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6.1 Introduction and Overview

This chapter explains how administrative data containing personal in-
formation can be collected, analyzed, and published in a way that en-
sures the individuals in the data will be afforded the strong protections
of differential privacy.

It is intended as a practical resource for government agencies and re-
search organizations interested in exploring the possibility of imple-
menting tools for differentially private data sharing and analysis. Us-
ing intuitive examples rather than the mathematical formalism used in
other guides, this chapter introduces the differential privacy definition
and the risks it was developed to address. The text employs modern
privacy frameworks to explain how to determine whether the use of
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differential privacy is an appropriate solution in a given setting. It
also discusses the design considerations one should take into account
when implementing differential privacy. This discussion incorporates
a review of real-world implementations, including tools designed for
tiered access systems combining differential privacy with other disclo-
sure controls presented in this Handbook, such as consent mechanisms,
data use agreements, and secure environments.

Differential privacy technology has passed a preliminary transition
from being the subject of academic work to initial implementations by
large organizations and high-tech companies that have the expertise
to develop and implement customized differentially private methods.
With a growing collection of software packages for generating differ-
entially private releases from summary statistics to machine learning
models, differential privacy is now transitioning to being usable more
widely and by smaller organizations.

6.1.1 Organization of this Chapter

We place differential privacy in a general framework—introduced by
Altman et al. (2015) and an alternative to the Five Safes framework
(Desai, Ritchie and Welpton, 2016) used throughout this Handbook—
that involves selecting combinations of statistical, technical, and ad-
ministrative controls to mitigate risks of harm to individuals resulting
from access to data. The framework discusses differential privacy as an
approach to employ together with other tools, including consent mech-
anisms, data use agreements, and secure environments. Some of the
content in this chapter (Sections 6.1–6.3) is excerpted from, adapted
from, or otherwise based, in part, on Wood et al. (2018) and Altman
et al. (2015).

The chapter is organized as follows: Section 6.2 explains the differ-
ential privacy guarantee in more detail using stories to illustrate what
differential privacy does and does not protect. Section 6.3 places differ-
ential privacy in a general framework of complementary privacy con-
trols and characterizes principles for selecting differential privacy in
conjunction with other controls. These principles include calibrating
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privacy and security controls to the intended uses and privacy risks as-
sociated with the data, and anticipating, regulating, monitoring, and
reviewing interactions with data across all stages of the lifecycle (in-
cluding the post-access stages), as risks and methods will evolve over
time. Section 6.4 presents succinct summaries of several deployment
cases. These provide selected concrete examples of data dissemination
that illustrate some key design choices and their implications.

More technical discussions of several topics are included in an exten-
sive online appendix. A discussion of different technical approaches to
disseminating data with differential privacy can be found in Appendix
A, which also characterizes the key design choices and trade-offs across
them. Appendix B elaborates on the implications of differential privacy
for data collection, use, and dissemination with a special emphasis
on how differential privacy affects data collection and data repository
practice and policy. Appendix C provides a list of selected tools and
resources for implementing differential privacy protections.

Section 6.2 is recommended for policymakers as well as for analysts
and communications professionals seeking to explain differential pri-
vacy to policymakers, data users, and data subjects. Sections 6.3 and
6.4, in combination with Appendix B, are recommended for organi-
zational directors and principal investigators responsible for identify-
ing where differential privacy is appropriate as part of a project or
organization-level data-protection strategy. Appendices A, B, and C are
recommended for those with a technical background aiming to design
and deploy differential privacy addressing specific data dissemination
requirements.

6.1.2 Motivation: Formal Guarantees are Needed to
Protect Data against Growing Privacy Risks

Government agencies and research organizations are utilizing increas-
ingly greater quantities of personal information about individuals over
progressively longer periods of time. Powerful analytical capabilities,
including emerging machine learning techniques, are enabling the
mining of large-scale data sets to infer new insights about human
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characteristics and behaviors and driving demand for large-scale data
sets for scientific inquiry, public policy, and innovation. These factors
are also creating heightened risks to individual privacy.

A number of measures have been developed for sharing sensitive data
while protecting the privacy of individuals. These interventions encom-
pass a wide range of legal, procedural, and technical controls, from
providing access to only trusted researchers, using data enclaves, and
imposing restrictions as part of data use agreements, among others.
One category of controls is a collection of statistical disclosure limitation
(SDL) techniques, which are widely adopted by statistical agencies, re-
search organizations, and data analysts to analyze and share data con-
taining privacy-sensitive information with the aim of preventing users
of the data from learning personal information pertaining to an indi-
vidual. Statistical disclosure limitation encompasses a wide range of
methods for suppressing, aggregating, perturbing, swapping, and gen-
eralizing attributes of individuals in the data.1 SDL techniques are
often applied with the explicit goal of de-identification (i.e., redacting
or coarsening data with the goal of increasing the difficulty of linking
an identified person to a record in a data release).2

Differential privacy is motivated by an ever-growing number of real-
world examples of data releases that were thought to be sufficiently
protective of privacy but were later shown to carry significant privacy
risks. Over time, changes in the way information is collected and an-
alyzed, including advances in analytical capabilities, increases in com-
putational power, and the expanding availability of personal data from
a wide range of sources, are eroding the effectiveness of traditional
SDL techniques.

For over a century,3 statistical agencies have recognized the need to
protect against uses of data that would threaten privacy, and, for
most of this time, the primary focus of formal protections has been
to prevent re-identification (for an overview, see Willenborg and

1For an overview of traditional SDL techniques, see Harris-Kojetin et al. (2005) and
chapter 5 in this handbook.

2For an introduction to de-identification techniques, see Garfinkel (2016).
3See, e.g., Chapter 2 Section 25 of the Thirteenth Census Act (The Statutes at Large

of the United States of America, 1909).
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De Waal, 1996). Re-identification attacks gained renewed attention
in the privacy research literature in the late 1990s (Sweeney, 1997)
and have become increasingly sophisticated over time, along with
other emerging types of attacks that seek to infer characteristics of
individuals based on information about them in the data (Narayanan
and Shmatikov, 2008; de Montjoye et al., 2013; Calandrino et al.,
2011). In particular, successful attacks on de-identified data have
shown that traditional technical measures for privacy protection
may be vulnerable to attacks devised after a technique’s deployment
and use. Some de-identification techniques, for example, categorize
attributes in the data as (quasi-)identifying (e.g., names, dates of
birth, or addresses) or non-identifying (e.g., movie ratings or hospital
admission dates). Data providers may later discover that attributes
initially believed to be non-identifying can in fact be used to re-identify
individuals. De-identification hence requires a careful analysis—not
only of present data sources that could be linked with the de-identified
data toward enabling re-identification but also of future data sources
and other hard-to-anticipate future sources of auxiliary information
that can be used for re-identification.

Moreover, there are privacy attacks beyond record linkage attacks on
de-identified records. A recent example illustrating the evolving na-
ture of privacy attacks is the reconstruction and re-identification of
the 2010 Decennial Census database. This example demonstrates that
even publications of statistical tables transformed using traditional sta-
tistical disclosure limitation techniques may be vulnerable to privacy
attacks.4

In a paper published in 2018, researchers revealed that the
underlying confidential data from the 2010 US Decennial
Census could be reconstructed using only the statistical tables
published by the US Census Bureau (Garfinkel, Abowd and
Martindale, 2019). Researchers demonstrated a type of attack,
called a database reconstruction attack, that leveraged the large
volumes of data from the published statistical tables in order

4This example is reproduced from Fluitt et al. (2019).
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to narrow down the possible values of individual-level records.
The researchers were able to reconstruct with perfect accuracy
the sex, age, race, ethnicity, and fine-grained geographic
location (to the block-level) reported by Census respondents for
46 percent of the US population (Abowd, 2019). Researchers
also showed that, if they slightly relaxed their conditions and
allowed age to vary by up to only one year, these five pieces
of information could be reconstructed for 71 percent of the
population (Abowd, 2019).

Further, the researchers showed that the reconstructed records
could be completely re-identified. They were able to assign
personally identifiable information to individual records using
commercial databases that were available in 2010 (Abowd,
2019). They concluded that, with this attack, they could
putatively re-identify 138 million people, and they confirmed
that these re-identifications were accurate for 52 million people,
or 17 percent of the US population (Abowd, 2019).

These findings are startling. In 2012, the last time the Census
Bureau performed a simulated re-identification attack on cen-
sus data sets, the re-identification rate was only 0.0038 percent
(Ramachandran et al., 2012). The test attack using the data
published for the 2010 Decennial Census demonstrates that pre-
vious risk assessments underestimated the re-identification risk
by a factor of at least 4,500 (Ramachandran et al., 2012).

The demonstration of a database reconstruction attack on the statisti-
cal tables published by the Census Bureau is just the latest in a long line
of attacks illustrating the privacy risks associated with releasing and
analyzing large volumes of data about individuals. In particular, it is a
real-world manifestation of the growing risks from combining and an-
alyzing multiple statistical releases—broadly referred to as risks from
composition (Ganta, Kasiviswanathan and Smith, 2008; Fluitt et al.,
2019). The modern mathematical understanding recognizes that any
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research output increases disclosure risk.5 Although some increases in
disclosure risk may be small, they accumulate, potentially to the point
of a severe privacy breach. Taken together, the outputs may enable
an accurate reconstruction of large portions of the data set, as seen in
the reconstruction and re-identification of the 2010 Decennial Census
database.

Producing accurate statistics while protecting privacy and addressing
risks from composition is a challenging problem (Dwork et al., 2016).
It is a fundamental law of information that privacy risk grows with
the repeated use of data, and this applies to any disclosure limitation
technique. Traditional SDL techniques—such as suppression, aggrega-
tion, and generalization—often reduce accuracy and are vulnerable to
privacy loss due to composition.6 A rigorous analysis of the effect of
composition is important for establishing a robust and realistic under-
standing of how multiple statistical computations affect privacy.

Privacy attacks such as these have underscored the need for privacy
technologies that are immune not only to linkage attacks but to any
potential attack, including attacks that are currently unknown or un-
foreseen. It is now understood that risks remain even if many pieces
of information are removed from a data set prior to release. Extensive
external information may be available to potential attackers, such as
employers, insurance companies, relatives, and friends of an individ-
ual in the data. In addition, ex post remedies, such as simply “taking
the data back” when a vulnerability is discovered, are ineffective be-
cause many copies of a set of data typically exist; copies may even

5Note that the fact that small risks can combine dramatically is a key insight es-
sential to differential privacy. Differential privacy provides a quantification of privacy
risk, and provable guarantees with respect to the cumulative risk from successive data
releases. Some risk assessment frameworks, such as the Five Safes framework as orig-
inally proposed, make an assumption that “many research outputs pose no disclosure
risk because of their functional form” (Desai, Ritchie and Welpton, 2016, pg. 13).
Traditional disclosure avoidance methods do not provide ways to quantify the accu-
mulation of privacy risk from multiple uses and releases of data.

6See Ganta, Kasiviswanathan and Smith (2008). The impression that these tech-
niques do not suffer accumulated degradation in privacy is merely due to the fact that
these techniques have not been analyzed with the high degree of rigor that has been
applied to differential privacy. For a discussion of privacy and utility with respect to
traditional statistical disclosure limitation techniques, see Chen et al. (2009).
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persist online indefinitely.7

6.1.3 Features of the Differential Privacy Guarantee

Differential privacy is a strong definition (or, in other words, a stan-
dard) of privacy in the context of statistical analysis and machine learn-
ing, protecting against the threats described above, including those of
unknown attacks and cumulative loss. Tools that achieve the differ-
ential privacy standard can be used to provide broad, public access
to data or data summaries in a privacy-preserving way. Used appro-
priately, these tools can, in some cases, also enable access to data that
could not otherwise be shared due to privacy concerns and do so with a
guarantee of privacy protection that substantially increases the ability
of the institution to protect the individuals in the data.

With differential privacy, statements about risk are proved
mathematically—rather than supported heuristically or empiri-
cally. The definition of differential privacy also has a compelling
intuitive interpretation: inferring information specific to an individual
from the outcome of an analysis preserving differential privacy is
impossible, including whether the individual’s information was used
at all.

Differential Privacy Is a Standard, Not a Single Tool

Differential privacy is a standard which many tools for analyzing sen-
sitive personal information have been devised to satisfy. Any analysis
meeting the standard provably protects its data against a wide range
of privacy attacks, i.e., attempts to learn private information specific to
individuals from a data release.8

7As an example, in 2006 AOL published anonymized search histories of 650,000
users over a period of three months. Shortly after the release, the New York Times
identified a person in the release and AOL removed the data from their site. However,
in spite of the withdrawal by AOL, copies of the data are still accessible on the Internet
today.

8The authors distinguish protection against privacy attacks, which involves the at-
tacker making use of the intended “advertised” functionality of a data access mech-
anism, from protection against security attacks, which involves an attacker attempt-
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Differential Privacy Is Designed for Analysis of Populations, Not
Individuals

Differentially private analyses can be deployed in settings in which an
analyst seeks to learn about a population. For example, when statistical
estimates (such as counts, averages, histograms, contingency tables,
regression coefficients, and synthetic data) are computed based on per-
sonal information, the privacy of the individuals in the data needs to
be protected.

The Differential Privacy Guarantee

It is mathematically guaranteed that the recipient of a data release
generated by a differentially private analysis will make essentially
the same inferences about any single individual’s private information,
whether or not that individual’s private information is included in the
input to the analysis.

The differential privacy guarantee can be understood in reference to
other privacy concepts, such as opt-out and protection of personally
identifiable information (PII):

• Differential privacy protects an individual’s information essentially
as if their data were not used in the analysis at all (i.e., as though
the individual opted out and the information was not used).

• Differential privacy ensures that using an individual’s data will not
reveal essentially any PII that is specific to them. Here, specific
refers to information that cannot be inferred about an individual
unless their information is used in the analysis. Information spe-
cific to an individual would be considered PII under a variety of
interpretations.9

ing to exploit unintended implementation vulnerabilities (e.g., by circumventing ac-
cess control mechanisms). Differential privacy does not generally provide protection
against security attacks, which should be addressed using complementary controls like
encryption and access control.

9For an example of an analysis of this relationship with respect to the Family Edu-
cational Rights and Privacy Act’s (FERPA) definition of PII, see Nissim et al. (2018).
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Differentially Private Analysis Requires the Introduction of
Statistical Noise

To achieve differential privacy, carefully crafted random statistical
noise must be injected into statistical and machine-learning analyses.10

Protecting Privacy Increases the Uncertainty of Results

The introduction of statistical noise to protect privacy necessarily re-
duces the accuracy of statistical analyses. As the number n of obser-
vations in a data set grows sufficiently large, the loss in accuracy due
to differential privacy can become much smaller than other sources of
error such as statistical sampling error. However, maintaining high ac-
curacy for studies on small or modest-sized data sets (or modest-sized
subsets of large data sets) is a challenge. As a consequence, all results
computed using tools for differentially private analysis will be approx-
imate. Conversely, any system that produces exact results without any
random modifications cannot meet the differential privacy standard.

Preventing Cumulative Privacy Failure Requires a Budget for
Privacy Loss, Which in Turn Limits Utility

Every computation leaks some information about the individual
records used as input regardless of the protection method used. To
prevent cumulative privacy failure, the privacy loss that accumulates
over multiple computations must be calculated, tracked, and limited.
Differential privacy provides explicit, formal methods for defining and
managing this cumulative loss, referred to as the privacy-loss budget.

The inevitability of privacy loss implies that there is an inherent trade-
off between privacy and utility as the former degrades with an increase
of the latter. Formal frameworks for statistical disclosure limitation

10The choice of noise addition technique—whether statistical noise is used to blur
individual data points, the output of a computation, or intermediate computations—is
a delicate algorithmic question; a variety of noise addition techniques have been de-
veloped for differentially private analysis with the purpose of guaranteeing differential
privacy while minimizing the overall inaccuracy introduced.
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(such as differential privacy) are distinct from traditional, less formal
approaches in that formal frameworks quantify this trade-off explicitly:
what can be learned about an individual as a result of their private
information being included in a differentially private analysis is strictly
limited and quantified by a privacy loss parameter, usually denoted
epsilon (ε). Further, many tools for differentially private analysis are
designed to make efficient trade-offs between privacy and utility.

6.1.4 An Illustrative Scenario: Publishing Education
Statistics

The scenarios in this section illustrate the types of information disclo-
sures that are addressed when using differential privacy.

Alice and Bob are professors at Private University. They both
have access to a database that contains personal information
about students at the university, including information related
to the financial aid each student receives. To gain access, Alice
and Bob were required to undergo confidentiality training
and to sign data use agreements restricting the disclosure of
personal information obtained from the database.

In March, Alice publishes an article based on the information
in this database and writes that “the current freshman class
at Private University is made up of 3,005 students, 202 of
whom are from families earning over US$350,000 per year.”
Alice reasons that no individual’s personal information will be
exposed because she published an aggregate statistic taken
over 3,005 people. The following month, Bob publishes a
separate article containing these statistics: “201 families in
Private University’s freshman class of 3,004 have household
incomes exceeding US$350,000 per year.” Neither Alice nor
Bob is aware that they have both published similar information.
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A clever student Eve reads both of these articles and makes an
observation. From the published information, Eve concludes
that between March and April one freshman withdrew from
Private University and that the student’s parents earn over
US$350,000 per year. Eve asks around and is able to determine
that a student named John dropped out around the end of
March. Eve then informs her classmates that John’s parents
probably earn over US$350,000 per year.

John hears about this and is upset that his former classmates
learned about his parents’ financial status. He complains to the
university and Alice and Bob are asked to explain. In their de-
fense, both Alice and Bob argue that they published only infor-
mation that had been aggregated over a large population and
does not identify any individuals.

This story illustrates how the results of multiple analyses using infor-
mation about the same people, when studied in combination, may en-
able one to draw conclusions about individuals in the data. Alice and
Bob may each publish information that seems innocuous in isolation.
However, when combined, the information they publish can compro-
mise the privacy of one or more individuals. This type of privacy breach
is generally difficult to prevent by Alice and Bob individually, as it is
likely that neither knows what information has already been revealed
or will be revealed by others in future. This problem is referred to as
the problem of composition.

Suppose, instead, that the institutional review board at Private Uni-
versity only allows researchers to access student records by submitting
queries to a special data portal, which responds to every query with an
answer produced by running a differentially private computation on
the student records.

184



Using Administrative Data for Research and Evidence-Based Policy

In March, Alice queries the data portal for the number of fresh-
men who come from families with a household income exceed-
ing US$350,000. The portal returns the noisy count of 204,
leading Alice to write in her article that “the current freshman
class at Private University is made up of 3,005 students, approxi-
mately 205 of whom are from families earning over US$350,000
per year.” In April, Bob asks the same question and gets the noisy
count of 199 students. Bob publishes in his article that “ap-
proximately 200 families in Private University’s freshman class
of 3,004 have household incomes exceeding US$350,000 per
year.” The publication of these noisy figures prevents Eve from
concluding that one student with a household income greater
than US$350,000 withdrew from the university in March. The
risk that John’s personal information could be uncovered based
on these publications is thereby reduced.

This example hints at one of the most important properties of differ-
ential privacy: it is robust under composition. If multiple differentially
private analyses are performed on data describing the same set of indi-
viduals, then the guarantee is that all of the information released will
still be differentially private. Notice how this scenario is markedly dif-
ferent from the previous hypothetical in which Alice and Bob do not
use differentially private analyses and inadvertently release two statis-
tics that in combination lead to the full disclosure of John’s personal
information. The use of differential privacy rules out the possibility of
such a complete breach of privacy. This is because differential privacy
enables one to measure and bound the cumulative privacy risk from
multiple analyses of information about the same individuals.

However, every analysis, regardless of whether it is differentially
private, results in some leakage of information about the individuals
whose data are being analyzed, and this leakage accumulates with
each analysis. This is true for every release of data, including releases
of aggregate statistics. In particular, the example above should not
be understood to imply that privacy does not degrade after multiple
differentially private computations. In fact, as indicated in Section
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6.2.4, privacy risks accumulate with each release or analysis involving
an individual’s data. For this reason, there is a limit to how many
analyses can be performed on a specific data set while providing
an acceptable guarantee of privacy. Therefore, measuring privacy
loss and understanding quantitatively how risk accumulates across
successive analyses are critical. In the context of the example above,
measures need to be established, such as restricting the overall num-
ber of queries to which researchers may apply to Private University’s
database.

6.1.5 What Types of Analyses are Performed Using
Differential Privacy

Differentially private algorithms are known to exist for a wide range of
statistical analyses, such as count queries, histograms, cumulative dis-
tribution functions, and linear regression; techniques used in statistics
and machine learning, such as clustering and classification; and sta-
tistical disclosure limitation techniques, like synthetic data generation,
among many others.

Count Queries Differentially private answers to count queries (i.e.,
estimates of the number of individual records in the data satisfying a
specific condition) can be obtained through the addition of random
noise (Dwork et al., 2016).

Histograms Differentially private computations can provide noisy
counts for data points classified into the disjoint categories represented
in histograms or contingency tables (i.e., cross-tabulations) (Dwork
et al., 2016).

Cumulative Distribution Function (CDF) There are differentially
private algorithms for estimating the entire CDF of a dataset (or the
distribution from which it is drawn) (Bun et al., 2015). These al-
gorithms introduce noise that needs to be taken into account when
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statistics such as median or interquartile range are computed from the
estimated CDF.11

Linear Regression Differentially private algorithms for linear regres-
sion introduce noise in a variety of different ways, and the choice of
which algorithm is best will depend on properties of the underlying
data distribution (e.g., the amount of variance in the explanatory vari-
ables), the sample size, the privacy parameters, and the intended ap-
plication (Wang, 2018; Alabi et al., 2020).

Clustering Researchers are developing a variety of differentially pri-
vate clustering algorithms (i.e., algorithms for grouping data points
into clusters so that points in the same cluster are more similar to each
other than to points in other clusters) (Stemmer and Kaplan, 2018),
and such tools are likely to be included in future privacy-preserving
tool kits for exploratory analysis by social scientists.

Classification and Machine Learning Theoretical work has shown
it is possible to construct differentially private algorithms for a large
collection of classification tasks, such as identifying or predicting to
which set of categories a data point belongs based on a training set of
examples for which category membership is known (Blum et al., 2005;
Kasiviswanathan et al., 2011), and subsequent work has developed
more practical methods for differentially private machine learning, in-
cluding deep learning (Abadi et al., 2016).

Synthetic Data Generation Research has shown that in principle it is
possible to generate differentially private synthetic data that preserves
a vast collection of statistical properties of the original data set.12 A sig-
nificant benefit is that once a differentially private synthetic data set is

11For data over an ordered domain, a cumulative distribution function depicts for
every value x an estimate of the number of data points with a value up to x. For a more
in-depth discussion of differential privacy and CDFs, see Muise and Nissim (2016).

12See, for example, Blum, Ligett and Roth (2013). Synthetic data are data sets
generated from a statistical model estimated using the original data. The records in
a synthetic data set have no one-to-one correspondence with the individuals in the
original data set, yet the synthetic data can retain many of the statistical properties of
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generated, it can be analyzed any number of times, without any further
implications for privacy. As a result, synthetic data can be shared freely
or even made public in many cases. For example, statistical agencies
can release synthetic microdata as public-use data files in place of raw
microdata. However, significant challenges remain with respect to both
the level of random noise introduced and computational efficiency for
general-purpose differentially private synthetic generation in practice,
particularly for high-dimensional data.13

6.2 How Differential Privacy Protects Privacy

6.2.1 What Does Differential Privacy Protect?

Intuitively, a computation protects the privacy of individuals in the data
if the computational output does not reveal any information that is
specific to any individual subject. Differential privacy formalizes this
intuition as a mathematical definition. Similar to showing that an inte-
ger is even by proving that it is the result of multiplying some integer
by two, a computation is shown to be differentially private by proving
it meets the constraints of the definition. In turn, if a computation can
be proven to be differentially private, one can rest assured that using
the computation will not unduly reveal information specific to a data
subject.

To see how differential privacy formalizes this privacy requirement as
a definition, consider the following scenario.

the original data. Synthetic data resemble the original sensitive data in format and,
for a large class of analyses, results are similar whether performed on the synthetic or
original data.

13Intuitively, preserving more statistical information (e.g., all entries of a high-
dimensional variance-covariance matrix) requires spreading the privacy-loss budget
more thinly and thus introducing greater noise. There are much more complex meth-
ods that can detect and exploit relationships between the statistics to introduce less
noise, but those methods can be computationally infeasible on high-dimensional data.
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Researchers have selected a sample of individuals across
the US to participate in a survey exploring the relationship
between socioeconomic status and health outcomes. The partic-
ipants were asked to complete a questionnaire covering topics
such as where they live, their finances, and their medical history.

One of the participants, John, is aware that individuals have
been re-identified in previous releases of de-identified data and
is concerned that personal information he provides about him-
self, such as his medical history or annual income, could one
day be revealed in de-identified data released from this study. If
leaked, this information could lead to an increase in his life in-
surance premium or an adverse decision for a future mortgage
application.

Differential privacy can be used to address John’s concerns. If the re-
searchers only share data resulting from a differentially private com-
putation, John is guaranteed that the release will not disclose anything
that is specific to him even though he participated in the study.

To understand what this means, consider a thought experiment, which
is illustrated in Figure 6.1 and is referred to as John’s opt-out scenario.14

In John’s opt-out scenario, an analysis is performed using data about
the individuals in the study, except that information about John is omit-
ted. His privacy is protected in the sense that the outcome of the anal-
ysis does not depend on his specific information, because it was not used
in the analysis at all.

John’s opt-out scenario differs from the scenario depicted in Figure 6.2,
referred to as the real-world scenario, in which the analysis is based on
John’s personal information along with the personal information of
the other study participants. The real-world scenario involves some
potential risk to John’s privacy as some of his personal information
could be revealed by the outcome of the analysis, because it was used
as input to the computation.

14Figure 6.1 is reproduced from Wood et al. (2018).
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Figure 6.1: John’s opt-out scenario

Differential privacy aims to protect John’s privacy in the real-world
scenario in a way that mimics the privacy protection he is afforded in
his opt-out scenario.15 Accordingly, what can be learned about John
from a differentially private computation is (essentially) limited to
what could be learned about him from everyone else’s data without
his own data being included in the computation. Crucially, this same
guarantee is made not only with respect to John but also with respect
to every other individual contributing their information to the analysis.

For a precise description of differential privacy and the mathemat-
ics underlying the construction of differentially private analysis, the
reader is referred to the literature listed in Appendix C. In lieu of the
mathematical definition, this chapter offers a few illustrative examples
to discuss various aspects of differential privacy in a way that is intu-
itive and generally accessible.

6.2.2 Privacy Protection Is a Property of an Analysis—Not
a Data Release

Throughout this chapter, we refer to the general concept of an analy-
sis that performs a computation on input data and outputs the result
(illustrated in Figure 6.2).16 The analysis may be as simple as deter-

15The use of differentially private analysis is not equivalent to the traditional use
of opting out. On the privacy side, differential privacy does not require an explicit
opt-out. In comparison, traditional use of opt-out requires an explicit choice that may
cause privacy harms by calling attention to individuals that choose to opt out. On the
utility side, there is no general expectation that using differential privacy would yield
the same outcomes as adopting the policy of opt-out.

16Figure 6.2 is reproduced from Wood et al. (2018).
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Figure 6.2: An analysis (or computation) transforms input data into some
output.

mining the average age of the individuals in the data, or it may be more
complex and utilize sophisticated modeling and inference techniques.

We focus specifically on analyses that transform sensitive personal data
into an output that can be released publicly. For example, an anal-
ysis may involve the application of techniques for aggregating or de-
identifying a set of personal data in order to produce a sanitized ver-
sion of the data that is safe to release. How can the data provider
ensure that publishing the output of this computation will not unin-
tentionally leak information from the privacy-sensitive input data?

A key insight from the theoretical computer science literature is that
privacy is a property of the informational relationship between the input
and output, not a property of the output alone.17 In other words, one
can be certain that the output of a computation is privacy-preserving
if the computation itself is privacy-preserving. The following examples
show why this is the case.

Consider the following statistic: a representative ninth-grade GPA at
City High School is 3.5. One might naturally think that this statis-
tic is unlikely to reveal private information about an individual stu-
dent. However, one needs to know how the statistic was computed
to make that determination. For instance, if the representative ninth-
grade GPA was calculated by taking the GPA of the alphabetically first

17This insight follows from a series of papers demonstrating privacy breaches en-
abled by leakages of information resulting from decisions made by the computa-
tion. See, for example, Kenthapadi, Mishra and Nissim (2013). For a general dis-
cussion of the advantages of formal privacy models over ad hoc privacy techniques,
see Narayanan, Huey and Felten (2016).
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student in the school, then the statistic completely reveals the GPA of
that student.18 Alternatively, a representative statistic could be based
on average features of the ninth graders in the school—using the most
common first name, the most common last name, the average age,
and the average GPA to produce “John Smith, a fourteen-year-old in
the ninth grade, has a 3.1 GPA.” Suppose that coincidentally a student
named John Smith subsequently joins the ninth-grade class. Although
his name appears in the published statistic, one knows with certainty
that the statistic does not reveal private information about him, be-
cause it was not based on his student records in any way.

These examples are clearly contrived, and no reasonable analyst would
publish either statistic. On a fundamental level, however, the examples
demonstrate that when trying to decide whether a data release can be
made public, one needs to consider the computation used to produce
that release and not the release by itself. Thus, when thinking about
privacy in the context of statistical releases, one should think about it
as a computational property, especially if the goal is to make rigorous,
formal claims about the data. This is one of the properties of differen-
tial privacy. If a computation can be proven to be differentially private,
the researcher can rest assured that using the computation will not un-
duly reveal information specific to a data subject. Adopting this formal
approach to privacy yields several practical benefits for users, including
robustness to auxiliary information, composition, and post-processing,
as well as transparency—each discussed in turn below in Section 6.2.3.

6.2.3 Methodology Example: Limiting Privacy Loss from
Participation in Research

In the earlier example featuring Professors Alice and Bob at Private
University, differentially private analyses add random noise to the

18One might object that the student’s GPA is not traceable back to that student unless
an observer knows how the statistic was produced. However, a basic principle of
modern cryptography (known as Kerckhoffs’ principle) is that a system is not secure if
its security depends on its inner workings being a secret. In this context, it is assumed
that the algorithm behind a statistical analysis is public (or could potentially become
public).
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statistics they produce.19 This noise masks the differences between the
real-world computation and the opt-out scenario of each individual in
the data set. This means that the outcome of a differentially private
analysis is not exact but an approximation. In addition, a differentially
private analysis may return different results, even if performed twice
on the same data set. Because researchers intentionally add random
noise, analyses performed with differential privacy differ from stan-
dard statistical analyses, such as the calculation of averages, medians,
and linear regression equations.

Consider a differentially private analysis that computes the
number of students in a sample with a GPA of at least 3.0. Say
that there are 10,000 students in the sample, and exactly 5,603
of them have a GPA of at least 3.0. An analysis that added no
random noise would hence report that 5,603 students had a
GPA of at least 3.0.

However, a differentially private analysis adds random noise to
protect the privacy of the data subjects. For instance, a differen-
tially private analysis might report an answer of 5,521 students
when run on the data; when run a second time on the same
information, it might report an answer of 5,586 students.
In a differentially private analysis, the added noise makes every
potential answer almost as likely whether John’s data are used
in the analysis or not. This is done by controlling the likelihood
ratio of any answer with John’s data included or excluded.

A differentially private analysis might produce many different answers
given the same data set. Because the details of a method providing
differential privacy can be made public, an analyst may be able to cal-
culate accuracy bounds that show how much an output of the analysis
is expected to differ from the noiseless answer.

19In other differentially private computations noise may be added to intermediate
results of a computation or at the data collection process. The latter is referred to as
the local model of differential privacy.
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An essential component of a differentially private computation is the
privacy loss parameter, usually denoted by the Greek letter ε (epsilon).
This parameter determines how much noise is added to the computa-
tion. Choosing a value for the privacy loss parameter can be thought of
as a tuning knob for balancing privacy and accuracy. A lower value for
ε corresponds to stronger privacy protection and also a larger decrease
in accuracy, whereas a higher value for εcorresponds to weaker privacy
protection and also a smaller decrease in accuracy. The following dis-
cussion establishes an intuition for this parameter. It can be thought of
as limiting how much a differentially private computation is allowed
to deviate from the opt-out scenario of an individual in the data.

Consider the opt-out scenario for a certain computation, such as esti-
mating the number of HIV-positive individuals in a surveyed popula-
tion. Ideally, this estimate should remain exactly the same whether or
not a single individual, such as John, is included in the survey. How-
ever, ensuring this property exactly would require the total exclusion of
John’s information from the analysis. It would also require the exclu-
sion of Gertrude’s and Peter’s information in order to provide privacy
protection for them. Continuing with this line of argument, one comes
to the conclusion that the personal information of every surveyed in-
dividual must be excluded in order to satisfy that individual’s opt-out
scenario. Thus, the analysis cannot rely on any person’s information
and is completely useless.

To avoid this dilemma, differential privacy requires only that the out-
put of the analysis remain approximately the same whether John partic-
ipates in the survey or not. Differential privacy allows for a deviation
between the output of the real-world analysis and that of each indi-
vidual’s opt-out scenario. The privacy loss parameter ε quantifies and
limits the extent of the deviation between the opt-out and real-world
scenarios, as shown in Figure 6.3 below.20 The parameter ε measures
the effect of each individual’s information on the output of the analysis.
It can also be viewed as a measure of the additional privacy risk an in-
dividual could incur beyond the risk incurred in the opt-out scenario.21

20Figure 6.3 is reproduced from Wood et al. (2018).
21ε is a unitless nonnegative quantity measuring probability log-ratio.
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Figure 6.3: Differential privacy. The maximum deviation between the
opt-out scenario and real-world computation should hold
simultaneously for each individual X whose information is
included in the input.

Note that in Figure 6.3 John has been replaced with an arbitrary indi-
vidual X to emphasize that the differential privacy guarantee is made
simultaneously to all individuals in the sample, not just John.

Choosing a value for ε can be thought of as tuning the level of privacy
protection required. This choice also affects the utility or accuracy
that can be obtained from the analysis. A smaller value of ε results in
a smaller deviation between the real-world analysis and each opt-out
scenario and is therefore associated with stronger privacy protection
but less accuracy. For example, when ε is set to zero, the real-world
differentially private analysis mimics the opt-out scenario of each indi-
vidual perfectly. However, as argued at the beginning of this section, an
analysis that perfectly mimics the opt-out scenario of each individual
would require ignoring all information from the input and accordingly
could not provide any meaningful output. Yet when ε is set to a small
number, such as 0.1, the deviation between the real-world computation
and each individual’s opt-out scenario will be small, providing strong
privacy protection while also enabling an analyst to derive useful statis-
tics based on the data.

Simple conventions for choosing ε have not yet been developed; the
current best practice for choosing ε is to explore the trade-off between
the choice of ε and the utility provided by an analysis for every ap-
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plication, as well as to consider the potential risks to individuals and
the level of risk the data owner might be permitting given their le-
gal, contractual, and ethical obligations. It is expected that as the use
of differentially private analyses in real-life applications increases, the
accumulated experience will shed light on how to reach a reasonable
compromise between privacy and accuracy. As a rule of thumb, how-
ever, ε should be thought of as a small number, between approximately
1/100 and 1.22

This chapter has discussed how the privacy loss parameter limits the
deviation between the real-world computation and each data subject’s
opt-out scenario. However, it might not be clear how this abstract
guarantee relates to privacy concerns in the real world. Therefore, in
this section, a practical interpretation of the privacy loss parameter is
discussed as a bound on the financial risk incurred by participating in
a study.

Any useful analysis carries the risk that it will reveal information
about individuals (which in turn might result in a financial cost). The
following example shows that while differential privacy necessarily
cannot eliminate this risk, it can guarantee that the risk will be limited
by quantitative bounds that depend on ε.

Gertrude, a 65-year-old woman, is considering whether to
participate in a medical research study. While she can envision
many potential personal and societal benefits resulting from her
participation in the study, she is concerned that the personal
information she discloses over the course of the study could
lead to an increase in her life insurance premium.

For example, Gertrude is apprehensive that the tests she would
undergo as part of the research study would reveal that she is

22In general, setting ε involves making a compromise between privacy protection
and accuracy. The consideration of both utility and privacy is challenging in practice
and, in some of the early implementations of differential privacy, has led to choosing
a higher value for ε. As the accuracy of differentially private analyses improves over
time, it is likely that lower values of ε will be chosen.
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predisposed to suffer a stroke and is significantly more likely to
die in the coming year than the average person of her age and
gender. If such information related to Gertrude’s increased risk
of morbidity and mortality is discovered by her life insurance
company, it will likely increase her premium substantially.

Before she decides to participate in the study, Gertrude wishes
to be assured that privacy measures are in place to ensure that
her involvement will have a limited effect (if any) on her life
insurance premium.

Gertrude’s life insurance company may raise her premium based on
something it learns from the medical research study, even if Gertrude
does not herself participate in the study. The following example is
provided to illustrate such a scenario.23

Gertrude holds a US$100,000 life insurance policy. Her life
insurance company has set her annual premium at US$1,000
(i.e., 1 percent of US$100,000) based on actuarial tables that
show that someone of Gertrude’s age and gender has a 1
percent chance of dying in the next year.

Suppose Gertrude opts out of participating in the medical re-
search study. Regardless, the study reveals that coffee drinkers
are more likely to suffer a stroke than non-coffee drinkers.
Gertrude’s life insurance company may update its assessment
and conclude that as a 65-year-old woman who drinks coffee,
Gertrude has a 2 percent chance of dying in the next year. The
insurance company decides to increase Gertrude’s annual pre-
mium from US$1,000 to US$2,000 based on the findings of the
study.

In this hypothetical example, the results of the study led to an increase
23Figures in this example are based on data from US Social Security Administration

(2011).
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in Gertrude’s life insurance premium, even though she did not con-
tribute any personal information to the study. A potential increase of
this nature is likely unavoidable to Gertrude because she cannot pre-
vent other people from participating in the study. This type of effect
is taken into account by Gertrude’s insurance premium in her opt-out
scenario and will not be protected against by differential privacy.

Next, consider the increase in risk that is due to Gertrude’s participa-
tion in the study.

Suppose Gertrude decides to participate in the research study.
Based on the results of medical tests performed on Gertrude
over the course of the study, the researchers conclude that
Gertrude has a 50 percent chance of dying from a stroke in the
next year. If the data from the study were to be made available
to Gertrude’s insurance company, it might decide to increase her
insurance premium from US$2,000 to more than US$50,000 in
light of this discovery.

Fortunately for Gertrude, this does not happen. Rather than re-
leasing the full data set from the study, the researchers release
only a differentially private summary of the data they collected.
Differential privacy guarantees that if the researchers use a value
of ε = 0.01, then the insurance company’s estimate of the prob-
ability that Gertrude will die in the next year can increase from
2 percent to at most 2.04 percent, as per the equation:

2% · (1 + 2 · ε) = 2% · (1 + 2 · 0.01) = 2.04%a

Thus, Gertrude’s insurance premium can increase from
US$2,000 to US$2,040, at most. Gertrude’s first-year cost
of participating in the research study in terms of a potential
increase in her insurance premium is at most US$40.

Note that this analysis does not imply that the insurance com-
pany’s estimate of the probability that Gertrude will die in the
next year must increase as a result of her participation in the
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study, nor that if the estimate increases it must increase to 2.04
percent. What the analysis shows is that if the estimate were to
increase, it would not exceed 2.04 percent.

Consequently, this analysis does not imply that Gertrude would
incur an increase in her insurance premium or that if she were
to see such an increase it would cost her US$40. What is guaran-
teed is that if Gertrude should see an increase in her premium,
this increase would not exceed US$40.

aThe approximate calculation provided in this example only holds for small
ε, using e2·ε ≈ 1 + 2 · ε. See Table 6.1 for an exact formula.

Gertrude may decide that the potential cost of participating in the re-
search study, US$40, is too high and she cannot afford to participate
with this value of ε and this level of risk. Alternatively, she may de-
cide that it is worthwhile. Perhaps she is paid more than US$40 to
participate in the study or the information she learns from the study is
worth more than US$40 to her. The key point is that differential pri-
vacy allows Gertrude to make a more informed decision based on the
worst-case cost of her participation in the study.

It is worth noting that should Gertrude decide to participate in the
study, her risk might increase even if her insurance company is not
aware of her participation. For instance, the study might determine
that Gertrude has a very high chance of dying next year, and that could
affect the study results. In turn, her insurance company might decide
to raise her premium, because she fits the profile of the studied pop-
ulation (even if the company does not believe her data were included
in the study). On the other hand, differential privacy guarantees that
even if the insurance company knows that Gertrude did participate in
the study, it can essentially only make inferences about her that it could
have made if she had not participated in the study.

One can generalize from Gertrude’s scenario and view differential pri-
vacy as a framework for reasoning about the increased risk that is in-
curred when an individual’s information is included in a data analysis.
Differential privacy guarantees that an individual will be exposed to
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essentially the same privacy risk regardless of whether their data are
included in a differentially private analysis. In this context, think of the
privacy risk associated with a data release as the potential harm that
an individual might experience due to a belief that an observer forms
based on that data release.

In particular, when ε is set to a small value, the probability that an ob-
server will make some inference that is harmful to a data subject based
on a differentially private data release is no greater than 1+ε times the
probability that the observer would have made that inference without
the data subject’s inclusion in the data set.24 For example, if ε is set to
0.01, then the probability of any adverse event to an individual (such
as Gertrude being denied insurance) can grow by a multiplicative fac-
tor of 1.01 (at most) as a result from participation in a differentially
private computation (compared with not participating in the computa-
tion).

As shown in the Gertrude scenario, there is also the risk to Gertrude
that the insurance company will see the study results, update its beliefs
about the mortality of Gertrude, and charge her a higher premium.
If the insurance company infers from the study results that Gertrude
has probability p of dying in the next year, and her insurance policy is
valued at US$ 100,000, this translates into a risk (in financial terms) of
a higher premium of p× US$ 100,000. This risk exists even if Gertrude
does not participate in the study. Recall how in the first hypothetical,
the insurance company’s belief that Gertrude will die in the next year
doubles from 1 percent to 2 percent, increasing her premium from
US$1,000 to US$2,000, based on general information learned from
the individuals who did participate. Also, if Gertrude does decide to
participate in the study (as in the second hypothetical), differential
privacy limits the change in this risk relative to her opt-out scenario.
In financial terms, her risk increases by US$40 at most, since it can
be shown that the insurance company’s beliefs about her probability of
death change from 2 percent to no greater than 2% · (1+2 ·ε) = 2.04%,

24In general, the guarantee made by differential privacy is that the probabilities
differ at most by a factor of e±ε, which is approximately 1± ε when ε is small.
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when ε = 0.01.25

Note that the above calculation requires certain information that may
be difficult to determine in the real world. In particular, the 2 percent
baseline in Gertrude’s opt-out scenario (i.e., Gertrude’s insurer’s belief
about her chance of dying in the next year) is dependent on the results
from the medical research study, which Gertrude does not know at
the time she makes her decision whether to participate. Fortunately,
differential privacy provides guarantees relative to every baseline risk.

Without her participation, the study results would lead the
insurance company to believe that Gertrude has a 3 percent
chance of dying in the next year (instead of the 2 percent chance
hypothesized earlier). This means that Gertrude’s insurance pre-
mium would increase to US$3,000. Differential privacy guar-
antees that if Gertrude had instead decided to participate in
the study, the insurer’s estimate for Gertrude’s mortality would
have been at most 3% · (1 + 2 · ε) = 3.06% (assuming an ε of
0.01), which means that her premium would not increase be-
yond $3,060.

Calculations like those used in the analysis of Gertrude’s privacy risk
can be performed by referring to Table 6.1.26 For example, the value of
ε used in the research study in which Gertrude considered participating
was 0.01, and the baseline privacy risk in her opt-out scenario was 2
percent. As shown in Table 6.1, these values correspond to a worst-
case privacy risk of 2.04 percent in her real-world scenario. Notice
also how the calculation of risk would change with different values.
For example, if the privacy risk in Gertrude’s opt-out scenario were
5 percent rather than 2 percent and the value of epsilon remained the
same, then the worst-case privacy risk in her real-world scenario would
be 5 percent.

25The reason that the multiplicative factor is 1 + 2 · ε ≈ e2·ε rather than 1 + ε ≈ eε

is that posterior beliefs can be expressed as a ratio of two probabilities, each of which
can change by a factor of at most eε. The factor of 2 was incorrectly omitted in the
original paper (Wood et al., 2018) describing this example.

26Table 6.1 corrects a calculation error appearing in the original paper (Wood et al.,
2018).

201



CHAPTER 6

Table 6.1: Maximal change between posterior beliefs in Gertrude’s opt-out
and real-world scenarios. The notation A(x′) refers to the
application of the analysis A on the dataset x′, which does not
include Gertrude’s information. As this table shows, the use of
differential privacy provides a quantitative bound on how much
one can learn about an individual from a computation. The
entries in the table are calculated using the formula
q = min(e2εq′, 100− e−2ε(100− q′)), where q′ is the posterior
belief given A(x′) and q is the upper bound on the posterior belief
given A(x), both expressed as percentages.

posterior belief
given A(x′)

in %

value of ε

0.01 0.05 0.1 0.2 0.5 1

0 0 0 0 0 0 0

1 1.02 1.11 1.22 1.49 2.72 7.39

2 2.04 2.21 2.44 2.98 5.44 14.78

3 3.06 3.32 3.66 4.48 8.15 22.17

5 5.10 5.53 6.11 7.46 13.59 36.95

10 10.20 11.05 12.21 14.92 27.18 73.89

25 25.51 27.63 30.54 37.30 67.96 89.85

50 50.99 54.76 59.06 66.48 81.61 93.23

75 75.50 77.38 79.53 83.24 90.80 96.62

90 90.20 90.95 91.81 93.30 96.32 98.65

95 95.10 95.48 95.91 96.65 98.16 99.32

98 98.04 98.19 98.36 98.66 99.26 99.73

99 99.02 99.10 99.18 99.33 99.63 99.86

100 100 100 100 100 100 100

maximum posterior belief given A(x) in %

The fact that the differential privacy guarantee applies to every privacy
risk means that Gertrude can know for certain how participating in the
study might increase her risks relative to opting out, even if she does
not know a priori all the privacy risks posed by the data release. This
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enables Gertrude to make a more informed decision about whether to
take part in the study. For instance, she can calculate how much addi-
tional risk she might incur by participating in the study over a range
of possible baseline risk values and decide whether she is comfortable
with taking on the risks entailed by these different scenarios.

6.2.4 Strengths of Differential Privacy Over Traditional
SDL Approaches

This discussion outlines some of the key features of differential privacy
that enable it to overcome the weaknesses of traditional approaches
and provide strong protection against a wide range of privacy attacks.

Differential Privacy is Robust to Auxiliary Information

As illustrated by the re-identification attack on the 2010 Decennial
Census database described in Section 6.1.2, effective privacy protec-
tion requires taking auxiliary information into account. A data provider
designing a differentially private data release need not anticipate par-
ticular types of privacy attacks, such as the likelihood that one could
link particular fields with other data sources that may be available.
When using differential privacy, even an attacker utilizing arbitrary
auxiliary information cannot learn much more about an individual in
a database than they could if that individual’s information were not in
the database at all.

Currently, differential privacy is the only framework that provides
meaningful privacy guarantees in scenarios in which adversaries have
access to arbitrary external information. Releases constructed in a
differentially private manner provide provable privacy protection
against any feasible adversarial attack, whereas de-identification
concepts only counter a limited set of specific attacks.

Differential Privacy is Robust to Composition

When evaluating privacy risk, it is important to recognize that privacy
risk accumulates with each release or analysis involving an individ-
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ual’s data. Under what has come to be called the fundamental law of
information recovery, releasing “overly accurate answers to too many
questions will destroy privacy in a spectacular way” (Dinur and Nissim,
2003; Dwork et al., 2017; Dwork and Roth, 2014). This is true whether
or not any privacy-preserving technique is applied and regardless of the
specific privacy-preserving technique in use.27 A reconstruction attack,
such as the reconstruction of the 2010 Decennial Census database pre-
sented in Section 6.1.2, is an example of a privacy attack that leveraged
composition.

One of the most powerful features of differential privacy is its robust-
ness under composition; in other words, the combination of multi-
ple differentially private analyses preserves differential privacy (Dwork
et al., 2016; Ganta, Kasiviswanathan and Smith, 2008). Differential
privacy provides provable bounds with respect to the cumulative risk
from multiple data releases, and is the only existing approach to do
so. Recall that the definition of differential privacy is equipped with a
numeric parameter ε > 0 that bounds privacy risk.28 Furthermore, one
can reason about—and bound—the overall privacy risk that accumu-
lates when multiple differentially private computations are performed
on an individual’s data. As a simple example, imagine that two dif-
ferentially private computations are performed on data sets contain-
ing information about the same individuals. If ε1 bounds the privacy
risk of the first computation and ε2 bounds the privacy risk of the sec-
ond computation, then the cumulative privacy risk resulting from these
computations is no greater than the risk associated with an aggregate
parameter of ε1 + ε2. In other words, the composition of the two dif-
ferentially private analyses is also a differentially private analysis with
privacy risk at most ε1 + ε2. Importantly, no coordination is needed
between the two mechanisms for this bound to hold.

The example above is a simple instance illustrating how analysts can
bound the total disclosure risk due to multiple differentially private
disclosures. Often, better bounds can be achieved via applying a set
of tools known as composition theorems. The fact that the total dis-

27For further discussion see Wood et al. (2018); Altman et al. (2015).
28See Section 6.2.3 for further discussion of how ε quantifies privacy risk.
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closure risk can be bounded—without having mechanisms coordinate
their actions—allows for a rigorous management of privacy risks across
multiple disclosures and access points. As an example, a registry such
as the Epsilon Registry suggested by Dwork, Kohli and Mulligan (2019)
can hold information about the value of the privacy parameter ε used
in implementations of differentially private data releases and hence
serve as a basis for bounding the total disclosure risk.29

Differential Privacy is Robust to Post-Processing

It is also important to evaluate whether an approach to privacy that
is being considered can be made ineffective through post-processing,
i.e., via further analyzing a data release that purports to preserve pri-
vacy. For example, Machanavajjhala and Kifer (2015) describe post-
processing vulnerabilities for some algorithms that satisfy k-anonymity.
The demonstration of a reconstruction attack on the 2010 Decennial
Census database presented in Section 6.1.2 is an example of a privacy
attack that employed post-processing: while the released data tables
purportedly preserved privacy, analyzing the releases enabled the re-
construction of individual respondents’ records.

Differential privacy is an example of an approach that is robust to post-
processing. To understand what this means, consider a scenario in
which an analyst applies a post-processing transformation B on the
output of the ε-differentially private analysis A. For instance, after a
data publisher adds noise to a collection of statistics using a differen-
tially private tool, they might wish to round the statistics or replace
negative statistics with zero before publishing them. In such cases,
the resulting analysis (B ◦ A) is also ε-differentially the risk to pri-
vacy. A data publisher can even share details about the analysis A, the
transformation B, and the value of ε without increasing privacy risk.
Importantly, the guarantee that (B ◦A) is ε-differentially private holds
for any transformation B—even one that is designed with an intention
to breach privacy.

29The proposal for an Epsilon Registry is intended to be a publicly available bulletin
board where firms would disclose information about their deployment of differential
privacy. See Dwork, Kohli and Mulligan (2019).
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Differential Privacy Does Not Rely on Security by Obscurity

Differentially private tools also have the benefit of transparency, as
maintaining secrecy around a differentially private computation or its
parameters is not necessary. This feature distinguishes differentially
private tools from traditional de-identification techniques, which of-
ten require concealment of the extent to which the data have been
transformed and thereby leave data users with uncertainty regarding
the accuracy of analyses on the data. This approach can enable pub-
lic scrutiny of the privacy-preserving techniques used. Further, the
amount of noise added by differential privacy can be taken into ac-
count in the measure of accuracy, unlike traditional techniques that
keep the information needed to estimate the privacy error secret.

6.2.5 What Does Differential Privacy Not Protect?

The following example illustrates the types of information disclosures
that differential privacy does not aim to address.

Ellen is John’s friend and knows that he regularly consumes sev-
eral glasses of red wine with dinner. Ellen learns that a research
study had found a positive correlation between drinking red
wine and the likelihood of developing a certain type of cancer.
Based on the study and her knowledge of John’s drinking habits,
she might conclude that he has a heightened risk of developing
cancer.

It may seem that the publication of the research results enabled a pri-
vacy breach by Ellen, as the study’s findings helped her infer new in-
formation about John’s elevated cancer risk of which he himself may
be unaware. However, Ellen would be able to infer this information
about John regardless of his participation in the medical study (i.e., it
is a risk that exists in both John’s opt-out scenario and the real-world
scenario). Risks of this nature apply to everyone, regardless of whether
they shared personal data through the study or not. Differential pri-
vacy is a concept specifically designed to allow for studies such as in
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this example. Therefore, differential privacy does not guarantee that
no information about John can be revealed. The use of differential
privacy only protects the information that is specific to him, i.e., infor-
mation about John that cannot be inferred unless an analysis received
his personal information as part of the input.

This and similar examples demonstrate that any useful analysis carries
a risk of revealing some information about individuals. However, such
risks are largely unavoidable. In a world in which data about individ-
uals are collected, analyzed, and published, John cannot expect better
privacy protection than is offered by his opt-out scenario, because he
has no ability to prevent others from participating in a research study
or to prohibit a release of public records. Moreover, the types of infor-
mation disclosures enabled in John’s opt-out scenario often result in
individual and societal benefits. For example, the discovery of a causal
relationship between red wine consumption and elevated cancer risk
can inform John about possible changes he could make in his habits
that would likely have positive effects on his health.

6.3 Aligning Risks, Controls, and Uses: Where
Is the Use of Differential Privacy
Appropriate?

This section discusses factors to take into account when evaluating
whether differential privacy is an appropriate tool to be applied within
a specific context, as well as factors in determining whether differential
privacy should be deployed alone, in combination with other controls,
or as part of a tiered access system. As an overview, Table 6.2 provides
some of the key factors that weigh in favor of, or against, an appro-
priate use of differential privacy. For example, use cases involving sta-
tistical analysis of a population or large groups and the possibility of
significant and lasting informational harms to individuals weigh heav-
ily in favor of the adoption of differential privacy.
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Table 6.2: Considerations when deciding whether to use differential privacy
for a particular use case

Use cases where DP is more
likely to be appropriate

Use cases where DP is not
appropriate

Use cases where DP is
challenging

• Informational harm
derives from making
inferences about
individuals or small
groups

• Intended use is statistical
analysis of population or
large groups

• Sensitivity of information
is high

• Information and analyses
are highly structured

• Datasets are large

• Types of analyses to be
conducted are known in
advance

• Composition effects are
important

• Release of
(low-dimensional)
synthetic data is
acceptable or preferred

• Informational harm
derives from making
inferences about large
groups

• Intended use is
individual inference or
individual intervention

• Intended control is
purpose limitation

• Intended control is
computation limitation1

• Datasets are very small
(e.g., less than a few
dozen observations)

• Supporting data linking

• Supporting data cleaning

• Estimating complex
statistical models
efficiently

• Datasets are small (e.g.,
dozens to thousands of
observations)2

• Differentially private
analysis not yet available

• Intended output is
high-dimensional
synthetic data

1A control on computation is designed to “limit the direct operations that can be meaningfully
performed on data. Commonly used examples are file-level encryption and interactive analysis
systems or model servers. Emerging approaches include secure multiparty computation,
functional encryption, homomorphic encryption, and secure public ledgers, eg blockchain
technologies.” (Altman et al., 2018).
2For a real-world example, see the Opportunity Atlas case study presented in Section 6.4.2.

To help guide a systematic analysis of the relevant factors within a spe-
cific use case, this discussion follows a framework for selecting privacy
controls based on a systematic analysis of harm, informational risk,
and intended analytic uses as presented by Altman et al. (2015).

6.3.1 Selecting Privacy Controls Based on Harm and
Informational Risk: A Framework

Altman et al. (2015) propose a framework for selecting reasonable and
appropriate privacy and security measures that are calibrated to the in-
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tended uses, threats, harms, and vulnerabilities associated with a spe-
cific research activity.30 For applying this framework in practice, Alt-
man et al. (2015) recommend a life-cycle approach to decomposing the
factors at each information stage, including the collection, transforma-
tion, retention, access and release, and post-access stages. A diagram
from Altman et al. (2015) illustrating a partial conceptualization of
this framework is reproduced in Figure 6.4. The x-axis represents the
sensitivity of the information, or the maximum level of expected harm
to an individual in the data resulting from uncontrolled use of the data.
The y-axis represents the post-transformation identifiability, or the po-
tential for others to learn about individuals based on the inclusion of
their information in the data. Examples range from data sets contain-
ing direct or indirect identifiers to data shared using expertly applied
rigorous disclosure limitation techniques backed by a formal mathe-
matical proof of privacy (e.g., user-level differential privacy with a low
value of ε).

These factors—the level of expected harm from uncontrolled use of the
data and the post-transformation identifiability of the data—suggest
minimum privacy and security controls that are appropriate in a given
case, as shown by the shaded regions in Figure 6.4. The subsets of
controls within each region illustrate some possible combinations of
controls from the more comprehensive set of procedural, economic,
educational, legal, and technical controls (some of which are covered
in other chapters of this Handbook). For data associated with only
negligible or minor and fleeting harms, the use of differential privacy
without any additional controls may be appropriate, but for more sig-
nificant and lasting or even life altering harms, notice and consent
mechanisms as well as terms of service may also be required. Obtain-

30In this framework, evaluating the intended uses of the data involves an assessment
of the types of uses or analytic purposes intended by each of the relevant groups of
data users and how privacy controls implemented at each stage enable or restrict such
uses. An evaluation of the threats involves assessing potential adverse circumstances
or events that could cause harm to a data subject as a result of the inclusion of that
subject’s data in a specific data collection, storage, use, or release. Privacy harms are
injuries sustained by data subjects as a result of the realization of a privacy threat, and
privacy vulnerabilities are defined as characteristics that increase the likelihood that
threats will be realized. See Altman et al. (2015).
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Figure 6.4: Calibrating privacy and security controls

ing consent is particularly important when using data for secondary
uses not initially disclosed to the data subjects or when the selected
value of ε is large. For data associated with potentially life-threatening
harms, a formal application and oversight process, such as an institu-
tional review board or restricted data access committee, together with
a data use agreement may be necessary. As Figure 6.4 illustrates, in
many cases, the use of differential privacy allows data analysis projects
to be carried out safely with fewer additional privacy and security con-
trols than would be required with other approaches.

Altman et al. (2015) note that the design of a real-world data manage-
ment plan should consider a wide range of available interventions and
incorporate controls at each stage of the lifecycle, including the post-
access stage, and not be limited to the choices of controls illustrated
in Figure 6.4. “[A]lthough the data transformation and release stages
typically attract the most attention, threats and vulnerabilities arising

210



Using Administrative Data for Research and Evidence-Based Policy

from other lifecycle stages should not be ignored. For example, pri-
vacy risks may be present at the collection stage if the data collection
process could be observed by an adversary; data retained in long-term
storage are vulnerable to unintended breaches; and, increasingly in a
big data world, external, independent publication of auxiliary infor-
mation may create new or unanticipated privacy risks long into the
post-access stage” (Altman et al., 2015). Further, one should note that
some of the regions in Figure 6.4 are divided by a diagonal line; these
areas correspond to situations in which an actor could decide between
different choices based on factors related to the intended uses of the
data or existing institutional or contractual requirements. It is also im-
portant to observe that the recommendations reflected in this diagram
may differ from current practice. For example, Altman et al. (2015)
argue that data that have been de-identified using simple redaction
or other heuristic techniques should in many cases be protected using
additional controls.

6.3.2 Considerations When Deciding Whether to Use
Differential Privacy

As summarized in Section 6.3.1, differential privacy fits into a broader
framework of privacy and security controls that should be applied
across the information life cycle to appropriately mitigate risks of
informational harm. Within a coherent set of information controls,
differential privacy’s primary role is as a formal criterion for disclosure
control that ensures limitations on types of inferences that can be
made about individuals and small groups based on the outputs of
computations. In other words, implementations of differential privacy
(especially in the curator model as discussed and contrasted with
other models for differential privacy in Appendix A) modify summary
information before it is published in order to prevent others from
learning any information that is unique and specific to any individual
who was part of the group being summarized.

In the context of designing a secure and private information system,
differential privacy is used as part of a collection of controls aimed at
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mitigating informational harm while enabling some types of informa-
tion uses. Differential privacy is usually neither sufficient protection on
its own nor uniquely necessary—and in some cases differential privacy
may simply not be appropriate for the intended use.

Three considerations are critical in deciding whether to use differential
privacy: (1) how are recipients of protected information intending to
use it, and how well do differentially private analyses support these in-
tended uses; (2) what is the nature and degree of informational risk to
be mitigated, and are there serious harms that could arise from learn-
ing about individuals; and (3) what complementary and alternative
controls are available for protecting the data? Each of these questions
is discussed in turn below.

How Well Does Differential Privacy Fit the Intended Uses of the
Data?

Evaluating the intended uses of the data involves answering a series
of sub-questions, including (a) what level of inference is intended; (b)
what types of questions, queries, or models must be supported; and (c)
how much accuracy is needed?

What Level of Inference is Intended? Differential privacy is a stan-
dard that was designed to support statistical analysis of populations
or large groups yet prevent inferences about (and thus interventions
targeted to) individuals and very small groups. Consider, for example,
the collection, analysis, and sharing of public health information re-
lated to the COVID-19 pandemic. Differentially private analyses can be
applied in tasks such as estimating the extent to which large communi-
ties adhere to social distancing, measuring the efficacy of infection rate
reduction measures like social distancing and masks, identifying large
disease clusters, and selecting and fitting statistical models of disease
transmission.31 If performed with differential privacy these analyses
would yield valuable and meaningful statistics while providing strong

31See, e.g., Google’s COVID-19 Community Mobility Reports (Aktay et al., 2020),
https://www.google.com/covid19/mobility (accessed 2020-12-17).
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protection for the privacy of individual medical results, locations, so-
cial encounters, etc. If analysis at the individual level is desired (e.g.,
to identify specific individuals for testing or quarantine) disclosure
control methods other than differential privacy should be used. Re-
searchers who intend to prevent certain types of learning about large
groups, such as information that could be used to discriminate on the
basis of protected group status, should be aware of limitations; while
differential privacy protects information that is specific to groups con-
sisting of a small number of individuals, the use of differential pri-
vacy alone does not provide protection against group-level inference
for larger groups.

What Types of Questions, Queries, or Models Must be Supported?
In theory, with the exception of learning about individuals or small
groups, differential privacy could be used to compute any form of an-
swer for any purpose, as it is a constraint on inference, not on purpose
or computation (Altman et al., 2018). And in practice, as outlined in
Section 6.1.5, a large number of analyses can be performed with dif-
ferential privacy guarantees.

However, there are some limitations on the current understanding of
how to perform certain classes of tasks privately (e.g., the use of differ-
ential privacy in analyzing records of textual data is currently limited);
how to measure the accuracy or utility of protected results; and how
to optimize the privacy versus utility trade-off. Even where algorithms
to perform specific calculations are known, robust software that imple-
ments these methods may not yet be available. Generally, differentially
private tools limit both the number and form of analyses that are possi-
ble. Most differentially private tools that provide interactive access to
data by design support a limited range of model specifications or sta-
tistical operators. For example, a particular tool may allow one to pose
queries that can be expressed in terms of counts on definable subsets of
the data set (which allows for contingency tables and hence fitting lo-
gistic regression models) but not to run any arbitrary statistical model.
Similarly, an analyst can apply any model to a non-interactive, synthet-
ically generated data set, but only a limited range of models will return
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accurate or useful results. Further, it is generally more difficult to ap-
ply differential privacy if the methods used by analysts are qualitative,
unstructured, or do not lend themselves to rigorous mathematical def-
initions. Certain queries, such as estimating the number of individuals
with specific attributes, are quite straightforward. However, in-depth
data cleaning is difficult to define in a sufficiently formal way to apply
differential privacy protections to the process.

Appendix C lists currently available software tools for differentially pri-
vate computation. In general, these tools support a wide range of sum-
mary tabulations and summary statistics, the generation of synthetic
data sets for some forms of multivariate analysis, and selected appli-
cations such as geospatial or location-based analysis. If the intended
analyses fall outside of the capabilities of existing tools, one should
anticipate that considerably more effort will be required to deploy an
effective system in order to support such analyses. This is the case even
if the core algorithms for those calculations are already known. Those
following this approach should engage experts in differential privacy
as part of the design and deployment process.

What is the Required Level of Accuracy? Differential privacy pro-
vides a quantifiable trade-off between privacy and utility (or accuracy).
The amount of noise that differential privacy needs to introduce for a
single count query is on the order of 1/ε in which ε is the privacy-loss
parameter. At minimum, the data set being analyzed must have at least
1/ε observations to obtain meaningful results. For most analyses, how-
ever, the size of the data set must be much larger than 1/ε to obtain
useful results, and how much larger will depend on a number of fac-
tors including how many statistics are being calculated, the complexity
of the statistical model, the dimensionality of the data, and the partic-
ular differentially private algorithm being used. Thus, it is difficult to
provide a rule of thumb. In practice, one can run experiments on non-
sensitive synthetic or public data as a way to evaluate the accuracy of a
tool or algorithm for a given application ahead of time. (Using experi-
ments on the sensitive data to select an algorithm or set its parameters
may leak information that violates differential privacy.)
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When operating within the framework of existing tools, one should
plan to test that outputs remain useful for the intended purposes.
There are many different measures of utility and, even if an algorithm
does a good job at trading off between utility and privacy, the utility
loss for a particular use case may be quite different than the average
loss.

What Is the Nature and Degree of Informational Risk to be
Mitigated?

Another factor to consider when deciding whether to adopt differential
privacy is the nature and degree of informational risk to be mitigated.
Figure 6.4 illustrates an approach to conceptualizing whether differen-
tial privacy is a suitable control to use given different levels of harm
associated with uncontrolled use of a particular data set. Some of the
relevant questions to consider involve the sensitivity of the informa-
tion and the potential for risks to accumulate with multiple releases of
information about the same individuals or groups of individuals.

How Sensitive are the Data? When evaluating informational risk,
consider the sensitivity of the information or its potential to cause harm
to individuals, groups of individuals, or society at large. Generally, in-
formation should be treated as sensitive when it reveals information
specific to an individual (even partially or probabilistically and possi-
bly in combination with other information) and such inference is likely
to cause significant harm to an individual, group, or society.32 Infor-
mational harms “may occur directly as the result of a reaction of a
data subject or third parties to the information, or indirectly as a result
of inferences made from information” (Altman et al., 2015). Appli-

32For an extended discussion and framework for assessing information sensitivity,
see Altman et al. (2015).
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cable laws33 and institutional policies34 may provide some guidance
regarding sensitivity, but data may be sensitive and have the potential
to cause harm, even if the data do not include categories of informa-
tion traditionally considered sensitive (Altman et al., 2015). Other key
factors increasing informational risk include the number of indepen-
dent attributes associated with each subject in the data, the scope of
intended analytic uses, the number of individuals included in the data,
and the size and diversity of the population observed (Altman et al.,
2018). Risks can also grow due to characteristics related to time, such
as an increase in the amount of time between collection and analysis, in
the period of time over which data are collected, and in the frequency
of collection (Altman et al., 2018).

Does Composition of Multiple Releases Pose a Significant Threat?
Privacy risk inevitably grows as more computations are released. Dif-
ferentially private protection mechanisms have the advantage that risk
composes predictably and slowly across multiple releases. In contrast,
when information is released through other mechanisms, multiple re-
leases could result in sudden and catastrophic loss of privacy.

Absent formal protection mechanisms, it is not possible to definitively
assess composition risks ex ante. As general guidance, composition
effects are of greatest ex ante concern under the following conditions:
(a) data are collected from the same individuals by uncoordinated data
controllers, (b) releases are updated frequently, (c) many releases are
performed over time, (d) releases are high-dimensional, or (e) prior

33See, e.g., Regulation (EU) 2016/679 of the European Parliament and of the Coun-
cil on the protection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Directive 95/46/EC (Gen-
eral Data Protection Regulation) (2016) OJ L119/1, Article 9 (providing that the
“[p]rocessing of personal data revealing racial or ethnic origin, political opinions, re-
ligious or philosophical beliefs, or trade union membership, and the processing of
genetic data, biometric data for the purpose of uniquely identifying a natural person,
data concerning health or data concerning a natural person’s sex life or sexual orien-
tation shall be prohibited,” unless one of the delineated exceptions in Paragraph 2 of
the Article applies).

34See, e.g., Harvard University Information Security, Handout—Research Data Se-
curity Levels with Examples, https://security.harvard.edu/handout-research-data-sec
urity-levels-examples (accessed 2020-12-17).
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releases cannot be reliably recalled.35

Alternatively, if the data controller is aware of all potential auxiliary in-
formation, it could attempt to assess the cumulative privacy risk post-
computation but prior to release. Or, if harm to individuals is readily
detected, the data controller could purchase insurance to compensate
such harm ex post. These caveats notwithstanding, in the modern
information environment, composition risks are generally substantial
and ex post formal protections are typically infeasible.

What Complementary and Alternative Controls are Available for
Protecting the Data?

As illustrated in Figure 6.4, various controls can be complementary
to differential privacy. Some examples include contractual approaches
for enforcing purpose restrictions, vetting and oversight of analysts for
the purpose of privacy budget allocation, and encryption and other in-
formation security restrictions on private databases, especially if now
exposed to a different set of users through a publicly available differen-
tially private interactive query mechanism. Other tools may be used as
an alternative for purposes that differential privacy does not support,
such as the role that access via a secure data enclave can play as part
of a tiered access system.

Further, a single mode of access will generally not be appropriate for
the needs of all users. Different communities of users seek answers
to different questions and may have different quality and accuracy re-
quirements even when addressing the same question. It is therefore es-
sential to understand end user usages of inferences and their implied
utility and quality criteria (as discussed in Appendix A). An analyst
should take these factors into account in particular when allocating
the privacy budget across analyses and when selecting the specific in-
teractive and static publication mechanisms to be included.

Tiered access will generally be necessary to accommodate a wide range
of desired uses of the data. For a given set of data, access may be made

35For discussions of how data privacy risks accumulate, see Altman et al. (2018);
Fluitt et al. (2019).
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Figure 6.5: An example of a tiered access model

available to different categories of users through different modes of re-
lease. Figure 6.4 demonstrates how controls can be selected at each
tier. For example, data associated with potential harms that are only
minor and fleeting could be released to the public after traditional sta-
tistical disclosure limitation techniques, such as aggregation and gener-
alization, have transformed the data. Users who seek to obtain the full
data set, including direct and indirect identifiers, would be required to
submit an application to an institutional review board or other over-
sight body, and their use would be subject to the terms of a data use
agreement. This approach makes it possible to calibrate data releases
to the risk profile of a data set as well as specific uses intended by
different data users. Figure 6.5 provides an example of such a tiered
access model (see also Sweeney, Crosas and Bar-Sinai, 2015; Crosas,
2019).

6.3.3 Regulatory and Policy Compliance

Statistical agencies, companies, researchers, and others who collect,
process, analyze, store, or share data about individuals must take steps
to protect the privacy of the data subjects in accordance with various
laws, institutional policies, contracts, ethical codes, and best practices.
In some settings, tools that satisfy differential privacy can be used to
analyze and share data while both complying with legal obligations
and providing strong mathematical guarantees of privacy protection
for the individuals in the data (Nissim et al., 2018). Indeed, differen-
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tially private tools provide privacy protection that is more robust than
that provided by techniques commonly used to satisfy regulatory re-
quirements for privacy protection.

That said, privacy regulations and related guidance do not directly an-
swer the question of whether the use of differentially private tools is
sufficient to satisfy existing regulatory requirements for protecting pri-
vacy when sharing statistics based on personal data. This issue is com-
plex because privacy laws are often context dependent, and there are
significant gaps between differential privacy and the concepts under-
lying regulatory approaches to privacy protection. Different regulatory
requirements are applicable depending on the jurisdiction, sector, ac-
tors, and types of information involved. As a result, data sets held
by an organization may be subject to different requirements. In some
cases, similar or even identical data sets may be subject to different
requirements when held by different organizations. In addition, many
legal standards for privacy protection are to a large extent open to in-
terpretation and therefore require a case-specific legal analysis by an
attorney.

Other challenges arise as a result of differences between the concepts
appearing in privacy regulations and those underlying differential pri-
vacy. For instance, many laws focus on the presence of personally
identifiable information (PII) or the ability to identify an individual’s
personal information in a release of records. Such concepts do not
have precise definitions, and their meaning in the context of differ-
ential privacy applications are especially unclear. In addition, many
privacy regulations emphasize particular requirements for protecting
privacy when disclosing individual-level data, such as removing PII,
which are arguably difficult to interpret and apply when releasing ag-
gregate statistics. While in some cases it may be clear whether a regu-
latory standard has been met by the use of differential privacy, in other
cases—particularly along the boundaries of a standard—there may be
considerable uncertainty.

Regulatory requirements relevant to issues of privacy in computation
rely on an understanding of a range of different concepts, such as PII,
de-identification, linkage, inference, risk, consent, opt-out, and pur-
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pose and access restrictions. The definition of differential privacy can
arguably be interpreted to address these concepts while accommodat-
ing differences in how they are defined across various legal and insti-
tutional contexts (Wood et al., 2018). For instance, when differential
privacy is used, it can be understood as ensuring that using an in-
dividual’s data will not reveal essentially any PII specific to them.36

Differential privacy arguably addresses record linkage in the following
sense. Differentially private statistics provably hide the influence of
every individual (even small groups of individuals). Although linkage
has not been precisely defined, linkage attacks seem to inherently re-
sult in revealing that specific individuals participated in an analysis.
Because differential privacy protects against learning whether an in-
dividual participated in an analysis, it can therefore be understood to
protect against linkage. Furthermore, differential privacy provides a
robust guarantee of privacy protection that is independent of the aux-
iliary information available to an attacker. Indeed, under differential
privacy, even an attacker utilizing arbitrary auxiliary information can-
not learn much more about an individual in a database than they could
if that individual’s information were not in the database at all.

The foregoing interpretations of the differential privacy guarantee can
be used to demonstrate that in many cases a differentially private
mechanism would prevent the types of disclosures of personal informa-
tion that privacy regulations have been designed to address. Moreover,
differentially private tools often provide privacy protection that is more
robust than that provided by techniques commonly used to satisfy reg-
ulatory requirements for privacy protection. However, further research
is needed to develop methods for proving that differential privacy satis-
fies legal requirements, and setting the privacy loss parameter ε based

36Note that the reference to “using an individual’s data” in this statement means
the inclusion of an individual’s data in an analysis, and the use of the term “specific”
refers to information that is unique to the individual and cannot be inferred unless
the individual’s information is used in the analysis. Furthermore, the use of the word
“essential” in the statement “will not reveal essentially any PII specific to them” means
that, compared with an opt-out scenario where no information specific to an individual
is leaked, some small leakage of such information (inevitably) occurs. The parameter
ε bounds this leakage.
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on such requirements is needed.37 In practice, data providers should
consult with legal counsel when considering whether differential pri-
vacy tools—potentially in combination with other tools for protecting
privacy and security—are appropriate within their specific institutional
settings.

6.4 Case Studies

Differential privacy is a relatively new concept, first presented in the
theoretical computer science literature in 2006 and now seeing early
stages of application in real-world settings. This section provides short
case studies on three implementations of differential privacy: the 2020
Decennial Census, the Opportunity Atlas, and the Dataverse Project.
This discussion focuses on describing aspects of the context in which
these differentially private solutions were developed, as well as the
design choices that were made with respect to the relevant contextual
factors.

This selection of case studies, though limited by the small number of
practical implementations of differential privacy to date, aims to reflect
a range of different scenarios. The first case study involves a national
statistical agency publishing statistical data products from a census,
the second involves a team of researchers developing a web-based vi-
sualization tool for exploring sensitive administrative data analyzed as
part of a research study, and the third describes the functionalities of
a general-purpose differential privacy tool being developed for use by
data providers and analysts who do not have expertise in differential
privacy. Although none of these examples directly describe sharing
data from sub-national agencies, they carry real-world lessons relevant
to employing differential privacy in such contexts.

Each of the case studies reflects one point in the space of design factors
discussed in Section 6.3 and Appendix A. These factors are summa-

37For an extended discussion of the gaps between legal and computer science defi-
nitions of privacy and a demonstration that differential privacy can be used to satisfy
an institution’s obligations under FERPA, see Nissim et al. (2018).
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rized in Table 6.3. The remainder of this section expands upon critical
features of each case and their implications.

6.4.1 The 2020 Decennial Census

In September 2017, the US Census Bureau announced its decision to
deploy differential privacy in the disclosure avoidance mechanism for
the 2020 Decennial Census (Garfinkel, 2017). This decision was mo-
tivated in part by the composition effects revealed by a reconstruction
attack on the 2010 Census data release (see Section 6.1.2) and the
confidentiality and data publication mandates that bind the US Census
Bureau.38

In many ways, the data from the US Decennial Census is an excellent
fit for differential privacy. Compared to most survey data, it is low-
dimensional (i.e., only asks a few questions of each respondent) and
the sample size is very large (minimizing the relative impact of the
noise added for differential privacy). These features normally would
allow for a straightforward application of standard differentially pri-
vate algorithms (e.g., those which add independent noise to each cell
of different cross-tabulations). However, there are a number of other
features of the Decennial Census data products that have created chal-
lenges and debate among stakeholders over the transition to differ-
ential privacy (Garfinkel, Abowd and Powazek, 2018; Hawes, 2020;
boyd, 2020).

First, these data products have a long history of being used for a vast
and diverse range of applications, such as apportioning seats in the US
House of Representatives, redistricting, funding allocations, provision
of local emergency resources, and social science research. To minimize
the impact on data users and the software they use, the Census Bureau
has decided to produce differentially private data products that have
the same form as the traditional products and consist of tables that are

38Specifically, the US Constitution mandates the Decennial Census (U.S. Const. art.
1, 2.), and it is carried out by the US Census Bureau, bound by Title 13 of the US Code,
which prohibits Census Bureau employees from “mak[ing] any publication whereby
the data furnished by any particular establishment or individual under this title can
be identified” (13 U.S.C. § 9(a)(2)).
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Table 6.3: Design choices in case study implementations of differential
privacy

2020 Decennial Census The Opportunity Atlas Dataverse repositories

Risks &
Sensitiv-
ity

Sensitivity: Data subject
to stringent statutory
protections. Trust in
confidentiality critical to
collecting sensitive
information from
respondents.
Risks: Concerns about
composition effects and
reconstruction attacks
motivated adoption of
DP.

Sensitivity: Data subject
to stringent statutory
protections.
Risks: Prior methods of
de-identification and
redaction judged not to
sufficiently mitigate risk.

Sensitivity:
General-purpose system
designed to support
analyses of data of
varying degrees of
sensitivity.
Risks: Vary by data
source. DP provides
stronger mechanism to
mitigate risk than
pre-deposit redaction and
deidenfication.

Tiered
Access
Controls

Part of a tiered access
system that has
historically included
custom tabulations
service for institutional
clients; and Research
Data Centers for access
by vetted individuals to
private data.

Original data sources
remain available to
vetted users through
federal Restricted Data
Center mechanism.

Part of a tiered access
model that also supports
access to private data
with vetting and
restricted license.

Trust &
Publica-
tion
Models

Curator model, based on
prior data collection
design, with cleaning
before DP applied. Focus
on non-interactive
publication of tables.

Curator model applied to
previously collected data,
with cleaning and linkage
(between Census and IRS
data) before DP-like
methods applied.

Curator model, based on
previously collected and
deposited data. Supports
both non-interactive
releases of summary
statistics and interactive
queries.

Budget
Alloca-
tion

Must allocate budget and
optimize accuracy for
broad range of current
and future analyses.

Budget analysis focused
on balancing privacy vs.
societal utility, leading to
choice of a rather large
epsilon.

Provides recommended
choices of epsilon based
on sensitivity of data.
Choice to allow
per-analyst budgets
requires semi-trusted and
accountable analysts.

Estimating
Uncer-
tainty

Adopting DP has made
noise addition explicit,
whereas data users had
previously treated Census
tables as if they have no
error.

Designed to produce
uncertainty estimates
(taking privacy noise into
account) together with
quantities of interest, and
estimates also calculated
in a DP-like manner.

Important to expose
uncertainty estimates
from noise due to privacy,
both before and after
release.

Granularity Focused both on
individuals and
households, as
appropriate to data
measurement design

Focused on individuals. Determined by data
depositor.
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exactly consistent with an underlying synthetic data set (rather than a
collection of noisy statistics that would be produced by a standard dif-
ferentially private algorithm), along with other information that needs
to be published exactly (e.g., the state population totals). This required
the design of custom differentially private algorithms by experts at the
Bureau (Garfinkel, Abowd and Powazek, 2018; Abowd et al., 2019).

Second, the sources of error in the Decennial Census data products
(in particular, disclosure avoidance) have historically not been made
explicit and have been largely ignored by data users. Differential pri-
vacy is transparent about its noise addition and thus creates concern
among stakeholders for the potential impact on their applications. Re-
construction attacks (Dinur and Nissim, 2003) tell us that the data
products cannot be simultaneously accurate for all possible uses and
maintain privacy, leaving the Bureau with the challenging problems
of deciding which users and uses to prioritize for accuracy and then
optimizing the algorithm and its privacy-loss budget allocation accord-
ingly. To this end, the Bureau published a Federal Register Notice (Bu-
reau of the Census, 2018) to understand what aspects of their data
products were most important for data users and also released a series
of demonstration products showing the impact of potential versions of
their differentially private algorithms on past Decennial Censuses.39

Referring to some of the other design choices discussed in Appendix A,
the plans for the 2020 Decennial Census are utilizing a curator model
(with the US Census Bureau as the trusted curator) with a noninter-
active publication model corresponding with the pre-existing data col-
lection and dissemination design. However, historically, access to data
from the Decennial Census has not been limited to the public-use prod-
ucts discussed above but have also been made available through other
means, including a custom tabulation service for institutional clients
and Federal Statistical Research Data Centers for access by vetted in-
dividuals. Thus, the planned use of differential privacy fits within an
existing tiered access system. It remains to be seen whether and how

39See United States Census Bureau, https://www.census.gov/programs-surveys/de
cennial-census/2020-census/planning-management/2020-census-data-products/2
020-das-updates.html (accessed 2020-12-17).
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interactive differential privacy will play a role in subsequent accesses
to data from the 2020 Census. Similar to past Census disclosure avoid-
ance systems, the planned algorithm is to be applied after data clean-
ing edits are performed (Garfinkel, 2017). It will enforce privacy at the
granularity of individuals as well as at the granularity of households for
publications that are based on household characteristics.

Consider the application of differential privacy to the Decennial
Census in contrast with another data product from the US Census
Bureau— namely, the Post-Secondary Employment Outcomes (PSEO)
data (Foote, Machanavajjhala and McKinney, 2019). This data product
includes estimates of the cumulative distribution function of earnings
for different subsets of the national student population, based on
linking college transcripts with Longitudinal Employer-Household
Dynamics (LEHD) data. In contrast with the Decennial Census prod-
ucts, this was a new product first released in 2018, so there was no
history of entrenched data use that constrained the form of the data
release. As a result, it was possible to employ standard differentially
private algorithms (namely, binning the earnings within each subset
and adding noise to the counts in each bin). Note that the linking of
transcript data with LEHD data is done prior to the application of the
differentially private algorithm. The PSEO release used a privacy-loss
parameter of ε = 1.5 (US Census Bureau Center for Economic Studies,
n.d.).

6.4.2 The Opportunity Atlas

The Opportunity Atlas is a web-based visualization tool for exploring
social mobility data. It was published as the result of a collaboration
between the US Census Bureau, Harvard University, and Brown Uni-
versity (Chetty et al., 2018). The database contains data relevant to
understanding children’s economic outcomes in adulthood for every
Census tract in the United States. Researchers and policymakers can
use the Opportunity Atlas to understand how individuals’ prosperity
or poverty is rooted in the neighborhoods in which they grew up and
how interventions can be targeted in certain neighborhoods to help
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more children rise out of poverty.

The Opportunity Atlas is based on data about over 20 million children
and their parents, compiled from multiple statistical and administra-
tive data sources. Census data sources include the 2000 and 2010 De-
cennial Censuses and the American Community Survey. Administrative
data sources included de-identified data from IRS income tax returns
and data on students receiving Federal Pell Grants, obtained from the
US Department of Education’s National Student Loan Data System.

Raj Chetty and John Friedman, Director and Co-Director of the Op-
portunity Insights research team, respectively, developed the privacy
protection mechanism for the Opportunity Atlas in consultation with
the US Census Bureau and the Harvard University Privacy Tools Project
(Chetty and Friedman, 2019). Consistent with the US Census Bureau’s
broader efforts to modernize its approach to disclosure limitation (as
discussed in Section 6.4.1) and the legal protections for both Census
and IRS data,40 the Opportunity Atlas was produced using a method
inspired by differential privacy.

Linkage, analysis, and disclosure avoidance were performed in Census
facilities. There was a single set of analyses to perform to generate the
Opportunity Atlas, and a privacy budget was not reserved for future
analyses. They ran simple linear regressions on the data from the Cen-
sus Bureau and IRS in order to predict child income rank from parent
income rank in each Census tract, broken down by race, gender, and
other variables. This created challenges for a differentially private so-
lution, as the sample sizes were small (on the order of tens, hundreds,
and thousands), and there was sometimes a very small variance in the
explanatory variable. However, despite these challenges, the Oppor-
tunity Atlas achieved good results using a differential privacy–inspired
method. In terms of accuracy, this approach performed better than

40The raw data from the Census Bureau is protected by Title 13 of the United States
Code, which prohibits “mak[ing] any publication whereby the data furnished by any
particular establishment or individual under this title can be identified” (13 U.S.C.
§ 9(a)(2)). Pursuant to Title 26, the IRS shares federal tax returns and return in-
formation with the Census Bureau for statistical purposes, and the Census Bureau is
prohibited from disclosing such tax return information except in “a form which cannot
be associated with, or otherwise identify, directly or indirectly, a particular taxpayer”
(26 U.S.C. 6103(j)(4)).
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some traditional statistical disclosure limitation techniques. Indeed,
the researchers found that traditional count suppression would have
caused them to miss strong relationships that relied on small counts
(e.g., between teenage birth rates for black women and the propor-
tion of single parents in Census tracts) (Chetty and Friedman, 2019).
The Opportunity Atlas also includes uncertainty estimates (standard
errors), which are also calculated in a differential privacy–inspired
manner.

Chetty and Friedman suggest selecting the privacy-loss parameter (ε)
using the framework of Abowd and Schmutte (Abowd and Schmutte,
2019), equating the marginal societal benefit of increased accuracy
with the marginal cost due to reduced privacy. Given the small sample
sizes of the Opportunity Atlas and the importance of accurate data for
policymaking, the Opportunity Atlas used (with approval of the Cen-
sus Bureau Disclosure Review Board) a value of ε that is significantly
larger than is typically considered in the differential privacy literature.
Specifically, they used ε = 8 for each of several statistics published for
each demographic group within a tract.

The Chetty-Friedman method is a general technique, in that it applies
to many different statistical estimators (not just simple linear regres-
sion). However, it is not formally differentially private, and its privacy
properties rely on the same analysis being carried out on many differ-
ent cells (e.g., many Census tracts as in the Opportunity Atlas). For the
specific case of simple linear regression, subsequent work has devel-
oped formally differentially private methods that are competitive with
the Chetty-Friedman method, and thus may be applied even to releases
that do not have the cell structure of the Opportunity Atlas (Alabi et al.,
2020).
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6.4.3 Dataverse Repositories

The Harvard University Privacy Tools Project41 and the OpenDP initia-
tive42 have been developing a vision for how differential privacy can
be incorporated into research data repositories like Dataverse, ICPSR,
and Dryad to help human-subjects researchers safely share and ana-
lyze sensitive data (Gaboardi et al., 2016; The OpenDP Team, 2020).
Although these solutions have not yet been deployed at the time of this
Handbook, software to support the projects are under active construc-
tion and may be available for use in the near future. Thus, this section
outlines how differential privacy might fit into some of the ways that
research data repositories are used, employing a lightly edited extract
from the OpenDP whitepaper (The OpenDP Team, 2020). For con-
creteness, the text is written as specific to using OpenDP software in
Dataverse repositories but can be generalized to other repositories and
underlying differential privacy software.

Dataverse (King, 2007; Crosas, 2011, 2013; King, 2014), developed at
Harvard’s Institute for Quantitative Social Science (IQSS) in 2006, en-
ables researchers to share their data sets with the research community
through an easy-to-use, customizable web interface, keeping control
of, and gaining credit for, their data while the underlying infrastruc-
ture provides robust support for good data archival and management
practices. Dataverse has been installed and serves as a research data
repository in more than fifty institutions worldwide.

Dataverse repositories (like most general-purpose data repositories)
currently have little support for hosting privacy-sensitive data. Data
sets with sensitive information about human subjects were supposed
to be “de-identified” before deposit. Unfortunately, as discussed in Sec-
tion 6.1.2, research in data privacy starting with (Sweeney, 1997) has
demonstrated convincingly that traditional de-identification does not
provide effective privacy protection. The current alternative to open
data sharing in repositories is that researchers depositing a data set
(data depositors) declare their data set restricted: the data set would

41Harvard University Privacy Tools Project, http://privacytools.seas.harvard.edu
(accessed 2020-12-17).

42OpenDP, http://opendp.io/ (accessed 2020-12-17).
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not be made available for download, and the only way for other re-
searchers to obtain access would be through contacting the data de-
positor and negotiating terms on an ad hoc basis. This approach is also
unsatisfactory, as it can require the continued involvement of the data
depositor, the negotiations can often take months, and thus it impedes
the ability of the research community to verify, replicate, and extend
work done by others.

OpenDP can enable Dataverse to offer additional ways to access sensi-
tive data as illustrated by the following use cases.

1. Enabling variable search and exploration of sensitive data sets
deposited in the repository

Dataverse already automatically calculates variable summary statistics
(counts, min/max, means, etc.) when a tabular file is deposited. These
summary statistics for each variable can be viewed using the Data Ex-
plorer tool, even without downloading or accessing the data file. As
OpenDP is integrated with Dataverse, a data depositor should be able
to generate a differentially private (DP) summary statistics metadata
file using an OpenDP user interface. To do this, the data depositor
would select “Generate DP Summary Statistics” after the tabular data
file is ingested in Dataverse, launching the OpenDP interface. Then
they would select the privacy-loss parameter for their data file, and
OpenDP would create the differentially private summary statistics file
and Dataverse would store the newly created metadata file associated
with the sensitive tabular data file. Once the data set is published, an
end user would be able to view the summary statistics of the sensi-
tive data file using the Data Explorer tool without ever accessing or
downloading the actual data file.

2. Facilitating reproducibility of research with sensitive data sets

At least a third of the data sets deposited in Dataverse are replica-
tion data and code associated with a published scholarly paper. With
OpenDP, data depositors or owners could create a differentially private
release on a sensitive data set, which could be used to computationally
reproduce the results of the published paper while protecting the pri-
vacy of the original data set. In this case, like in Use Case 1 above,
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a data depositor would select a privacy-loss parameter through the
OpenDP user interface and use OpenDP’s statistical query interface to
select and run the statistics of choice to create the appropriate replica-
tion release. The differentially private replication release file would be
made available in the data set and end users would be able to down-
load it, while the original sensitive data set would be protected and not
accessible by end users except through the existing processes as above.

3. Enable statistical analysis of sensitive data sets accessible
through the repository

For additional flexibility, the data depositor of a sensitive data set could
allow for any researcher (end user) to be able to run any statistic
available through the OpenDP interface. In this case, the data deposi-
tor would configure the allocation of privacy-loss budgets through the
OpenDP interface before releasing the data set. Once the data set is
published, an end user would be able to click “explore” for the sensi-
tive data file, and the OpenDP statistical query interface would open.
The user would not have access to the original sensitive data file but
would be able to run the statistics of their choice—up to the point that
the established privacy-loss budget allows.

Referring to some of the other design choices discussed in Appendix
A, the vision outlined above fits into the curator model of differential
privacy, as researchers depositing data in the repository have typically
already been trusted to collect the sensitive data. It is part of a tiered
access model meant to augment rather than replace the existing meth-
ods of accessing restricted data. Use Cases 1 and 2 involve noninterac-
tive releases, whereas Use Case 3 allows for interactive queries. Many
of the other key choices associated with implementing differential pri-
vacy are left to the data depositor, who cannot be expected to have
expertise in differential privacy. Thus, the software tools must provide
a clear user interface to guide the depositor in their decisions. There
should be a tutorial on the concepts of privacy loss, privacy–accuracy
trade-offs, and budgeting, including recommended choices of privacy-
loss parameter ε according to different categories of data and sensitiv-
ity. The depositor should also be guided in defining the granularity of
privacy appropriate for their data and the trade-offs between offering
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per-analyst budgets for interactive queries versus a global budget for all
queries. Domain knowledge will be required of the depositor (and the
analyst in Use Case 3) in deciding which statistics to release and which
ones to prioritize for accuracy. For the research use cases described
above, it will be important that the differentially private analyses of-
fered provide uncertainty estimates whenever possible.
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Appendix

A discussion of different technical approaches to disseminat-
ing data with differential privacy and key design choices, the
implications of differential privacy for data collection, use,
and dissemination, and a list of selected tools and resources
for implementing differential privacy protections can be found
in the Online Appendix at admindatahandbook.mit.edu/bo
ok/v1.0/diffpriv.html#dif fpriv-appendix
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