A lower bound on list size for list decoding

Citation:

Guruswami, Venkatesan, and Salil Vadhan. “A lower bound on list size for list decoding.” IEEE Transactions on Information Theory 56, no. 11 (2010): 5681-5688.
RANDOM2005.pdf0 bytes

Abstract:

Version History: Preliminary version published in RANDOM '05 (https://link.springer.com/chapter/10.1007/11538462_27) and attached as RANDOM2005.pdf.

q-ary error-correcting code \(C ⊆ \{1,2,...,q\}^n\) is said to be list decodable to radius \(\rho\) with list size L if every Hamming ball of radius ρ contains at most L codewords of C. We prove that in order for a q-ary code to be list-decodable up to radius \((1–1/q)(1–ε)n\), we must have \(L = Ω(1/ε^2)\). Specifically, we prove that there exists a constant \(c_q >0\) and a function \(f_q\) such that for small enough \(ε > 0\), if C is list-decodable to radius\( (1–1/q)(1–ε)n \)with list size \(c_q /ε^2\), then C has at most \(f q (ε) \)codewords, independent of n. This result is asymptotically tight (treating q as a constant), since such codes with an exponential (in n) number of codewords are known for list size \(L = O(1/ε^2)\).

A result similar to ours is implicit in Blinovsky [Bli] for the binary \((q=2)\) case. Our proof works for all alphabet sizes, and is technically and conceptually simpler.

 

Publisher's Version

Last updated on 06/03/2020