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Abstract

In this work, we design differentially private hypothesis tests for the following
problems in the general linear model: testing a linear relationship and testing
for the presence of mixtures. The majority of our hypothesis tests are based
on differentially private versions of the F -statistic for the general linear model
framework, which are uniformly most powerful unbiased in the non-private setting.
We also present another test for testing mixtures, based on the differentially private
nonparametric tests of Couch, Kazan, Shi, Bray, and Groce (CCS 2019), which is
especially suited for the small dataset regime. We show that the differentially private
F -statistic converges to the asymptotic distribution of its non-private counterpart.
As a corollary, the statistical power of the differentially private F -statistic converges
to the statistical power of the non-private F -statistic. Through a suite of Monte
Carlo based experiments, we show that our tests achieve desired significance levels
and have a high power that approaches the power of the non-private tests as we
increase sample sizes or the privacy-loss parameter. We also show when our tests
outperform existing methods in the literature.

1 Introduction

Linear regression is one of the most fundamental statistical techniques available to social scientists
and economists (especially econometricians) [43, 20]. A graduate student successfully completes
her classes: what is the effect on her future earnings? A country implements tough penalties for
concealed carry permit violations: what is the effect on gun-related deaths? A school district cuts the
size of the average class size for high school classes: what is the effect on the standardized test scores
of the minority students?

All three questions are about the (unknown) effect of changing one (independent) variable X on
another variable Y . Under reasonable assumptions, the relationship betweenX and Y can be modeled
as a linear regression testing problem. One of the goals of performing regression analysis is for use in
decision-making via point estimation (i.e., getting a single predicted value for the dependent variable).
To increase the confidence of decision-makers and analysts in such estimates, it is often important to
also release accompanying uncertainty estimates for the point estimates [18, 19, 6].

In this work, we aim to provide differentially private linear regression uncertainty quantification
via the use of hypothesis tests. Given the realistic possibility of reconstruction, membership, and
inference attacks [46, 25], we can rely on Differential Privacy (DP), a rigorous approach to quantifying
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privacy loss [24, 22]. The task of DP linear regression is to, given datapoints {(xi, yi)}ni=1, estimate
point or uncertainty estimates for linear regression while satisfying differential privacy. The majority
of our tests will rely on generalized likelihood ratio test F -statistics.

In previous works [41, 49, 13, 3], differentially private estimators for linear regression are explored
and key factors (such as sample size and variance of the independent variable) that affect the
accuracy of these estimators are identified. The focus of these previous works is for point estimate
prediction. The predictive accuracy of such estimators can be measured in terms of a confidence
bound or mean-squared error. We continue the study of the utility of such estimators for use in
uncertainty quantification via hypothesis testing [41]. (See Section B for a more detailed background
on hypothesis testing.)

Earlier work on uncertainty quantification for linear regression was done by Sheffet [41], who
constructed confidence intervals and hypothesis tests based on the t-test statistic, and can be used to
test a linear relationship. The random projection routine in [41], based on the Johnson–Lindenstrauss
(JL) transform, only starts to correctly reject the null hypothesis when the sample size is very large (or
the variables have a large spread). This observation is also supported by the work of [21]. Furthermore,
the random projection routine requires extra parameters (e.g., for specifying the dimensions of the
random matrix). In our work, we use the F -statistic and our framework can be used to test mixture
models, amongst other tests. We provide a general framework for DP tests based on the F -statistic. In
addition, we will consider hypothesis testing for linear regression coefficients on both small and large
datasets. For the mixture model tester, we additionally adapt and evaluate a nonparametric method,
a DP analogue of the Kruskal-Wallis test due to Couch, Kazan, Shi, Bray, and Groce [21], which
is especially suited for the small dataset regime (See Section C.3.2 for full design, implementation,
and proof details for the Kruskal-Wallis test.). To the best of our knowledge, our tests are the first to
differentially privately detect mixtures in linear regression models, with accompanying experimental
validation.

1.1 Our Contributions

In this work, we show that for the problem of differentially private linear regression, we can perform
hypothesis testing for two problems in the general linear model: (1) Testing a Linear Relationship:
is the slope of the linear model equal to some constant (e.g., slope is 0)? (2) Testing for Mixtures:
does the population consist of one or more sub-populations with different regression coefficients?

We provide a differentially private analogue of the F -statistic which we, under the general lin-
ear model, show converges in distribution to the asymptotic distribution of the F -statistic (Theo-
rem 2.2). Furthermore, the DP regression coefficients converge, in probability, to the true coefficients
(Lemma D.11). In particular, in Lemma D.11, we show a 1/

√
n statistical rate of convergence for

the DP regression coefficients used for our hypothesis tests. This matches the optimal rate [38]. We
then use our DP F -statistic and parametric estimates to obtain DP hypothesis tests using a Monte
Carlo parametric bootstrap, following Gaboardi, Lim, Rogers, and Vadhan [30]. The Monte Carlo
parametric bootstrap is used to ensure that our tests achieve a target significance level of α (i.e., data
generated under the null hypothesis is rejected with probability α). We experimentally compare
these tests to their non-private counterparts for univariate linear regression (i.e., one independent
variable and one dependent variable). To the best of our knowledge, our tests are the first that use the
F -statistic to perform tests on the problem of linear regression while ensuring privacy of the data
subjects. In addition, our F -statistic based tests can be adapted to work on design matrices in any
dimension i.e., the design matrix can be cast in the form X ∈ Rn×p for any integer p ≥ 2 where
n represents the number of individuals in the dataset and p represents the number of features per
individual; we leave experimental evaluation of the multivariate case for future work.

Experimental evaluation of our hypothesis tests is done on: (1) Synthetic Data: We generate synthetic
datasets with different distributions on the independent (or explanatory) variables. Specifically, we
consider uniform, normal, and exponential distributions on the independent variables. We also vary
the noise distribution of the dependent variable. (2) Opportunity Insights (OI) Data: We use a
simulated version of the data used by the Opportunity Insights team (an economics research lab)
to release the Opportunity Atlas tool, primarily used to predict social and economic mobility. We
chose to use these datasets since they come from a real deployment of privacy-preserving statistics.
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3 The census tract-level datasets from these states can have a very small number of datapoints. (3)
Bike Sharing Dataset: We use a real-world dataset publicly available in the UCI machine learning
repository. The dataset consists of daily and hourly counts (with other information such as seasonal
and weather information) of bike rentals in the Capital bikeshare system in years 2011 and 2012.

Our experimental findings are as follows:

1. Significance and Power: Across a variety of experimental settings, the significance is
below the target significance level of 0.05. Thus, we have a high confidence that we will not
falsely reject the null hypothesis, should the null hypothesis be true. Our tests are designed
to be conservative in the sense that they err on the side of failing to reject the null (e.g., when
the DP estimate of a variance is negative). Consistently, the power of our tests increase as
we increase sample sizes (from hundreds up to tens of thousands) or as we relax the privacy
parameter. The behavior of our DP tests tends toward that of the non-DP tests. The power
of the DP OLS linear relationship tester increases as the slope of the model increases and as
the noise in the dependent variable decreases. But when the DP estimate of the noise in the
dependent variable is negative, the tests err on the side of failing to reject the null, leading
to a lower power. The power of the mixture model tests also increases as the difference
between the slopes in the two groups increases. And the more uneven the group sizes are,
the lower the power.

2. Alternative Methods: (a) We compare our DP linear relationship tester, based on the F -
statistic, to a test that builds on a DP parametric bootstrap method for confidence interval
estimation. Ferrando, Wang, and Sheldon [29] prove that these intervals are consistent (in
the asymptotic regime) and experimentally show that these intervals have good coverage.
We can rely on such parametric bootstrap methods to decide to reject or fail to reject the
null hypothesis. Such methods achieve the desired significance levels. However, we observe
that the method is less powerful than the F -statistic approach. This behavior could be
attributed to the differences in the bootstrap process: whereas we use estimates of sufficient
statistics under the null in the bootstrap procedure, [29] uses the entirety of the sufficient
statistics estimated for the parametric model. (b) The DP nonparametric method we provided,
adapting the work of Couch, Kazan, Shi, Bray, and Groce [21], has a higher power in the
small dataset regime than the DP F -statistic method. As the dataset size increases or the
difference in slopes between the groups increases, the gap closes. In addition, as the variance
of the independent variable increases, the F -statistic method outperforms the nonparametric
method. This observation echos findings in previous work [3] for the case of prediction
rather than hypothesis testing. In that work, it is shown that parametric methods for linear
regression perform well in prediction as n, the variance of the independent variable, or the
privacy loss parameter increase.

1.2 Overview of Techniques

We provide Algorithm 1, a generic framework for DP Monte Carlo tests via a parametric bootstrap
routine for estimating sufficient statistics. Algorithm 1 crucially relies on DPStats, a procedure that
uses statistics of the independent and dependent variables to produce DP statistics. These statistics
can be used to decide to reject or fail to reject the null hypothesis. DPStats must satisfy DP—in our
case ρ-zCDP (Zero-Concentrated Differential Privacy) [12]. Algorithms 2 and 5 are SSP (Sufficient
Statistic Perturbation) implementations of DPStats for the linear relationship tester and mixture
model tester, respectively. (See Section C.2 for more details.) Algorithm 6 is a DP nonparametric
test framework based on the Kruskal-Wallis test statistic for testing mixtures. We use the standard
Gaussian mechanism to make these algorithms satisfy zCDP although the Laplace mechanism could
be used instead (i.e., for pure DP). To make Algorithm 6 DP, we randomly pair datapoints so that
the resulting transformation is 1-Lipschitz (See Section C.3 for more details.). Theorem 2.2 shows
that the DP F -statistic converges to the asymptotic distribution of its non-private counterpart, the
chi-squared distribution. As a corollary, the statistical power of the DP F -statistic converges to the
statistical power of the non-private F -statistic. To prove this result, we first show the 1/

√
n statistical

rate of convergence for the DP coefficients. Then we reformulate both the F -statistic and the DP
F -statistic in terms of the 1/

√
n convergent quantities, including convergent functions of the Gram

3 See [19, 20] for a more detailed description of the use of the Opportunity Atlas tool in predicting social and
economic mobility. [18, 3] evaluate privacy-protection methods on Opportunity Atlas data.
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Matrix of the independent variable. Next, we construct random variables whose `2-norm squared
is distributed as the (non-central) chi-squared distribution. Then we prove that DP analogues of the
squared `2-norm of such random variables converge to the (non-central) chi-squared distribution.
Finally, using such random variables, the reformulated DP F -statistic, reformulated F -statistic, and
the continuous mapping theorem, we combine the convergent quantities to prove Theorem 2.2. See
Section D for more details.

1.3 Other Related Work

Differentially Private Linear Regression Sheffet [41] considers hypothesis testing for ordinary
least squares for a specific test: testing for a linear relationship under the assumption that the
independent variable is drawn from a normal distribution. Wang [49] focuses on using adaptive
algorithms for linear regression prediction. M -estimators [34], motivated by the field of robust
statistics [35], are a simple class of statistical estimators that present a general approach to parametric
inference. Dwork and Lei [23, 38] and Chaudhuri and Hsu [17] present differentially private M -
estimators with near-optimal statistical rates of convergence. Avella-Medina [7] generalizes the
M -estimator approach to differentially private statistical inference using an empirical notion of
influence functions to calibrate the Gaussian mechanism. Alabi, McMillan, Sarathy, Smith, and
Vadhan [3] proposed median-based estimators for linear regression and evaluated their performance
for prediction. All of these previous works show connections between robust statistics, M -estimators,
and differential privacy. The ordinary least squares estimator is a classical M -estimator for prediction.
Other examples include sample quantiles and the maximum likelihood estimation (MLE) objective.
However, for differentially private hypothesis testing, as we show in this work, the optimal test
statistic for DP linear regression depends on statistical properties of the dataset (such as variance and
sample size). We also present novel differentially private test statistics that converge in distribution to
the asymptotic distribution of the F -statistic. Bernstein and Sheldon [10] take a Bayesian approach to
linear regression prediction and credible interval estimation. Through the Bayesian lens, there is also
work on how to approximately bias-correct some DP estimators while providing some uncertainty
estimates in terms of (private) standard errors [27]. As a motivation for differentially private simple
linear regression point and uncertainty estimation, Bleninger, Dreschsler, Ronning [11] show how an
attacker could use background information to reveal sensitive attributes about data subjects used in a
simple linear regression analysis.

General Differentially Private Hypothesis Testing Gaboardi, Lim, Rogers, and Vadhan [30]
study hypothesis testing subject to differential privacy constraints. The tests they consider are:
(1) goodness-of-fit tests on multinomial data to determine if data was drawn from a multinomial
distribution with a certain probability vector, and (2) independence tests for checking whether two
categorical random variables are independent of each other. Both tests use the chi-squared test
statistic. Rogers and Kifer [40] develop new test statistics for differentially private hypothesis
testing on categorical data while maintaining a given Type I error. Through the use of the subsample-
and-aggregate framework, Barrientos et al. [9] compute univariate t-statistics by first partitioning
the data into M disjoint subsets, estimating the statistic on each subset, truncating the statistic at
some threshold a, and then adding noise from a Laplace distribution to the average of the truncated
t-statistics. Our framework requires a clipping parameter (similar to a) but does not require any
others (e.g., the number of subsets). As noted in that work, the parameter M plays a significant role
in the performance—and tuning—of their tests while our tests require no such parameter tuning on
partitioning of the data. A subset of previous work [47, 14, 45, 21] focus on differentially private
independence tests between a categorical and continuous variables. Some of these works produce
nonparametric tests which require little or no distributional assumptions on the data generation
process. Specifically, Couch, Kazan, Shi, Bray, and Groce [21] develop DP analogues of rank-based
nonparametric tests such as Kruskal-Wallis and Mann-Whitney signed-rank tests. The Kruskal-Wallis
test, for example, can be used to determine whether the medians of two or more groups are the
same. We adapt their test to the setting of linear regression by using it to compare the distributions
of slopes between the two groups. Wang, Lee, and Kifer [50] develop DP versions of likelihood
ratio and chi-squared tests, showing a modified equivalence between chi-squared and likelihood
ratio tests. In the space of differentially private hypothesis testing, previous work introduce methods
for differentially private identity and equivalence testing of discrete distributions [1, 2, 4, 5]. A
differentially private version of the log-likelihood ratio test for the Neyman-Pearson lemma has also
been shown to exist [15]. Furthermore, Awan and Slavkovic [8] derive uniformly most powerful DP
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tests for simple hypotheses for binomial data. Suresh [44] proposes a hypothesis test, which can
be made to satisfy differential privacy, that is robust to distribution perturbations under Hellinger
distance. Sheffet and Kairouz, Oh, Viswanath [42, 36] also consider hypothesis testing, although in
the local setting of differential privacy.

1.4 Differential Privacy

For the definitions below, we say that two databases x and x′ are neighboring, expressed notationally
as d(x, x′) = 1 for any x, x′ ∈ Xn, if x differs from x′ in exactly one row.

Definition 1.1 (Differential Privacy [24, 22]). LetM : Xn → R be a (randomized) mechanism.
For any ε ≥ 0, δ ∈ [0, 1], we sayM is (ε, δ)-differentially private if for all neighboring databases
x, x′ ∈ Xn, d(x, x′) = 1 and every S ⊆ R,

P[M(x) ∈ S] ≤ eε · P[M(x′) ∈ S] + δ.

If δ = 0, then we sayM is ε-DP, sometimes referred to as pure differential privacy. Typically, ε is a
small constant (e.g., ε ∈ [0.1, 1]) and δ ≤ 1/poly(n) is cryptographically small.

Definition 1.2 (Zero-Concentrated Differential Privacy (zCDP) [12]). Let M : Xn → R be a
(randomized) mechanism. For any neighboring databases x, x′ ∈ Xn, d(x, x′) = 1, we say M
satisfies ρ-zCDP if for all α ∈ (1,∞),

Dα(M(x)‖M(x′)) ≤ ρ · α,

where Dα(M(x)‖M(x′)) is the Rényi divergence of order α between the distribution ofM(x) and
the distribution ofM(x′). 4

In this paper, we will primarily use ρ-zCDP as our definition of differential privacy, adding noise
from a Gaussian distribution to ensure zCDP.

2 Differentially Private Linear Regression Testing

The goal of hypothesis testing is to infer, based on data, which of two hypothesis, H0 (the null
hypothesis) or H1 (the alternative hypothesis), should be rejected. Let Pθ be a family of probability
distributions parameterized by θ ∈ Ω. For some unknown parameter θ ∈ Ω, let Z ∼ Pθ be the
observed data. Then the two competing hypothesis are: H0 : θ ∈ Ω0 vs. H1 : θ ∈ Ω1, where
(Ω0,Ω1) form a partition of Ω. We will consider hypothesis testing in the linear model Y = Xβ + e,
where X ∈ Rn×p is a matrix of known constants, β ∈ Rp is the parameter vector that determines the
linear relationship between X and the dependent variable Y , and e is a random vector such that for
all i ∈ [n], E[ei] = 0, var[ei] = σ2

e . Furthermore, for all i 6= j ∈ [n], cov(ei, ej) = 0. Note that the
simple linear regression model, yi = β2 + β1 · xi + ei for scalars xi, yi and ei ∀i ∈ [n], can be cast
as a linear model as follows: X ∈ Rn×2 where the first column is an all-ones vector and the second
column (x1, . . . , xn)T .

We will consider the general linear model: Y ∼ N (Xβ, σ2
eIn×n), where In×n is the n× n identity

matrix. Let ω be an r-dimensional linear subspace of Rp and ω0 be a q-dimensional linear subspace
of ω such that 0 ≤ q < r. We will consider hypothesis tests of the form: (i) H0: β ∈ ω0; (ii) H1:
β ∈ ω \ ω0.

Let β̂ and β̂N denote the least squares estimates under the alternative and null hypothesis respectively.
In other words, β̂N = argminz∈ω0

‖Xz − Y ‖2, β̂ = argminz∈ω‖Xz − Y ‖2.

4A related differential privacy notion, in terms of the Rényi divergence, is given in [39].
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The test statistic (the F -statistic) we will use is equivalent to the generalized likelihood ratio test
statistic

T =

(
n− r
r − q

)
· ‖Y −Xβ̂

N‖2 − ‖Y −Xβ̂‖2

‖Y −Xβ̂‖2
(1)

=

(
n− r
r − q

)
· ‖Xβ̂ −Xβ̂

N‖2

‖Y −Xβ̂‖2
(2)

=
1

r − q
· ‖Xβ̂ −Xβ̂

N‖2

S2
, (3)

where S2 = ‖Y − Xβ̂‖2/(n − r). The vectors Y − Xβ̂ and Xβ̂ − Xβ̂N can be shown to be
orthogonal, so that ‖Y −Xβ̂N‖2 = ‖Y −Xβ̂‖2 +‖Xβ̂−Xβ̂N‖2 by the Pythagorean theorem [37].
When r − q = 1, this test is uniformly most powerful unbiased and for r − q > 1, the test is most
powerful amongst all tests that satisfy certain symmetry restrictions [37].

To design a Monte Carlo hypothesis test, we follow a similar route to Gaboardi, Lim, Rogers, and
Vadhan [30]. In Algorithm 1, we provide a framework to perform DP Monte Carlo tests using a
parametric bootstrap based on a test statistic.

Let DPStats be a procedure that uses one or more statistics of X,Y to produce DP statistics that
can be used to reject or fail to reject the null hypothesis. In this paper, DPStats will satisfy ρ-zCDP
(Zero-Concentrated Differential Privacy). T is the test statistic computation procedure. As done
in [30], for example, we will assume the dataset sizes are public information.

Let T = T (θ̂1) be the non-private test statistic procedure given θ̂1 = θ̂1(X,Y ). The goal is to
compute T (θ̃1) where θ̃1 is an approximation of θ̂1. DPStats returns θ̃0 and θ̃1. If θ̃0 and θ̃1 is not ⊥
(⊥ is returned whenever the perturbed statistics cannot be used to simulate the null distributions), then
we use θ̃1 to compute the DP test statistic and θ̃0 to simulate the null. Pθ̃0 represents the distribution
from which we will sample from to simulate the null distribution. When (X, y) ∼ Pθ̃0 for θ0 ∈ Ω0

and we set θ̃1 = θ̃1(X,Y ) and sample (X ′, y′) ∼ Pθ̃0 , then θ̂1((X ′, y′)) has approximately the same
distribution as θ̂1((X, y)). T̃ will denote the test statistic applied to the DP sufficient statistics.

Algorithm 1 Monte Carlo DP Test Framework.
1: Data: X ∈ Rn×p;Y ∈ Rn
2: Input: n (dataset size); ρ (privacy-loss parameter);α (target significance);T (test statistic)
3: (θ̃0, θ̃1) = DPStats(X,Y, n, ρ)

4: if θ̃0 = θ̃1 =⊥ then
5: return Fail to Reject the null
6: end if
7: // non-DP test statistic applied to DP sufficient statistics
8: t̃ = T (θ̃1)
9: Select K > 1/α

10: for k = 1 . . .K do
11: ∀i ∈ [n], kXi,

kyi ∼ Pθ̃0
12: kθ̃1,

kθ̃0 = DPStats(kXi,
kyi, n, ρ)

13: Obtain tk from T (kθ̃1)
14: end for
15: Sort t(1) ≤ · · · ≤ t(K)

16: Compute threshold t(r) where r = d(K + 1)(1− α)e
17: if t̃ > t(r) then
18: return Reject the null
19: else
20: return Fail to Reject the null
21: end if
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2.1 Differentially Private Algorithms

Notation For any constants A,B ∈ R, we use Y |AB to mean that the (random) variable Y will be

truncated to have an upper bound of A and a lower bound of B. →, P−→, and D−→ denotes convergence
toward a limit, convergence in probability, and convergence in distribution, respectively. See Section B
in the Appendix for more details.

Algorithm 2 ρ-zCDP procedure DPStatsL
1: Data: X ∈ Rn×2;Y ∈ Rn
2: Input: integer n ≥ 2; r, q; ρ > 0,∆ > 0
3: Set ρ = ρ/5 and compute the following:

• ˜̄x = 1
n

∑n
i=1 xi]

∆
−∆ +N (0, 2∆2

ρn2 ). ˜̄y = 1
n

∑n
i=1 yi]

∆
−∆ +N (0, 2∆2

ρn2 ).

• x̃2 = 1
n

∑n
i=1 x

2
i ]

∆2

0 +N (0, ∆4

2ρn2 ). x̃y = 1
n

∑n
i=1 xiyi]

∆2

−∆2 +N (0, 2∆4

ρn2 ).

• ỹ2 = 1
n

∑n
i=1 y

2
i ]∆

2

0 +N (0, ∆4

2ρn2 ).
•

β̃1 =
x̃y − ˜̄x˜̄y

x̃2 − ˜̄x2
, β̃2 =

˜̄y · x̃2 − ˜̄x · x̃y

x̃2 − ˜̄x2
.

•

S̃2
0 =

nỹ2 − 2β̃2n˜̄y + nβ̃2
2

n− r
.

S̃2 =
nỹ2 − 2β̃2n˜̄y − 2β̃1nx̃y + nβ̃2

2 + 2β̃1β̃2n˜̄x+ β̃2
1nx̃y

n− r
.

4: (θ̃0, θ̃1) = (⊥,⊥)

5: if min(S̃2
0 , (nx̃

2 − n˜̄x2)/(n− 1)) > 0 then
6: θ̃0 = (β̃2, ˜̄x, x̃2, S̃2

0 , n)

7: θ̃1 = (β̃1, ˜̄x, x̃2, S̃2, n)
8: end if
9: return (θ̃0, θ̃1)

Lemma 2.1 (Lemma C.1). For any ρ,∆ > 0, Algorithm 2 satisfies ρ-zCDP.

Instantiating Algorithm 1 for the Linear Tester: If the procedure DPStatsL returns (⊥,⊥),

then we fail to reject the null. Otherwise, we use the returned statistics θ̃1 = (β̃1, ˜̄x, x̃2, S̃2, n) to

create the test statistic T (θ̃1) =
β̃2

1 ·n·(x̃2−˜̄x2)

S̃2
and use θ̃0 = (˜̄y, ˜̄x, x̃2, S̃2

0 , n) to simulate the null
distributions (to decide to reject or fail to reject the null hypothesis). Pθ̃0 is instantiated as a normal

distribution and used to generate kxi distributed as N (˜̄x, (nx̃2 − n˜̄x2)/(n− 1)) and kyi as β̃2 + ei,
ei ∼ N (0, S̃2

0) for all i ∈ [n].

Instantiating Algorithm 1 for the F -statistic Mixture Tester: If the procedure DPStatsM re-
turns (⊥,⊥), then we fail to reject the null. Otherwise, we use the returned statistics

θ̃1 = (β̃1, β̃2, x̃2
1, x̃2

2, x̃2, S̃2, n1, n2, n) to create the test statistic and use

θ̃0 = (β̃1, ˜̄x, x̃2, S̃2
0 , n1, n2, n) to simulate the null distributions. Pθ̃0 is instantiated as a normal

distribution and used to generate kxi distributed as N (˜̄x, (nx̃2 − n˜̄x2
1)/(n− 1)) and to generate kyi

distributed as β̃1
kxi + ei, ei ∼ N (0, S̃2

0) for either group 1 with size n1 or group 2 with size n− n1.
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2.2 Convergence

We now state and interpret our main theoretical result. For more details on the proof and consequences
of the theorem, see Section D.

Theorem 2.2 (Theorem D.1). Let σe > 0, r = p = 2, q = 1, and β ∈ Rp. For every n ∈ N with
n > r, let Xn ∈ Rn×p be the design matrix where the first column is an all-ones vector and the
second column is (x1, . . . , xn)T . Let ∆ = ∆n > 0 be a sequence of clipping bounds, ρ = ρn > 0

be a sequence of privacy parameters, and η2
n = ‖Xnβ−XnβN‖2

σ2
e

. Under the general linear model

(GLM), Yn ∼ N (Xnβ, σ
2
eIn×n). Let β̃ and β̃N be the DP least-squares estimate of β, obtained

in Algorithm 2, under the alternative and null hypotheses, respectively. Let T̃ = T̃n be the DP
F -statistic computed from DP sufficient statistics via Algorithm 2 and Equation (3). Suppose the
following conditions hold:

1. ∃cx, cx2 ∈ R such that x̄→ cx, x2 → cx2 , and cx2 > c2x,

2. ∃η ∈ R such that η2
n → η2,

3. ∆2
n

ρnn
, ∆4

n

ρnn
→ 0,

4. P[∃i ∈ [n], yi /∈ [−∆n,∆n]]→ 0 and ∀i ∈ [n], xi ∈ [−∆n,∆n].

Then we obtain the following results: Under the null hypothesis: β̃N = β̃Nn
P−→ β. Under the

alternative hypothesis: β̃ = β̃n
P−→ β. T̃ = T̃n

D−→ χ2
r−q(η

2)

r−q .

The condition that P[∃i ∈ [n], yi /∈ [−∆n,∆n]] → 0 (Condition 4 in Theorem 2.2), holds by a
Gaussian tail bound, if ∃k > 0 such that for all i ∈ [n], ∆n ≥ |β1xi + β2|+ σe

√
log 2nk.

Tn is the non-private F -statistic while T̃n is the DP F -statistic constructed from DP sufficient
statistics obtained via Algorithm 2. The main theorem in this section is Theorem 2.2, which shows the
convergence, in distribution, of T̃n to the asymptotic distribution of Tn, the chi-squared distribution.
As a corollary, the statistical power of T̃n converges to the statistical power of Tn. While Theorem 2.2
is specialized to the simple linear regression setting (i.e., p = 2), it can easily be extended to multiple
linear regression.

Without privacy, we show that Tn follows an F -distribution and prove convergence for its components:

Theorem 2.3 (Theorem F.2). For every n ∈ N with n > r, let X = Xn ∈ Rn×p be the design
matrix. Under the general linear model Y = Yn ∼ N (Xnβ, σ

2
eIn×n),

T = Tn ∼ Fr−q,n−r(η2
n), η2

n =
‖Xnβ −Xnβ

N‖2

σ2
e

,

where Fn,m is the F -distribution with parameters n, m, βN = E[β̂N ], q is the dimension of ω0, and
r is the dimension of ω with 0 ≤ q < r.

Furthermore,

1.
‖Yn −Xnβ̂‖2 ∼ X 2

n−rσ
2
e , ‖Xnβ̂ −Xnβ̂

N‖2 ∼ X 2
r−q(η

2
n)σ2

e .

2. If there exists η ∈ R such that ‖Xnβ−Xnβ
N‖2

σ2
e

→ η2, then

T = Tn ∼ Fr−q,n−r(η2
n)

D−→
χ2
r−q(η

2)

r − q
.

3. We have
‖Yn −Xnβ̂‖2

n− r
P−→ σ2

e .
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(a) Significance for testing a linear relation-
ship. xi ∼ N (0.5, 1), yi ∼ 0 · xi +
N (0, 0.0012). ∆ = 2.

(b) Significance for testing a linear relation-
ship. xi ∼ N (0.5, 1), yi ∼ 0 ·xi+N (0, 12).
∆ = 2.

Figure 1

The values β = E[β̂], βN = E[β̂N ] are the expected values of our parameter estimates under the
alternative and null hypotheses respectively.

Above, the noncentral F -distribution Fn,m(λ), with parameters n,m and noncentrality parameter

λ is the distribution of χ
2
n(λ)/n
χ2
m/m

, the ratio of two scaled chi-squared random variables.

3 Experimental Evaluation

In the appendix (Section E), we provide a more thorough suite of experiments to support our claims
and fully discuss how we compute the empirical power.

General Parameter Setup for Synthetic Data: For experimental evaluation on synthetic datasets,
we generated datasets with sizes between n = 100 and n = 10, 000. For both the linear rela-
tionship and mixture model tests on synthetic data below, we consider the following values of ρ:
{0.12/2, 12/2, 52/2, 102/2}. We draw the independent variables x1, . . . , xn according to a few
different distributions: Normal, Uniform, Exponential. For all tests below, the clipping parameter is
either set to ∆ = 2 or ∆ = 3. For the synthetic data, the dependent variable Y is generated using
the linear or mixture model specification described in previous sections and by fixing or varying
parameters (such as σe).

3.1 Testing a Linear Relationship on Synthetic Data

Evaluating the Significance for Normally Distributed Independent Variables: Generally, we see
that the significance remains below the target significance level, on average, for all values of ρ. For
the linear relationship tester, when the standard deviation of the dependent variable (σe) is small
(Figure 1a), we see that the true significance level is well below the target significance of 0.05, which
is fine (but conservative). We conjecture that this happens because when σe is small: (i) we fail to
reject when the noisy estimate of σe is ≤ 0; or (ii) the test statistic under the null distribution will be
almost always 0 since under the null (even without privacy), the standard deviation of the test statistic
is proportional to σe. In Figures 1a and 1b, we see the significance of the linear tester attains the
target (of 0.05) as we vary the noise in the dependent variable σe.

3.2 Testing Mixture Models on Synthetic Data

Evaluating the Power as we Increase the Variance of the Independent Variable: In Figures 2a
and 2b, we see that the F -statistic method outperforms the Kruskal-Wallis (KW) method when the
variance of the independent variable is much larger (10x) than previously.
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(a) Power for Kruskal-Wallis versus the F -
statistic. xi ∼ N (0.5, 1), yi ∼ −1 · xi +
N (0, 1) for Group 1. yi ∼ 1 · xi +N (0, 1)
for Group 2. ∆ = 3.

(b) Power for Kruskal-Wallis versus the F -
statistic. xi ∼ N (0.5, 10), yi ∼ −1 · xi +
N (0, 1) for Group 1. yi ∼ 1 · xi +N (0, 1)
for Group 2. ∆ = 3.

Figure 2

(a) Probability of rejecting null for testing a
linear relationship in NC. ∆ = 2.

(b) Probability of rejecting null for testing a
linear relationship in TX. ∆ = 2.

Figure 3

3.3 Testing on Opportunity Insights Data

The Opportunity Insights (OI) team gave us simulated data for census tracts from the following
states in the United States: Idaho, Illinois, New York, North Carolina, Texas, and Tennessee. The
dependent and independent variables are the child and parent national income percentiles, respectively.
Figures 3a, and 3b show the probability of rejecting the null as we increase the parameter ρ when
using the DP linear tester.

4 Conclusion

We have developed differentially private hypothesis tests for testing a linear relationship in data and
for testing for mixtures in linear regression models. We also show that the DP F -statistic converges
to the asymptotic distribution of the non-private F -statistic. Through experiments, we show that
our Monte Carlo tests achieve significance that is less than the target significance level across a
wide variety of experiments. Furthermore, our tests generally have a high power, getting higher
as we increase the dataset size and/or relax the privacy parameter. Even on small datasets (in the
hundreds) with small slopes, our tests retain the small significance while having a good power. We
have provided formal statements for the DP F -statistic in the asymptotic regime. We leave to future
work the task of theoretically analyzing the procedures in the non-asymptotic regime. Experimental
evaluation is done on simulated data for the Opportunity Atlas tool, UCI datasets, and on synthetic
datasets of varying distributions on the independent variable (normal, exponential, and uniform). We
also identify regimes where the power of our tests are low (e.g., when the variance of the dependent
variable is very small).
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and hyperparameters for both linear and mixture model testers.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Our error bars correspond to the probability of rejecting
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