (x′) = 0,
then axi (x′) is always 0, and qxi (x) = 1/n (since x and x′ agree on all other rows),
which means that Pr[axi (x) , 0] = Pr[Lap(2/εn) ≥ 2 ln(2/δ)/εn] ≤ δ/2 and we
have (0, δ/2)-indistinguishability. Thus, in all cases, axi (x) and axi (x′) are (ε/2, δ/2)-
indistinguishable. By symmetry the same holds for the answers ax′i (x) and ax′i (x′).
On all other queries y, ay(x) and ay(x′) are identically distributed. By basic compo-
sition, the joint distributions of all answers are (ε, δ)-indistinguishable. �

7.3.4 Privately Bounding Local Sensitivity
Rather than proposing (arbitrarily) a threshold β as in propose–test–release, more
generally we might try to compute a differentially private upper bound on the local
sensitivity. That is, we will try to compute a differentially private estimate β̂ = β̂(x)
such that, with probability at least 1−δ, LSq(x) ≤ β̂. If we can do this, then outputting
q(x) + Lap(β̂/ε) will give an (ε, δ)-differentially private algorithm, by an analysis as
in the previous section.

The setting in which we will explore this possibility is where our dataset is a
graph and we want to estimate the number of triangles in the graph.

There are (at least) two notions of privacy that one might wish to consider for
graph algorithms:

• Edge-level privacy. In this setting, we say that G ∼ G′ if the graphs G and G′

differ on one edge. This is a special case of the setting we have been studying,
where we think of an n-vertex graph as a dataset consisting of

(
n
2

)
rows from

universe X = {0, 1} .
• Node-level privacy. In this setting, we say that G ∼ G′ if the graphs G and G′

differ only on edges that are adjacent to one vertex. This does not quite fit in
the tuple-dataset setting we have been studying, but the concept of differential
privacy naturally generalizes to this (as well as any other family of “datasets”
with some notion of “neighbors”).

In applications (e.g., to social networks), node-level privacy is a preferable notion
of privacy, since it simultaneously protects all of the relationships associated with
a vertex (which typically represents an individual person), rather than just a single
relationship at a time. However, since our goal is only to illustrate the method of
privately bounding local sensitivity, we will consider only edge-level privacy. Let
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q∆(G) be the number of triangles in G (where the ∆ is meant to be evocative of a
triangle). It can be verified that

LSq∆ (G) = max{ j : ∃u∃v u and v have j common neighbors}.

This, in turn, is no more than the maximum degree of G. In contrast the global
sensitivity is GSq∆ = n − 2. However, if we consider the global sensitivity of the
local sensitivity, we have GSLSq∆

= 1. (If we think of the local sensitivity as a
discrete analogue of a derivative, then this is the analogue of having a bounded
second derivative, despite the derivative sometimes being large.)

Consider the following mechanism M(G):

• Compute β̂ = LSq∆ (G) + Lap(1/ε) + ln(1/δ)/ε.
• Output q∆(G) + Lap(β̂/ε).

This mechanism can be shown to be (2ε, δ)-differentially private, and the total
noise is of magnitude

O
(

LSq∆ (G) + (1 + log(1/δ))/ε
ε

)
.

Note that this approach is computationally efficient if we can efficiently evaluate
the query q, can efficiently calculate LSq (which can be done using m · (|X | − 1)
evaluations of q when the dataset is in Xm), and have an upper bound on GSLSq .

7.4 Releasing Many Counting Queries with Correlated
Noise

We have seen (in Theorems 7.2.6, 7.2.7, and 7.2.9) that any set Q of counting queries
over data universe X can be answered with differential privacy and an error of at
most

α ≤ O

min

 |Q|εn
,

√
|Q| · log(1/δ) · log log |Q|

εn
,

√
|X | · log |Q|

εn




on each of the queries (with high probability). When both |Q| and |X | are larger than
n2, the amount of error is larger than 1, and hence these approaches provide nothing
useful (recall that the true answers lie in [0, 1]).

In this section, we will see two methods that can answer many more than n2

counting queries on a data universe of size much larger than n2. Both use ideas from
learning theory.

7.4.1 The SmallDB Algorithm
Theorem 7.4.1 (The smallDB algorithm, Blum et al. [14]). For every set Q of
counting queries on a data universe X and every ε > 0, there exists an ε-
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differentially private mechanism M such that, for all datasets x ∈ X n, with high
probability M(x) answers all queries in Q to within error at most

α = O
(

log |Q| log |X |
εn

)1/3

.

Moreover, M(x) outputs a “synthetic dataset” y ∈ Xm with m = O(log |Q|/α2) such
that, with high probability, we have |q(y) − q(x)| ≤ α for all q ∈ Q, i.e., we can
calculate all the answers using the (smaller) synthetic dataset.

In fact, the bounds can be improved to α = Õ(VC(Q) · log |X |/εn)1/3 and m =

VC(Q) · Õ(1/α2), where VC(Q) is the Vapnik–Chervonenkis dimension of the class
Q.5

The key point is that the error grows (less than) logarithmically with the number
|Q| of queries and the size |X | of the data universe; this allows us to handle even
exponentially many queries. (On the other hand, the error vanishes more slowly
with n than the earlier results we have seen — like 1/n1/3 rather than 1/n.) Let us
compare the implications of the smallDB algorithm for concrete query families with
the bounds we saw in Section 7.2 for pure differential privacy (Table 7.1):

Table 7.2: Error bounds for specific query families under (ε, 0)-differential privacy
on a data universe X of size D = 2d (e.g. X = {0, 1}d or X = {1, 2, . . . ,D}).
Highlighted cells indicate the best bounds in the regime where n ≤ Do(1) or n ≤ do(t).

Query family Q |Q| VC(Q) Previous bound Ref. Theorem 7.4.1

Qpt D 1 O
(

d
εn

)
Prop. 7.2.8 Õ

(
d
εn

)1/3

Qthr D 1 Õ(
√

D)
εn Thm. 7.2.9 Õ

(
d
εn

)1/3

Qconj 3d d Õ(
√

D)
εn Thm. 7.2.9 O

(
d2

εn

)1/3

Qmeans d blog2 dc O
(

d
εn

)
Thm. 7.2.6 O

(
d log d
εn

)1/3

Qconj
t for t � d O(dt) O(t log d) O

(
dt

εn

)
Thm. 7.2.6 O

(
t·d log d
εn

)1/3

We see that there is an exponential improvement in the dependence on D =

2d = |X | for the case of threshold functions and conjunctions (and similarly in
the dependence on t for t-way conjunctions). In particular, we only need n to be
polynomially large in the bit-length d of the rows to have vanishingly small error;
in such a case, we can produce and publish a differentially private synthetic dataset
that accurately summarizes exponentially many (2Θ(d)) statistics about the original
dataset (e.g., the fractions of individuals with every combination of attributes, as in
Qconj(d)). It is amazing that such a rich release of statistics is compatible with strong
privacy protections.

5 VC(Q) is defined to be the largest number k such that there exist x1, . . . , xk ∈ X for which
{(q(x1), . . . , q(xk)) : q ∈ Q} = {0, 1}k. Clearly, VC(Q) ≤ log |Q|.
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These improvements also hold compared with the bounds we had for (ε, δ)-
differential privacy (where the dependence on |Q| was only quadratically better than
for pure differential privacy). On the other hand, for point functions and attribute
means, our earlier bounds (even for pure differential privacy) are better than what is
given by Theorem 7.4.1.
Proof of Theorem 7.4.1: We begin by establishing the existence of at least one
accurate m-row synthetic dataset y∗: Let y∗ be a random sample of m rows from x,
say with replacement for simplicity. By the Chernoff bound,

Pr[ ∃q ∈ Q s.t. |q(y∗) − q(x)| > α )] ≤ 2−Ω(mα2) · |Q| < 1 ,

for an appropriate choice of m = O(log |Q|/α2). This is similar to “Occam’s razor”
arguments in computational learning theory (cf. [70]). In fact, it is known that m =

O(VC(Q) · log(1/α)/α2) suffices.
Of course, outputting a random subsample of the dataset will not be differentially

private. Instead, we use (a special case of) the exponential mechanism of McSherry
and Talwar [79]. Specifically, consider the following mechanism M(x):

1. For each y ∈ Xm, define weightx(y) = exp
(
−εn ·max

q∈Q
|q(y) − q(x)|

)
.

2. Output y with probability proportional to weightx(y). That is,

Pr[M(x) = y] =
weightx(y)∑

z∈Xm weightx(z)
.

Notice that, if x ∼ x′, then weightx(y) and weightx′ (y) differ by a multiplicative
factor of at most eε. That is, we smoothly vary the weight put on different synthetic
datasets according to the amount of error they will give us, with low-error synthetic
datasets receiving the highest weight.

Let us now formally analyze this algorithm.

Privacy: Fix x ∼ x′ ∈ X n, y ∈ Xm. Then,

Pr[M(x) = y] =
weightx(y)∑
y′ weightx(y′)

≤
eε · weightx′ (y)∑

y′ e−ε · weightx′ (y′)
≤ e2ε · Pr[M(x′) = y].

Thus, we have 2ε-differential privacy.

Accuracy: Define an output y ∈ Xm to be β-accurate if maxq∈Q |q(y) − q(x)| ≤ β.
Our goal is to show that, with high probability, M(x) is 2α-accurate. Recall that
earlier we showed that there exists an α-accurate output y∗. We have



376 Salil Vadhan

Pr[M(x) is not 2α-accurate] =
∑

y∈Xm,
y not 2α-accurate

weightx(y)∑
z weightx(z)

≤
∑

y∈Xm,
y not 2α-accurate

weightx(y)
weightx(y∗)

≤ |X |m · exp (−εn · 2α)
exp (−εn · α)

� 1 (if αεn > 2m log |X |).

Recall that m = O(log |Q|)/α2. Solving for α gives the theorem. �
The exponential mechanism is quite general and powerful, and can be used to de-

sign differentially private mechanisms for sampling “good” outputs from any output
space Y . Specifically, we can replace the expression

−max
q∈Q
|q(y) − q(x)|

with an arbitrary “score function” score(x, y) indicating how good y is as an output
on dataset x, and replace the factor of n in the exponent with a bound B on the recip-
rocal of maxz GSscore(·,z) . That is, we obtain the following mechanism Mscore,B(x):

1. For each y ∈ Y , define weightx(y) = exp (ε · score(x, y)/B).
2. Output y with probability proportional to weightx(y). That is,

Pr[M(x) = y] =
weightx(y)∑

z∈Y weightx(z)
.

Similarly to the proof of Theorem 7.4.1, it can be shown that:

Proposition 7.4.2 (The exponential mechanism, McSherry and Talwar [79]).
For every function score : X n × Y → R such that Y is finite, ε ≥ 0, and B > 0,

1. If B ≥ maxz GSscore(·,z), then the mechanism Mscore,B is 2ε-differentially private,
and

2. For every dataset x ∈ X n, with high probability, Mscore,B(x) outputs y such that

score(x, y) ≥ argmaxy∗ score(x, y∗) − O(log |Y |) · B/ε.

The downside. While the exponential mechanism is very powerful, it can be com-
putationally very expensive, as a direct implementation requires enumerating over
all y ∈ Y . Indeed, in the application of Theorem 7.4.1, the computation time is
roughly

|Y | = |X |m = exp
(

log |Q| log |X |
α2

)
,

so it is very slow. For example, we get runtime exp(d2/α2) for the query family Qconj

of conjunctions on {0, 1}d.
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7.4.2 Private Multiplicative Weights
We now present a state-of-the-art algorithm for general queries:

Theorem 7.4.3 (Private multiplicative weights, Hardt and Rothblum [58]). For
every set Q of counting queries on a data universe X and every ε, δ > 0, there exists
an (ε, δ)-differentially private mechanism M such that, for all datasets x ∈ X n, with
high probability M(x) answers all queries in Q to within error at most

α = O

 √
log |X | · log(1/δ) · log |Q|

εn

1/2

.

Moreover, M(x) can answer the queries in an online fashion (answering each query
as it arrives) and runs in time poly(n, |X |) per query.

The algorithm can also be modified to produce a synthetic dataset, though we will
not show this here.

Note that the error vanishes more quickly with n than in Theorem 7.4.1 (as 1/n1/2

rather than 1/n1/3), and the log |X | has been replaced by
√

log |X | · log(1/δ). Com-
paring with the results we have seen for our example query families, we have

Table 7.3: Error bounds for specific query families under (ε, δ)-differential privacy
on a data universe X of size D = 2d (e.g., X = {0, 1}d or X = {1, 2, . . . ,D}).
Highlighted cells indicate the best bounds in the regime where n ≤ Do(1) or n ≤ do(t)

and δ ≥ 2− polylog(n). In the case of incomparable bounds, both are highlighted.

Query family Q Sect. 7.2 Ref. Thm. 7.4.1 Thm. 7.4.3

Qpt O
(

d
εn

)
Prop. 7.2.8 O

(
d3/2 ·
√

log(1/δ)
εn

)1/2

Qthr Õ(
√

D)
εn Thm. 7.2.9 Õ

(
d
εn

)1/3
O

(
d3/2 ·
√

log(1/δ)
εn

)1/2

Qconj Õ(2d/2)
εn Thm. 7.2.9 O

(
d2

εn

)1/3
O

(
d3/2 ·
√

log(1/δ)
εn

)1/2

Qmeans O
( √

d log(1/δ)·log log d
εn

)
Thm. 7.2.7 O

( √
d log(1/δ)·log d

εn

)1/2

Qconj
t for t � d O

(
dt/2 ·
√

log(1/δ)·log log d
εn

)
Thm. 7.2.7 O

(
t·d log d
εn

)1/3
O

(
t log d
√

d log(1/δ)
εn

)1/2

For Qconj and Qconj
t , we obtain a saving in the dependence on |X | = 2d. In par-

ticular, for answering all conjunctions on {0, 1}d with error tending to zero, we only
need n = ω(d3/2 ·

√
log(1/δ)/ε) rather than n = ω(d2/ε) as in Theorem 7.4.1. The

running time has improved too, but is still at least |X | · |Q|, which is exponential in
d. (Of course, in this generality, one needs |X | · |Q| bits to specify an arbitrary set of
counting queries on {0, 1}d.)
Proof: The algorithm views the dataset x as a distribution on types r ∈ X :



378 Salil Vadhan

x(r) =
#{i ∈ [n] : xi = r}

n
.

Then,
q(x) = E

r←x
[q(r)].

The algorithm will maintain a distribution h on X , some hypothesis for what the
data distribution is. It will try to answer queries with h, and update h when it leads
to too much error. It will turn out that only a small number of updates are needed,
and this will imply that the overall privacy loss is small. Here are the details:

1. INITIALIZE the hypothesis h to the uniform distribution on X .
2. REPEAT at most O(log |X |)/α2 times (outer loop)

a. RANDOMIZE the accuracy threshold: α̂ = α/2 + Lap(1/ε0n), where ε0 is
a parameter that will be set later in the proof.

b. REPEAT (inner loop)
i. Receive next query q.

ii. If |q(x)−q(h)|+Lap(1/ε0n) < α̂, then output a = q(h) and CONTINUE
inner loop. Otherwise, output a = q(x) + Lap(1/ε0n) (with fresh noise)
and EXIT inner loop.

c. UPDATE the hypothesis h:

i. Reweight using query q: ∀w ∈ X g(w) =

h(w)e(α/8)·q(w) if a > q(h),
h(w)e−(α/8)·q(w) if a < q(h).

ii. Renormalize: ∀w ∈ X h(w) =
g(w)∑

v∈X g(v)
.

d. CONTINUE outer loop.

Utility analysis: By the exponentially vanishing tails of the Laplace distribution,
with high probability none of the (at most 3|Q|) samples from Lap(1/ε0n) used in
steps 2a and 2(b)ii has magnitude larger than

O
(

log |Q|
ε0n

)
≤
α

8
,

provided we set ε0 ≥ c log |Q|/αn for a sufficiently large constant c. By the triangle
inequality, this implies that all answers that we provide are within ±3α/4 of q(x).

Now, we must show that the mechanism will not stop early.

Claim 7.4.4. Assuming all the samples from Lap(1/ε0n) have magnitude at most
α/8, the outer loop cannot exceed its budget of O(log |X |)/α2 iterations.

Proof sketch: We use the Kullback–Leibler divergence D(x||h) as a potential func-
tion. At the start, h is the uniform distribution on |X |, so

D(x||h) = log |X | − H(x) ≤ log |X |,

where H(x) is the Shannon entropy of the distribution x. Suppose that, in some
iteration, we do an update (i.e., reweight and renormalize) to go from hypothesis h
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to hypothesis h′. Since all the noise samples have magnitude at most α/8, we must
have |q(x) − q(h)| ≥ α/4 in order to do an update, and in this case b − q(h) has
the same sign as q(x) − q(h). By a tedious but standard calculation (used in typical
analyses of the multiplicative weights method), this implies that

D(x||h′) ≤ D(x||h) − Ω(α2).

Since divergence is always nonnegative, we can have at most log |X |/Ω(α2) updates.
�

Privacy analysis: The mechanism takes a dataset x and outputs a sequence
(a1, . . . , ak) of noisy answers to a sequence of queries (q1, . . . , qk) (which we will
treat as fixed in this analysis). Note that the output (a1, . . . , ak) is determined by the
sequence (b1, . . . , bk) where bi = ⊥ if there is no update on query qi and bi = ai

otherwise. (This information suffices to maintain the hypothesis h used by the algo-
rithm, as the update to h done in step 2c depends only on the current query qi and
the noisy answer ai = bi.) Thus, by closure under postprocessing (Lemma 7.2.1), it
suffices to show that the mechanism that outputs the sequence (b1, . . . , bk) is (ε, δ)-
differentially private. This mechanism, in turn, is obtained by (adaptively) com-
posing O(log |X |)/α2 submechanisms, each corresponding to one execution of the
outer loop. Specifically, each such submechanism is parameterized by the output of
the previous submechanisms, which is of the form (b1, . . . , bi−1) with bi−1 , ⊥, and
produces the output (bi, . . . , b j) corresponding to one more execution of the outer
loop — so bi = bi+1 = · · · = b j−1 = ⊥ and b j , ⊥ (unless j = k, in which case we
may also have b j = ⊥).

We will argue below that each such submechanism is 4ε0-differentially private
(even though the number of queries it answers can be unbounded). Given this claim,
we can apply advanced composition to deduce that the overall mechanism satisfies
(ε, δ)-differential privacy for

ε = O

√ log |X | log(1/δ)
α2 · ε0

 .
Substituting ε0 = c log |Q|/αn (as needed in the utility analysis above) and solving
for α yields the theorem.

So now we turn to analyzing a submechanism M corresponding to a single exe-
cution of the outer loop (after a fixed prior history (b1, . . . , bi−1)). Since it suffices to
verify pure differential privacy with respect to singleton outputs, it suffices to show
that, for every hypothesis h (determined by the prior history (b1, . . . , bi−1)) and ev-
ery possible output sequence b = (bi, . . . , b j) with bi = bi+1 = · · · = b j−1 = ⊥, the
following mechanism Mh,b(x), which tests whether the output of the next iteration
of the outer loop is b, is 4ε0-differentially private:

1. SAMPLE να, νi, νi+1, . . . , ν j, νa ← Lap(1/ε0n). (Making all random choices at
start.)

2. RANDOMIZE the accuracy threshold: α̂ = α/2 + να.
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3. REPEAT for t = i to j (inner loop)

a. Receive next query qt.
b. If bt = ⊥ and |qt(x) − qt(h)| + νt ≥ α̂, then HALT and OUTPUT 0.
c. If bt , ⊥ (which implies t = j), then:

i. If |qt(x) − qt(h)| + νt < α̂, HALT and OUTPUT 0.
ii. If qt(x) + νa , b j, HALT and OUTPUT 0.

4. OUTPUT 1 (if we have not halted with output 0 so far).

Let us consider the case when b j , ⊥; the case when b j = ⊥ is similar but
simpler. We will argue 4ε0-differential privacy even when νi, νi+1, . . . , ν j−1 are fixed
to arbitrary values (so the only randomness is from να, ν j, νa); averaging over these
independent random variables will preserve differential privacy.

To show this, we will show that we can compute the output of Mh,b from the
composition of three algorithms, which are ε0-, 2ε0-, and ε0-differentially private,
respectively.

To determine whether we ever halt and output 0 in step 3b it suffices to calculate

β = α̂ −max
i≤t< j

(|qt(x) − qt(h)| + νt) = α/2 + να −max
i≤t< j

(|qt(x) − qt(h)| + νt).

We halt and output 0 in one of the executions of step 3b iff β ≤ 0. The calcu-
lation of β is ε0-differentially private by the Laplace mechanism because α/2 −
maxi≤t< j(|qt(x)− qt(h)|+ νt) has sensitivity at most 1/n as a function of the dataset x
(recalling that h and the νt’s for i ≤ t < j are all fixed) and να is distributed according
to Lap(1/ε0n). This argument is the key to why the private multiplicative weights
can answer so many queries—we are only paying once for privacy despite the fact
that this condition involves an unbounded number of queries.

Given β, to determine whether or not we halt and output 0 in step 3(c)i, it suffices
to test whether |q j(x) − q j(h)| + ν j ≥ α̂ = β + maxi≤t< j(|qt(x) − qt(h)| + νt). This is
2ε0-differentially private by the Laplace mechanism because |q j(x) − q j(h)| − β −
maxi≤t< j(|qt(x) − qt(h)| + νt) has sensitivity at most 2/n as a function of x and ν j is
independently distributed according to Lap(1/ε0n).

Finally, step 3(c)ii is ε0-differentially private by the Laplace mechanism (with
fresh randomness νa). �

Remark 7.4.5.

• The hypothesis h maintained by the private multiplicative weights algorithm
can be thought of as a fractional version of a synthetic dataset. Indeed, with
a bit more work it can be ensured that at the end of the algorithm, we have
|q(h) − q(x)| ≤ α for all q ∈ Q. Finally, random sampling from the distribution
h can be used to obtain a true, integral synthetic dataset y ∈ Xm of size m =

O(log |Q|/α2) just like in Theorem 7.4.1.
• The algorithm works in an online fashion, meaning that it can answer query

qi without knowing the future queries qi+1, qi+2, . . .. However, if all queries are
given simultaneously, the algorithm can be sped up by using the exponential
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mechanism (Proposition 7.4.2) to identify queries that will generate an update
(rather than wasting time on queries that do not generate an update) [61].

7.5 Information-Theoretic Lower Bounds
In the previous section, we have seen differentially private algorithms that can an-
swer many counting queries with good accuracy. Now we turn to lower bounds, with
the goal of showing that these algorithms are nearly optimal in terms of the number
of queries and accuracy they can achieve. These lower bounds will be information-
theoretic, meaning that they apply regardless of the computational resources of the
mechanism M.

7.5.1 Reconstruction Attacks and Discrepancy
7.5.1.1 Reconstruction

We begin by defining a very weak standard for privacy, namely avoiding an attack
that reconstructs almost all of the dataset:

Definition 7.5.1 (Blatant nonprivacy, Dinur and Nissim [31]). A mechanism M :
X n → Y is called blatantly nonprivate if, for every x ∈ X n, one can use M(x) to
compute an x′ ∈ X n, such that x′ and x differ in at most n/10 coordinates (with high
probability over the randomness of M).

It can be shown that a mechanism that is (1, 0.1)-differentially private cannot be
blatantly nonprivate (if |X | > 1). Indeed, if we run an (ε, δ)-differentially private
mechanism M on a uniformly random dataset X ← X n, then the expected fraction
of rows that any adversary can reconstruct is at most eε/|X | + δ (since if we replace
any row Xi with an independent row X′i , M(X−i, X′i ) reveals no information about
Xi and thus does not allow for reconstructing Xi with probability larger than 1/|X |).

We now give some fundamental lower bounds, due to Dinur and Nissim [31], on
the tradeoff between the error and the number of counting queries that can be an-
swered while avoiding blatant nonprivacy. These lower bounds predate, and indeed
inspired, the development of differential privacy.

Let X = {0, 1}. Then a dataset of n people is simply a vector x ∈ {0, 1}n. We
will consider (normalized) inner-product queries specified by a vector q ∈ {0, 1}n:
the intended answer to the query q is 〈q, x〉/n ∈ [0, 1]. Think of the bits in x as
specifying a sensitive attribute of the n members of the dataset and q as specifying
a subset of the population according to some publicly known demographics. Then
〈q, x〉/n measures the correlation between the specified demographic traits and the
sensitive attribute.

These are not exactly counting queries, but they can be transformed into counting
queries as follows: Let X̃ = [n] × {0, 1} be our data universe, map an inner-product
query q ∈ {0, 1}n to the counting query q̃((i, b)) = qi · b, and consider datasets of
the form x̃ = ((1, x1), (2, x2), . . . , (n, xn)), q̃((i, b)) = qi · b. Then q̃(x̃) = 〈q, x〉/n, and
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reconstructing x is equivalent to reconstructing x̃, which again contradicts (1, 0.1)-
differential privacy.

Theorem 7.5.2 (Reconstruction from many queries with large error [31]). Let
x ∈ {0, 1}n. If we are given, for each q ∈ {0, 1}n, a value yq ∈ R such that∣∣∣∣∣yq −

〈q, x〉
n

∣∣∣∣∣ ≤ α,
then one can use the yq’s to compute x′ ∈ {0, 1}n such that x and x′ differ in at most
4α fraction of coordinates.

Corollary 7.5.3. If M(x) is a mechanism that outputs values yq as above with α ≤
1/40, then M is blatantly nonprivate.

Thus at least Ω(1) additive error is needed for privately answering all 2n normalized
inner-product queries, which as noted correspond to 2n counting queries on a data
universe of size 2n.

The smallDB mechanism (Theorem 7.4.1) can answer exp(Ω̃(n)) counting queries
over a data universe X with ε-differential privacy and error α provided |X | ≤
exp(polylog(n)) and ε, α ≥ 1/ polylog(n). Corollary 7.5.3 says that we cannot push
this further to answer 2n queries.
Proof of Theorem 7.5.2: Pick any x′ ∈ {0, 1}n such that, for all q ∈ {0, 1}n,∣∣∣∣∣yq −

〈q, x′〉
n

∣∣∣∣∣ ≤ α.
(We know that at least one such x′ exists, namely x.)

We need to prove that x and x′ differ on at most a 4α fraction of coordinates.
Let q1 = x and let q0 be the bitwise complement of x. Then, the relative Hamming
distance between x and x′ equals

d(x, x′)
n

=
|〈q0, x〉 − 〈q0, x′〉| + |〈q1, x〉 − 〈q1, x′〉|

n

≤

∣∣∣∣∣ 〈q0, x〉
n
− yq0

∣∣∣∣∣ +

∣∣∣∣∣yq0 −
〈q0, x′〉

n

∣∣∣∣∣ +

∣∣∣∣∣ 〈q1, x〉
n
− yq1

∣∣∣∣∣ +

∣∣∣∣∣yq1 −
〈q1, x′〉

n

∣∣∣∣∣
≤ 4 · α.

�
Of course we can avoid the above attack by restricting the adversary to fewer

than 2n queries. The next theorem will say that, even for much fewer queries (indeed
O(n) queries), we must incur a significant amount of error, α ≥ Ω(1/

√
n). This is

tight, matching Theorem 7.2.7 up to a factor of O(
√

log(1/δ) · log log n). We will in
fact study the more general question of what additive error is needed for privately
answering any set Q of counting queries.

Let q1, . . . , qk ∈ {0, 1}n be a collection of vectors, which we view as specify-
ing inner-product queries 〈q, x〉/n as above. Suppose we have a mechanism M
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that answers these queries to within error α, i.e., with high probability outputs
y1, . . . , yk ∈ [0, 1] with ∣∣∣∣∣∣y j −

〈q j, x〉
n

∣∣∣∣∣∣ ≤ α.
Let us try to show that M is blatantly nonprivate. Our privacy-breaking strategy is
the same: take any x′ ∈ {0, 1}n with∣∣∣∣∣∣y j −

〈q j, x′〉
n

∣∣∣∣∣∣ ≤ α
for each j.

Then, by the triangle inequality, we have |〈q j, x− x′〉|/n ≤ 2α for all j = 1, . . . , k.
For blatant nonprivacy, we want to use this to deduce that x and x′ have Hamming
distance at most n/10, i.e., ‖x − x′‖1 ≤ n/10. Suppose not. Let z = x − x′. Let Q
denote the k × n matrix whose rows are the q j. Thus, we have

1. z is a {0,+1,−1} vector with ‖z‖1 > n/10,
2. ‖Qz‖∞ ≤ 2αn.

Thus, we have a contradiction (and hence can conclude that M is blatantly nonpri-
vate) if the partial discrepancy of Q, defined as follows, is larger than 2αn:

Definition 7.5.4 ((Partial) discrepancy). For a k × n matrix Q, we define its dis-
crepancy Disc(Q) and its partial discrepancy PDisc(Q) as

Disc(Q) = min
z∈{±1}n

‖Qz‖∞, and

PDisc(Q) = min
z∈{0,+1,−1}n,
‖z‖1>n/10

‖Qz‖∞.

The qualifier “partial” refers to the fact that we allow up to 90% of z’s coordinates
to be zero, in contrast to ordinary discrepancy which only considers vectors z ∈
{±1}n. A more combinatorial perspective comes if we think of the rows of Q as
characteristic vectors of subsets of X , and z as a partial ±1-coloring of the elements
of X . Then ‖Qz‖∞ measures the largest imbalance in coloring over all the sets in
Q, and PDisc(Q) refers to minimizing this maximum imbalance over all partial
colorings z.

Summarizing the discussion before Definition 7.5.4, we have:

Theorem 7.5.5 (Reconstruction via partial discrepancy). Let q1, . . . , qk ∈ {0, 1}n

and Q be the k × n matrix whose rows are the q j’s. Then any mechanism M :
{0, 1}n → Rk that answers all of the normalized inner-product queries specified by
q1, . . . , qk to within additive error α smaller than PDisc(Q)/2n is blatantly nonpri-
vate.

We note that Theorem 7.5.5 is a generalization of Theorem 7.5.2. Indeed, if Q
is the 2n × n matrix whose rows are all bitstrings of length n (i.e., the family of all
subsets of [n]), then the partial discrepancy of Q is greater than n/20. (For a partial
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coloring z with greater than n/10 nonzero entries, either the set of coordinates on
which z is 1 or the set of coordinates on which z is −1 will have imbalance greater
than n/20.)

Let us now use Theorem 7.5.5 to deduce the second theorem of Dinur and Nissim
[31].

Theorem 7.5.6 (Reconstruction from few queries with small error [31]). There
exists c > 0 and q1, . . . , qn ∈ {0, 1}n such that any mechanism that answers the nor-
malized inner-product queries specified by q1, . . . , qn to within error at most c/

√
n

is blatantly nonprivate.

In fact, the theorem holds for a random set of queries, as follows from combining
the following lemma (setting k = s = n) with Theorem 7.5.5:

Lemma 7.5.7 (Discrepancy of a random matrix). For all integers k ≥ s ≥ 0, with
high probability, a k × s matrix Q with uniform and independent entries from {0, 1}
has partial discrepancy at least

Ω
(
min

{ √
s · (1 + log(k/s)), s

})
.

Up to the hidden constant, this is the largest possible discrepancy for a k × s matrix.
Indeed, a random coloring achieves discrepancy at most O(

√
s · log k) (by a Cher-

noff bound and union bound). The celebrated “six standard deviations suffice” result
of Spencer [97] improves the log k to log(k/s).
Proof sketch: Pick the rows q1, . . . , qk ∈ {0, 1}s uniformly at random. Fix
z ∈ {0,+1,−1}s with ‖z‖1 > s/10. Then for each j, 〈q j, z〉 is a difference of two
binomial distributions, at least one of which is the sum of more than s/20 indepen-
dent, unbiased {0, 1} random variables (since z has more than s/20 coordinates that
are all 1 or all −1). By anticoncentration of the binomial distribution (cf. [76, Prop.
7.3.2]), we have for every t ≥ 0

Pr
q j

[∣∣∣〈q j, z〉
∣∣∣ ≥ min{t

√
s, s/20}

]
≥ max

{
1 − O(t), Ω

(
e−O(t2)

)}
.

Thus, for each z we have

Pr
[
∀ j ∈ [k],

∣∣∣〈q j, z〉
∣∣∣ < min{t

√
s, s/20}

]
≤ min

{
O(t), 1 − Ω

(
e−O(t2)

)}k
.

By a union bound, we have

Pr
[
∃z ∈ {−1, 0,+1}s : ‖z‖1 > s/10 and ∀ j ∈ [k],

∣∣∣〈q j, z〉
∣∣∣ < min{t

√
s, s/20}

]
< 3s ·min

{
O(t), 1 − Ω

(
e−O(t2)

)}k
.

We now choose t to ensure that this probability is small. For every k ≥ s, taking t
to be a small enough constant suffices to ensure that 3s · O(t)k � 1. However, once
k/s is sufficiently large, we can take a larger value of t (corresponding to higher
discrepancy) if we use the other term in the min. Specifically, we can take t =

c
√

log(ck/s) for a sufficiently small constant c, and obtain
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3s ·
(
1 − Ω

(
e−O(t2)

))k
≤ 3s ·

(
1 − Ω

( s
ck

))k
= 3s · e−Ω(s/c) � 1.

In all cases, we can take t = Ω
( √

1 + log(k/s)
)
, as needed for the lemma. �

The reconstruction attacks we gave in the proof of the above theorems take time
more than 2n, because they require searching for a vector x′ ∈ {0, 1}n such that

∀ j

∣∣∣∣∣∣y j −
〈q j, x′〉

n

∣∣∣∣∣∣ ≤ α. (7.4)

However, it is known how to obtain a polynomial-time reconstruction attack for
certain query families. In particular, a polynomial-time analogue of Theorem 7.5.6
can be obtained by using a linear program to efficiently find a fractional vector
x′ ∈ [0, 1]n satisfying Condition (7.4) and then rounding x′ to an integer vector.
To show that this attack works, we need to lower-bound the fractional analogue of
partial discrepancy, namely

inf
z∈[−1,1]n,
‖z‖1>n/10

‖Qz‖∞,

which again can be shown to be Ω(
√

n) for a random n × n matrix Q, as well as for
some explicit constructions [37].

One can consider a relaxed notion of accuracy, where the mechanism is only
required to give answers with at most c/

√
n additive error for 51% of the queries, and

for the remaining 49% it is free to make arbitrary error. Even such a mechanism can
be shown to be blatantly nonprivate. If one wants this theorem with a polynomial-
time privacy-breaking algorithm, then this can also be done with the 51% replaced
by about 77%. (This is a theorem of Dwork, McSherry, and Talwar [39], and is
based on connections to compressed sensing.)

7.5.1.2 Discrepancy Characterizations of Error for Counting Queries

We now work towards characterizing the error required for differential privacy for
answering a given set of counting queries. Let q1, . . . , qk ∈ {0, 1}X be a given set of
counting queries over a data universe X (viewed as vectors of length |X |). We will
abuse notation and use Q to denote both the set {q1, . . . , qk} of counting queries as
well as the k × |X | matrix whose rows are the q j. For a set S ⊆ X , we let QS denote
the restriction of Q to the columns of S .

Then we have:

Theorem 7.5.8 (Partial discrepancy lower bound). Let Q = {q : X → {0, 1}} be a
set of counting queries over data universe X , and let M : X n → RQ be a (1, 0.1)-
differentially private mechanism that with high probability answers every query in
Q with error at most α. Then

α ≥ max
S⊆X ,|S |≤2n
|S | even

PDisc(QS )/2n.
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Proof sketch: Suppose for contradiction that α < PDisc(QS )/2n for some set S
of size at most 2n. Let us restrict attention to datasets x of the following form: the
first |S |/2 rows of x, denoted y, consist of |S |/2 distinct elements of S , and the rest
are fixed to an arbitrary value w ∈ X . Then for a counting query q : X → {0, 1}, we
have

q(x) =
〈qS , χ(y)〉 + (n − |S |/2) · q(w)

n
,

where qS ∈ {0, 1}S is the vector (q(s))s∈S (one of the rows in QS ) and χ(y) ∈ {0, 1}S

is the characteristic vector of y (i.e., the indicator of which elements of S are in
y). Thus, an estimate of q(x) to within additive error at most α yields an estimate
of the normalized inner product 〈qS , χ(y)〉/|S | to within additive error αn/|S | <
PDisc(QS )/2. If we have such estimates for every query q ∈ Q, then by Theo-
rem 7.5.5, we can reconstruct at least 90% of the coordinates of the characteristic
vector χ(y), which can be shown to contradict (1, 0.1)-differential privacy. �

If we do not fix n but require the error to scale linearly with n, then this lower
bound can be phrased in terms of hereditary partial discrepancy, which is defined
to be

HerPDisc(Q) def
= max

S⊆X
PDisc(QS ).

In this language, we have the theorem of Muthukrishnan and Nikolov [83]:

Theorem 7.5.9 (Hereditary discrepancy lower bound [83]). For every set Q =

{q : X → {0, 1}} of counting queries over data universe X , the following holds for
all sufficiently large n (in particular for all n ≥ |X |/2): Let M : X n → RQ be
a (1, 0.1)-differentially private mechanism that with high probability answers every
query in Q with error at most α. Then

α ≥ (HerPDisc(Q) − 1)/2n.

(We subtract 1 from the hereditary partial discrepancy to compensate for the fact
it removes the constraint that |S | is even from Theorem 7.5.8.) Put differently, the
hereditary partial discrepancy is a lower bound on the non-normalized error (αn)
needed to answer the queries with differential privacy (for sufficiently large n). Re-
markably, Nikolov, Talwar, and Zhang [85] showed that this bound is nearly tight:

Theorem 7.5.10 (Hereditary discrepancy upper bound [85]). For every set Q =

{q : X → {0, 1}} of counting queries over data universe X , every ε, δ > 0, and
n ∈ N, there is an (ε, δ)-differentially private mechanism M : X n → RQ that
answers every query in Q with error

α ≤
HerPDisc(Q) · polylog(|Q|) ·

√
log(1/δ)

εn

with high probability.

We will not prove the latter theorem, but will get a taste of its techniques in Sec-
tion 7.7.3. We note that the distinction between partial discrepancy and ordinary
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discrepancy becomes less significant once we move to the hereditary versions. In-
deed, if we define HerDisc(Q) def

= maxS⊆X Disc(QS ), then it is known that

HerPDisc(Q) ≤ HerDisc(Q) ≤ HerPDisc(Q) · O(min{log |X |, log |Q|}). (7.5)

(See the book by Matoušek [75] for proofs.) Hereditary discrepancy is a well-studied
concept in combinatorics, and a remarkable byproduct of the aforementioned work
on differential privacy was a polylogarithmic approximation algorithm for heredi-
tary discrepancy, solving a long-standing open problem [85].

7.5.1.3 Discrepancy Lower Bounds for Specific Query Families

Note that Theorems 7.5.9 and 7.5.10 only provide a nearly tight characterization
in case we look for error bounds of the form f (Q)/n, which scale linearly with n
(ignoring the dependence on ε and log(1/δ) for this discussion). In particular, the
lower bound of Theorem 7.5.9 only says that HerPDisc(Q) is a lower bound on the
function f (Q) for sufficiently large n. If our dataset size n is below the point at which
this lower bound kicks in, we may be able to achieve significantly smaller error.

For finite dataset sizes n, we can use the lower bound of Theorem 7.5.8:

α ≥ max
S⊆X ,|S |≤2n
|S | even

PDisc(QS )/2n.

Unfortunately, partial discrepancy is a combinatorially complex quantity, and can
be hard to estimate. Fortunately, there are several relaxations of it that can be easier
to estimate and thereby prove lower bounds:

Proposition 7.5.11. Let Q be a k × |X | query matrix (with {0, 1} entries). Then:

1. For every S ⊆ X and T ⊆ [k], we have

PDisc(QS )) >
1

10

√
|S |
|T |
· σmin(QT

S ),

where QT
S denotes the |T | × |S | submatrix of QS with rows indexed by T , and

σmin(QT
S ) denotes the smallest singular value of QT

S .
2.

max
S⊆X ,|S |≤2n
|S | even

PDisc(QS ) >
min{VC(Q) − 1, 2n}

20
.

Proof:

1. We have
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PDisc(QS ) ≥ PDisc(QT
S )

= min
z∈{−1,1}|S |,
‖z‖1>|S |/10

‖QT
S z‖∞

> inf
z,0

‖QT
S z‖∞

‖z‖1 · 10/|S |

≥ inf
z,0

‖QT
S z‖2/

√
|T |

(‖z‖2 ·
√
|S |) · 10/|S |

=
1

10

√
|S |
|T |
· σmin(QT

S ).

2. By definition of VC dimension, there is an even-sized set S of at least
min{(VC(Q) − 1, 2n} columns for which the rows of QS contain all 2k binary
strings of length k. The partial discrepancy of this set of vectors is thus greater
than k/20.

�

Combining Proposition 7.5.11 with Theorem 7.5.8, we obtain lower bounds on
the error α needed by differentially private mechanisms in terms of least singular
values of submatrices QT

S and in terms of the VC dimension VC(Q). The lower
bound on error in terms of least singular values is due to Kasiviswanathan et al. [66],
and the lower bound on error in terms of VC dimension is due to Blum et al. [14].
An advantage of using the singular-value relaxation in place of partial discrepancy is
that it allows for a polynomial-time reconstruction attack, similarly to the discussion
after the proof of Theorem 7.5.6. The attack based on VC dimension is based on
brute-force enumeration, just like Theorem 7.5.2, but the search space is of size
2VC(Q) ≤ |Q|.

Recall that the largest possible discrepancy among k × s matrices (with k ≥ s)
is achieved (up to constant factors) by a random matrix, with the bound stated in
Lemma 7.5.7. To apply this for lower bounds on differentially private release of
counting queries, we can take Q to be a family of k random counting queries over
a data universe X , and S ⊆ X to be an arbitrary subset of size s = min{|Q|, |X |, n}.
Then QS is a random matrix, and combining Lemma 7.5.7 and Theorem 7.5.8, we
obtain:

Theorem 7.5.12 (Largest possible discrepancy lower bound). For every data uni-
verse X and n, k ∈ N, there is a family of k counting queries Q over X such that, if
M : X n → RQ is a (1, 0.1)-differentially private mechanism that with high proba-
bility answers every query in Q with error at most α, we have

α ≥ Ω

min


√
|Q|
n

,

√
|X | · (1 + log(|Q|/|X |))

n
,

√
log(|Q|/n)

n
, 1


 .



7 The Complexity of Differential Privacy 389

Let us compare this with the upper bounds that we have for (ε, δ)-differential
privacy given by Theorems 7.2.7, 7.2.9, and 7.4.3. For every family of counting
queries, choosing the best of these algorithms will give an error bound of

α ≤ O

min


√
|Q| · log(1/δ) · log log |Q|

εn
,

√
|X | · log |Q|

εn
,

√ √
log |X | · log(1/δ) · log |Q|

εn
, 1


 .

Ignoring factors of log(1/δ) and 1/ε, the first two bounds nearly match the first
two lower bounds of Theorem 7.5.12. The third bound, however, differs by the√

log |X | factor that appears in the error bound of private multiplicative weights but
does not appear in the lower bound (which leaves open the possibility of having van-
ishingly small error whenever |Q| ≤ f (n) for some f (n) = exp(Ω̃(n)), independent
of the size of the data universe). In Section 7.5.3, we will see different lower-bound
techniques that can yield this

√
log |X | factor.

Let us now turn to the concrete families of counting queries from Section 7.1.3:

• Point functions (Qpt): Here PDisc(QS ) = 1 for every S (since all the sets are
of size 1), so we do not obtain any interesting lower bound.

• Threshold functions (Qthr): Here also PDisc(QS ) = 1 for every S , because if
we write S = {s1 < s2 < · · · < st} and color s j according to the parity of j,
every subset of S defined by a threshold function (i.e., every prefix of S ) has
imbalance at most 1.

• Attribute means on {0, 1}d (Qmeans(d)): Here we can analyze PDisc(QS ) for
a uniformly random subset S ⊆ {0, 1}d of size s = min{n, d}. Then QS is sta-
tistically close to a uniformly random {0, 1} matrix of size d × s, which by
Lemma 7.5.7, has partial discrepancy Ω

( √
s · (1 + log(d/s))

)
with high prob-

ability. So when d < n, we have an error lower bound of Ω
(√

d/n
)
, which

is nearly tight, matching the upper bound of Theorem 7.2.7 up to a factor of√
log(1/δ) · log log d/ε. But when d > n, the lower bound is no better than

Ω
( √

(log d)/n
)
, which leaves quite a large gap from the upper bound, which

remains O
( √

d · log(1/δ) log log d/ε
)
. In particular, the upper bound is useless

when d = ω(n2), but the lower bound leaves open the possibility of having
vanishingly small error for any d = 2o(n).

• t-way conjunctions on {0, 1}d (Qconj
t (d)): The VC dimension of this class is at

least t · blog(d/t)c, so we have an error lower bound of Ω(min{t log(d/t)/n, 1}).
For t = O(1), Kasiviswanathan et al. [66] showed that, for the subset T ⊂
Qconj

t (d) consisting of the
(

d
t

)
monotone conjunctions (without negations), if

we pick a random set S of size min{n, dt/ polylog(d)}, we have σmin(QT
S ) ≥

Ω(dt/2/ polylog(n)) with high probability. Consequently, we have

PDisc(QS ) ≥
1

10
·

√
|S |(
d
t

) · Ω (
dt/2

polylog(n)

)
= Ω̃

( √
min{n, dt}

)
.
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When n > dt, we get an error bound of α ≥ Ω̃(dt/2)/n, which is tight up to
polylogarithmic factors, but when n = o(dt), we are again quite far from the
upper bounds of Theorem 7.2.7.

• All conjunctions on {0, 1}d (Qconj(d)): The VC dimension of this class is at
least d, yielding an error lower bound of Ω(min{d/n, 1}). Matoušek et al. [77]
showed that the hereditary discrepancy of Q = Qconj(d) is Θ̃((2/

√
3 )d) and thus

the same is also true for the partial hereditary discrepancy (by Inequality (7.5)).
To use Theorem 7.5.8 when n < 2d−1, we can restrict attention to the first d′ =

blog2 nc variables, and obtain

max
S⊆X ,|S |≤2n
|S | even

PDisc(QS ) ≥ Ω̃

min


(

2
√

3

)d

,

(
2
√

3

)d′

 ≥ Ω̃ (

min
{
20.21d, n0.21

})
.

This yields an error lower bound of

α ≥ Ω̃

(
min

{
20.21d

n
,

1
n0.79

})
.

By the hereditary discrepancy upper bound (Theorem 7.5.10), there is an algo-

rithm that achieves error α ≤
Õ((2/

√
3 )d)·
√

log(1/δ)
εn ≈

20.21d ·
√

log(1/δ)
εn , so the bounds

are nearly matching when n � 20.21d. But when n = 2o(d), the lower bound of
1/n0.79 is quite far from the upper bound of O(d3/2

√
log(1/δ)/εn)1/2 given by

private multiplicative weights (Theorem 7.4.3).

Table 7.4 summarizes these lower bounds and compares them with the upper
bounds we have seen.

Table 7.4: Error bounds for specific query families under (ε, δ)-differential privacy
on a data universe X of size D = 2d (e.g., X = {0, 1}d or X = {1, 2, . . . ,D}). Lower
bounds apply for (1, 0.1)-differential privacy.

Query family Q Upper bounds Ref. Lower bounds from Thm. 7.5.8

Qmeans O
( √

d log(1/δ)·log log d
εn

)
Thm. 7.2.7 Ω

( √
d

n

)
if d ≤ n

Ω

(√
1+log(d/n)

n

)
if d > n

Qconj
t , t � d O

(
dt/2 ·
√

log(1/δ)·log log d
εn

)
Thm. 7.2.7 min

{
Ω̃(dt/2)

n , Ω̃
(

1
√

n

)}
if t = O(1)

O
(

t log d
√

d log(1/δ)
εn

)1/2

Thm. 7.4.3 Ω
(
min

{
t log(d/t)

n , 1
})

Qconj Õ(20.21d )
n Thm. 7.5.10 min

{
Ω̃(20.21d)

εn , Ω̃
(

1
n0.79

)}
O

(
d3/2 ·
√

log(1/δ)
εn

)1/2

Thm. 7.4.3 Ω
(
min

{
d
n , 1

})
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7.5.2 Packing Lower Bounds
We will now see a geometric approach to lower bounds that often gives tight lower
bounds on (ε, 0)-differential privacy, and can separate it from (ε, δ)-differential pri-
vacy. In particular, we will prove that answering k arbitrary counting queries with
(ε, 0)-differential privacy requires an error of α ≥ Ω(k/εn), whereas we saw in The-
orem 7.2.7 that we can achieve error O(

√
k · log(1/δ)/εn) with (ε, δ)-differential

privacy.
The approach is not specific to counting queries, and can be applied to virtu-

ally any computational problem that we might try to solve with differential privacy.
Suppose that, for every dataset x ∈ X n, we have a set Gx ⊆ Y of outputs that
are “good” for x. Then the lower bound says that, if we have a “large” collection
of datasets x such that the sets Gx are disjoint, then any (ε, 0)-differentially private
mechanism must fail to produce a good output with high probability on at least one
of the datasets in this collection.

Theorem 7.5.13 (Packing lower bound [59, 10]). Let C ⊆ X n be a collection of
datasets all at Hamming distance at most m from some fixed dataset x0 ∈ X n, and
let {Gx}x∈C be a collection of disjoint subsets of Y . If there is an (ε, δ)-differentially
private mechanism M : X n → Y such that Pr[M(x) ∈ Gx] ≥ p for every x ∈ C,
then

1
|C|
≥ p · e−m·ε − δ.

In particular, when p = 1/2 and δ = 0, we have |C| ≤ 2 · emε.

Proof: By group privacy (Lemma 7.2.2), for every x ∈ C, we have

Pr[M(x0) ∈ Gx] ≥ p · e−mε − mδ.

Since the sets Gx are disjoint, we have

1 ≥ Pr

M(x0) ∈
⋃
x∈C

Gx


=

∑
x∈C

Pr [M(x0) ∈ Gx]

≥ |C| · (p · e−mε − mδ).

�

Note that, when δ = 0, the theorem (setting m = n) says that we can only have
roughly eεn � |X |n datasets on which a differentially private mechanism’s behavior
is really distinct.

But for δ > 0, the theorem says nothing when m > ln(1/δ)/ε (because p · e−mε −

mδ < 0). The reason is the use of group privacy (Lemma 7.2.2), which tells us
nothing when considering datasets that are at distance larger than ln(1/δ)/ε.
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Let us now see how packing implies a lower bound ofΩ(min{log |X |, log(1/δ)}/εn)
for nonredundant classes of counting queries, namely ones where all elements of the
data universe are distinguishable by the queries.

Theorem 7.5.14 (Packing lower bound for nonredundant queries). Let Q = {q :
X → {0, 1}} be any class of counting queries that distinguish all the elements of
X . That is, for all w , w′ ∈ X , there is a query q ∈ Q such that q(w) , q(w′).
Suppose M : X n → RQ is an (ε, δ)-differentially private mechanism that with high
probability answers every query in Q with error at most α. Then

α ≥ min
{
Ω

(
log |X |
εn

)
, Ω

(
log(1/δ)
εn

)
,

1
2

}
.

Note that an error bound of 1/2 is achievable by the trivial (0, 0)-differentially pri-
vate algorithm that answers 1/2 for all queries.

The hypothesis holds for all of the concrete query families we have consid-
ered (point functions, threshold functions, attribute means, and t-way conjunc-
tions). In particular, for the class of point functions Qpt({0, 1}d), the lower bound
of α ≥ Ω(min{d/εn, log(1/δ)/εn}) is tight, matched by Proposition 7.2.8 and Theo-
rem 7.3.5 (which algorithm is better depends on whether d or log(1/δ) is larger). In
particular, this shows that approximate differential privacy can achieve smaller error
(namely Õ(

√
d) ·

√
log(1/δ)/εn) than is possible with pure differential privacy when

log(1/δ) < d/ polylog(d).
For attribute means over {0, 1}d (i.e., Qmeans(d)), we obtain a tight lower bound

of Ω(d/εn) when δ = 0, which matches the upper bound for arbitrary sets of k = d
counting queries given by Theorem 7.2.6. By Theorem 7.2.7, approximate differen-
tial privacy can achieve asymptotically smaller error when k > log(1/δ).
Proof: For a dataset x ∈ X n, let Gx be the closed `∞ ball of radius α around the
vector (q(x))q∈Q. The assumption about M implies that, for every dataset x ∈ X n,
we have Pr[M(x) ∈ Gx] ≥ 1/2.

We will now construct a set C of |X | datasets for which the Gx’s are disjoint.
Specifically, for each w ∈ X , let x(w) ∈ X n be the dataset whose first m = b2αn + 1c
rows are all equal to w, and whose remaining n − m rows are all equal to w0 for a
fixed element w0 ∈ X . We will take C = {x(w) : w ∈ X }. To see that Gx(w) and Gx(w′)
are disjoint for every w , w′, let q be a query such that q(w) , q(w′) (which exists
by hypothesis). Then |q(x(w)) − q(x(w′))| = m/n > 2α. The datasets in C are all at
distance at most m from the dataset x(w0). Thus by Theorem 7.5.13, we deduce that

1
|X |
≥ e−εm/2 − δ,

which implies that either δ ≥ e−εm/4, in which case α ≥ Ω(ln(1/δ)/εn), or 1/|X | ≥
e−εm/4, in which case α ≥ Ω(log |X |/εn). �

Now, let us see how the packing lower bound can be applied to arbitrary sets Q
of counting queries to obtain tight bounds on the sample complexity—how large n
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needs to be to achieve an arbitrarily small, but constant error α—with the matching
upper bound coming from an instantiation of the exponential mechanism.

To formalize this, let X be our data universe, and consider the |X | vectors in RQ

corresponding to the tuples of answers that can be achieved on individual elements
on X ; that is, for each w ∈ X , let aw = (q(w))q∈Q. Now, following Hardt and Talwar
[59], we consider the convex body K = ConvexHull({aw : w ∈ X }) that is the convex
hull of all of these vectors. Notice that, for any dataset x ∈ X , the tuple of answers
on x is ax = (1/n)

∑n
i=1 axi ∈ K.

Define the packing number Pα(K) to be the largest number of points we can fit
in K such that all the pairwise `∞ distances are greater than α. (That is, the closed
`∞ balls of radius α/2 centered at the points are disjoint. But we do not require
that the balls themselves are entirely contained within K; this notion of packing is
sometimes referred to as metric entropy.)

Theorem 7.5.15 (Packing characterization of sample complexity).

1. For all sufficiently small β > 0, there is an α > 0 such that the following holds
for all sets Q = {q : X → {0, 1}} of counting queries, n ∈ N, and ε ∈ (0, 1):
If M : X n → RQ is an (ε, 0)-differentially private mechanism that, on every
dataset x ∈ X n, answers all of the queries in Q to within error at most α with
high probability, then

n ≥
log(Pβ(K))

βε
,

where K is the convex body corresponding to Q as defined above.
2. For every α > 0, there is a β > 0 such that the following holds for all sets

Q = {q : X → {0, 1}} of counting queries, n ∈ N, and ε ∈ (0, 1): If

n ≥
log(Pβ(K))

βε
,

where K is the convex body corresponding to Q, then there is an (ε, 0)-
differentially private mechanism that, on every dataset x ∈ X n, answers all
of the queries in Q to within error at most α with high probability.

Thus, to achieve error α = o(1), it is necessary and sufficient to have n =

ω(Po(1)(K)). The above theorem is based on ideas from [93, Lecture 6].6

Proof:

1. Let M = Pβ(K) and let a1, . . . , aM be the corresponding points in K, all at
pairwise `∞ distance greater than β.
Our first step will be to approximate the points a j by points ay( j) for datasets of
size m = βn/2, so that ‖a j − ay( j)‖∞ ≤ β/3. The definition of K tells us that, for

6 In [93, Lecture 6], the bounds are stated in terms of the discrete set of points Kn = {ax : x ∈
X n} rather than the convex body K. An advantage of Theorem 7.5.15 is that the set K does not
depend on n (since we are trying to characterize n in terms of it), but the formulation in [93] has
the advantage of applying even to arbitrary low-sensitivity families (rather than just counting or
statistical queries).
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each point a j there is a distribution D j on X such that a j = Ew←D j [aw], where
aw = (q(w))q∈Q is the vertex of K corresponding to the answers on w ∈ X .
We will probabilistically construct the dataset y( j) ∈ Xm by randomly sam-
pling m rows according to D j. As mentioned in the proof of Theorem 7.4.1,
if m ≥ O(VC(Q) · log(1/β)/β2), then standard results in learning theory show
that with high probability we have ‖a j − ay( j)‖∞ ≤ β/3, as desired. By Proposi-
tion 7.5.11 and Theorem 7.5.8, we know that n ≥ Ω(VC(Q)/α) (for sufficiently
small α), and thus m = βn/2 ≥ Ω(βVC(Q)/α). Thus we can take α small
enough (depending on β), to ensure that we have m ≥ O(VC(Q) · log(1/β)/β2)
as needed.
Given the datasets y( j) ∈ Xm, observe that the points ay( j) are at pairwise distance
greater than β − 2β/3 = β/3 (by the triangle inequality). Now we construct
datasets x( j) ∈ X n of size n by padding the y( j)’s with n − m copies of a fixed
row w from X ; the points ax( j) are now at pairwise distance greater than (m/n) ·
(β/3) = β2/6. So if for every x ∈ X n, we take the set Gx to be a closed `∞
ball of radius β2/12, then the sets {Gx( j) }1≤ j≤M are disjoint. Moreover we can
take α ≤ β2/12, and then the α-accuracy hypothesis on M says that, for every
x ∈ X n, Pr[M(x) ∈ Gx] ≥ 1/2.
So all the conditions of Theorem 7.5.13 are satisfied (with p = 1/2, δ = 0) and
we obtain

2(log e)·(βn/2)·ε = em·ε ≥
M
2
≥ M(log e)/2,

where the latter inequality uses M ≥ 1/(2β) ≥ 23.6 ≥ 21/(1−(log e)/2) for any
Q containing a nonconstant query and sufficiently small β. This implies that
n ≥ log(Pβ(K)/βε, as desired.

2. Let M = Pβ(K), and let a1, . . . , aM be the corresponding points in K all at pair-
wise distance greater than β from each other. By the maximality of the packing,
every point in K is at `∞ distance at most β from at least one of the ai’s (other-
wise we could add the point to obtain a larger packing).7 On a dataset x ∈ X n,
we will use the exponential mechanism (Proposition 7.4.2) to sample a point a j

that is close to ax in `∞ distance, in a manner similar to Theorem 7.4.1. Specif-
ically,

M(x) : output a j with probability ∝ e−εn·‖a j−ax‖∞ .

Indeed, Theorem 7.4.1 is a special case of this mechanism where we take the
a j’s to be the answer vectors ay that we get from small datasets y ∈ Xm. By
Proposition 7.4.2 (with score(x, a j) = −‖a j − ax‖∞), this mechanism is 2ε-
differentially private, and achieves error at most β + O(log M)/εn with high
probability. Thus, if n ≥ (log M)/β(2ε) and β is sufficiently small (depending
on α), we obtain error at most α with high probability.

�

Note that there is a significant loss in the dependence on the error α in the proofs,
so this theorem does not determine the rate at which we can get the error to decay

7 In other words {a1, . . . , aM} form a β-net of K with respect to `∞ norm.
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as a function of the other parameters (for example, whether we can get it to decay
linearly in n or

√
n). If we work with `2 rather than `∞ error, then tighter charac-

terizations of the rate of error decay are known (up to factors polylog(|Q|, |X |)), by
applying more sophisticated geometric methods to the convex body K [59, 11, 85].

7.5.3 Fingerprinting Lower Bounds
The lower bounds from Sections 7.5.1 and 7.5.2 above address two extreme ranges
of δ. Reconstruction attacks prove lower bounds even for constant δ (e.g., δ = .1),
and packing (mainly) proves lower bounds for δ = 0. Recall that, for satisfactory
privacy guarantees, the desired range of δ is that it should be cryptographically neg-
ligible, i.e., δ = n−ω(1), as (ε, δ)-differential privacy allows for leaking each row
with probability δ. In particular, when δ ≥ 1/n, we can output a subsample consist-
ing of a δ fraction of the rows of the dataset, which in turns allows for answering
any family Q of counting queries to within accuracy α = O

( √
(log |Q|)/δn

)
(by a

Chernoff Bound). (When δ is constant, this matches the best lower bound we can
get from discrepancy in the regime where n � min{|Q|, |X |}, cf. Theorem 7.5.12.)
Thus, to prove lower bounds of the form α = Ω(1), we need to focus on the regime
δ ≤ O(log |Q|)/n.

It turns out that a very well-suited tool for this task is fingerprinting codes, which
were developed in the cryptography literature by Boneh and Shaw [15] for a com-
pletely different task. Specifically, they were designed for preventing piracy of dig-
ital content. Imagine a digital movie distribution company that wants to deliver
copies of a movie to n different customers, and the company wants to mark each
copy so that, if one of the customers or a coalition S of the customers released a
pirated copy of the movie created from their own copies, the distribution company
would be able to point a finger at one of the pirates in S . There are d scenes in the
movie, and each of the scenes can be watermarked by either 0 or 1 (say by choosing
one of two slightly different angles from which the movie was shot). The colluding
pirates may splice their copies to evade detection. The fingerprinting code should
help protect the movie by specifying for each scene and each customer whether it
should be watermarked by 0 or 1. An associated tracing algorithm should determine
one of the colluding pirates with high probability from the code and a pirated copy.

Definition 7.5.16 (Fingerprinting codes, syntax). A fingerprinting code of length
d = d(n) for n users consists of two randomized algorithms:

1. A generating algorithm Gen that takes the number n of users and produces an
n × d binary fingerprinting matrix C where Ci, j ∈ {0, 1} determines the water-
mark of customer i in scene j along with a tracing key tk. (It turns out that
without loss of generality we can take tk = C.)

2. A tracing algorithm Trace that takes as input the tracing key tk and watermarks
w ∈ {0, 1}d from a potentially pirated movie and outputs an element of [n]∪ {⊥}
(which we interpret as an accused customer or “fail”).

For a generating matrix C and a coalition S ⊆ {1, . . . , n}, we say that w ∈ {0, 1}d

is feasible for S if, for every j ∈ {1, . . . , d}, w j equals to ci, j for some i ∈ S . Put
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differently, if CS , the submatrix of C consisting of the rows in S , is constant on value
b j on some column j, then we require that w j = b j. This captures the constraint that
the coalition produces its pirated movie by splicing its copies together.

That is, a coalition S can deploy an arbitrary (randomized) pirating algorithm P :
{0, 1}|S |×d → {0, 1}d that takes as its input CS for a generating matrix C and produces
a watermark sequence w that is feasible for S . (So we will require security even
against pirates who are able to determine the watermarks in their movie copies.)

Definition 7.5.17 (Fingerprinting codes, security). A fingerprinting code
(Gen,Trace) is secure if, for every n, every S ⊆ {1, . . . , n} and every randomized
pirating algorithm P : {0, 1}|S |×d → {0, 1}d, we have

Pr
C←Gen(1n)
w←P(CS )

[w is feasible for C and S , and Trace(C,w) < S ] ≤ neg(n).

(Recall that neg(n) denotes a negligible probability, i.e., n−ω(1).)

An optimal construction of fingerprinting codes was given by Tardos [101]:

Theorem 7.5.18 (Optimal fingerprinting codes [101]). For every n, there is a fin-
gerprinting code of length d = Õ(n2) for n users.

We will not prove this theorem, but will instead show a simpler but suboptimal
construction from the original paper of Boneh and Shaw [15].

A fingerprinting code of length Õ(n3): Gen(1n) outputs a matrix obtained by ran-
domly permuting columns of the matrix



0 block 1st block 2nd block . . . n-th block
111 . . . 111 111 . . . 111 111 . . . 111
000 . . . 000 111 . . . 111 111 . . . 111

000 . . . 000 111 . . . 111

0 0 0 . . . 1
000 . . . 000


Each block spans Õ(n2) identical columns. For such a randomly generated matrix, a
coalition S that does not include the i-th user cannot distinguish columns that come
from the (i − 1)-th and the i-th blocks of the matrix, as these columns are identical
in the submatrix CS . The tracing algorithm takes advantage of this observation. The
tracing algorithm Trace(C,w) outputs the first i such that

Avg
j in block i

[w j] − Avg
j in block i − 1

[w j] ≥
1
n
,

where Avg j∈T f ( j) denotes the average of f ( j) over j in set T . For a feasible code-
word w, such an index i is guaranteed to exist since Avg j in block 0[w j] = 0 and
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Avg j in block n[w j] = 1. The correctness of the tracing algorithm follows from the
following claim, which ensures that the probability we falsely accuse a user outside
the coalition S is negligible:

Claim 7.5.19. For a given coalition S and pirate P , a randomly generated C ←
Gen(1n) and w← P(CS ), with probability greater than 1− neg(n), for all i < S , we
have

Avg
j in block i

[w j] − Avg
j in block i − 1

[w j] <
1
n
.

Proof: Fix i < S , and condition on the codeword w ← P(CS ). Since columns
from block i and i − 1 are identical in CS , it is still not determined which permuted
columns are from block i and which are from block i− 1. More precisely, if we con-
dition additionally on the entire submatrix CS of the (permuted) codebook C as well
as the permuted locations of all columns other than those from blocks i and i − 1,
then the blocks i and i − 1 are still a uniformly random partition of their union into
two equal-sized sets. The averages Avg j in block i[w j] and Avg j in block i − 1[w j] have the
same expectation over the choice of the partition (namely Avg j in block i or i − 1[w j]).
Since each is the average over Õ(n2) coordinates (selected without replacement from
the union), Chernoff-type bounds imply that, with all but negligible probability (de-
pending on the choice of the polylog(n) factor in the Õ(·)), they will each deviate
from the expectation by less than 1/2n (and hence will differ from each other by
less than 1/n). �

While the analysis of optimal fingerprinting codes, with d = Õ(n2), is more
involved, the description of the codes is very simple. Following generalizations and
simplifications given in Dwork et al. [47], for every j ∈ [d], we can pick a bias p j ←

[0, 1] uniformly at random, and then generate the j-th column as n independent
samples from the Bernoulli distribution with expectation p j. In fact, any sufficiently
“smooth” and “spread out” distribution on the p j’s can be used.

Now, we will use fingerprinting codes to derive lower bounds on differential
privacy, following Bun et al. [21]:

Theorem 7.5.20 (Fingerprinting codes ⇒ for attribute means [21]). If there is
a fingerprinting code with codewords of length d for n + 1 users then there is no
(1, 1/10n)-differentially private mechanism M : ({0, 1}d)n → [0, 1]d for answering
all d attribute means (i.e., the counting queries Qmeans(d)) with error α < 1/2.

Proof: Suppose for contradiction that there exists a (1, 1/10n)-differentially private
mechanism M for answering attribute means with error α < 1/2. Without loss of
generality, we may assume that, for every dataset x, the output distribution of M(x)
does not depend on the order of the rows of x (else M can randomly permute them
first).

Use the hypothesized fingerprinting code to generate a (random) codebook C for
n + 1 users. Let S = {1, . . . , n} (i.e., the coalition consisting of all users except user
n + 1). Let (a1, . . . , ad) be attribute means obtained from M on the data set CS .
Define a vector w ∈ {0, 1}d by rounding vector (a1, . . . , ad) to the nearest integer.
Since M makes error less than 1/2 (with high probability), w is a feasible pirated
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codeword for CS . That is, we think of P(·) = Round(M(·)) as the pirate for the
fingerprinting code. Since M is differentially private, so is P .

By the properties of the fingerprinting code

Pr[Trace(tk,P(CS )) ∈ {1, . . . , n}] ≥ 1 − neg(n),

where the probability is taken over (C, tk)← Gen(1n+1) and the coin tosses of P .
Hence, for n large enough, there is an i∗ such that

Pr[Trace(tk,P(CS )) = i∗] ≥
1

2n
.

Let S ′ = {1, . . . , n + 1} − {i∗}. Since CS and CS ′ are neighboring datasets (after an
appropriate permutation of the rows), the differential privacy of P tells us that

Pr[Trace(tk,P(CS )) = i∗] ≤ e1 · Pr[Trace(tk,P(CS ′ )) = i∗] +
1

10n
.

Thus, we have

Pr[Trace(tk,P(CS ′ )) = i∗] ≥
1

2en
−

1
10en

≥ Ω(1/n),

which contradicts the security of the fingerprinting code, as with nonnegligible prob-
ability we are accusing someone not in the coalition S ′. �

Notice that the “good guys” and “bad guys” have switched roles in this relation
between fingerprinting codes and differential privacy. The mechanism M, which is
supposed to protect privacy, plays the role of the adversarial pirate P for the finger-
printing code. And the Trace algorithm from the fingerprinting code (corresponding
to the “authorities”) plays the role of the privacy adversary. Tracing attacks (deter-
mining whether an individual was in the dataset or not) are not quite as devastating
as the reconstruction attacks, but they still can be quite significant—for example,
if the dataset consists of a collection of individuals who were all diagnosed with
a particular disease. Indeed such tracing attacks (on releases of exact rather than
approximate statistics) led the US National Institutes of Health to remove online ac-
cess to summary statistics of certain genomic datasets [63, 110]. For a fingerprinting
code to give a “realistic” attack, the tracing should not require extensive auxiliary
information (captured by the tracing key tk) and should be fairly robust to the distri-
bution according to which the codebook was generated. These issues are explored
in [47].

Combining Theorems 7.5.18 and 7.5.20, we see that estimating d attribute means
on a dataset of size n = Ω̃(

√
d) requires an error of α ≥ 1/2 for (1, 1/10n)-

differential privacy. Simple reductions imply that, in general, we need error α >
Ω̃(
√

d)/εn. Steinke and Ullman [99] have tightened the lower bound to nearly match
Theorem 7.2.7 (up to a factor of O

( √
log log d

)
):

Theorem 7.5.21 (Fingerprinting lower bound for attribute means [99]). The
following holds for every d ∈ N, ε ∈ (0, 1), and δ ∈ (2−d, 1/n1.1). Suppose
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M : ({0, 1}d)n → [0, 1]d is an (ε, δ)-differentially private mechanism that with high
probability answers every attribute mean query in Qmeans(d) with error at most α.
Then

α ≥ Ω

min


√

d log(1/δ)
εn

, 1


 .

Recall from Table 7.4 that partial discrepancy gave a lower bound ofΩ(
√

d/n) when
d < n, and otherwise gave a lower bound no better than

√
(log d)/n. Packing (The-

orem 7.5.14) gave a lower bound of Ω(min{d, log(1/δ)}/εn). Theorem 7.5.21 sub-
sumes all of these bounds.

The fingerprinting lower bound above is for a particular family of counting
queries—attribute means—in which the number of queries (|Qmeans(d)| = d) is log-
arithmic in the size of the data universe (X = {0, 1}d), but it can be composed with
reconstruction attacks of Section 7.5.1 to also yield nearly tight lower bounds for
the case in which the number |Q| of queries is much larger:

Theorem 7.5.22 (Lower bounds for arbitrary counting queries [21]). For every
d, n, k ∈ N such that n2.1 ≤ k ≤ 22d/3

, there is a family Q of k counting queries on
data universe X = {0, 1}d such that the following holds: If M : (X )n → RQis an
(ε, 1/10n) differentially private mechanism that with high probability answers all
queries in Q within error at most α, then

α ≥ Ω̃

 √
log |X | · log(|Q|)

εn

1/2

.

This theorem mostly closes the gap between the largest discrepancy-based lower
bounds (Theorem 7.5.12) and the upper bound given by private multiplicative
weights (Theorem 7.4.3). So, we have a nearly tight understanding of the accu-
racy with which we can answer a worst-case set Q of counting queries, as a func-
tion of |X |, |Q|, n, and the privacy parameters. In fact, a similar lower bound
is also known for the special case of t-way marginals, by composing the finger-
printing lower bound for attribute means with reconstruction lower bounds for
marginals [14, 66, 29]:

Theorem 7.5.23 (Lower bound for t-way marginals [21]). For every constant ` ∈
N, the following holds for all d, n, t ∈ N such that n ≤ d2`/3/ε and ` + 1 ≤ t ≤ d:
If M : ({0, 1}d)n → RQ

conj
t (d) is an (ε, 1/10n)-differentially private mechanism that

with high probability answers all queries in Qconj
t (d) to within error at most α, then

α ≥ min

Ω̃
 t
√

d
εn

1/2

, Ω(1)

 .
However, as we have seen for point functions (Proposition 7.2.8 and Theo-

rem 7.3.5), for some families of queries Q, one can do much better than these
bounds. Ideally, we would understand the best accuracy achievable in terms of the
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combinatorial structure of the query family, similarly to what the hereditary dfis-
crepancy bounds (Theorems 7.5.9 and 7.5.10) give, but for a given value of n and
ideally without extra polylog(|Q|) factors.

Open Problem 7.5.24. For an arbitrary family Q = {q : X → {0, 1}} of counting
queries, n ∈ N, ε > 0, and δ = o(1/n), characterize (to within “small” approxima-
tion factors) the smallest achievable error by (ε, δ)-differentially private mechanisms
M : X n → RQ.

A potentially easier task, advocated by Beimel et al. [10], is to characterize the
“sample complexity” for constant error, as we did for pure differential privacy in
Theorem 7.5.15:

Open Problem 7.5.25. For an arbitrary family Q = {q : X → {0, 1}} of counting
queries, ε > 0, and δ = o(1/n), characterize (to within “small” approximation fac-
tors) the sample complexity (i.e., smallest value of n) needed by (ε, δ)-differentially
private mechanisms M : X n → RQ to answer all the queries in Q to within an
arbitrarily small constant error α > 0.

We note that there is a partial converse to the connections between fingerprinting
codes and differential privacy [21]; that is, if answering a set Q of counting queries
is impossible with differential privacy for a given set of parameters (α, n, ε, δ), this
implies a weak form of a fingerprinting code that is defined with respect to the
query family Q and the given parameters. It would be very interesting to tighten this
relationship; this would be one approach to Open Problems 7.5.24 and 7.5.25.

Open Problem 7.5.26. Identify a variant of fingerprinting codes whose existence is
equivalent to the impossibility of answering a family Q accurately with differential
privacy (up to some loss in parameters).

7.6 Computational Lower Bounds
Now we turn to computational lower bounds, giving evidence that some tasks
that are information-theoretically possible with differential privacy are nevertheless
computationally intractable. Specifically, recall that both the smallDB and private
multiplicative weights algorithms of Section 7.4 can accurately answer (many) more
than n2 counting queries over data universe X = {0, 1}d with differential privacy,
provided that n is large enough compared with d (e.g., n ≥ d2), but use computation
time exponential in d. Below we will see evidence that this exponential computation
is necessary in the worst case.

7.6.1 Traitor-Tracing Lower Bounds
Our first hardness results will be based on traitor-tracing schemes, which were in-
troduced by Chor et al. [28] as a cryptographic tool for preventing piracy of digital
content, like fingerprinting codes. Their benefit over fingerprinting codes is that they
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allow for distributing an unbounded amount of content over a broadcast channel (af-
ter a setup phase where private keys are sent to the users). The price is having com-
putational rather than information-theoretic security. The notion of traitor-tracing
schemes predated the notion of fingerprinting codes, and their application to lower
bounds for differential privacy also came first, in Dwork et al. [40].

To motivate the definition of traitor-tracing schemes, imagine a video-streaming
company that distributes software or hardware that is capable of decoding their (en-
crypted) streaming signal. Each customer gets his own decryption program that has
a unique decryption key, so that copying can be detected. However, we are also
concerned that S customers might collude to create (and sell) unauthorized pirate
decryption programs. They can build their pirate program using the decryption keys
found in their own decryption program in an arbitrary way, so we may not be able to
explicitly read off any of the keys from the pirate program. The goal of the traitor-
tracing scheme is to be able to identify at least one of the colluding customers who
contributed his decryption key. We can formalize this setup as follows:

Definition 7.6.1. A traitor-tracing scheme consists of four algorithms (Gen,Enc,
Dec,Trace) as follows:

1. The (randomized) key generation algorithm Gen(1d, 1n) takes as input 1d, 1n,
where d is a security parameter and n is a number of customers, and outputs
(k1, . . . , kn, bk, tk), where ki ∈ {0, 1}d is the decryption key for user i, bk is the
broadcast key, and tk is the tracing key.

2. The (randomized) encryption algorithm Encbk(m) takes as input the broadcast
key bk and a message m ∈ {0, 1} and outputs a ciphertext c.

3. The decryption algorithm Decki (c) takes as input a user key ki and a cipher-
text c and outputs a message m ∈ {0, 1}. We require that it always holds that
Decki (Encbk(m)) = m for keys (ki, bk) that are output by Gen.

4. The syntax of the (randomized) tracing algorithm Trace will be described below
(as there are two variants).

We will consider two different scenarios for tracing, depending on the type of
pirates that we wish to trace and the access that Trace has to those pirates. Each will
give us different types of lower bounds for differential privacy.

Stateless pirates Here the tracer can run the pirate decryption program many times
from its same initial state, but on different ciphertexts as input. For example, this
models the scenario where the pirate decryption program is a piece of software
whose code is given to the tracer. We want to be able to trace given any pirate
program that is correctly able to decrypt proper encryptions with high probabil-
ity (though the tracer will feed the pirate malformed ciphertexts that are neither
encryptions of 0 or 1 to help in identifying one of the colluders). This is the
original and most standard notion of traitor tracing in the literature.

Stateful but cooperative pirates Here the tracer can submit a sequence of cipher-
texts to the pirate, but the pirate may answer them in a correlated fashion,
for example, changing its behavior to evade tracing if it receives and detects
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a malformed ciphertext. However, we will only require tracing for “coopera-
tive” pirates, which still correctly distinguish encryptions of 0 from 1 even if
they receive some other malformed ciphertexts. Tracing stateful pirates is well-
motivated for traitor tracing; the “cooperativeness” condition is less natural in
that context, but arises naturally in our application to differential privacy lower
bounds.

We now formalize these two requirements.

Definition 7.6.2 (Tracing stateless pirates). A traitor-tracing scheme (Gen,Enc,
Dec,Trace) is secure against stateless pirates if the following holds for every n =

poly(d) and every S ⊆ [n]: let P be a probabilistic poly(d)-time algorithm that
given the keys (ki)i∈S outputs a Boolean circuit P̃. Then,

Pr[Trace(P̃, tk) < S and P̃ is a useful decryptor] ≤ neg(d),

where the probabilities are taken over (k1, . . . , kn, bk, tk) ← Gen(1d, 1n), P̃ ←
P((ki)i∈S ), and the coins of Trace and P . The condition that P̃ is a useful decryptor
means that, for every m ∈ {0, 1}, Pr[P̃(Encbk(m)) = m] = 1, where the probability is
taken over the coin tosses of Enc. (In the literature, tracing is typically required even
for pirates that have just a nonnegligible advantage in distinguishing encryptions of
0 from encryptions of 1, but tracing pirate decoders that always decrypt correctly
will suffice for our purposes.)

Definition 7.6.3 (Tracing stateful pirates). A traitor-tracing scheme (Gen,Enc,
Dec,Trace) is secure against stateful but cooperative pirates if there is a polynomial
function k(·, ·) (called the tracing query complexity) such that, for every n = poly(d)
and every S ⊆ [n], the following holds for k = k(d, n): Let P be any probabilis-
tic poly(d)-time algorithm that, given the keys (ki)i∈S and a sequence (c1, . . . , ck) of
ciphertexts, outputs a sequence (m1, . . . ,mk) ∈ {0, 1}k. Then,

Pr[TraceP((ki)i∈S ,·)(tk) < S and P cooperates] ≤ neg(d),

where the probabilities are taken over (k1, . . . , kn, bk, tk) ← Gen(1d, 1n) and the
coins of Trace. We require that Trace makes only one query (c1, . . . , ck) to P
(amounting to feeding k = k(d, n) nonadaptively chosen ciphertexts to P), and say
that P cooperates if, for every coordinate j where c j is in the support of Encbk(b j)
for some b j ∈ {0, 1}, we have b j = m j.

We note that tracing stateless pirates is easier than tracing stateful but cooperative
pirates, because whenever P̃ is a useful decryptor, using it to decrypt each ciphertext
will qualify as cooperating.

Theorem 7.6.4 (Traitor-tracing schemes against stateful pirates [28, 103]). As-
suming one-way functions exist, there exists a traitor-tracing scheme secure against
stateful but cooperative pirates with tracing query complexity k(n, d) = Õ(n2).
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Proof sketch: The key generation, encryption, and decryption are as in the orig-
inal construction of Chor et al. [28] (which was for stateless pirates). Fix a secure
private-key encryption system (Enc0,Dec0) (which exists if one-way functions ex-
ist). Gen(1d, 1n) generates independently keys k1, . . . , kn for the encryption system
(Enc0,Dec0) and sets tk = bk = (k1, k2, . . . , kn). Encoding is given by

Encbk(b) = (Enc0
k1

(b),Enc0
k2

(b), . . . ,Enc0
kn

(b))

and decryption for user i by

Decki (c1, . . . , cn) = Dec0
ki

(ci).

The tracing algorithm is from Ullman [103], and utilizes fingerprinting codes in
order to minimize the tracing query complexity and handle stateful but cooperative
pirates. TraceP(tk, bk) first generates a fingerprinting codebook, namely an n × k
matrix C ← Genf.p.(1n). (Recall from Theorem 7.5.18 that we can take k = Õ(n2).)
It then creates ciphertexts c(1), c(2), . . . , c(k) by

c( j)
i = Enc0

ki
(Ci, j).

The tracing algorithm queries its oracle P((ki)i∈S , c(1), c(2), . . . , c(k)) to get answers
w = (w1, . . . ,wk), and runs the tracing algorithm of the fingerprinting code
Tracef.p.(C,w) to get a suspect i. It outputs this i.

We sketch the correctness of this tracing scheme: if the pirate algorithm is com-
putationally bounded, then it cannot learn any information about the messages en-
crypted by private keys of users not participating in S , so w essentially depends only
on the rows of C in S . We now observe that w is feasible when P is cooperative,
except with negligible probability. Indeed, if all entries of column j of CS agree on
value b j, then to P , c( j) is indistinguishable from a valid encryption of b j, and hence
w j = b j with all but negligible probability. �

We now show that such traitor-tracing schemes imply the hardness of answering
many counting queries with differential privacy, a result due to Ullman [103].

Theorem 7.6.5. (Tracing stateful pirates⇒hardness of answering many queries
[103]). If there exists a traitor-tracing scheme secure against stateful but coopera-
tive pirates with tracing query complexity k(d, n), then every (1, 1/10n)-differentially
private mechanism for answering k = k(n + 1, d) efficiently computable counting
queries with error α < 1/2 on datasets with n individuals from X = {0, 1}d must run
in time superpolynomial in d. Here the queries are given as input to the mechanism,
as Boolean circuits of size poly(n, d).

Proof sketch: Suppose M is a differentially private mechanism like in the state-
ment of the theorem. We will show how to construct a pirate for the traitor-tracing
scheme using M and conclude from the security of the scheme that M must have a
runtime big enough to break the scheme.

Start by setting up the traitor-tracing scheme with n + 1 users and take a dataset
x containing the keys of a coalition of n users obtained by removing one user at ran-
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dom. We consider counting queries on this dataset given by ciphertext decryption:
for a ciphertext c, the query qc evaluates to qc(ki) = Decki (c), where we identify
the row corresponding to the i-th user with its key ki. Therefore, when query qc is
answered accurately by M on the dataset x we obtain an ±α-approximation a to
the number of users in x whose key decrypts c to 1. If c is a valid encryption of a
message m ∈ {0, 1}, then |a − m| ≤ α < 1/2, so rounding a will equal m. With this
notation, we define our pirate as follows:

P((ki)i∈S , c(1), . . . , c(k)) = Round(M(x = (ki)i∈S , qc(1) , . . . , qc(k) )),

where Round : [0, 1]k → {0, 1}k denotes componentwise rounding.
As discussed above, the accuracy of M implies that P is cooperative. On the

other hand, the fact that M is differentially private implies that P is also differ-
entially private. As in the proof of Theorem 7.5.20, tracing contradicts differential
privacy. Thus, P must not be traceable, and hence must have superpolynomial run-
ning time. �

Combining the above two theorems we get:

Corollary 7.6.6 (Hardness of answering many counting queries). Assume one-
way functions exist. Then for every n = poly(d), there is no polynomial-time
(1, 1/10n)-differentially private algorithm for answering more than Õ(n2) efficiently
computable counting queries with error α < 1/2 (given as Boolean circuits input to
the mechanism) over data universe X = {0, 1}d.

This lower bound is nearly tight, in that we can answer k = Ω̃(n2) efficiently
computable counting queries in polynomial time with differential privacy using the
Laplace mechanism and advanced composition (or Theorem 7.2.7).

Let us review the above proof’s translation between objects in the traitor-tracing
scheme and those in differential privacy:

user keyspace {0, 1}d 7→ data universe X = {0, 1}d

ciphertext c 7→ counting query qc(k) = Deck(c)
pirate P ← [ mechanism M

tracing algorithm Trace 7→ privacy adversary

In particular, mechanisms that take a sequence of counting queries as input and
produce a vector of answers correspond very naturally to stateful but cooperative
pirates. On the other hand, a common application of the algorithms of Section 7.4
is not to specify the queries as input, but rather to fix some large family of counting
queries over data universe {0, 1}d (for example, the family of 3d conjunction queries)
and then take n large enough so that we can produce a compact representation of the
answers to all of these queries (e.g., a synthetic dataset). What does this translate
to in the traitor-tracing world? Since we are interested in a family Q of efficiently
computable counting queries, we ideally should have ciphertexts that are of length
poly(d) (so that the queries have polynomial description length), not growing lin-
early with n as in Theorem 7.6.4. Second, the pirate P should no longer directly
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produce answers to the queries (i.e., decrypt ciphertexts), but rather it should use
its keys (ki)i∈S to produce a summary (which we can view as an algorithm or data
structure) P̃ that can then be used to estimate the answer to any query in the class
(i.e., decrypt any properly generated ciphertext). This leads us naturally to traitor
tracing with stateless pirates, as used in the original connection of Dwork et al. [40]:

Theorem 7.6.7 (Tracing stateless pirates ⇒ hardness of differentially private
summaries [40]). If there is a traitor-tracing scheme secure against stateful pirates
with ciphertexts of length `(n, d), then for every d and n = poly(d), there is a family
Q of efficiently computable counting queries of description length `(n + 1, d) (and
size 2`(n+1,d)) over data universe {0, 1}d, such that no polynomial-time (1, 1/10n)-
differentially private mechanism can accurately summarize the answers to all of the
queries in Q on datasets of size n.

We note that this theorem is only interesting if ` � n. Indeed, Theorem 7.5.2
shows that there is a family of 2n efficiently computable counting queries over a
data universe of size 2n that is information-theoretically impossible to answer accu-
rately with differential privacy. So we need traitor-tracing schemes with ciphertext
length that is smaller than n, the number of users, unlike in the construction of
Theorem 7.6.4. At the time that Theorem 7.6.7 was proven, the best known con-
struction of traitor-tracing schemes against stateless pirates had ciphertext length
`(n, d) =

√
n · poly(d) [17] (under hardness assumptions about bilinear maps on

certain groups), and this already implied an interesting hardness result for differ-
ential privacy. But it left open the possibility that producing differentially private
summaries is possible for any efficiently computable family Q of counting queries
provided that n ≥ (log |X |) · (log |Q|)2.

Recently, however, there are candidate constructions of traitor-tracing schemes
with ciphertext length ` = poly(d), independent of n, assuming the existence of
one-way functions and either “secure multilinear maps” or “indistinguishability ob-
fuscation” [51, 16]. This yields a family Q of 2` = 2poly(d) counting queries over a
data universe X of size 2d for which no poly(d)-time algorithm can produce an ac-
curate differentially private summary (for any n = poly(d)). More recently, Kowal-
czyk et al. [72] showed that the same hardness result holds when either |Q| or |X | is
poly(n), by constructing traitor-tracing schemes where either the ciphertexts or the
keys are of length O(log n), albeit with a weaker security property that still suffices
to show hardness of differential privacy. Specifically, the theorem says:

Theorem 7.6.8 (iO ⇒ hardness of differential privacy [72]). Assuming the exis-
tence of indistinguishability obfuscation and one-way functions:

1. For every d ∈ N and every n = poly(d), there is a family Q of O(n7) efficiently
computable counting queries over data universe X = {0, 1}d (specified by a
uniform poly(d)-time evaluation algorithm that takes an `-bit description of a
query q, for ` = 7 log n + O(1), and an input y ∈ {0, 1}d and outputs q(y))
such that no polynomial-time differentially private mechanism can accurately
answer all of the queries in Q on datasets of size n.
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2. For every ` ∈ N and every n = poly(`), there is a family Q of 2` efficiently
computable counting queries over data universe X = {0, 1}d for d = 7 log n +

O(1) (specified by a uniform poly(`)-time evaluation algorithm that takes an `-
bit description of a query q and an input y ∈ {0, 1}d and outputs q(y)) such that
no polynomial-time differentially private mechanism can accurately summarize
the answers to all of the queries in Q on datasets of size n.

We note that, when |Q| and |X | are both of size poly(n), the algorithm of Theo-
rem 7.4.3 can answer all of the queries in polynomial time (so we cannot hope to
prove hardness in this case). If, in part 1, the |Q| could be reduced to n2+o(1), then
the hardness result would be stronger than that of Corollary 7.6.6 (albeit under a
stronger complexity assumption). Indeed, here the set of queries is fixed and each
query is described by O(log n) bits, whereas in Corollary 7.6.6, the queries have de-
scription length larger than n and need to be provided as input to the mechanism. It
would also be interesting to reduce |X | to n2+o(1) in part 2; this too would be optimal
because, when |X | ≤ n2−Ω(1), the Laplace histogram is a poly(n)-time computable
summary that is simultaneously accurate for up to 2nΩ(1)

queries (Theorem 7.2.9).

Open Problem 7.6.9. Can either |Q| or |X | in Theorem 7.6.8 be reduced to n2+o(1)?

The existence of “indistinguishability obfuscation”, as assumed in Theorem 7.6.8,
is still very unclear, and thus it would be significant to replace it with a more well-
understood complexity assumption:

Open Problem 7.6.10. Can a hardness result like Theorem 7.6.8 be established un-
der a more standard and widely believed complexity assumption? This is open even
for the case where we do not require either |Q| or |X | to be of size poly(n), but rather
we allow n and the mechanism running time to be poly(d, `).

Similarly to (but earlier than) the case with fingerprinting codes, there is a par-
tial converse to the connection between traitor-tracing schemes and the hardness of
differential privacy [40], and it would be very interesting to tighten this relationship.

Open Problem 7.6.11. Identify a variant of traitor-tracing schemes whose existence
is equivalent to the hardness of answering (or summarizing) counting queries with
differential privacy (up to some loss in parameters, but ideally having a relationship
holding per-query family Q).

7.6.2 Lower Bounds for Synthetic Data
The lower bounds of the previous section provide families of efficiently computable
counting queries that are hard to answer with differential privacy. However, these
families consist of rather complicated functions that evaluate cryptographic algo-
rithms (namely, the decryption algorithm for traitor-tracing schemes). We do not
know similar results for simple/natural function classes of interest, such as the set
of all 3d conjunctions on data universe {0, 1}d.
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However, we can prove a hardness result for differentially private algorithms that
work by producing a synthetic dataset, as do the algorithms of Section 7.4. (This is
explicitly stated for the smallDB algorithm, and the private multiplicative weights
algorithm can be modified to produce synthetic data.) In fact, the result will hold
even for the family Qconj

2 of 2-way marginals.

Theorem 7.6.12 (Hardness of synthetic data for simple queries [104]). Assum-
ing one-way functions exist, there exists a constant α > 0 such that there is no
n = poly(d) and polynomial-time (1, 1/10n)-differentially private mechanism that
given a dataset with n individuals over X = {0, 1}d outputs a synthetic dataset ap-
proximating all the counting queries in Qconj

2 (d) (i.e., all the 2-way marginals) to
within additive error at most α.

We note that the requirement that the mechanism produces a synthetic dataset
cannot be removed from the theorem. Indeed, recall that the Laplace mechanism and
advanced composition will approximate all k = Θ(d2) 2-way conjunctions within
error α = Õ(

√
k)/εn = Õ(d)/εn in time poly(n, d). So for n = poly(d), we get

vanishingly small error in polynomial time.
Proof: The main ingredients in the proof are digital signature schemes and prob-
abilistically checkable proofs (PCPs). We will use digital signatures to construct
datasets for which it is hard to generate synthetic data that preserves the answer
to a cryptographically defined query, and then we will use PCPs to transform this
cryptographic query into a collection of 2-way conjunctions.

Recall that a digital signature scheme is given by a triple of polynomial-time
algorithms as follows:

1. A randomized key generation algorithm Gen(1d) = (pk, sk) that produces a
public key pk and a private key sk given a security parameter d as input.

2. A randomized signing algorithm that, given a message m ∈ {0, 1}d and a secret
key sk, produces a signature σ = Signsk(m) ∈ {0, 1}d.

3. A deterministic verification algorithm Verpk(m, σ) that always accepts a signa-
ture for m generated using the secret key sk corresponding to pk.

Informally, we say that the scheme is secure if, given access to examples (mi, σi =

Signsk(mi)) signed with the same secret key, any algorithm running in time poly(d)
cannot generate a new message m′ < {mi} and a signatureσ′ such that Verpk(m′, σ′) =

1.
We now describe how to use digital signatures to construct datasets for which it is

hard to generate synthetic data preserving the answer to a cryptographically defined
counting query. This construction is due to Dwork et al. [40]:

The dataset: Generate (pk, sk) ← Gen(1d) and construct a dataset x with n indi-
viduals, where each row contains a pair (mi, σi) with mi selected uniformly at
random from {0, 1}d and σi ← Signsk(mi).

The query: Consider the counting query q(·) = Verpk(·). This query is efficiently
computable and evaluates to 1 on the whole dataset.
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The hardness: Now suppose for contradiction that there exists a polynomial-time
differentially private mechanism M that given x produces a synthetic dataset
x̂ ∈ ({0, 1}d)n̂ which is accurate with respect to q with high probability. By
accuracy, x̂ must contain at least one row x̂ j = (m̂ j, σ̂ j) such that Verpk(m̂ j, σ̂ j) =

q(x̂ j) = 1. To derive a contradiction, we consider two cases:

• If m̂ j < x, then M succeeded in creating a forgery for the signature scheme
in polynomial time, contradicting its security.

• If m̂ j ∈ x, then M intuitively has violated privacy, as it has copied part
of a row (which is independent from all other rows) entirely in the output.
More precisely, for every i ∈ [n], the probability that an (ε, δ)-differentially
private mechanism M outputs mi is at most eε/2d + δ, since it could output
mi with probability at most 1/2d if we replaced the i-th row with all zeroes.
Thus, the probability M outputs any mi is at most n · (eε/2d + δ) < 1/20 for
ε = 1 and δ = 1/10n.

We now describe how to use PCPs to replace the cryptographic query Verpk with
2-way conjunctions. Actually, we will only describe how to get a result for 3-way
conjunctions, as it uses a more familiar type of PCP theorem.

Recall that Circuit SAT is an NP-hard problem. Then, by a strong form of the
PCP theorem there exist a constant α > 0 and three polynomial time algorithms
Red, Enc, Dec satisfying the following:

1. Red is a randomized reduction that, given a circuit C, outputs a 3-CNF formula
Red(C) = φ = φ1 ∧ . . .∧φm such that if C is satisfiable then φ is satisfiable, and
otherwise there is no assignment satisfying more than (1 − α)m clauses of φ.

2. If w is a satisfying assignment for C, then z = Enc(C,w) is a satisfying assign-
ment for φ.

3. If z is an assignment for φ satisfying more than (1 − α)m clauses, then w =

Dec(C, z) is a satisfying assignment for C.

Item 1 is the standard formulation of the PCP theorem in terms of the hardness
of approximating MAX-3SAT; it asserts a Karp reduction from Circuit SAT to the
promise problem Gap-MAX-3SAT. Items 2 and 3 are saying that this reduction is
actually a Levin reduction, meaning we can efficiently transform witnesses between
the Circuit SAT instance and the corresponding Gap-MAX-3SAT instance.

Here is our modified construction:

The dataset: Let x be the dataset constructed above using digital signatures. We
write z for the dataset with n individuals obtained by encoding each row xi of
x with the encoding algorithm given by the PCP theorem, relative to the circuit
C = Verpk. That is, zi = Enc(Verpk, xi).

The queries: Our set of queries is all 3-way conjunctions, but we will only exploit
accuracy with respect to the clauses of the 3-CNF formula φ = φ1 ∧ · · · ∧ φm

output by Red(Verpk). Note that for every row zi in z we have φ(zi) = 1 (since
Verpk(xi) = 1), so for every clause φ j in φ we have φ j(z) = n−1 ∑

i∈[n] φ j(zi) = 1.
The hardness: Suppose for contradiction that M is a polynomial-time differen-

tially private mechanism that produces synthetic datasets that are α-accurate
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with respect to 3-way conjunctions and let ẑ = M(z). Then for every j ∈ [m]
we have φ j(ẑ) ≥ 1 − α. By averaging, this implies that there exists some row
ẑi of ẑ that satisfies at least (1 − α) · m clauses from φ. Therefore, using this
row from the sanitized dataset we can obtain (m̂, σ̂) = Dec(Verpk, ẑ) such that
Verpk(m̂, σ̂) = 1. Now the same argument used earlier shows that either (m̂, σ̂)
is a forgery (in case m̂ < x) or a violation of privacy (in case m̂ ∈ x).

�

The hardness results we have seen either apply to contrived (cryptographic)
queries (Corollary 7.6.6 and Theorem 7.6.8) or constrain the form of the mecha-
nism’s output to synthetic data (Theorem 7.6.12). Obtaining a hardness result for
any “natural” family of queries without restricting the form of the mechanism’s out-
put remains an intriguing open problem.

Open Problem 7.6.13. Give evidence of hardness of accurately answering any
“natural” family of counting queries under differential privacy, without constrain-
ing the form of the mechanism’s output.

At the same time, the lack of such a hardness result should provide some hope
in looking for algorithms, and suggests that we should look for output representa-
tions other than synthetic data. We can gain hope from computational learning the-
ory, where proper learning (where the learner’s output is constrained to come from
the same representation class as the concept it is learning) is often computationally
harder than unconstrained, improper learning. Indeed, we will see the benefits of
moving beyond synthetic data for conjunctions in the next section.

7.7 Efficient Algorithms for Specific Query Families
In this section, we will see that, for some specific, natural families of queries, one
can in fact obtain efficient algorithms for answering more than n2 queries.

7.7.1 Point Functions (Histograms)
We have already seen that, for the class Qpt = Qpt(X ) of point functions on X ,
we can achieve a better accuracy–privacy tradeoff than is possible with an ar-
bitrary class Q of efficiently computable queries. Indeed, Proposition 7.2.8 and
Theorems 7.3.5 and 7.5.14 show that the optimal error achievable for Qpt(X ) is
Θ(min{log |X |, log(1/δ), εn}/εn), whereas for an arbitrary query family with |Q| =
|X |, there is a lower bound of Ω((log |X |)3/2/εn)1/2 for a wide range of parameters
(Theorem 7.5.22).

Now we will see that in fact the optimal algorithms for point functions can be
implemented in polynomial time, and can be modified to generate synthetic data.

Theorem 7.7.1 (Point functions with differential privacy [2]). For every data uni-
verse X , n ∈ N, and ε, δ > 0 such that δ < 1/n, there is a poly(n, log |X |)-time
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(ε, δ)-differentially private algorithm that takes a dataset of n rows from data uni-
verse X = {0, 1}d and outputs a synthetic dataset approximating the value of all
counting queries in Qpt(X ) up to an additive error of

α = O
(
min

{
log |X |
εn

,
log(1/δ)
εn

, 1
})

with high probability.

Proof sketch: The stability-based histogram of Theorem 7.3.5 with error
O(log(1/δ)/εn) already runs in polynomial time, as it outputs nonzero values only
for points that occur in the dataset. However, the basic Laplace-based histogram
of Proposition 7.2.8 adds noise Lap(2/ε) to the value of all |X | = 2d point func-
tions, and thus does not run in polynomial time. Thus, to obtain a polynomial-
time algorithm with error α = O(log |X |/εn), first we consider a modification of
the Laplace-based histogram algorithm that only uses the largest O(1/α) noisy
fractional counts and treats the rest as zero. This modification maintains differen-
tial privacy by closure under postprocessing, and can be shown to maintain error
O(log |X |/εn). (Note that there can only be at most 1/β points whose exact frac-
tional counts are at least β = Ω(α), and outputting zero for the remaining points
introduces an error of at most β.) With this modification, to implement the mecha-
nism efficiently, we can first add (discrete) Laplace noise to the m ≤ n point func-
tions qy for the points y that occur at least once in the dataset, and then sample the
distribution of the top d1/αe values of |X | − m discrete Lap(2/ε) random variables.
Sampling the latter distribution to within sufficient accuracy to maintain differential
privacy (with some additional modifications to the mechanism) can be done in time
poly(log |X |, 1/ε, d1/αe) = poly(n, log |X |).

To obtain synthetic data in both cases, we can simply use the noisy answers to
determine how many copies of each point to put in the synthetic dataset. With a
synthetic dataset of size O(1/α), the errors due to rounding will only increase the
error by a constant factor. �

7.7.2 Threshold Functions (CDFs)
For the class of threshold functions Qthr([2d]) on domain [2d], for pure differential
privacy (δ = 0), again the best possible accuracy is Θ(d/εn), matching the lower
bound of Theorem 7.5.14, and it can be achieved in polynomial time:

Theorem 7.7.2 (Thresholds with pure differential privacy [41, 45]). For every
n, d ∈ N, ε > 0, there is a poly(n, d)-time (ε, 0)-differentially private algorithm
that takes a dataset of n rows from data universe X = [2d] and outputs a synthetic
dataset maintaining the value of all threshold-function counting queries up to an
error of

α = max
{

O(d)
εn

, Õ
(

1
εn

)}
with high probability.
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Interestingly, in the case of approximate differential privacy, there is an inherent
dependence on log∗ d in the error.

Theorem 7.7.3 (Thresholds with approximate differential privacy [9, 22]). For
every n, d ∈ N, ε, δ > 0 such that exp(−εn/ log∗ n) ≤ δ ≤ 1/n2:

1. There is a poly(n, d)-time (ε, δ)-differentially private algorithm that takes a
dataset of n rows from data universe X = [2d] and outputs a synthetic dataset
maintaining the value of all threshold-function counting queries up to an error
of

α = max
{

2(1+o(1)) log∗ d · log(1/δ)
εn

, Õ
(

1
εn

)}
.

2. Every (ε, δ)-differentially private algorithm for answering all threshold func-
tions on datasets of n rows from data universe X = [2d] must incur an error of
at least

α = Ω

(
min

{
(log∗ d) · log(1/δ)

εn
, 1

})
.

We will not cover the proofs of these results, except to note that the log∗ d lower
bound has a Ramsey-theoretic proof [18], raising the possibility that there is a more
general Ramsey-theoretic combinatorial quantity that can help in characterizing the
optimal accuracy or sample complexity for differentially private algorithms (Open
Problems 7.5.24 and 7.5.25).

Note that our understanding of threshold functions is not as tight as for point
functions, and it would be interesting to close the gap between the upper and lower
bounds. In particular:

Open Problem 7.7.4. Does the optimal error for releasing threshold functions over
X = [2d] with approximate differential privacy grow linearly or exponentially with
log∗ d, or something in between?

7.7.3 Conjunctions (Marginals)
Unlike point functions and thresholds, the class Qconj of conjunctions is unlikely
to have a polynomial-time differentially private algorithm for generating synthetic
data, by Theorem 7.6.12. This suggests that we should look to other ways of sum-
marizing the answers to conjunction queries.

Indeed, we will sketch two algorithms that beat the barrier of Theorem 7.6.12
by avoiding synthetic data. One algorithm summarizes the answers to all conjunc-
tion queries in subexponential (2Õ(

√
d)) time (using a subexponential-sized dataset),

using low-degree approximations to Boolean functions. (Assuming the existence of
digital signature schemes with exponential security and nearly linear-time verifica-
tion, the proof of Theorem 7.6.12 can be extended to show that generating synthetic
data requires time at least 2d1−o(1)

, even when n = 2d1−o(1)
.) The other algorithm an-

swers all k = Θ(d2) 2-way conjunctions in polynomial time with error Õ(
√

d)/εn,
in particular allowing us to answer k = Ω̃(n4) � n2 such queries, using ideas from
convex geometry and optimization.
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Theorem 7.7.5 (Marginals via low-degree approximation [102]). There is a con-
stant c such that for all ε, α > 0, d, n, t ∈ N with d ≥ t and n ≥ dc

√
t·log(1/α)/ε, there

is an ε-differentially private algorithm running in time poly(n) that takes a dataset
x ∈ ({0, 1}d)n and, with high probability, outputs a “summary” (say, as a Boolean
circuit) that allows for approximating the answer to all the queries in Qconj

t (d) to
within additive error α.

A more sophisticated algorithm from [26] reduces the amount of data needed to
nearly optimal (n = O(t · d0.51)) at the cost of a larger (but still slightly subexponen-
tial) running time of 2o(d).
Proof sketch: Starting with our dataset x with n rows in X = {0, 1}d, the mecha-
nism M will produce a “summary” S that will approximate the function fx defined
as fx(q) = q(x). S will be a polynomial of low degree.

By introducing new variables for negative literals and negating our functions, it
suffices to handle monotone t-way disjunctions, which can conveniently be specified
by bit strings y ∈ {0, 1}d:

qy(w) =
∨

i:yi=1

wi , w ∈ X . (7.6)

For a t-way disjunction, y has Hamming weight t, and the value of qy(w) is deter-
mined by the value of

∑t
i=1 wiyi ∈ {0, . . . , t}. Specifically

qy(w) =

1
∑t

i=1 wiyi ∈ {1, . . . , t},
0

∑t
i=1 wiyi = 0.

(7.7)

Given a dataset x, we are interested in producing a (differentially private) approx-
imation to the function fx(·) defined as

fx(y) = qy(x) =
1
n

n∑
i=1

qy(xi) =
1
n

n∑
i=1

fxi (y).

We will approximate fx by a low-degree polynomial by approximating each fxi by a
low-degree polynomial. We do the latter using a standard technique based on Cheby-
chev polynomials:

Fact 7.7.6 For all t ∈ N and α > 0, there exists a univariate (real) polynomial g of
degree at most s = O

(√
t log(1/α)

)
such that g(0) = 0 and for all i ∈ {1, . . . , t}, 1 −

α ≤ g(i) ≤ 1 + α. Moreover, g can be constructed in time poly(t, log(1/α)) and all
of the coefficients of g have magnitude at most 2s.

Given g as in the fact and a row w ∈ X , consider the following function:

hw(y) = g

 d∑
j=1

w jy j

 , (7.8)
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where g is from Fact 7.7.6. hw is a multivariate polynomial of degree O(
√

t ·
log(1/α)). It has at most C = dO(

√
t·log(1/α)) coefficients of magnitude at most

M = dO(
√

t·log(1/α)).
By construction, we have that, for all w ∈ X and all y ∈ X of Hamming weight

at most t,
|hw(y) − fw(y)| ≤ α .

Thus, if we define

hx =
1
n

n∑
i=1

hxi ,

we have that
|hx(y) − fx(y)| ≤ α.

To obtain differential privacy, we can now add Laplace noise to each coefficient of
hx. Each coefficient is an average of the corresponding coefficients of the hxi ’s, so has
global sensitivity at most 2M/n. By the Laplace mechanism and basic composition,
it suffices to add noise Lap(2MC/εn) to each of the C coefficients for the resulting
vector of coefficients to be differentially private. With high probability, none of the
coefficients will have noise more than (log C) · 2MC/εn, which will add up to an
error of at most C · log C · 2MC/εn = dO(

√
t)/(εn) when evaluating on any input y.

�
Now we turn to a different approach, which runs in polynomial time and can

answer nearly n4 low-order marginals.

Theorem 7.7.7 (Marginals via SDP projection [46]). Let t ∈ N be an even con-
stant. For all n, d ∈ N, ε, δ > 0, there is a polynomial-time (ε, δ)-differentially pri-
vate algorithm that takes a dataset x ∈ ({0, 1}d)n and answers all counting queries
in Qconj

t (d) on x to within additive error

α =
(
Õ(dt/4) ·

√
log(1/δ)/εn

)1/2
.

The most interesting case of this theorem is t = 2, when the error is (Õ(
√

d) ·√
log(1/δ)/εn )1/2, matching the lower bound of Theorem 7.5.23 up to a factor of

poly(log d, log(1/δ)) [21].
Proof sketch: The starting point for the algorithm is a beautiful geometric ap-
proach of Nikolov, Talwar, and Zhang [85] that was used to prove the hereditary
discrepancy upper bound (Theorem 7.5.10). We will use an instantiation of their
algorithm that provides near-optimal error bounds in terms of |Q|, like the private
multiplicative weights algorithm, but for `2 or `1 error rather than `∞.

We know that adding independent noise of magnitude O(
√
|Q|/εn) to the answers

to all the counting queries in a family Q provides privacy, but gives useless results
(that lie outside [0, 1]) when |Q| > n2. Remarkably, it turns out that simply project-
ing these answers back to be consistent with some dataset yields highly accurate
results.
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To formalize this, recall the convex body K used in the packing characterization
of sample complexity (Theorem 7.5.15). That is, K = ConvexHull({aw : w ∈ X }),
where aw = (q(w))q∈Q is the vector in RQ giving all the query answers on row
w ∈ X . Recall that, for every dataset x ∈ X , the tuple of answers on x is ax =

(1/n)
∑n

i=1 axi ∈ K.
This leads to the following algorithm M(x,Q):

1. Calculate the exact answers

y = ax = (q(x))q∈Q ∈ K.

2. Add Gaussian noise to the coordinates of y:

ỹ = y +
O(

√
|Q| · log(1/δ))

εn
·N (0, 1)|Q|.

(This can be shown to achieve (ε, δ)-differential privacy, and is more convenient
than Laplace noise for the geometric arguments we are about to make.)

3. Project back to K: Let
ŷ = argminz∈K ‖z − ỹ‖2.

This step maintains (ε, δ)-differential privacy by postprocessing.

Let us analyze the error introduced by this algorithm. Consider the line ` through
y and ŷ, and let p be the orthogonal projection of ỹ onto `. On `, p must be on the
ray from ŷ to infinity. (If p were on the segment between y and ŷ, then p would be a
point in K closer to ỹ than ŷ. If p were on the ray from y to infinity, then y would be
a point in K closer to ỹ than ŷ.)

‖y − ŷ‖22 = 〈ŷ − y, ŷ − y〉

≤ 〈ŷ − y, p − y〉 (because p is on the ray from ŷ to infinity)
= 〈ŷ − y, ỹ − y〉 (because ỹ − p is orthogonal to ŷ − y)
≤ (|〈ŷ, ỹ − y〉| + |〈y, ỹ − y〉|) (triangle inequality)
≤ 2 max

z∈K
|〈z, ỹ − y〉|.

Taking expectations, and writing ỹ−y = O(
√
|Q| · log(1/δ)/εn)·g for g ∼ N (0, 1)|Q|,

we have

E
[
‖y − ŷ‖22

]
≤

O
( √
|Q| · log(1/δ)

)
εn

· E
g

[
max
z∈K
|〈z, g〉|

]
.

The quantity
`∗(K) def

= E
g

max
z∈K
|〈z, g〉|

is known as the Gaussian mean width of the polytope K, an important and well-
studied quantity in convex geometry.



7 The Complexity of Differential Privacy 415

Let us upper bound it for K defined by an arbitrary set Q of counting queries. For
every choice of g, the maximum of |〈z, g〉| over z ∈ K will be obtained at one of the
vertices of K. Recalling the definition of K, we have

max
z∈K
|〈z, g〉| = max

w∈X
|〈aw, g〉|.

By rotational symmetry of Gaussians, the random variable 〈aw, g〉 is distributed
as N (0, ‖aw‖2). We have ‖aw‖2 ≤

√
|Q| since aw is a {0, 1} vector. Thus, with prob-

ability at least 1 − β over g, we have |〈aw, g〉| ≤ O(
√
|Q| · log(1/β)). Taking a union

bound over w ∈ X , we have

max
w∈X
|〈aw, g〉| ≤ O

( √
|Q| · log(|X |/β)

)
.

with probability at least 1 − β, for every β > 0. This implies that

E
g

[
max
z∈K
|〈z, g〉|

]
= E

g

[
max
w∈X
|〈aw, g〉|

]
≤ O

( √
|Q| · log |X |

)
.

Putting it all together, we have

E
[
‖y − ŷ‖22

]
≤
|Q| · O(

√
log |X | · log(1/δ))
εn

.

So if we look at the average error (averaged over the |Q| queries), we have

E
coins of M, q ∈Q

[∣∣∣yq − ŷq

∣∣∣] ≤ (
E

coins of M, q ∈Q

∣∣∣yq − ŷq

∣∣∣2)1/2

=

(
E

coins of M

[
1
|Q|
· ‖y − ŷ‖22

])1/2

= O

 √
log(1/δ)
√
|Q| · εn

· `∗(K)

1/2

≤ O

 √
log |X | · log(1/δ)

εn

1/2

.

This exactly matches the (optimal) bound from the private multiplicative weights
algorithm, except that we only achieve small error on average for a random query
from Q. However, it can be generalized to obtain small average-case error on any
given distribution of queries (just weight the coordinates in RQ according to the dis-
tribution), and then combined with a differentially private algorithm for “boosting”
[42] to obtain small error on all queries with high probability (paying a factor of
polylog(|Q|) in the error).

Our interest in this algorithm, however, is that it does not appear to generate syn-
thetic data, and thus is not subject to the computational complexity lower bounds
of Theorem 7.6.12. Converting the output ŷ to synthetic data would amount to de-
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composing ŷ into a convex combination of the |X | vertices of K, which could take
time proportional to |X |. Unfortunately, this same reason means that the “Project
back to K” step might take time proportional to |X |, as the given description of K
is in terms of its |X | vertices. Indeed, projection onto a convex set is known to be
polynomially equivalent to optimizing linear functions on the set, and as we will see
below, optimizing over K is NP-hard for the cases we are interested in.

Let us see how to make this process more efficient for the case of 2-way
marginals. For t-way marginals with t > 2, the theorem follows by reduction to 2-
way marginals. (Create

(
d

t/2

)
≤ dt/2 variables representing the conjunctions on every

subset of t/2 variables; and then every t-way conjunction in the original variables
can be written as a 2-way conjunction in the new variables.)

Actually, releasing conjunctions of width at most 2 is equivalent to releasing
parities of width at most 2, so let us focus on the latter problem. It will also be
useful to work in ±1 notation, so the parity function qi j : {±1}d → {±1} on variables
i and j is given by qi j(v) = viv j. Thus we see that

K = ConvexHull({v ⊗ v : v ∈ {±1}d}).

Unfortunately, projecting onto and optimizing over K is known to be NP-hard, so
we will take a cue from approximation algorithms and look at a semidefinite pro-
gramming relaxation.

It is NP-hard to do this optimally. So instead, we will find a nicer L “close” to
K (where K ⊆ L) and optimize over L. We need to ensure that the Gaussian mean
width of L is comparable to that of K (or at least the bound we used on the Gaussian
mean width of K).

First, we will relax to:

L0 = ConvexHull({v ⊗ v′ : v, v′ ∈ {±1}d}).

To bound the Gaussian mean width of K, we only used the fact that K is the convex
hull of |X | = 2d vectors whose entries have magnitude at most 1, and the bound was
linear in

√
log |X | =

√
d. L0 is now the convex hull of 22d such vectors, so we only

lose a constant factor in our bound.
Optimizing over L0 is still NP-hard, but it has polynomial-time approximation

algorithms. Indeed, if we relax L0 to

L = {V ∈ Rd2
: ∃{ui}

d
i=1, {u

′
j}

d
j=1 unit vectors with Vi j = 〈ui, u′j〉},

then we can optimize linear functions on L by semidefinite programming, and con-
sequently we can project onto L. Moreover, Grothendieck’s inequality (see [71])
says that the maximum of any linear objective function on L is at most a factor of
KG < 1.783 larger than on L0, which implies that

`∗(L) ≤ KG · `
∗(L0) = O(

√
|Q| · d).

To summarize, the algorithm for the set Q of 2-way parities operates as follows:
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1. Calculate the exact answers

y = ax = (q(x))q∈Q ∈ K ⊆ Rd2
.

2. Add Gaussian noise to the coordinates of y:

ỹ = y +
O(

√
|Q| · log(1/δ))

εn
·N (0, 1)|Q|.

3. Project back to L: Let
ŷ = argminz∈L ‖z − ỹ‖2.

By the analysis we did earlier, the average error per query we obtain is at most

E
coins of M, q ∈Q

[∣∣∣yq − ŷq

∣∣∣] ≤ O

 √
log(1/δ)
√
|Q| · εn

· `∗(L)

1/2

≤ O

 √
d · log(1/δ)

εn

1/2

,

as desired. �
The theorems above show that we can bypass the intractability of producing

differentially private summaries by focusing on specific, structured query classes,
and by avoiding synthetic data. We summarize the state of knowledge about t-way
marginals in Table 7.5. (Results for all marginals, i.e., Qconj(d), roughly correspond
to the case t = d, but in some cases will be off by a logarithmic factor, and we do
not include the result based on the hereditary partial discrepancy of Qconj(d) being
Θ̃((2/

√
3 )d) [77].)

As can be seen from the table, there are still important gaps in our state of knowl-
edge, such as:

Open Problem 7.7.8. Is there a polynomial-time differentially private algorithm for
estimating all (higher-order) marginals with vanishing error α = o(1) on a dataset
with n = poly(d) rows from data universe X = {0, 1}d? Or at least all t-way
marginals for some t = ω(1)?

Open Problem 7.7.9. Is there a polynomial-time differentially private algorithm for
estimating all 3-way marginals with vanishing error α = o(1) on a dataset with
n = o(d) rows from data universe X = {0, 1}d?

Open Problem 7.7.10. For what other classes of queries can one bypass the in-
tractability of generating differentially private synthetic data and answer more than
n2 queries with polynomial- or subexponential-time algorithms?

7.8 Private PAC Learning
We now examine the possibility of machine learning in Valiant’s PAC model [106],
under differential privacy. (See [70] for background on the PAC model.)
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Table 7.5: Error bounds for Qconj
t (d) when t � d with (ε, δ)-differential privacy

on a dataset of size n. Computational lower bounds hold under plausible crypto-
graphic assumptions (e.g., exponentially secure digital signatures with linear-time
verification). “Synth?” indicates whether the entry refers to algorithms that generate
synthetic data.

Type Bound Constraints Runtime Synth? Ref.

Upper O
(

dt/2 ·
√

log(1/δ)·log log d
εn

)
poly(n, dt) no Thm. 7.2.7

Upper O
(

t log d
√

d log(1/δ)
εn

)1/2

poly(n, 2d) yes Thm. 7.4.3

Upper α n ≥ dc
√

t·log(1/α)/ε poly(n) no Thm. 7.7.5

Upper
(
Õ(dt/4) ·

√
log(1/δ)/εn

)1/2
t even poly(n, dt) no Thm. 7.7.7

Lower min
{
Ω̃(dt/2)

n , Ω̃
(

1
√

n

)}
t = O(1) any no [66]

Lower Ω
(
min

{
t log(d/t)

n , 1
})

any no [14]

Lower min
{
Ω̃

(
t
√

d
εn

)1/2
, Ω(1)

}
n ≤ dO(1)/ε any no Thm. 7.5.23

Lower Ω(1) t ≥ 2 ≤ 2d1−o(1)
yes Thm. 7.6.12

7.8.1 PAC Learning vs. Private PAC Learning
Recall that PAC learning considers, for each input length d, two sets of functions:

• A concept class C = Cd = {c : {0, 1}d → {0, 1}}, from which the unknown
concept c we are trying to learn comes.

• A hypothesis class H = Hd = {h : {0, 1}d → {0, 1}}, which contains the func-
tions we will use to try to represent our learned approximation of c.

Definition 7.8.1 (PAC learning). A concept class C is PAC-learnable if there exist
an algorithm L (called the learner) and a number n polynomial in d (called the
sample complexity) such that, for every distribution D on {0, 1}d and every c ∈ C,
if we sample points x1, . . . , xn, xn+1 chosen independently according to D, with high
probability L(x1, c(x1), · · · , xn, c(xn)) returns a function h ∈ H such that h(xn+1) =

c(xn+1).
If H = C, we call L a proper learner and say that C is properly PAC-learnable. If

L is poly-time computable as are the functions in H (given a poly(d)-bit description
of a function h ∈ H as output by L and an input w ∈ {0, 1}d, we can evaluate h(d) in
time poly(d)), then we say that L is an efficient learner and say that C is efficiently
PAC-learnable.

Definition 7.8.2 (Private PAC learning). Private PAC learning is defined in the
same way as PAC learning, but with the additional requirement that L is differen-
tially private. That is, for all sequences (x1, y1), . . . , (xn, yn) and (x′1, y

′
1), . . . , (x′n, y

′
n)

that differ in one coordinate i ∈ [n], L((x1, y1), . . . , (xn, yn)) and L((x′1, y
′
1), . . . , (x′n, y

′
n))
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are (ε, δ)-indistinguishable for some constant ε (e.g., ε = 1) and δ negligible in n
and d.

Taking ε to be a constant is without loss of generality due to a generic reduction
for improving ε (increase the sample size by a factor of ε/ε′, and run the orig-
inal learner on random subsample of the dataset). The success probability of the
learner can also be amplified via “boosting”, which has a differentially private ana-
logue [42].

Note that, while the definition of PAC learning only speaks of inputs that consist
of i.i.d. samples from an unknown distribution that is consistent with some concept
c ∈ C, we require privacy on all (worst-case) pairs of neighboring input sequences.
Indeed, if our modeling assumptions about the world are wrong, we naturally expect
that our learner might fail, but we do not want the privacy promises to the data
subjects to be broken. Also note that we consider the output of the learner to be the
entire description of the hypothesis h, not just its prediction h(xn+1) on the challenge
point.

Amazingly, there is no gap between PAC learning and Private PAC learning, if
we do not care about computation time:

Theorem 7.8.3 (Generic private learner [67]). If C is (nonprivately) PAC-learnable
(equivalently, VC(C) ≤ poly(d)), then it is privately and properly PAC-learnable
with sample complexity O(log |C|) ≤ O(d · VC(C)) = poly(d).

The relation log |C| ≤ d · VC(C) is the Perles–Sauer–Shelah lemma. (See [70].)
Proof: We use the exponential mechanism (Proposition 7.4.2). Let H = C. On
input (x1, y1) · · · (xn, yn), we

output h ∈ H with probability ∝ e−ε·|{i:h(xi),yi}| .

Since score(x, h) = −|{i : h(xi) , yi}| has sensitivity 1 as a function of the dataset x,
Proposition 7.4.2 tells us that this mechanism is 2ε-differentially private.

To prove that the learner succeeds with high probability, consider x1, · · · , xn that
are taken according to some unknown distribution D, and let yi = c(xi).

If n ≥ O(VC(C) · log(1/α)/α2), then Occam’s razor from learning theory (cf.
[70]) tells us that with high probability over x1 · · · xn, we have

∀h ∈ C
∣∣∣∣∣#{i : h(xi) = c(xi)}

n
− Pr

w∼D
[h(w) = c(w)]

∣∣∣∣∣ ≤ α.
Combining this with Proposition 7.4.2, we know that with high probability the

hypothesis h we output satisfies
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Pr
w∼D

[h(w) = c(w)] ≥
#{i : h(xi) = c(xi)}

n
− α

≥
argmaxh∗#{i : h∗(xi) = c(xi)} − O(log |C|)/ε

n
− α

=
n − O(log |C|)/ε

n
− α

≥ 1 − 2α,

provided n ≥ O(log |C|)/εα.
We are done when taking

n = O
(
max

{
log |C|
εα

,
VC(C) · log(1/α)

α2

})
� 1.

�

7.8.2 Computationally Efficient Private PAC Learning
Unfortunately, as is often the case with the exponential mechanism, Theorem 7.8.3
does not produce computationally efficient private learners. Thus, we now investi-
gate what can be learned in polynomial time under differential privacy.

Nonprivately, most examples of computationally efficient PAC learners are learn-
ers in the statistical query model of Kearns [69]. This is a model where the learner
does not get direct access to labeled samples (xi, c(xi)), but is allowed to obtain ad-
ditive approximations to the expectation of any (efficiently computable) function
f : {0, 1}d ×{0, 1} → [0, 1] on the labeled distribution. That is, on specifying statisti-
cal query f , the learner obtains an answer in the range Ew←D[ f (w, c(w))]±1/ poly(n).
Efficient statistical query learners can be simulated by efficient PAC learners because
expectations Ew←D[ f (w, c(w))] can be estimated to within ±1/ poly(n) by taking the
average of f (xi, c(xi)) over m = poly(n) random samples xi ← D. Such estimations
are also easily done with differential privacy, as an average of f (xi, yi) over m sam-
ples (xi, yi) has global sensitivity at most 2/m as a function of the dataset, and thus
can be estimated via the Laplace mechanism. Thus, we have the following:

Theorem 7.8.4 (Private SQ learning [13]). Every concept class that is efficiently
PAC learnable in the statistical query model (which includes Qpt, Qthr, and Qconj)
is efficiently and privately PAC learnable.

In fact, Kasiviswanathan et al. [67] showed that (efficient) statistical query learn-
ers are equivalent to (efficient) private learners in the “local model” of privacy
(which will be discussed more in the next section).

However, there are some concept classes that are efficiently PAC learnable that
are provably not learnable in the statistical query model, most notably the class of
parity functions, that is, the class of functions {0, 1}d → {0, 1} of the form x 7→
c · x, where c · x is taken modulo 2. It turns out that there is an elegant, efficient
private learner for this class, showing that efficient private learning goes beyond the
statistical query model:
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Theorem 7.8.5 (Private learning of parities [67]). The class Qpar = Qpar(d) of
parity functions on {0, 1}d is efficiently and privately PAC learnable, with sample
complexity n = O(d/ε) for (ε, 0)-differential privacy.

Since the class of parity functions on {0, 1}d has VC dimension d, the sample com-
plexity for private learning is within a constant factor of the sample complexity for
nonprivate learning.
Proof: We have a dataset (x, y) with n rows (xi, yi), where xi ∈ {0, 1}d and yi ∈ {0, 1}.
Assume that x1, . . . , xn are drawn independently from some distribution D, and that
there is some c ∈ {0, 1}d such that yi = c · xi for all 1 ≤ i ≤ n. We wish to determine
a hypothesis h ∈ {0, 1}d such that, if x is drawn from D, then h · x = c · x with
probability at least 0.99.

A simple (nonprivate) algorithm is to take any h such that yi = h · xi for all i. We
can do this by using Gaussian elimination to solve the system of linear equations
y = h · x. Standard calculations show that this succeeds with n = O(d) samples.

Now let us consider private learning, keeping in mind that we need to ensure
privacy even when the data is inconsistent with the concept class. Indeed, we need
to make sure that we do not leak information by revealing whether or not the data
is consistent! For instance, we need to make sure that the algorithm’s output distri-
bution only changes by ε (multiplicatively) if we add a single row (xi, yi) such that
yi , c · xi.

Our mechanism M works as follows; we use ⊥ to denote failure. We will start
by succeeding with probability about 1/2, and amplify this probability later.

1. Take n = O(d/ε) samples.
2. With probability 1/2, output ⊥.
3. For each 1 ≤ i ≤ n, set x̂i, ŷi independently as follows:

(x̂i, ŷi) =

(0d, 0) with probability 1 − ε ,
(xi, yi) with probability ε .

Call the resulting dataset (x̂, ŷ). This is effectively a random sample of the orig-
inal dataset, containing an expected fraction ε of the rows. The zero entries
(x̂i, ŷi) = (0d, 0) will have no effect on what follows.

4. Using Gaussian elimination, determine the affine subspace V of hypotheses h
that are consistent with (x̂, ŷ), i.e.,

V = {h | ∀i : ŷi = h · x̂i} .

Output an h chosen uniformly from V . If V = ∅ (i.e., if no consistent h exists),
then output ⊥.

Since the nonprivate algorithm described above succeeds with probability 0.99, if
the data is consistent then M succeeds with probability at least 0.49. We can amplify
by repeating this t times, in which case the sample complexity is n = O(td/ε).

Now we analyze M’s privacy. We willfully identify 1 ± ε with e±ε, neglecting
O(ε2) terms.
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Claim 7.8.6. M is (2ε, 0)-differentially private.

Proof of claim: Let x ∼ x′ be two neighboring datasets that differ at one row i. As-
sume that (x′i , y

′
i) = (0d, 0). Since we can get from any x to any x′′ by going through

such an x′, if we can show that M(x) and M(x′) are (ε, 0)-indistinguishable, then
M will be (2ε, 0)-differentially private.

With probability 1 − ε, we replace (xi, yi) with (0d, 0) in step 3 (assuming we
make it past step 2). In that case, (x̂, ŷ) = (x̂′, ŷ′), and the output probabilities are the
same. Thus for all possible outputs z,

Pr[M(x) = z] ≥ (1 − ε) Pr[M(x′) = z] . (7.9)

But we are not done. The problem is that x′ is special (by our assumption) so the
reverse inequality does not automatically hold. We also need to prove

Pr[M(x) = z] ≤ (1 + ε) Pr[M(x′) = z] . (7.10)

To prove (7.10), start by fixing (x̂ j, ŷ j) = (x̂′j, ŷ
′
j) for all j , i. (Thus, we are

coupling the algorithm’s random choices on the two datasets.) Let V−i be the affine
subspace consistent with these rows:

V−i = {h | ∀ j , i : ŷ j = h · x̂ j} .

As before, if we fail or if we set (x̂i, ŷi) = (0d, 0) = (x̂′i , ŷ
′
i), the output probabilities

are the same. On the other hand, with probability ε/2 we pass step 2 and set (x̂i, ŷi) =

(xi, yi) in step 3. In that case, M(x′) is uniform in V−i (or M(x′) =⊥ if V−i = ∅),
while M(x) is uniform in

V = V−i ∩ {h | yi = h · xi}

(or M(x) =⊥ if V = ∅).
Let us compare the probabilities that M(x) and M(x′) fail. If V−i = ∅, then

M(x) = M(x′) = ⊥. But if V−i , ∅ but V = ∅, the probability that M(x) fails is at
most 1/2 + ε/2; and since M(x′) fails with probability at least 1/2, we have

Pr[M(x) =⊥] ≤
1 + ε

2
≤ (1 + ε) · Pr[M(x′) =⊥] .

Finally, we come to the most interesting case: comparing the probabilities that
M(x) and M(x′) output some hypothesis h, where both V−i and V are nonempty
and contain h. Since V is obtained by adding one linear constraint to V−i, we have

|V | ≥
1
2
|V−i| .

Since M(x) and M(x′) are uniform in V and V−i, respectively, for every h ∈ V−i we
have
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Pr[M(x) = h] ≤
1
2

(
1 − ε
|V−i|

+
ε

|V |

)
≤

1
2
·

1 + ε

|V−i|
= (1 + ε) Pr[M(x′) = h] ,

which completes the proof. � �

Since linear algebra was essentially the only known technique for efficient pri-
vate learning outside the statistical query model, this result suggested that perhaps
every concept that is efficiently PAC learnable is also efficiently and privately PAC
learnable. Bun and Zhandry [20] recently gave evidence that this is not the case.

Theorem 7.8.7 (Hardness of private learning [20]). If “indistinguishability obfus-
cation” and “perfectly sound noninteractive zero-knowledge proofs for NP” exist,
then there is a concept class that is efficiently PAC learnable but not efficiently PAC
learnable with differential privacy.

7.8.3 The Sample Complexity of Private PAC Learning
Another gap between PAC learning and private PAC learning is in sample complex-
ity. The sample complexity of nonprivate learning is characterized by Θ(VC(C)),
whereas for private learning we have the upper bound O(log |C|) from Theorem 7.8.5,
which can be as large as d ·VC(C) on a domain of size 2d. Two classes that illustrate
this gap are the classes of point functions and threshold functions (Qpt and Qthr). In
both cases, we have VC(C) = 1 but log |C| = d.

For the class C = Qpt(d) of point functions on {0, 1}d and (ε, 0)-differentially pri-
vate proper learners, Beimel, Brenner, Kasiviswanathan, and Nissim [10] showed
that the best possible sample complexity is Θ(d), similarly to the situation with
releasing approximate answers to all point functions (Proposition 7.2.8 and Theo-
rem 7.5.14). If we relax the requirement to either improper learning or approximate
differential privacy, then, similarly to Theorem 7.3.5, the sample complexity be-
comes independent of d, namely O(1) or O(log(1/δ)), respectively [10, 9].

For the class C = Qthr([2d]) of threshold functions on {1, . . . , 2d}, again it is
known that Θ(d) sample complexity is the best possible sample complexity for
(ε, 0)-differentially private proper learners [10], similarly to Theorem 7.7.2. In con-
trast to point functions, however, it is known that relaxing to either (ε, δ)-differential
privacy or to improper learning is not enough to achieve sample complexity O(1).
For (ε, δ)-differentially private proper learners, the sample complexity is somewhere
between 2(1+o(1)) log∗ d) ·log(1/δ) andΩ(log∗ d), similarly to Theorem 7.7.3. For (ε, 0)-
differentially private learners, the sample complexity was recently shown to be Ω(d)
by Feldman and Xiao [50]. We present the proof of this result, because it uses beauti-
ful connections between VC dimension, private learning, and communication com-
plexity.

Every concept class C defines a one-way communication problem as follows:
Alice has a function c ∈ C, Bob has a string w ∈ {0, 1}d, and together they want
to compute c(w). The one-way communication complexity of this problem is the
length of the shortest message m that Alice needs to send to Bob that lets him com-
pute c(w). We will consider randomized, distributional communication complexity,



424 Salil Vadhan

where the inputs are chosen according to some distribution µ on C×{0, 1}d, and Bob
should compute c(w) correctly with high probability over the choice of the inputs
and the (shared) randomness between Alice and Bob. We write CC→,pub

µ,α (C) to de-
note the minimum message length over all protocols where Bob computes c(w) with
probability at least 1 − α.

It was known that maximizing this communication complexity over all product
distributions characterizes the sample complexity of nonprivate learning (i.e., VC
dimension):

Theorem 7.8.8 (CC characterization of nonprivate learning [73]). For every
constant α ∈ (0, 1/8),

VC(C) = Θ

(
max
µA,µB

CC→,pub
µA⊗µB,α

(C)
)
,

where µA and µB are distributions on C and {0, 1}d, respectively.

Building on Beimel et al. [8], Feldman and Xiao [50] showed that the sample
complexity of learning C with pure differential privacy is related to the one-way
communication complexity maximized over all joint distributions on C × {0, 1}d.

Theorem 7.8.9 (CC characterization of learning with pure differential pri-
vacy [50]). For all constants ε > 0, α ∈ (0, 1/2), the smallest sample complexity
for learning C under (ε, 0)-differential privacy is Θ(maxµ CC→,pub

µ,α (C)).

We note that, by Yao’s minimax principle, maxµ CC→,pub
µ,α (C) is simply equal to

the worst-case randomized communication complexity of C, where we want a pro-
tocol such that, on every input, Bob computes the correct answer with probability at
least 1 − α over the public coins of the protocol. Returning to threshold functions,
computing cy(w) is equivalent to computing the “greater than” function. Miltersen
et al. [80] showed that for this problem the randomized communication complex-
ity is Ω(d), proving that learning thresholds with pure differential privacy requires
sample complexity Ω(d).
Proof sketch of Theorem 7.8.9: We begin by showing that the communication
complexity is upper-bounded by the sample complexity of private learning. Let L
be an (ε, 0)-differentially private learner for C with a given sample complexity n; we
will use L to construct a communication protocol. Using their shared randomness,
Alice and Bob both run L on the all-zeroes dataset x(0). They do this M times for M
to be determined in a moment, giving a list of shared functions h1, . . . , hM ∈ H.

Since L is (ε, 0)-differentially private, by group privacy, the distribution of func-
tions returned by L “covers” the distribution on every other dataset x ∈ X n, in the
sense that, for each h ∈ H,

Pr[L(x(0)) = h] ≥ e−εn Pr[L(x) = h] .

Thus with M = eO(εn) samples, Alice and Bob can ensure that, with high probability,
at least one hi in their shared list is a good hypothesis for any particular dataset.
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In particular, let µ be a distribution on pairs (c,w), and let c0 ∈ C be Alice’s
function. Then there is some 1 ≤ i ≤ M such that hi is a good hypothesis for the
dataset x we would get by sampling the rows of x from the conditional distribution
µ(w | c = c0): that is, hi(w) = c0(w) with high probability in w. Alice can send Bob
this index i with communication complexity log M = O(εn).

Conversely, suppose that we have a randomized, public-coin protocol for C with
communication complexity at most n. Every setting r of the public randomness
and message m from Alice defines a hypothesis hr,m which Bob uses to com-
pute the output of the protocol (by applying it to his input w). Given a dataset
(x1, y1), . . . , (xn, yn), our differentially private learner will choose r uniformly at ran-
dom, and then use the exponential mechanism to select an m approximately max-
imizing |{i : hr,m(xi) = yi}|, similarly to the use of the exponential mechanism in
the proof of Theorem 7.8.3. The sample complexity n required by the exponential
mechanism is logarithmic in the size of the hypothesis class Hr = {hr,m}, so we have
n = O(|m|). �

While this provides a tight characterization of the sample complexity of learning
with pure differential privacy, the case of approximate differential privacy is still
very much open.

Open Problem 7.8.10. Does every concept class C over {0, 1}d have an (ε, δ)-
differentially private learner with sample complexity n = O(VC(C) · polylog(1/δ))
(for δ negligible in n and d)? Or are there concept classes where the sample com-
plexity must be n = Ω(d · VC(C))?

These questions are open for both proper and improper learning. In the case of
proper learning, there are concept classes known where the sample complexity is at
least Ω(log∗ d ·VC(C) · log(1/δ)), such as threshold functions [22], but this does not
rule out an upper bound of n = O(VC(C) · polylog(1/δ)) when δ is negligible in n
and d.

7.9 Multiparty Differential Privacy

7.9.1 The Definition
We now consider an extension of differential privacy to a multiparty setting, where
the data is divided among some m parties P1, . . . , Pm. For simplicity, we will assume
that m divides n and each party Pk has exactly n/m rows of the dataset, which we
will denote by xk = (xk,1, xk,2, . . . , xk,n/m). (Note the change in notation; now xk is a
subdataset, not an individual row.) We consider the case that Pk wants to ensure the
privacy of the rows in xk against an adversary who may control the other parties.

As in the studies of secure multiparty computation (cf. [52]), there are many
variants of the adversary model that we can consider:

• Passive versus active: for simplicity, we will restrict to passive adversaries —
ones that follow the specified protocol — but try to extract information from the
communication seen (also known as “honest-but-curious” adversaries). Since
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our emphasis is on lower bounds, this only strengthens the results. However, all
of the upper bounds we mention are also known to hold for active adversaries.

• Threshold adversaries: we can restrict the adversary to control at most t parties
for some t ≤ m − 1. For simplicity, we will only consider the case t = m − 1.
Consequently we may assume without loss of generality that all communication
occurs on a broadcast channel, as the adversary would anyhow see all commu-
nication on point-to-point channels.

• Computationally bounded versus unbounded: as in the basic definition of differ-
ential privacy, we will (implicitly) consider computationally unbounded adver-
saries. In the next section, we will discuss computationally bounded adversaries.

A protocol proceeds in a sequence of rounds until all honest parties terminate.
Informally, in each round, each party Pk selects a message to be broadcast based on
its input x(k), internal coin tosses, and all messages received in previous rounds. The
output of the protocol is specified by a deterministic function of the transcript of
messages exchanged. (As in secure multiparty computation, one can also consider
individual outputs computed by the parties Pk, which may depend on their private
input and coin tosses, but we do not do that for simplicity.) Given a particular ad-
versary strategy A, we write ViewA((A↔ (P1, . . . , Pm))(x)) for the random variable
that includes everything that A sees when participating in the protocol (P1, . . . , Pm)
on input x. In the case we consider, where A is a passive adversary controlling
P−k = (P1, P2, . . . , Pk−1, Pk+1, . . . , Pm), ViewA(A ↔ (P1, . . . , Pm)(x)) is determined
by the inputs and coin tosses of all parties other than Pk as well as the messages sent
by Pk.

Definition 7.9.1 (Multiparty differential privacy [7]). For a protocol P = (P1,
. . . , Pm) taking as input datasets (x1, . . . , xm) ∈ (X n/m)m, we say that P is (ε, δ)-
differentially private (for passive adversaries) if, for every k ∈ [m] and every two
datasets x, x′ ∈ (X n/m)m that differ on one row of Pk’s input (and are equal other-
wise), the following holds for every set T:

Pr[ViewP−k (P−k ↔ (P1, . . . , Pm)(x)) ∈ T ]
≤ eε · Pr[ViewP−k (P−k ↔ (P1, . . . , Pm)(x′)) ∈ T ] + δ.

7.9.2 The Local Model
Constructing useful differentially private multiparty protocols for m ≥ 2 parties is
harder than constructing them in the standard centralized model (corresponding to
m = 1), as a trusted curator could just simulate the entire protocol and provide
only the output. An extreme case is when m = n, in which case the individual data
subjects need not trust anyone else, because they can just play the role of a party in
the protocol. This is the local model that we’ve alluded to several times in earlier
sections. While this is the hardest model of distributed differential privacy, there are
nontrivial protocols in it, namely randomized response (as in Section 7.1.5):
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Theorem 7.9.2 (Randomized response). For every counting query q : X → {0, 1},
n ∈ N, and ε > 0, there is an (ε, 0)-differentially private n-party protocol in the
local model for computing q to within error α = O(1/(ε

√
n)) with high probability.

This can be extended to estimating statistical queries q : X → [0, 1] over the
dataset—first randomly round q(xk) to a bit bk ∈ {0, 1} with expectation q(xk) (i.e.,
set bk = 1 with probability q(xk)), and then apply randomized response to bk. This
gives some intuition for why everything that is PAC learnable in the statistical query
model is PAC learnable in the local model, as mentioned in Section 7.8.

Note that the error in Theorem 7.9.2 is significantly worse than the error O(1/εn)
we get with a centralized curator. Building on [7, 78], Chan et al. [25] proved that
the 1/

√
n decay is in fact optimal:

Theorem 7.9.3 (Randomized response is optimal in the local model [25]). For
every nonconstant counting query q : X → {0, 1}, n ∈ N, and (1, 0)-differentially
private n-party protocol P for approximating q, there is an input dataset x ∈ X n on
which P has error α = Ω(1/

√
n) with high probability.

Proof sketch: We first prove it for X = {0, 1}, and q being the identity function (i.e.,
we are computing the average of the input bits). Consider a uniformly random input
dataset X = (X1, . . . , Xn) ← {0, 1}n, let R = (R1, . . . ,Rn) denote the randomness of
the n parties, and let T = T (X,R) be the random variable denoting the transcript
of the protocol. Let t ∈ Supp(T ) be any value of T . We claim that, conditioned on
T = t:

1. The n random variables (X1,R1), . . . , (Xn,Rn) are independent, and in particular
X1, . . . , Xn are independent.

2. Each Pr[Xi = 1] ∈ (1/4, 3/4).

Item 1 is a general fact about interactive protocols—if the parties’ inputs start inde-
pendent, they remain independent conditioned on the transcript—and can be proven
by induction on the number of rounds of the protocol. Item 2 uses (ε = 1, 0)-
differential privacy and Bayes’ rule:

Pr[Xi = 1|T = t]
Pr[Xi = 0|T = t]

=
Pr[T = t|Xi = 1] · Pr[Xi = 1]/Pr[T = t]
Pr[T = t|Xi = 0] · Pr[Xi = 0]/Pr[T = t]

=
Pr[T = t|Xi = 1]
Pr[T = t|Xi = 0]

∈
[
e−ε, eε

]
.

This implies that

Pr[Xi = 1|T = t] ∈
[

1
eε + 1

,
eε

eε + 1

]
⊂ (1/4, 3/4)

for ε = 1.
Consequently, conditioned on T = t, (1/n)·(

∑
i Xi) is the average of n independent

{0, 1} random variables with bounded bias. In particular, the standard deviation of
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i Xi is Ω(1/

√
n), and by anticoncentration bounds, with high probability we will

have ∣∣∣∣∣∣∣(1/n)
∑

i

Xi − output(t)

∣∣∣∣∣∣∣ = Ω(1/
√

n),

where output(·) is the output function of the protocol. Since the protocol has error
Ω(1/

√
n) on a random dataset with high probability, there is some fixed dataset on

which it has error Ω(1/
√

n) with high probability.
To obtain the result for general nonconstant counting queries q : X → {0, 1},

fix two inputs w0,w1 ∈ X such that q(wb) = b, and restrict to datasets of the
form (wb1 , . . . ,wbn ) for b1, . . . , bn ∈ {0, 1}. Estimating the counting query q on such
datasets with differential privacy is equivalent to estimating the average function on
datasets of the form (b1, . . . , bn) with differential privacy. �

Effectively, what the above proof is using is a “randomness extraction” property
of the SUM function. Specifically, for every source Y consisting of n independent
bits Y = (Y1, . . . ,Yn) that are not too biased,

∑
i Yi has a lot of “randomness”—it

is not concentrated in any interval of width O(
√

n). (In the proof, Yi = Xi|T=t.) In
fact, a stronger statement is true:

∑
i Yi mod k can be shown to be almost uniformly

distributed in Zk for some k = Ω(
√

n). In the language of randomness extractors
(see [94, 105]), we would say that “the sum modulo k function is a (deterministic)
randomness extractor for the class of sources consisting of n independent bits with
bounded bias.”

7.9.3 Two-Party Differential Privacy
Now let us look at the case of m = 2 parties each holding n/2 rows of the dataset,
which seems closer to the trusted curator case than to the local model. Indeed, in this
model, any counting query can be computed with error O(1/εn): each party just adds
Lap(1/(ε · (n/2))) noise to the counting query on her own dataset and announces the
result; we average the two results to estimate the overall counting query. However,
there are other simple queries where again there is a quadratic gap between the
single curator (m = 1) and two-party case, namely the (normalized) inner product
function IP : {0, 1}n/2 × {0, 1}n/2 → [0, 1] given by IP(x, y) = 〈x, y〉/(n/2). IP has
global sensitivity 2/n, and hence can be computed by a single trusted curator with
error O(1/n)). But for two parties (one given x and one given y), the best possible
error is again Θ̃(1/

√
n):

Theorem 7.9.4 (Two-party DP protocols for inner product [81, 78]).

1. There is a two-party differentially private protocol that estimates IP to within
error O(1/ε ·

√
n) with high probability, and

2. Every two party (1, 0)-differentially private protocol for IP incurs error Ω̃(1/
√

n)
with high probability on some dataset.

Proof sketch: For the upper bound, we again use randomized response:

1. On input x ∈ {0, 1}n/2, Alice uses randomized response to send a noisy version
x̂ of x to Bob.
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2. Upon receiving x̂ and his input y ∈ {0, 1}n/2, Bob computes

z =
2
n

n/2∑
i=1

yi

ε
·

(
x̂i −

(1 − ε)
2

)
,

which will approximate IP(x, y) to within O(1/ε
√

n).
3. Bob sends the output z + Lap(O(1/ε2n)) to Alice, where this Laplace noise is to

protect the privacy of y, since z has global sensitivity O(1/εn) as a function of
y.

For the lower bound, we follow the same outline as Theorem 7.9.3. Let X =

(X1, . . . , Xn/2) and Y = (Y1, . . . ,Yn/2) each be uniformly distributed over {0, 1}n/2

and independent of each other. Then, conditioned on a transcript t of an (ε, 0)-
differentially private protocol, we have:

1. X and Y are independent, and
2. For every i ∈ [n/2], x1, . . . , xi−1, xi+1, . . . , xn,

Pr[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn] ∈ (1/4, 3/4),

and similarly for Y .

Item 2 again follows from differential privacy and Bayes’ rule. (Consider the two
neighboring datasets (x1, . . . , xi−1, 0, xi+1, . . . , xn) and (x1, . . . , xi−1, 1, xi+1, . . . , xn).)
In the literature on randomness extractors, sources satisfying item 2 are known as
“Santha–Vazirani sources” or “unpredictable-bit sources”, because no bit can be
predicted with high probability given the others. (Actually, the usual definition only
requires that item 2 hold when conditioning on past bits X1 = x1, . . . , Xi−1 = xi−1,
so the sources we have are a special case.)

One of the early results in randomness extractors is that the (nonnormalized)
inner product modulo 2 function is an extractor for Santha–Vazirani sources [107].
This result can be generalized to the inner product modulo k = Ω̃(

√
n), so we know

that 〈X,Y〉 mod k is almost uniformly distributed in Zk (even conditioned on the
transcript t). In particular, it cannot be concentrated in an interval of width o(k)
around output(t). Thus the protocol must have error Ω(k) with high probability. �

The above theorems show there can be a Θ̃(
√

n) factor gap between the worst-
case error achievable with a centralized curator (which is captured by global sensi-
tivity) and multiparty (even two-party) differential privacy. Both lower bounds ex-
tend to (ε, δ)-differential privacy when δ = o(1/n). When δ = 0, the largest possible
gap, namely Ω(n), can be proven using a connection to information complexity. Be-
fore defining information-complexity, let us look at an information-theoretic conse-
quence of differential privacy.

Theorem 7.9.5 (Differential privacy implies low mutual information [78]). Let
M : X n → Y be an (ε, 0)-differentially private mechanism. Then for every random
variable X distributed on X n, we have

I(X;M(X)) ≤ 1.5εn,
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where I(·; ·) denotes mutual information.

Note that, without the DP constraint, the largest the mutual information could be
is when X is the uniform distribution and M is the identity function, in which case
I(X;M(X)) = n · log2 |X |, so the above bound can be much smaller. We remark
that, for approximate differential privacy, one can bound the mutual information
I(X;M(X)) in case the rows of X are independent [78, 92], but these bounds do not
hold for general correlated distributions [29].
Proof: The mutual information between X and M(X) is the expectation over
(x, y)← (X,M(X)) of the following quantity:

log2

(
Pr[M(X) = y|X = x]

Pr[M(X) = y]

)
.

By group privacy (Lemma 7.2.2), the quantity inside the logarithm is always at most
eεn, so the mutual information is at most (log2 e) · εn < 1.5εn. �

To apply this to two-party protocols, we can consider the mechanism M that
takes both parties’ inputs and outputs the transcript of the protocol, in which case
the mutual information is known as external information cost. Or we can fix one
party’s input x, and consider the mechanism Mx(y) that takes the other party’s input
y and outputs the former party’s view of the protocol, yielding a bound on internal
information cost. The information cost of two-party protocols has been very widely
studied in recent years (with initial motivations from communication complexity),
and there are a number of known, explicit Boolean functions f and input distribu-
tions (X,Y) such that any protocol computing f on (X,Y) has information cost Ω(n).
These can be leveraged to construct a low-sensitivity function g such that any two-
party differentially private protocol for g incurs error Ω(n ·GSg) [78]. This is within
a constant factor of the largest possible gap, since the range of g has size at most
n · GSg. It is open to obtain a similar gap for approximate differential privacy:

Open Problem 7.9.6. Is there a function f : X n → R such that any multiparty
(ε, δ)-differentially private protocol (with constant ε and δ = neg(n)) for f incurs
error ω(

√
n · GS f ) with high probability on some dataset? What about Ω(n · GS f )?

These are open in both the two-party and local models.

More generally, it would be good to develop our understanding of multiparty
differential privacy computation of specific functions such as IP and towards a more
general classification.

Open Problem 7.9.7. Characterize the optimal privacy–accuracy tradeoffs for esti-
mating a wide class of functions (more generally, solving a wide set of data analysis
tasks) in two-party or multiparty differential privacy.

As the results of Section 7.9.2 suggest, we have a better understanding of the
local model than for a smaller number of parties, such as m = 2. (See also [4] and
the references therein.) However, it still lags quite far behind our understanding of
the single-curator model, for example, when we want to answer a set Q of queries
(as opposed to a single query).
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7.10 Computational Differential Privacy

7.10.1 The Definition
The basic definition of differential privacy provides protection even against adver-
saries with unlimited computational power. It is natural to ask whether one can gain
from restricting to computationally bounded adversaries, given the amazing effects
of such a restriction in modern cryptography.

To obtain a computational analogue of differential privacy, we can simply take
the inequalities defining differential privacy, namely

∀T ⊆ Y , Pr[M(x) ∈ T ] ≤ eε · Pr[M(x′) ∈ T ] + δ

and restrict our attention to tests T defined by feasible algorithms.

Definition 7.10.1 (Computational differential privacy [7]). Let M = {Mn :
X n

n → Yn}n∈N be a sequence of randomized algorithms, where elements in Xn and
Yn can be represented by poly(n)-bit strings. We say that M is computationally
ε-differentially private if there is a superpolynomial function s(n) = nω(1) and a neg-
ligible function δ(n) = n−ω(1) such that, for all n, all pairs of datasets x, x′ ∈ X n

differing on one row, and all Boolean circuits T : X n → {0, 1} of size at most s(n),
we have

Pr[T (M(x)) = 1] ≤ eε · Pr[T (M(x′)) = 1] + δ(n).

We make a few remarks on the definition:

• We always allow for a nonzero δ = δ(n) term in the definition of computational
differential privacy. If we did not do so, then the definition would collapse to
that of ordinary (information-theoretic) (ε, 0)-differential privacy, because the
latter is equivalent to requiring (ε, 0)-differential privacy for sets T of size 1,
which are computable by Boolean circuits of size poly(n).

• We generally are only interested in computationally differentially private mech-
anisms M that are themselves computable by randomized polynomial-time al-
gorithms, as we should allow the adversary T to invest more computation time
than the privacy mechanism.

• For simplicity, we have used the number n of rows as a security parameter, but
it is often preferable to decouple these two parameters. We will often drop the
index of n from the notation, and make the asymptotics implicit, for sake of
readability.

7.10.2 Constructions via Secure Multiparty Computation
The most significant gains we know how to get from computational differential pri-
vacy are in the multiparty case. Indeed, by using powerful results on secure mul-
tiparty computation, everything that is achievable by a differentially private cen-
tralized curator can also be emulated by a multiparty protocol with computational
differential privacy.
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Theorem 7.10.2 (Computational differential privacy via cryptography [38, 7]).
Assume that oblivious transfer protocols exist. Let M : X n → Y be computationally
ε-differentially private for ε ≤ 1 and computable in time poly(n). Then for every m|n,
there is an m-party protocol P = (P1, . . . , Pm) : (X n/m)m → Y such that:

1. P is computationally ε-differentially private,
2. For every input x ∈ X n, the output distribution of P(x) is the same as that of

M : (X n/m)m → Y ,
3. P is computable in time poly(n).

Proof sketch: By classic results on secure multiparty computation [109, 53], there
exists an m-party protocol P for evaluating M that is secure against passive ad-
versaries, assuming the existence of oblivious transfer protocols. (See [? 52] for
full definitions and constructions of secure multiparty computation.) Items 2 and
3 are immediately guaranteed by the properties of secure multiparty computation
protocols. For item 1, we recall that each party learns nothing from a secure mul-
tiparty computation protocol other than what is implied by their own input and the
output of the function being evaluated (in this case M). More precisely, for every
poly(n)-size adversary A, controlling all parties other than Pk, there is a poly(n)-size
simulator S such that ViewA(A↔ (P1, . . . , Pm(x)) is computationally indistinguish-
able from S (M(x), x1, . . . , xk−1, xk+1, . . . , xm). Thus, for every x and x′ that differ
only by changing one row of the input to party j, and every poly(n)-size T , we have

Pr[T (ViewA(A↔ (P1, . . . , Pm)(x))) = 1]
≤ Pr[T (S (M(x), x1, . . . , xk−1, xk+1, . . . , xm)) = 1] + neg(n)

=
(
eε · Pr[T (S (M(x′), x′1, . . . , x

′
k−1, x

′
k+1, . . . , x

′
m)) = 1] + neg(n)

)
+ neg(n)

≤ eε ·
(
Pr[T (ViewA(A↔ (P1, . . . , Pm)(x′))) = 1] + neg(n)

)
+ neg(n) + neg(n)

= eε · Pr[T (ViewA(A↔ (P1, . . . , Pm)(x′))) = 1] + neg(n).

�
In particular, with computational differential privacy, we have n-party protocols for
computing any counting query or the normalized inner product function with error
O(1/εn), significantly better than the Θ̃(1/

√
n) error achievable with information-

theoretic differential privacy. It is interesting to understand to what extent general
secure multiparty computation (whose existence is equivalent to oblivious transfer)
is necessary for such separations between information-theoretic and computational
differential privacy. Haitner et al. [57] showed that black-box use of one-way func-
tions does not suffice to construct two-party protocols for the inner product function
with error smaller than Θ̃(1/

√
n), but a tight characterization remains open.

Open Problem 7.10.3. What is the minimal complexity assumption needed to con-
struct a computational task that can be solved by a computationally differentially
private protocol but is impossible to solve by an information-theoretically differen-
tially private protocol?

Recent works have made progress on understanding this question for comput-
ing Boolean functions with differential privacy, for example showing that achieving
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near-optimal accuracy requires oblivious transfer in some cases [54], but it remains
open whether there can be a separation based on a weaker assumption, and whether
oblivious transfer is needed to have an asymptotic separation in accuracy for a more
natural statistical task (e.g., estimating a function with bounded global sensitivity,
such as normalized inner product).

7.10.3 Usefulness with a Trusted Curator?
For the single-curator case (m = 1), computational and information-theoretic dif-
ferential privacy seem closer in power. Indeed, Groce et al. [56] showed that, in the
case of real-valued outputs, we can often convert computational differentially pri-
vate mechanisms into information-theoretically differentially private mechanisms.

Theorem 7.10.4 (From computational to information-theoretic differential pri-
vacy [56]). Let M : X n → R be an ε-computationally differentially private mech-
anism with the property that, for every dataset x ∈ X n, there is an interval Ix of
width at most w(n) such that Pr[M(x) < Ix] ≤ neg(n), and the endpoints of Ix are
rational numbers with poly(n) bits of precision. Define M′(x) to be the mechanism
that runs M(x) and rounds the result to the nearest multiple of α(n) = w(n)/nc, for
any desired constant c. Then M′ is (ε, neg(n))-differentially private.

Thus, the error incurred is an arbitrary polynomial small fraction of the “spread”
of M’s outputs.
Proof: Let I′x denote the rounding of all points in Ix to the nearest multiple of
α(n); notice that |I′x| ≤ w(n)/α(n) + 1 ≤ nc + 1. M′ is computationally differentially
private because M is, and we will use this to show that it is actually information-
theoretically differential private: For every x, x′ ∈ X n that differ on one row and
every T ⊆ R, we have

Pr[M′(x) ∈ T ] ≤

 ∑
y∈I′x∩T

Pr[M′(x) = y]

 + Pr[M′(x) < I′x]

≤

 ∑
y∈I′x∩T

(
eε · Pr[M′(x′) = y] + neg(n)

) + neg(n)

≤ eε · Pr[M′(x′) ∈ T ] + (nc + 1) · neg(n) + neg(n)
= eε · Pr[M′(x′) ∈ T ] + neg(n),

where the second inequality uses the fact that testing equality with a fixed value
y or testing membership in an interval can be done by polynomial-sized circuits,
provided the numbers have only poly(n) bits of precision. �

This proof technique extends to low-dimensional outputs (e.g., answering a log-
arithmic number of real-valued queries) as well as outputs in polynomial-sized dis-
crete sets [56, 23]. So to get a separation between computational and information-
theoretic differential privacy with a single curator, we need to use large or high-
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dimensional output spaces, or measure utility in a different way (not by a low-
dimensional metric). Such a separation was recently obtained by Bun et al. [23]:

Theorem 7.10.5 (Separating computational and information-theoretic differen-
tially private curators [23]). Assuming the existence of subexponentially secure
one-way functions and “exponentially extractable noninteractive witness indistin-
guishable (NIWI) proofs for NP”, there exists an efficiently computable utility func-
tion u : X n × Y → {0, 1} such that

1. There exists a polynomial-time CDP mechanism MCDP such that, for every
dataset x ∈ X n, we have Pr[u(x,MCDP(x)) = 1] ≥ 2/3.

2. There exists a computationally unbounded differentially private mechanism
Munb such that, for every dataset x ∈ X n, we have Pr[u(x,Munb(x)) = 1] ≥
2/3.

3. For every polynomial-time differentially private M, there exists a dataset x ∈
X n such that Pr[u(x,M(x)) = 1] ≤ 1/3.

Note that this theorem provides a task where achieving information-theoretic dif-
ferential privacy is infeasible—not impossible. Moreover, it is for a rather unnatural,
cryptographic utility function u. It would be interesting to overcome either of these
limitations:

Open Problem 7.10.6. Is there a computational task that is solvable by a single
curator with computational differential privacy but is impossible to solve with
information-theoretic differential privacy?

Open Problem 7.10.7. Can an analogue of Theorem 7.10.5 be proven for a more
“natural” utility function u, such as one that measures the error in answering or
summarizing the answers to a set of counting queries?

7.10.4 Relation to Pseudodensity
The definition of computational differential privacy is related to concepts studied in
the literature on pseudorandomness. For random variables Y,Z taking values in Y
and ρ ∈ [0, 1], we say that Y has density at least ρ in Z if, for every event T ⊆ Y , we
have

ρ · Pr[Y ∈ T ] ≤ Pr[Z ∈ T ].

For intuition, suppose that Y and Z are uniform on their supports. Then this defini-
tion says that Supp(Y) ⊆ Supp(Z) and |Supp(Y)| ≥ ρ · |Supp(Z)|. Additionally, if
Z is the uniform distribution on Y , then Y having density at least ρ in Z is equiv-
alent to Y having “min-entropy” at least log(ρ|Y |). Notice that a mechanism M is
(ε, 0)-differentially private iff, for every two neighboring datasets x ∼ x′, M(x) has
density at least e−ε in M(x′).

Just like computational analogues of statistical distance (namely, computational
indistinguishability and pseudorandomness) have proven to be powerful concepts
in computational complexity and cryptography, computational analogues of density
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and min-entropy have also turned out to be quite useful, with applications including
additive number theory [55], leakage-resilient cryptography [49], and constructions
of cryptographic primitives from one-way functions [62].

One of the computational analogues of density that has been studied, called pseu-
dodensity (or sometimes metric entropy when Z is uniform on Y) [3, 90], is precisely
the one used in the definition of computational differential privacy, namely that, for
every polynomial-sized Boolean circuit T , we have

ρ · Pr[T (Y) = 1] ≤ Pr[T (Z) = 1] + neg(n).

When considering a single pair of random variables (Y,Z), the dense model theorem
of [55, 100, 90] says that pseudodensity is equivalent to Y being computationally
indistinguishable from a random variable Ỹ that truly has density at least ρ in Z.
Mironov et al. [81] asked whether something similar can be said about (computa-
tionally) differentially private mechanisms, which require (pseudo)density simulta-
neously for all pairs M(x), M(x′) where x ∼ x′:

Open Problem 7.10.8. For every ε-computationally differentially private and poly-
nomial-time computable mechanism M : X n → Y , is there an (O(ε), neg(n))-
differentially private mechanism M̃ : X n → Y such that, for all datasets x ∈ X n,
M(x) is computationally indistinguishable from M̃(x)?

A positive answer to this question would imply a negative answer to Open Prob-
lem 7.10.6.

7.11 Conclusions
We have illustrated rich connections between the theory of differential privacy and
numerous topics in theoretical computer science and mathematics, such as learn-
ing theory, convex geometry and optimization, cryptographic tools for preventing
piracy, probabilistically checkable proofs and approximability, randomness extrac-
tors, information complexity, secure multiparty computation, and notions of pseu-
doentropy. There have also been very fruitful interactions with other areas. In par-
ticular, in both game theory and in statistics, differential privacy has proved to be
a powerful tool for some applications where privacy is not the goal—such as de-
signing approximately truthful mechanisms [79, 87] and preventing false discovery
in adaptive data analysis [44]. Remarkably, both positive and negative results for
differential privacy (including both information-theoretic and computational lower
bounds as we have seen in this tutorial) have found analogues for the false discov-
ery problem [44, 60, 98, 6], suggesting that it will also be a very fertile area for
complexity-theoretic investigation.

We now mention some more directions for future work in differential privacy,
beyond the many open problems stated in earlier sections. As illustrated in previous
sections, there has been a thorough investigation of the complexity of answering
counting queries under differential privacy, with many algorithms and lower bounds
that provide nearly matching results. While there remain numerous important open
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questions, it would also be good to develop a similar kind of understanding for
other types of computations. There is now a wide literature on differentially private
algorithms for many types of data analysis tasks, but what is missing are negative
results to delineate the border between possible and impossible.

Open Problem 7.11.1. Classify large classes of problems (other than counting
queries) in differential privacy according to their privacy–utility tradeoffs and their
computational tractability.

Two areas of particular interest, both in theory and in practice, are:

Statistical inference and machine learning. In this tutorial, we have mostly been
measuring accuracy relative to the particular (worst-case) dataset that is given
as input to our differentially private algorithm. However, in statistical inference
and machine learning, the goal is usually to infer properties of the population
from which the dataset is (randomly) drawn. The PAC model studied in Sec-
tion 7.8 is a theoretically appealing framework in which to study how such tasks
can be done with differential privacy, but there are many inference and learning
problems outside the PAC model that are also of great interest. These problems
include tasks like hypothesis testing, parameter estimation, regression, and dis-
tribution learning, and a variety of utility measures such as convergence rates, p
values, risk minimization, and sizes of confidence intervals. Moreover, the data
distributions are often assumed to have a significant amount of structure (or
enough samples are taken for central limit theorems to provide such structure),
in contrast to the worst-case distributions considered in the PAC model. Some
broad positive results are provided in Smith [95] and Bassily et al. [5] and some
negative results in [32, 21, 5], but our understanding of these types of problems
is still quite incomplete.

Graph privacy. As mentioned in Section 7.3, there has been some very interesting
work on differentially private graph analysis, where our dataset is a graph and
we are interested in protecting either relationships (edge-level privacy) or ev-
erything about an individual/vertex (node-level privacy). We refer to Raskhod-
nikova and Smith [88] for a broader survey of the area. Again, most of the work
to date has been algorithmic, and we still lack a systematic understanding of
impossibility and intractability.

If the existing study of differential privacy is any indication, these studies are likely
to uncover a rich theoretical landscape, with even more connections to the rest of
theoretical computer science.
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[101] Gábor Tardos. Optimal probabilistic fingerprint codes. In Proceedings of the
Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC ’03,
pages 116–125, New York, NY, USA, 2003. ACM.

[102] Justin Thaler, Jonathan Ullman, and Salil P. Vadhan. Faster algorithms for
privately releasing marginals. In ICALP (1), pages 810–821, 2012. doi:
10.1007/978-3-642-31594-7\ 68.

[103] Jonathan Ullman. Answering n2+o(1) counting queries with differential pri-
vacy is hard. In Proceedings of the 45th annual ACM Symposium on Theory
of Computing, pages 361–370. ACM, 2013.

[104] Jonathan Ullman and Salil Vadhan. PCPs and the hardness of generating
private synthetic data. In Theory of Cryptography, pages 400–416. Springer,
2011.

[105] Salil P. Vadhan. Pseudorandomness, volume 7 (1–3) of Foundations and
Trends in Theoretical Computer Science. now publishers, December 2012.
336 pages.

[106] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[107] Umesh V. Vazirani. Strong communication complexity or generating quasir-
andom sequences from two communicating semirandom sources. Combina-
torica, 7(4):375–392, 1987.

[108] Stanley L. Warner. Randomized response: A survey technique for eliminat-
ing evasive answer bias. Journal of the American Statistical Association, 60
(309):63–69, 1965.

[109] Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science,
Chicago, Illinois, USA, 3-5 November 1982, pages 160–164. IEEE Com-
puter Society, 1982. doi: 10.1109/SFCS.1982.38. URL http://dx.doi.
org/10.1109/SFCS.1982.38.

[110] Elias A. Zerhouni and Elizabeth G. Nabel. Protecting aggregate genomic
data. Science, 322(5898):44–44, 2008. ISSN 0036-8075. doi: 10.1126/

http://dx.doi.org/10.2307/2000258
http://jmlr.org/proceedings/papers/v40/Steinke15.html
http://jmlr.org/proceedings/papers/v40/Steinke15.html
http://dx.doi.org/10.1007/s11511-008-0032-5
http://dx.doi.org/10.1007/s11511-008-0032-5
http://dx.doi.org/10.1109/SFCS.1982.38
http://dx.doi.org/10.1109/SFCS.1982.38


448 Salil Vadhan

science.1165490. URL http://science.sciencemag.org/content/
322/5898/44.1.

[111] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and
Xiaokui Xiao. Private release of graph statistics using ladder functions. In
Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives, editors, Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 731–745.
ACM, 2015. ISBN 978-1-4503-2758-9. doi: 10.1145/2723372.2737785.
URL http://doi.acm.org/10.1145/2723372.2737785.

http://science.sciencemag.org/content/322/5898/44.1
http://science.sciencemag.org/content/322/5898/44.1
http://doi.acm.org/10.1145/2723372.2737785


7 The Complexity of Differential Privacy 449

Nomenclature
Avg j∈T f ( j) The average of f ( j) over j in the set T , page 396
M A (randomized) mechanism M : X n ×Q→ Y or M : X n → Y , page 349
Q A k×|X |matrix with {0, 1} entries whose rows correspond to a set of count-

ing queries over X . Abusing notation, we also denote this set of counting
queries by Q, page 385

Q A set of queries q : X n → Y , page 349
QS The restriction of counting query family (i.e. {0, 1} matrix) Q to the data

universe elements (i.e. columns) in S , page 385
X A data universe for dataset rows, page 349
Y A (discrete) output space for a mechanism, page 349
δ The additive privacy parameter of differential privacy, page 351
Disc(Q) The discrepancy of matrix Q, i.e. minz∈{±1}n‖Qz‖∞, page 383
`∗(K) The Gaussian mean width of K: Expg maxz∈K |〈z, g〉|, page 414
ε The multiplicative privacy parameter of differential privacy, page 351
GSq The global sensitivity of q, i.e. maxx∼x′ |q(x) − q(x′)|, page 353
HerDisc(Q) The hereditary discrepancy of matrix Q, i.e. maxS⊆X Disc(QS ), page 387
HerPDisc(Q) The hereditary partial discrepancy of matrix Q, i.e. maxS⊆X PDisc(QS ),

page 386
Lap(σ) The Laplace distribution with scale σ, page 353
ln The natural logarithm function, page 353
log Base 2 logarithm function, page 353
LSq(x) The local sensitivity of query q on dataset x, i.e. maxx′∼x |q(x) − q(x′)|,

page 367
‖v‖p The `p norm of vector v, i.e. (

∑
i|vi|

p)1/p, page 383
PDisc(Q) The partial discrepancy of matrix Q, i.e. minz∈{0,+1,−1}n,

‖z‖1>n/10
‖Qz‖∞, page 383

Qconj = Qconj(d)
⋃d

t=0 Q
conj
t (d), page 351

Qconj
t = Qconj

t (d) Set of t-way marginal queries, i.e. counting queries corresponding
to t-way conjunctions on X = {0, 1}d, page 351

Qmeans = Qmeans(d) Set of d attribute means on dataset with d boolean attributes,
i.e. counting queries corresponding to coordinate functions on X = {0, 1}d,
page 351

Qpt = Qpt(X ) Set of counting queries corresponding to point functions on X ,
page 351

Qthr = Qthr(X ) Set of counting queries corresponding to threshold functions on to-
tally ordered X , page 351

SD(Y,Y ′) The statistical distance between random variables Y and Y ′, page 354
σmin(M) The smallest singular value of matrix M, i.e. infz,0‖Mz‖2/‖z‖2, page 387
Supp(Z) The support of random variable Z, i.e. {z : Pr[Z = z] > 0}, page 356
VC(Q) The Vapnik–Chervonenkis dimension of Q, i.e. the largest number k such

that there exist x1, . . . , xk ∈ X for which {(q(x1), . . . , q(xk)) : q ∈ Q} =

{0, 1}k, page 374



450 Salil Vadhan

D(p‖q) The Kullback–Leibler divergence (a.k.a. relative entropy) between discrete
probability measures p and q, i.e.

∑
y p(y) · log(p(y)/q(y)), page 363

d(x, x′) The Hamming distance between datasets x, x′ ∈ X n, page 354
K The convex hull of the answer vectors aw = (q(w))q∈Q ∈ R

Q over w ∈ X ,
page 392

n The number of rows in a dataset, page 349
Pα(K) The largest number of points that we can pack in K with all pairwise `∞

distances larger than α, page 393
q : X → {0, 1} A predicate inducing a counting query q : X n → [0, 1], page 351
q : X n → Y A query, page 351
x = (x1, . . . , xn) ∈ X n A dataset of n rows, page 349
x ∼ x′ Datasets x, x′ ∈ X n differ in one row, page 351


	Chapter 7: The Complexity of Differential Privacy
	7.1 Introduction and Definition
	7.1.1 Motivation
	7.1.2 The Setting
	7.1.3 Counting Queries
	7.1.4 Di�erential Privacy
	7.1.5 Basic Mechanisms
	7.1.6 Discussion of the Definition
	7.1.7 Preview of the Later Sections

	7.2 Composition Theorems for Differential Privacy
	7.2.1 Postprocessing and Group Privacy
	7.2.2 Answering Many Queries
	7.2.3 Histograms

	7.3 Alternatives to Global Sensitivity
	7.3.1 Smooth Sensitivity
	7.3.2 Propose–Test–Release
	7.3.3 Releasing Stable Values
	7.3.4 Privately Bounding Local Sensitivity

	7.4 Releasing Many Counting Queries with Correlated Noise
	7.4.1 The SmallDB Algorithm
	7.4.2 Private Multiplicative Weights

	7.5 Information-Theoretic Lower Bounds
	7.5.1 Reconstruction Attacks and Discrepancy
	7.5.1.1 Reconstruction
	7.5.1.2 Discrepancy Characterizations of Error for Counting Queries
	7.5.1.3 Discrepancy Lower Bounds for Specific Query Families

	7.5.2 Packing Lower Bounds
	7.5.3 Fingerprinting Lower Bounds

	7.6 Computational Lower Bounds
	7.6.1 Traitor-Tracing Lower Bounds
	7.6.2 Lower Bounds for Synthetic Data

	7.7 Efficient Algorithms for Specific Query Families
	7.7.1 Point Functions (Histograms)
	7.7.2 Threshold Functions (CDFs)
	7.7.3 Conjunctions (Marginals)

	7.8 Private PAC Learning
	7.8.1 PAC Learning vs. Private PAC Learning
	7.8.2 Computationally Efficient Private PAC Learning
	7.8.3 The Sample Complexity of Private PAC Learning

	7.9 Multiparty Differential Privacy
	7.9.1 The Definition
	7.9.2 The Local Model
	7.9.3 Two-Party Differential Privacy

	7.10 Computational Differential Privacy
	7.10.1 The Definition
	7.10.2 Constructions via Secure Multiparty Computation
	7.10.3 Usefulness with a Trusted Curator?
	7.10.4 Relation to Pseudodensity

	7.11 Conclusions
	References


