Differential privacy with imperfect randomness


Dodis, Yevgeniy, Adriana López-Alt, Ilya Mironov, and Salil Vadhan. “Differential privacy with imperfect randomness.” In Ran Canetti and Rei Safavi-Naini, editors, Proceedings of the 32nd International Cryptology Conference (CRYPTO ‘12), Lecture Notes on Computer Science, 7417:497-516. Springer-Verlag, 2012.
CRYPTO2012.pdf398 KB
IACR2012.pdf338 KB


In this work we revisit the question of basing cryptography on imperfect randomness. Bosley and Dodis (TCC’07) showed that if a source of randomness \(\mathcal{R}\) is “good enough” to generate a secret key capable of encrypting \(k\) bits, then one can deterministically extract nearly \(k\) almost uniform bits from \(\mathcal{R}\), suggesting that traditional privacy notions (namely, indistinguishability of encryption) requires an “extractable” source of randomness. Other, even stronger impossibility results are known for achieving privacy under specific “non-extractable” sources of randomness, such as the \(\gamma\)-Santha-Vazirani (SV) source, where each next bit has fresh entropy, but is allowed to have a small bias \(\gamma < 1\) (possibly depending on prior bits).

We ask whether similar negative results also hold for a more recent notion of privacy called differential privacy (Dwork et al., TCC’06), concentrating, in particular, on achieving differential privacy with the Santha-Vazirani source. We show that the answer is no. Specifically, we give a differentially private mechanism for approximating arbitrary “low sensitivity” functions that works even with randomness coming from a \(\gamma\)-Santha-Vazirani source, for any \(\gamma < 1\). This provides a somewhat surprising “separation” between traditional privacy and differential privacy with respect to imperfect randomness.

Interestingly, the design of our mechanism is quite different from the traditional “additive-noise” mechanisms (e.g., Laplace mechanism) successfully utilized to achieve differential privacy with perfect randomness. Indeed, we show that any (non-trivial) “SV-robust” mechanism for our problem requires a demanding property called consistent sampling, which is strictly stronger than differential privacy, and cannot be satisfied by any additive-noise mechanism.

Publisher's Version

Last updated on 06/30/2020