
The Many Entropies in One-Way Functions

Iftach Haitner and Salil Vadhan

Abstract Computational analogues of information-theoretic notions have given rise to some of the most
interesting phenomena in the theory of computation. For example, computational indistinguishability, Gold-
wasser and Micali [9], which is the computational analogue of statistical distance, enabled the bypassing of
Shanon’s impossibility results on perfectly secure encryption, and provided the basis for the computational
theory of pseudorandomness. Pseudoentropy, H̊astad, Impagliazzo, Levin, and Luby [17], a computational
analogue of entropy, was the key to the fundamental result establishing the equivalence of pseudorandom
generators and one-way functions, and has become a basic concept in complexity theory and cryptography.
This tutorial discusses two rather recent computational notions of entropy, both of which can be easily found
in any one-way function, the most basic cryptographic primitive. The first notion is next-block pseudoentropy,
Haitner, Reingold, and Vadhan [14], a refinement of of pseudoentropy that enables simpler and more efficient
construction of pseudorandom generators. The second is inaccessible entropy, Haitner, Reingold, Vadhan,
and Wee [11], which relates to unforgeability and is used to construct simpler and more efficient universal
one-way hash functions and statistically hiding commitments.

Iftach Haitner

School of Computer Science, Tel Aviv University. E-mail: iftachh@cs.tau.ac.il, member of the Israeli Center of Research
Excellence in Algorithms (ICORE) and the Check Point Institute for Information Security. Research supported by ERC starting

grant 638121.

Salil Vadhan

John A. Paulson School of Engineering & Applied Sciences, Harvard University. E-mail: salil@seas.harvard.edu. Written
while visiting the Shing-Tung Yau Center and the Department of Applied Mathematics at National Chiao-Tung University in
Hsinchu, Taiwan. Supported by NSF grant CCF-1420938 and a Simons Investigator Award.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 84 (2017)





Contents

The Many Entropies in One-Way Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Iftach Haitner and Salil Vadhan
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Pseudoentropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Inaccessible Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Rest of This Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Related Work and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Entropy Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 One-Way Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Next-Block Entropy and Pseudorandom Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Next-Block Pseudoentropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Next-Block Pseudoentropy Generators from One-Way Functions . . . . . . . . . . . . . . . . 13
3.3 Manipulating Next-Block Pseudoentropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Putting It Together: One-Way Functions to Pseudorandom Generators . . . . . . . . . . 21

4 Inaccessible Entropy and Statistically Hiding Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 Inaccessible Entropy Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Inaccessible Entropy Generator from One-way Functions . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Manipulating Real and Accessible Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Inaccessible Entropy Generator to Statistically Hiding Commitment . . . . . . . . . . . . . 33

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



1 Introduction

One-way functions (OWFs), functions that are easy to compute and hard to invert, are the most basic,
unstructured form of cryptographic hardness [22]. Yet, in a sequence of celebrated results, mostly in the
1980s and early 1990s, one-way functions were shown to imply a rich collection of cryptographic schemes
and protocols, such as digital signatures and secret-key encryption schemes. At the basis of this beautiful
mathematical structure are a few constructions of basic primitives: pseudorandom generators (H̊astad et al.
[17]), universal one-way hash functions (Naor and Yung [26], Rompel [27]), and more recently, statistically
hiding commitment schemes (Haitner, Nguyen, Ong, Reingold, and Vadhan [10]). These powerful plausibility
results shape our understanding of hardness, secrecy, and unforgeability in cryptography. For instance, the
construction of pseudorandom generators provides strong evidence that computationally secure encryption
is much richer than information-theoretically secure encryption, as it allows encrypting many more bits than
the key length, in contrast to Shannon’s impossibility result for information-theoretic security [28]. The
construction of universal one-way hash functions yields that some “public-key” objects, such as signature
schemes, can be built from “private-key” primitives, like one-way functions. A recent line of results [11, 12,
14, 29] simplified and improved all of these constructions. The crux of each new construction is defining the
“right” notion of computational entropy and recovering this form of entropy from one-way functions.

Computational entropy. Computational analogues of information-theoretic notions have given rise to
some of the most interesting phenomena in the theory of computation. For example, computational indistin-
guishability, a computational analogue of statistical indistinguishability introduced by Goldwasser and Micali
[9], enabled the bypassing of Shannon’s impossibility results on perfectly secure encryption [28], and pro-
vided the basis for the computational theory of pseudorandomness [2, 32]. Pseudoentropy, a computational
analogue of entropy introduced by H̊astad et al. [17], was the key to their fundamental result establishing
the equivalence of pseudorandom generators and one-way functions, and has become a basic concept in com-
plexity theory and cryptography. The above notions were further refined in [14, 29], and new computational
analogues of entropy to quantify unforgeability were introduced in [11, 12]. These new abstractions have led
to much simpler and more efficient constructions based on one-way functions, and to a novel equivalence be-
tween (parallelizable) constant-round statistical zero-knowledge arguments and constant-round statistically
hiding commitments.

The purpose of this tutorial is to explain these computational notions of entropy and their application
in constructing cryptographic primitives. The utility of the computational notions of entropy is to bridge
between the very unstructured form of hardness of the primitive we start with (e.g., one-wayness) and the
typically much more structured form of hardness that appears in the primitive we are trying to construct.
The benefit of using such computational notions of entropy is that there exists well-developed machinery
for manipulating information-theoretic entropy and making it more structured (e.g., through taking many
independent copies and applying hash functions and randomness extractors); with care, analogous tools can
be applied to the computational notions. For example, in each of the two constructions presented in this
tutorial, the first step is to construct a “generator” with a noticeable gap between its real output entropy and
its computational entropy—entropy from the point of view of a computationally bounded adversary. (For
each construction, we use a different notion computational entropy.) The next step is to increase the gap
between real and computational entropy and to convert them into worst-case analogues (e.g., min-entropy and
max-entropy) using the standard information-theoretic tools of taking many independent samples. Finally,
hashing and randomness extractors are used to obtain more structured randomness generators.

In the following, we discuss the two major types of computational entropy notions that can be found in any
one-way function. pseudoentropy, which comes to quantify pseudorandomness and secrecy, and inaccessible
entropy, which comes to quantify unforgeability. We do that while focusing on next-block pseudoentropy, a
refinement of the traditional notion of pseudoentropy, and on the type of inaccessible entropy that is related
to, and used as in intermediate step to construct, statistically hiding commitment schemes. In the main
body of this tutorial, we discuss these two notions further, and exemplify their usability with applications
to one-way function based primitives.

1



1.1 Pseudoentropy

A random variable X over {0, 1}n is pseudorandom if it is computationally indistinguishable from Un.1

The most natural quantitative variant of pseudorandomness is the so-called HILL pseudoentropy (stands for
H̊astad, Impagliazzo, Levin, and Luby), or just pseudoentropy.

Definition 1 ((HILL) pseudoentropy, [17], informal). A random variable X is said to have pseudoen-
tropy (at least) k if there exists a random variable Y such that:

1. X is computationally indistinguishable from Y .
2. H(Y ) ≥ k, where H(·) denotes Shannon entropy.2

A function (i.e., a generator) G : {0, 1}n 7→ {0, 1}m(n) has pseudoentropy k if G(Un) has pseudoentropy k.
An efficiently computable G : {0, 1}n 7→ {0, 1}m(n) is a pseudoentropy generator if it has pseudoentropy (at
least) H(G(Un))) +∆(n) for some ∆(n) ≥ 1/ poly(n). We refer to ∆ as the entropy gap of G.3

Pseudoentropy plays a key role in the H̊astad et al. [17] construction of pseudorandom generators from
one-way functions. A pseudorandom generator (PRG) is an efficient length-extending function whose out-
put distribution, over uniformly chosen input, is pseudorandom. Note that every pseudorandom generator
G : {0, 1}n 7→ {0, 1}m(n) is a pseudoentropy generator with entropy gap at least m(n) − n; take Y = Um(n)

and note that H(Y ) = m(n), but H(G(Un)) ≤ H(Un) = n. Pseudoentropy generators are weaker in that Y
may be very far from uniform, and even with H(Y )� n (as long as H(G(Un)) is even smaller). Yet, H̊astad
et al. [17] showed that also the converse is true, using pseudoentropy generators to construct pseudoran-
dom generators. The first and key step of their main result (that one-way functions imply pseudorandom
generators) was to show that a simple modification of any one-way function is a pseudoentropy generator
with small but noticeable entropy gap, where the rest of their construction is “purifying” this generator’s
pseudoentropy into pseudorandomness, and thus turning it into a PRG. This shows in a sense that (a simple
modification of) one-way functions have the computational notion of entropy that pseudorandom generators
take to the extreme.

Constructing pseudoentropy generator from an injective one-way function is easy. Given such an injective
function f : {0, 1}n 7→ {0, 1}∗, let G(x) = (f(x), b(x)), where b is an hardcore predicate of f .4 G’s pseudoen-
tropy is n+ 1, which is larger by one bit than its output (and input) entropy. Similar constructions can be
applied to one-way functions that can be converted to (almost) injective one-way functions (e.g., regular one-
way functions), but generalizing it to arbitrary one-way function is seemingly a much more challenging task.
Yet, H̊astad et al. [17] did manage to get a pseudoentropy generator out of an arbitrary one-way function,
alas with poor parameters compared with what can easily be achieved from an injective one-way function.
Specifically, while its output pseudoentropy is larger than its real output entropy, and thus it possesses a
positive entropy gap, its entropy gap is tiny (i.e., log n/n), and its pseudoentropy is smaller than its input
length. In addition, the quantity of its pseudoentropy is not efficiently computable. These issues result in
a complicated and indirect PRG construction. Constructions that followed this approach ([13, 19]), while
improving and simplifying the original construction, also ended up being rather complicated and inefficient.
To deal with this barrier, Haitner, Reingold, and Vadhan [14] presented a relaxation of this notion called
next-block pseudoentropy, which can be easily obtained with strong parameters from any one-way function,
yet is still strong enough for construction of PRGs.

1 I.e., |Pr [D(X) = 1] = Pr [D(Un) = 1]| = neg(n) for any polynomial-time distinguisher D, where Un is uniformly distributed

over {0, 1}n, and neg(n) is smaller than any inverse polynomial. See Section 2 for the formal definitions.
2 The Shanon entropy of a random variable X is defined by H(X) = Ex←X

[
log 1

Pr[X=x]

]
.

3 H̊astad et al. [17] refer to such a generator as a false entropy generator, and require a pseudoentropy generator to have output

pseudoentropy (at least) n+∆(n), rather than just H(G(Un)) +∆(n). For the sake of this exposition, however, we ignore this
distinction.
4 b is hardcore predicate of f if (f(Un), b(Un)) is computationally indistinguishable from (f(Un), U), for Un and U sampled,

uniformly and independently, from {0, 1}n and {0, 1}, respectively.

2



1.1.1 Next-Block Pseudoentropy

Next-block pseudoentropy is similar in spirit to the Blum and Micali [3] notion of next-bit unpredictability,
which was shown by Yao [32] to be equivalent to his (now-standard) definition of pseudorandomness. This
equivalence says that a random variable X = (X1, . . . , Xm) is pseudorandom iff each bit of X is unpre-
dictable from the previous bits. That is, Pr [P(X1, X2, . . . , Xi−1) = Xi] ≤ 1

2 + neg(n) for every i and efficient
predictor (i.e., algorithm) P. Equivalently, (X1, X2, . . . , Xi−1, Xi) is computationally indistinguishable from
(X1, X2, . . . , Xi−1, U) where U is a uniform bit. It is thus natural to consider what happens if we relax the
pseudorandomness of Xi to pseudoentropy (capturing the idea that Xi is only somewhat unpredictable from
the previous bits). And more generally, we can allow the Xi’s to be blocks instead of bits.

Definition 2 (next-block pseudoentropy [14], informal). A random variable X = (X1, . . . , Xm) is said
to have next-block pseudoentropy (at least) k if there exists a sequence of random variables Y = (Y1, . . . , Ym),
jointly distributed with X, such that:

1. (X1, X2, . . . , Xi−1, Xi) is computationally indistinguishable from (X1, X2, . . . , Xi−1, Yi), for every i.
2.
∑
i H(Yi|X1, . . . Xi−1) ≥ k.

A function G : {0, 1}n 7→ ({0, 1}`)m is said to have next-block pseudoentropy k if (X1, . . . , Xm) = G(Un) has
next-block pseudoentropy k. A next-block pseudoentropy generator is a polynomial-time computable function
G : {0, 1}n 7→ ({0, 1}`)m that has next-block pseudoentropy (at least) H(G(Un)) + ∆(n) for some ∆(n) >
1/ poly(n), where again ∆ is called the entropy gap.

That is, in total, the blocks of X “look like” they have k bits of entropy given the previous ones. Note that
the case k = m and blocks of size one (the Xi’s are bits) amounts to the Yao [32] definition of unpredictability
discussed above. The case of one block (m = 1) amounts to H̊astad et al. [17] definition of pseudoentropy
(Definition 1). Also note that, when m > 1, allowing Y to be correlated with X in this definition is essential:
for example, if all the blocks of X are always equal to each other (and have noticeable entropy), then there
is no way to define Y that is independent of X and satisfies the first condition.

Unlike the case of (HILL) pseudoentropy, it is known how to use any one-way function to construct a
next-block pseudoentropy generator with good parameters.

Constructing next-block pseudoentropy generators from one-way functions. Given a one-way
function f : {0, 1}n 7→ {0, 1}n, we construct a generator G as

G(x) = (f(x), x1, . . . , xn). (.1)

The above construction was proven to achieve next-block pseudoentropy by Vadhan and Zheng [29]. The
original construction of Haitner et al. [14] considered instead G(x, h) = (f(x), h(x)1, . . . , h(x)n), for an
appropriate family of hash functions with seed length O(n). In this tutorial, we will analyze the latter
construction, using a family of hash functions of seed length O(n2), as it has a simpler analysis.5

If we consider only the original notion of pseudoentropy (Definition 1), the above construction is prob-
lematic; the polynomial-time test T (y, x) that checks whether y = f(x), distinguishes G(Un) from every
random variable of entropy noticeably larger than n (since T accepts only 2n strings). However, it turns out
that it does have next-block pseudoentropy at least n + log n. This has two advantages compared with the
pseudoentropy generator constructed by H̊astad et al. [17]. First, the entropy gap is now ∆ = log n instead of
∆ = log n/n. Second, the total amount of pseudoentropy in the output (though not the amount contributed
by the individual blocks) is known. These two advantages together yield a simpler and more efficient one-way
function based PRG.

5 Interestingly, the construction we consider in this tutorial is similar to the pseudoentropy generator used by H̊astad et al.
[17], but here it is viewed as a next-block pseudoentropy generator.

3



1.2 Inaccessible Entropy

Notions of pseudoentropy as above are only useful as a lower bound on the “computational entropy” in a
distribution. For instance, it can be shown that every distribution on {0, 1}n is computationally indistinguish-
able from a distribution of entropy at most polylog n. In this section we introduce another computational
analogue of entropy, which we call accessible entropy, which is useful as an upper bound on computational
entropy. We motivate the idea of accessible entropy with an example. Let G be the following two-block
generator:

Algorithm 1 (G).
Let m� n and let H = {h : {0, 1}n 7→ {0, 1}m} be a family of collision-resistant hash functions.6

On public parameter h
R←H.

1. Sample x
R←{0, 1}n.

2. Output y = h(x).
3. Output x.

Now, information-theoretically, G’s second output block (namely x) has entropy at least n − m ≥ 1
conditioned on h and its first output block y. This is since (h, y = h(x)) reveals only m bits of information
about x. The collision-resistance property of h, however, implies that given the state of G after it outputs
its first block y, there is at most one consistent value of x that can be computed in polynomial time
with nonnegligible probability. (Otherwise, we would be able find two distinct messages x 6= x′ such that

h(x) = h(x′).) This holds even if G is replaced by any polynomial-time cheating strategy G̃. Thus, there is
“real entropy” in x (conditioned on h and the first output of G), but it is “computationally inaccessible” to

G̃, to whom x effectively has entropy 0.
We generalize this basic idea to allow the upper bound on the “accessible entropy” to be a parameter

k, and to consider both the real and accessible entropy accumulated over several blocks of a generator.
In more detail, consider an m-block generator G : {0, 1}n 7→ ({0, 1}∗)m, and let (Y1, . . . , Ym) be random
variables denoting the m output blocks generated by applying G over randomness Un (no public parameters
are given). We define the real entropy of G as H(G(Un)), the Shannon entropy of G(Un), which is equal to∑

i∈[m]

H(Yi | Y1, . . . , Yi−1),

where H(X | Y ) = E
y

R←Y
[H(X |Y=y)] is the standard notion of (Shannon) conditional entropy.

To define accessible entropy, consider a probabilistic polynomial-time cheating strategy G̃ that before
outputting the i-th block, tosses some fresh random coins ri, and uses them to output a string yi. We restrict
out attention to G-consistent (adversarial) generators—G̃’s output is always in the support of G (though
it might be distributed differently). Now, let (R1, Y1, . . . , Ym, Rm) be random variables corresponding to a

random execution of G̃. We define the accessible entropy achieved by G̃ to be∑
i∈[m]

H(Yi | R1, . . . , Ri−1).

The key point is that now we compute the entropy conditioned not just on the previous output blocks
Y1, . . . , Yi−1 (which are determined by R1, . . . , Ri−1), as done when computing the real entropy of G, but

also on the local state of G̃ prior to outputting the i-th block (which without loss of generality equal its coin
tosses R1, . . . , Ri−1). We define the accessible entropy of G as the maximal accessible entropy achieved by a

G-consistent, polynomial-time generator G̃. We refer to the difference (real entropy) − (accessible entropy)

6 Given h
R←H, it is infeasible to find distinct x, x′ ∈ {0, 1}n with h(x) = h(x′).

4



as the inaccessible entropy of the generator G, and call G an inaccessible entropy generator if its inaccessible
entropy is noticeably greater than zero.

It is important to note that if we put no computational restrictions on the computational power of a
G-consistent G̃, then its accessible entropy can always be as high as the real entropy of G; to generate its
i-th block yi, G̃ samples x uniformly at random from the set {x′ : G(x′)1 = y1, . . . ,G(x′)i−1 = yi−1}. This

strategy, however, is not always possible for a computationally bounded G̃.
The collision resistance example given earlier provides evidence that when allowing public parameters,

there are efficient generators whose computationally accessible entropy is much smaller than their real Shan-
non entropy. Indeed, the real entropy of the generator we considered above is n (namely, the total entropy in
x), but its accessible entropy is at most m+neg(n)� n, where m is the output length of the collision-resistant
hash function.

As we shall see, we do not need collision resistance; any one-way function can be used to construct an
inaccessible entropy generator (without public parameters). An application of this result is an alternative
construction of statistically hiding commitment schemes from arbitrary one-way functions. This construc-
tion is significantly simpler and more efficient than the previous construction of Haitner et al. [10]. It also
conceptually unifies the construction of statistically hiding commitments from one-way functions with the
construction of pseudorandom generators discussed in the previous section: the first step of both construc-
tions is to show that the one-way function directly yields a generator with a gap between its real entropy and
“computational entropy” (pseudoentropy in the case of pseudorandom generators, and accessible entropy in
the case of statistically hiding commitments). This gap is then amplified by repetitions and finally combined
with various forms of hashing to obtain the desired primitive.

Constructing an inaccessible entropy generator from one-way functions. For a one-way function
f : {0, 1}n 7→ {0, 1}n, consider the (n+ 1)-block generator

G(x) = (f(x)1, f(x)2, . . . , f(x)n, x).

Notice that this construction is the same as the construction of a next-block pseudoentropy generator from a
one-way function (Construction .1), except that we have broken f(x) into one-bit blocks rather than breaking
x. Again, the real entropy of G(Un) is n. It can be shown that the accessible entropy of G is at most n− log n,
so again we have an entropy gap of log n bit.

1.3 Rest of This Tutorial

Standard notations, definitions, and facts, are given in Section 2. An elaborated discussion of next-block
pseudoentropy, containing formal definitions, a construction from one-way functions, and its use in con-
stricting pseudorandom generators, is given in Section 3. An elaborated discussion of inaccessible entropy,
with formal definitions, a construction from one-way functions, and its use in constructing statistically hiding
commitment schemes, is given in Section 4. In both sections, we have chosen simplicity and clarity over full
generality and efficiency. For details of the latter, see the Further Reading section below.

1.4 Related Work and Further Reading

Pseudoentropy. More details and improvements on the construction of pseudorandom generator from
one-way functions via next-block pseudoentropy can be found in the works of Haitner et al. [14] and Vadhan
and Zheng [29]. In particular, Vadhan and Zheng [29] also show how to save a factor of n in the seed-length
blow up in the reduction from next-block pseudoentropy generator to PRG, thereby reducing the seed length

5



from Õ(n4) to Õ(n3) (at the price of making adaptive calls to the one-way function). Holenstein and Sinha
[20] showed that any black-box construction of a pseudorandom generator from a one-way function on n-bit
inputs must invoke the one-way function Ω(n/ log n) times. Their lower bound also applies to regular one-
way functions (of unknown regularity), and is tight in this case (due to the constructions of [8, 13]). The
constructions of Haitner et al. [14] and of Vadhan and Zheng [29] from arbitrary one-way functions invoke
the one-way function Õ(n3) times. It remains open whether the super linear number of invocations or the
super-linear seed length is necessary, or the constructions can be furthered improved.

Several other computational analogues of entropy have been studied in the literature (cf. [1, 21]), all of
which serve as ways of capturing the idea that a distribution “behaves like” one of higher entropy.

Inaccessible entropy. The details of the construction of statistically hiding commitments from one-way
functions via inaccessible entropy can be found in the work of Haitner et al. [16]. A preliminary version of
that paper [11] uses a more general, and more complicated, notion of accessible entropy which measures
the accessible entropy of protocols rather than generators. This latter notion is used in [11] to show that,
if NP has constant-round interactive proofs that are black-box zero knowledge under parallel composition,
then there exist constant-round statistically hiding commitment schemes. A subsequent work of Haitner
et al. [12] uses a simplified version of accessible entropy to present a simpler and more efficient construction
of universal one-way functions from any one-way function. One of the two inaccessible entropy generators
considered in [12], for constructing universal one-way functions, is very similar to the constructionist next-
block pseudoentropy and inaccessible entropy generators discussed above (in Sections 1.1 and 1.2). Hence,
all of these three notions of computational entropy can be found in any one-way function using very similar
constructions, all simple variants of G(x) = (f(x), x), where f is an arbitrary one-way function.

The notion of inaccessible entropy, of the simpler variant appearing in [12], is in a sense implicit in the
work of Rompel [27], who first showed how to base universal one-way functions on any one-way functions.

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, upper-case for random variables, lower-case for values, bold-face
for vectors. and sanserif for algorithms (i.e., Turing machines). For n ∈ N, let [n] = {1, . . . , n}. For vector
y = (y1, . . . , yn) and J ⊆ [n], let yJ = (yi1 , . . . , yi|J |), where i1 < . . . < i|J | are the elements of J . Let
y<j = y[j−1] = (y1, . . . , yj−1) and y≤j = y[j] = (y1, . . . , yj). Both notations naturally extend to an ordered
list of elements that is embedded in a larger vector (i.e., given (a1, b1, . . . , an, bn), a<3 refers to the vector
(a1, a2)). Let poly denote the set of all positive polynomials, let pptNU stand for a nonuniform probabilistic
polynomial-time algorithm. A function ν : N 7→ [0, 1] is negligible, denoted ν(n) = neg(n), if ν(n) < 1/p(n)
for every p ∈ poly and large enough n. For a function f and a set S, let Im(f(S)) = {f(x) : x ∈ S}.

2.2 Random Variables

Let X and Y be random variables taking values in a discrete universe U . We adopt the convention that,
when the same random variable appears multiple times in an expression, all occurrences refer to the same
instantiation. For example, Pr[X = X] is 1. For an event E, we write X|E to denote the random variable
X conditioned on E. We let PrX|Y [x|y] stand for Pr [X = x | Y = y]. The support of a random variable X,
denoted Supp(X), is defined as {x : Pr[X = x] > 0}. The variable X is flat if it is uniform on its support.
Let Un denote a random variable that is uniform over {0, 1}n. For t ∈ N, let X(t) = (X1, . . . , Xt), where
X1, . . . , Xt are independent copies of X.

6



We write X ≡ Y to indicate that X and Y are identically distributed. We write ∆(X,Y ) to denote the
statistical difference (also known as variation distance) between X and Y , i.e.,

∆(X,Y ) = max
T⊆U
|Pr[X ∈ T ]− Pr[Y ∈ T ]| .

If ∆(X,Y ) ≤ ε [resp., ∆(X,Y ) > ε], we say that X and Y are ε-close [resp., ε-far]. Two random variables
X = X(n) and Y = Y (n) are statistically indistinguishable, denoted X ≈S Y , if for any unbounded algorithm
D, it holds that |Pr[D(1n, X(n)) = 1]− Pr[D(1n, Y (n)) = 1]| = neg(n).7 Similarly, X and Y are nonuniformly
computationally indistinguishable, denoted X ≈nu−C Y ], if |Pr[D(1n, X(n)) = 1]− Pr[D(1n, Y (n)) = 1]| =
neg(n) for every pptNU D.

2.3 Entropy Measures

We refer to several measures of entropy. The relation and motivation of these measures is best understood by
considering a notion that we will refer to as the sample-entropy: for a random variable X and x ∈ Supp(X),
the sample-entropy of x with respect to X is the quantity

HX(x) := log 1
Pr[X=x] ,

letting HX(x) =∞ for x /∈ Supp(X), and 2−∞ = 0.
The sample-entropy measures the amount of “randomness” or “surprise” in the specific sample x, assuming

that x has been generated according to X. Using this notion, we can define the Shannon entropy H(X) and
min-entropy H∞(X) as follows:

H(X) := E
x

R←X
[HX(x)],

H∞(X) := min
x∈Supp(X)

HX(x).

The collision probability of X is defined by CP(X) :=
∑
x∈Supp(X) PrX [x]

2
= Pr

(x,x′)
R←X2

[x = x′], and its

Rényi-entropy is defined by

H2(X) := − log CP(X).

We will also discuss the max-entropy H0(X) := log(1/|Supp(X)|). The term “max-entropy” and its relation
to the sample-entropy will be made apparent below.

It can be shown that H∞(X) ≤ H2(X) ≤ H(X) ≤ H0(X) with each inequality being an equality if and
only if X is flat. Thus, saying H∞(X) ≥ k is a strong way of saying that X has “high entropy” and H0(X) ≤ k
a strong way of saying that X as “low entropy”.

The following fact quantifies the probability that the sample-entropy is larger than the max-entropy.

Lemma 1. For random variable X it holds that

1. E
x

R←X

[
2HX(x)

]
= |Supp(X)|.

2. Pr
x

R←X

[
HX(x) > log 1

ε + H0(X)
]
< ε, for any ε > 0.

Proof. For the first item, compute

7 This is equivalent to asking that ∆(X(n), Y (n)) = neg(n).

7



E
x

R←X

[
2HX(x)

]
=

∑
x∈Supp(X)

2−HX(x) · 2HX(x)

=
∑

x∈Supp(X)

1

= |Supp(X)| .

The second item follows by the first item and Markov inequality.

Pr
x

R←X

[
HX(x) > log

1

ε
+ H0(X)

]
= Pr

x
R←X

[
2HX(x) >

1

ε
· |Supp(X)|

]
< ε.

�

Conditional entropies. We will also be interested in conditional versions of entropy. For jointly dis-
tributed random variables (X,Y ) and (x, y) ∈ Supp(X,Y ), we define the conditional sample-entropy to
be HX|Y (x|y) = log 1

PrX|Y [x|y] = log 1
Pr[X=x|Y=y] . Then the standard conditional Shannon entropy can be

written as
H(X | Y ) = E

(x,y)
R←(X,Y )

[
HX|Y (x | y)

]
= E
y

R←Y
[H(X|Y=y)] = H(X,Y )−H(Y ).

The following known lemma states that conditioning on a “short” variable is unlikely to change the
sample-entropy by much.

Lemma 2. Let X and Y be random variables, let k = H∞(X), and let ` = H0(Y ). Then, for any t > 0, it
holds that

Pr
(x,y)

R←(X,Y )

[
HX|Y (x|y) < k − `− t

]
< 2−t.

Proof. For y ∈ Supp(Y ), let Xy = {x ∈ Supp(X) : HX|Y (x|y) < k − ` − t}. We have |Xy| < 2k−`−t. Hence,∣∣∣X =
⋃
y∈Supp(Y ) Xy

∣∣∣ < 2` · 2k−`−t = 2k−t. It follows that

Pr
(x,y)

R←(X,Y )

[
HX|Y (x|y) < k − `− t

]
≤ Pr

(x,y)
R←(X,Y )

[x ∈ X ] < 2−k · 2k−t = 2−t.

�

Smoothed entropies. The following lemma will allow us to think of a random variable X whose sample-
entropy is high with high probability as if it has high min-entropy (i.e., as if its sample-entropy function is
“smoother”, with no picks).

Lemma 3. Let X,Y be random variable and let ε > 0.

1. Suppose Pr
x

R←X
[HX(x) ≥ k] ≥ 1− ε, then X is ε-close to a random variable X ′ with H∞(X ′) ≥ k.

2. Suppose Pr
(x,y)

R←(X,Y )

[
HX|Y (x|y) ≥ k

]
≥ 1 − ε, then (X,Y ) is ε-close to a random variable (X ′, Y ′)

with HX′|Y ′(x|y) ≥ k for any (x, y) ∈ Supp(X ′, Y ′). Further, Y ′ and Y are identically distributed.

Proof Sketch. For the first item, we modify X on an ε fraction of the probability space (corresponding to
when X takes on a value x such that HX(x) ≥ k) to bring all probabilities to be smaller than or equal to
2−k.

The second item is proved via similar means, while when changing (X,Y ), we do so without changing the
“Y ” coordinate.

8



Flattening Shannon entropy. It is well known that the Shannon entropy of a random variable can be
converted to min-entropy (up to small statistical distance) by taking independent copies of this variable.

Lemma 4 ([31], Theorem 3.14). Let X be a random variables taking values in a universe U , let t ∈ N,

and let 0 < ε ≤ 1/e2. Then with probability at least 1− ε over x
R←X(t),

HX(t)(x)− t ·H(X) ≥ −O
(√

t · log 1
ε · log(|U| · t)

)
.

We will make use of the following “conditional variant” of Lemma 4:

Lemma 5. Let X and Y be jointly distributed random variables where X takes values in a universe U , let
t ∈ N, and let 0 < ε ≤ 1/e2. Then with probability at least 1− ε over (x, y)← (X ′, Y ′) = (X,Y )(t),

HX′|Y ′(x | y)− t ·H(X | Y ) ≥ −O
(√

t · log 1
ε · log(|U| · t)

)
.

The proof of Lemma 5 follows the same line as the proof of Lemma 4, by considering the random variable
HX|Y (X|Y ) instead of HX(X).

Sub-additivity. The chain rule for Shannon entropy yields that

H(X = (X1, . . . , Xt)) =
∑
i

H(Xi|X1, . . . , Xi−1) ≤
∑
i

H(Xi).

The following lemma shows that a variant of the above also holds for sample-entropy.

Lemma 6. For random variables X = (X1, . . . , Xt), it holds that

1. E
x

R←X

[
2HX(x)−

∑
t HXi

(xi)
]
≤ 1.

2. Pr
x

R←X

[
HX(x) > log 1

ε +
∑
i∈[t]HXi(xi)

]
< ε, for any ε > 0.

Proof. As in Lemma 1, the second part follows from the first by Markov’s inequality. For the first part,
compute

E
x

R←X

[
2HX(x)−

∑
t HXi

(xi)
]

=
∑

x∈Supp(X)

Pr [X = x] ·
∏
i∈[t] Pr [Xi = xi]

Pr [X = x]

=
∑

x∈Supp(X)

∏
i

Pr [Xi = xi]

≤ 1.

�

The following lemma generalizes Lemma 1 to settings that come up naturally when upper bounding the
accessible entropy of a generator (as we do in Section 4):

Definition 3. For a t-tuple random variable X = (X1, . . . , Xt), x ∈ Supp(X) and J ⊆ [t], let

HX,J (x) =
∑
i∈J

HXi|X<i
(xi|x<i).

Lemma 7. Let X = (X1, . . . , Xt) be a sequence of random variables and let J ⊆ [t]. Then,

1. E
x

R←X

[
2HX,J (x)

]
≤ |Supp(XJ )|.

9



2. Pr
x

R←X

[
HX,J (x) > log 1

ε + H0(XJ )
]
< ε, for any ε > 0.

Proof. The second item follows from the first one as in the proof of Lemma 1. We prove the first item by
induction on t and |J |. The case t = 1 is immediate, so we assume for all (t′,J ′) with (t′, |J ′|) < (t, |J |)
and prove it for (t,J ). Assume that 1 ∈ J (the case 1 /∈ J is analogous) and let X−1 = (X2, . . . , Xt) and
J−1 = {i− 1: i ∈ J \ {1}}. Compute

E
x

R←X

[
2HX,J (x)

]
=

∑
x1∈Supp(X1)

2−HX1
(x1) · 2HX1

(x1) · E
x

R←X−1|X1=x1

[
2
HX−1|X1=x1

,J−1
(x)
]

≤
∑

x1∈Supp(X1)

1 ·
∣∣Supp((X−1)J−1 |X1=x1)

∣∣
=

∑
x1∈Supp(X1)

∣∣Supp(XJ\{1}|X1=x1)
∣∣

≤ |Supp(XJ )| .

�

2.4 Hashing

We will use two types of (combinatorial) “hash” functions.

2.4.1 Two-Universal Hashing

Definition 4 (Two-universal function family). A function family H = {h : D 7→ R} is two universal if
∀x 6= x′ ∈ D, it holds that Prh←H [h(x) = h(x′)] ≤ 1/ |R|.

An example of such a function family is the set Hs,t = {0, 1}s×t of Boolean matrices, where for h ∈ Hs,t
and x ∈ {0, 1}s, we let h(x) = h× x (i.e., the matrix vector product over GF2). Another canonical example
is Hs,t = {0, 1}s defined by h(x) := h · x over GF(2s), truncated to its first t bits.

A useful application of two-universal hash functions is to convert a source of high Rényi entropy into a
(close to) uniform distribution.

Lemma 8 (Leftover hash lemma [24, 23]). Let X be a random variable over {0, 1}n with H2(X) ≥ k, let

H = {g : {0, 1}n 7→ {0, 1}m} be two-universal, and let H
R←H. Then SD((H,H(X)), (H,Um)) ≤ 1

2 ·2
(m−k)/2.

2.4.2 Many-wise Independent Hashing

Definition 5 (`-Wise independent function family). A function family H = {h : D 7→ R} is `-wise

independent if for any distinct x1, . . . , x` ∈ D, it holds that (H(x1), . . . ,H(x`)) for H
R←H is uniform over

R`.

The canonical example of such an `-wise independent function family is Hs,t,` = ({0, 1}s)` defined by
(h0, . . . , h`−i)(x) :=

∑
0≤i≤`−1 hi · xi over GF(2s), truncated to its first t bits.

It is easy to see that, for ` > 1, an `-wise independent function family is two-universal, but `-wise in-
dependent function families, in particular with larger value of `, have stronger guarantees on their output
distribution compared with two-universal hashing. We will state, and use, one such guarantee in the con-
struction of statistically hiding commitment schemes presented in Section 4.

10



2.5 One-Way Functions

We recall the standard definition of one-way functions.

Definition 6 (one-way functions). A polynomial-time computable f : {0, 1}n 7→ {0, 1}∗ is nonuniformly
one way if for every pptNU A

Pry←f(Us(n))

[
A(1n, y) ∈ f−1(y)

]
= neg(n). (.2)

Without loss of generality, cf. [13], it can be assumed that s(n) = n and f is length-preserving (i.e.,
|f(x)| = |x|).

3 Next-Block Entropy and Pseudorandom Generators

In this section, we formally define the notion of next-block pseudoentropy, and use it as intermediate tool to
construct pseudorandom generators from one-way functions. Preferring clarity over generality, we present a
simplified version of the definitions and constructions. For the full details see [14].

We start in Section 3.1, by presenting the formal definition of next-block pseudoentropy. In Section 3.2
we show that any one-way function can be used to construct a generator with a useful amount of next-
block pseudoentropy. In Section 3.3 we develop means to manipulate next-block pseudoentropy. Finally, in
Section 3.4, we show how to convert generators of the type constructed in Section 3.2 into pseudorandom
generators, thus reproving the fundamental result that pseudorandom generators can be based on any one-
way function.

3.1 Next-Block Pseudoentropy

Recall from the introduction that the next-block pseudoentropy is of a similar spirit to the Blum and Micali
[3] notion of next-bit unpredictability; a random variable X = (X1, . . . , Xm) is next-bit unpredictable if the
bit Xi cannot be predicted with nonnegligible advantage from X<i = (X1, X2, . . . , Xi−1), or alternatively,
Xi is pseudorandom given X<i. Next-block pseudoentropy relaxes this notion by only requiring that Xi has
some pseudoentropy given X<i.

We now formally define the notion of next-block pseudoentropy for the cases of both Shannon entropy and
min-entropy. The definition below differs from the definition of [14], in that we require the indistinguisha-
bility to hold (also) against nonuniform adversaries. This change simplifies the definitions and proofs (see
Remark 1), but at the price that we can only construct such pseudoentropy generators from functions that
are nonuniformly one-way (i.e., ones that are hard to invert for such nonuniform adversaries). We start by
recalling the more standard definitions of pseudoentropy and pseudorandomness (to be consistent with the
next-block pseudoentropy definitions given below, we give the nonuniform version of these definitions).

Definition 7 (Pseudoentropy and pseudorandomness). Let n be a security parameter and X = X(n)
be a random variable distributed over strings of length `(n) ≤ poly(n). We say that X = X(n) has pseudoen-
tropy (at least) k = k(n) if there exists a random variable Y = Y (n), such that

1. H(Y ) ≥ k, and
2. X and Y are nonuniformly computationally indistinguishable. I.e., for every pptNU D, it holds that

Pr [D(1n, X) = 1]− Pr [D(1n, Y ) = 1] = neg(n).

11



If H∞(Y ) ≥ k, we say that X has pseudo-min-entropy (at least) k, where if k = `(n), we say that X is
pseudorandom (which is equivalent to asking that X is computationally nonuniformly indistinguishable from
U`).

Finally, a polynomial-time computable function G : {0, 1}n 7→ {0, 1}`(n) is a pseudorandom generator if
` > n and G(Un) is pseudorandom.

That is, pseudoentropy is the computational analog of entropy. In construct, next-block pseudoentropy is
a computational analog of unpredictability.

Definition 8. (Next-block pseudoentropy) Let m = m(n) be an integer function. A random variable X =
X(n) = (X1, . . . , Xm) is said to have next-block (Shannon) pseudoentropy (at least) k = k(n) if there exists
a (jointly distributed) random variable Y = Y (n) = (Y1, . . . , Ym) such that

1.
∑m
i=1 H(Yi | X<i) ≥ k, and

2. Y is block-wise indistinguishable from X: for every pptNU D and i = i(n) ∈ [m(n)],

Pr [D(1n, X≤i) = 1]− Pr [D(1n, X<i, Yi) = 1] = neg(n).

Every block of X has next-block (Shannon) pseudoentropy at least α = α(n) if condition 1 above is replaced
with

1. H(Yi|X<i=x<i) ≥ α, for every x ∈ Supp(X) and i ∈ [m].

Every block of X has next-block pseudo-min-entropy at least α if condition 1 above is replaced with

1. H∞(Yi|X<i=x<i) ≥ α, for every x ∈ Supp(X) and i ∈ [m].

Finally, a generator G over {0, 1}∗ has next-block pseudoentropy at least k if (the random variable) G(Un)
has. Similarly, every block of G has next-block pseudoentropy [resp., pseudo-min-entropy] at least α if G(Un)
has.

The above definitions naturally extend to generators that are only defined over some input lengths (e.g.,
on inputs of length n2 + n for all n ∈ N). Our constructions directly yield such input-restricted generators,
but since the inputs on which they are defined are the image of a polynomial (such as n2 + n), they can be
converted to ones defined on all inputs in a standard way.8

Throughout, we often omit the parameter n when its value is clear from the context.

Remark 1 (Uniform distinguishers). When working with a random variable X with a certain guarantee
about its pseudoentropy (here as a generic name for the different types of pseudoentropy), one often likes
to lower-bound the amount of pseudoentropy several independent copies of X have (jointly). Such lower
bounds are used, for instance, in all constructions of pseudorandom generators from one-way functions
[13, 14, 17, 19, 29]. Proving such lower bounds, however, typically requires the ability to sample efficiently
from X, and also from a random variable Y that realizes the pseudoentropy of X (cf. Definition 7). While
the X’s in consideration are typically efficiently samplable, this is often not the case with respect to to the
Y ’s. Considering nonuniform distinguishers bypasses this issue; such distinguishers can get the samples as
a nonuniform advice. An alternative approach is to alter the definition of pseudoentropy to require that
the random variables in consideration (i.e., X and Y ) are computationally indistinguishable by (uniform)
algorithms that have access to an oracle that samples from the joint distribution of (X,Y ). This is the
approach taken in [14], where the construction we present here is proven to be secure in uniform settings (in
order to construct pseudorandom generators secure against uniform distinguishers, from one-way functions
secure against uniform inverters.

8 I.e., on input of arbitrary length, apply the input-restricted generator on the longest prefix of the input that matches the
restricted set of lengths, and append the unused suffix of the input to the output.

12



3.2 Next-Block Pseudoentropy Generators from One-Way Functions

In this section, we show how to construct a next-block pseudoentropy generator Gfnb out of a one-way function
f : {0, 1}n 7→ {0, 1}n.

Notation 2. For n, ` ∈ N, let Hn,` be the family of `×n Boolean matrices, and let Hn = Hn,n. For h ∈ Hn,`
and x ∈ {0, 1}n, let h(x) = hx (i.e., the matrix vector product over GF(2)). Throughout, we denote by Hn

the random variable that is uniformly distributed over Hn.

Definition 9. On x ∈ {0, 1}n, h ∈ Hn, and f : {0, 1}n 7→ {0, 1}n, define Gfnb : {0, 1}n × Hn 7→ {0, 1}n ×
Hn × {0, 1}n by

Gfnb(x, h) = (f(x), h, h(x)).

Theorem 3. Let f : {0, 1}n 7→ {0, 1}n and let Gnb = Gfnb be according to Definition 9, viewed as a (t(n) =
n2 + 2n)-block generator (i.e., each output bit forms a separate block) over (s(n) = n2 + n)-bit strings.

Assuming f is nonuniformly one-way, then Gfnb has next-block pseudoentropy at least s(n) + c · log n, for any
c > 0.

Namely, the next-block pseudoentropy of Gfnb is log n bits larger than its input entropy.

Remark 2 (Tighter reductions). Haitner et al. [14] proved a variant of Theorem 3 in which the family Hn is
replaced by a more sophisticated function family of description length Θ(n). As discussed in the introduction,
Vadhan and Zheng [29] took this a step further and proved a variant of this theorem without using any

function family. That is, they proved that Gfnb(x) = (f(x), x) has next-block pseudoentropy n + log n. In
both cases, the gap between the real entropy of the output and the next-block pseudoentropy is log n, as in
Theorem 3, but the input length is only Θ(n) (versus Θ(n2) in Theorem 3). This better ratio between the
entropy gap and the input length yields a final pseudorandom generator of much shorter seed length (see
Theorem 7). Both constructions, and in particular that of [29], require a more sophisticated analysis than
the one we present here (also in their nonuniform forms).

A key step towards proving Theorem 3 is analyzing the following (possibly inefficient) function gf :

Definition 10. For f : {0, 1}n 7→ {0, 1}n, let Df(y) =
⌈
log
∣∣f−1(y) = {x ∈ {0, 1}n : f(x) = y}

∣∣⌉, and define
gf over {0, 1}n ×Hn, by

gf (x, h) = (f(x), h, h(x)1,...,Df(f(x))).

That is, g(x, h) outputs a prefix of Gnb(x, h) whose length depends on the “degeneracy” of f(x). What
makes g interesting is that it is both close to being injective and hard to invert. To see this, note that
H∞(Un|f(Un)=y) = H0(Un|f(Un)=y) = log

∣∣f−1(y)
∣∣ ≈ Df(y). Hence, the two-universality of H implies that

g(Un, Hn) determines Un with constant probability. In other words, g(Un, Hn) has a single preimage with
constant probability. But the two-universality of H also yields that, for every k(Un) = Df(f(Un))−ω(log n),
it holds that Hn(Un)1,...,k(Un) is statistically close to uniform given (f(Un), Hn). Hence, Hn(Un)1,...,Df(f(Un))

does not provide enough information to enable an efficient inversion of f . (The extra O(log n) bits beyond
k(Un) can only increase the inversion probability by a poly(n) factor.)

The following claims state formally the two properties of g mentioned above. The first claim states that
the collision probability of g is small,9 yielding that g has high entropy.

Claim 4. Let f : {0, 1}n 7→ {0, 1}n and let g = gf as in Definition 10. Then CP(g(Un, Hn)) ≤ 3
|Hn×{0,1}n| .

Definition 11 (Hard-to-invert functions). A function q : {0, 1}n 7→ {0, 1}∗ is (nonuniformly) hard to
invert if Pr

y
R←q(Un)

[
A(1n, y) ∈ q−1(y)

]
= neg(n) for every pptNU A.

9 Recall that the collision probability of a random variable X is defined as CP(X) = Pr
(x,x′)

R←X2
[x = x′], and that its Rényi

entropy defined by H2(X) = − log CP(X) lower-bounds its Shannon entropy.

13



Namely, an hard-to-invert function is a one-way function without the efficient computability requirement.

Claim 5. Let f : {0, 1}n 7→ {0, 1}n and let g = gf be according to Definition 10. Assuming f is nonuniformly
one-way, g is hard to invert.

The proof of the above claims is given below, but first let us use it for proving Theorem 3. We will also
use the Goldreich-Levin hardcore lemma.

Lemma 9 (Goldreich-Levin hardcore lemma, [7]). Let q : {0, 1}n 7→ {0, 1}∗ be a hard-to-invert function
and let ` = `(n) ∈ O(log n), then (q(Un), Hn,`, Hn,`(Un)) is nonuniform computationally indistinguishable
from (q(Un), Hn,`, U

′
`).

10

Proving Theorem 3.

Proof of Theorem 3. Let s(n) = n2 + n be Gnb’s input length, and let Df and g = gf be as in Definition 10.
We prove that Gnb’s next-block pseudoentropy is at least s(n) + log n− 2, where the proof that it is larger
than s(n) + c · log n for any c > 0 follows along similar lines. Let ` = `(n) = 2 log n and assume for simplicity
that log n ∈ N. The one-wayness of f guarantees that Df(f(x)) ≤ n − ` for all sufficiently large n and
every x ∈ {0, 1}n; otherwise, the trivial inverter that returns a uniform element in {0, 1}n inverts f with
nonnegligible probability.

Define g′ over {0, 1}n ×Hn,n−`, by g′(x, h) = (f(x), h, h(x)1,...,Df(f(x))) (i.e., we have removed the last `
rows from the matrix defining the hash function h). The above observation about f yields that g′ is well
defined, and the hardness to invert of g (Claim 4) yields by a simple reduction that g′ is also hard to invert.

Since g′ is hard to invert, Lemma 9 yields that

(f(Un), Hn,n−`, Hn,n−`(Un)1,...,Df(f(Un)), H
′
n,`, H

′
n,`(Un)) ≡ (g′(Un, Hn,n−`), H

′
n,`, H

′
n,`(U

′
`))

≈nu−C (g′(Un, Hn,n−`), H
′
n,`, U

′
`),

where Un and U ′` are uniformly and independently distributed over {0, 1}n and {0, 1}`, respectively, and
Hn−` and H ′n, ` are uniformly and independently distributed over Hn,n−` and Hn,`, respectively. Changing
the order in the above and noting that Hn ≡ (Hn,n−`, Hn,`), yields that

(f(Un), Hn, Hn(Un)1,...,Df(f(Un))+`) ≈nu−C (f(Un), Hn, Hn(Un)1,...,Df(f(Un), U
′
`). (.3)

Let t(n) = 2n + n2 = s(n) + n = Gnb’s output length. Let X = X(n) = Gnb(Un, Hn), let J = J(n) =
s(n) + Df(f(Un)), and let Y = Y (n) = (Y1, . . . , Ym) be defined by Yi = Xi if i /∈ [J + 1, J + `], and Yi is set
to a uniform bit otherwise (i.e., i ∈ [J + 1, J + `]). Equation (.3) yields that XJ+1,...,J+` is computationally
indistinguishable from U` given X1,...,J and J , yielding that

(J,X≤J+r) ≈nu−C (J,X<J+r, U) (.4)

for every r ∈ [`], where U is a uniform bit. It follows that, for every pptNU D and i ∈ [m], it holds that

10 [7] states that Hn,`(n)(Un) is computationally unpredictable from (v(Un), Hn,`(n)), but since
∣∣Hn,`(n)(Un)

∣∣ ∈ O(logn), the
reduction to the above statement is standard.

14



Pr [D(1n, X≤i) = 1]− Pr [D(1n, X<i, Yi) = 1] (.5)

= Pr [D(1n, X≤i) = 1 ∧ i /∈ [J, J + `]]− Pr [D(1n, X<i, Yi) = 1 ∧ i /∈ [J, J + `]]

+
∑̀
r=1

(Pr [D(1n, X≤i) = 1 ∧ i = J + r]− Pr [D(1n, X<i, Yi) = 1 ∧ i = J + r])

= 0 +
∑̀
r=1

(Pr [D(1n, X≤i) = 1 ∧ i = J + r]− Pr [D(1n, X<i, Yi) = 1 ∧ i = J + r])

≤ 0 + ` · neg(n)

= neg(n).

The second equality holds since Yi = Xi for i /∈ [J, J + `]. The inequality holds since, if
Pr [D(1n, X≤i) = 1 ∧ i = J + r] − Pr [D(1n, X<i, Yi) = 1 ∧ i = J + r] > neg(n) for some i and r, then the
nonuniform distinguisher D′ that on input (j, x) returns D(x) if j = i + r, and a uniform bit otherwise,
contradicts Equation (.4).

It is left to prove that Y has high entropy given the blocks of X. We compute

m∑
i=1

H(Yi | X<i) ≥
m∑
i=1

H(Yi | X<i, J)

= E
j

R←J

[
m∑
i=1

H(Yi | X<i, J = j)

]

≥ E
j

R←J

 j∑
i=1

H(Yi | X<i, J = j) +

j+∑̀
i=j+1

H(Yi | X<i, J = j)


= E
j

R←J

 j∑
i=1

H(Xi | X<i, J = j) +

j+∑̀
i=j+1

1


= E
j

R←J
[H(X≤j |J = j)] + `

= H(X≤J |J) + `.

It follows that

m∑
i=1

H(Yi | X<i) ≥ `+ H(X≤J)−H(J)

≥ `+ H(X≤J)− log n

≥ `+ s(n)− 2− log n

= s(n) + log n− 2.

The penultimate inequality follows by Claim 4 (since H(X≤J) ≥ H2(X≤J) = log(1/CP(X≤J)) ≥ s(n)− 2).
We conclude that Y realizes the claimed next-block pseudoentropy of Gnb. �

Proving Claim 4.

Proof of Claim 4. Let (U ′n, H
′
n) be an independent copy of (Un, Hn). Then

15



CP(g(Un, Hn))

= Pr [g(U ′n, H
′
n) = g(Un, Hn)]

= Pr
[
(f(U ′n), H ′n, H

′
n(U ′n)1,...,Df(f(U ′n))

) = (f(Un), Hn, Hn(Un)1,...,Df(f(Un)))
]

= E
y

R←f(Un)

[
Pr [f(U ′n) = y] · Pr [H ′n = Hn] · Pr

[
Hn(U ′n)1,...,Df(y) = Hn(Un)1,...,Df(y) | f(U ′n) = y

]]
≤ E
y

R←f(Un)

[
2Df(y)

2n
· 1

|Hn|
· ( 1

2Df(y)−1
+

1

2Df(y)
)

]
≤ 3

|{0, 1}n ×Hn|
.

The first inequality holds since Pr
[
Hn(U ′n)1,...,Df(y) = Hn(Un)1,...,Df(y) | f(U ′n) = y

]
is upper bounded by

Pr [U ′n = U ′n | f(U ′n) = y] + Pr
[
Hn(x)1,...,Df(y) = Hn(x′)1,...,Df(y)

]
for some x 6= x′. �

Proving Claim 5.

Proof of Claim 5. This fact was first proven in [17] using the leftover hash lemma (Lemma 8). Here, we
present a different proof that is inspired by Rackoff’s proof of the Leftover Hash Lemma, and uses the high
collision probability of g directly.

Let Invg be a nonuniform polynomial-time algorithm that inverts g(Un, Hn) with probability δ = δ(n).
We show that there exists an inverter Inv that inverts f with probability at least roughly δ2/n, from which
the claim follows.

Fix n ∈ N, and let L ⊆ Im(g({0, 1}n ×Hn)) be the set of outputs where Invg inverts g correctly (without
loss of generality Invg is deterministic). By assumption, Pr [g(Un, Hn) ∈ L] = δ. Since the collision probability
of a distribution is at least the reciprocal of its support size, it follows that

CP(g(Un, Hn)) = Pr [g(Un, Hn) = g(U ′n, H
′
n)]

≥ Pr [g(Un, Hn), g(U ′n, H
′
n) ∈ L] / |L|

= δ2/ |L| .

By Claim 4, CP(g(Un, Hn)) ≤ 3 · 1
|Hn| ·

1
2n , and therefore

3 · |L|
|Hn| · 2n

≥ δ2. (.6)

Now for y ∈ Im(f({0, 1}n)), let Ly = {(h, z) : (y, h, z) ∈ L}. It follows that

16



Pr
[
(f(Un), Hn, U

′
Df(f(Un))

) ∈ L
]

= E
y

R←f(Un)

[
Pr
[
(Hn, U

′
Df(y)

) ∈ Ly
]]

(.7)

= E
y

R←f(Un)

[
|Ly|

|Hn| × 2Df(y)

]

=
∑

y∈Im(f)

∣∣f−1(y)
∣∣

2n
· |Ly|
|Hn| × 2Df(y)

≥
∑

y∈Im(f)

2Df(y)−1

2n
· |Ly|
|Hn| × 2Df(y)

=
1

|Hn| · 2n+1
·
∑
y

|Ly|

=
1

|Hn| · 2n+1
· |L|

≥ δ2/6.

Consider the following (randomized) inverter for f :

Algorithm 6 (Inv).

Oracle: Invg

Input: y ∈ {0, 1}n

1. Let h
R←Hn, i

R← [n], and z
R←{0, 1}i.

2. Let (x, h′) = Invg(y, h, z).
3. Return x.

Let I be the random variable corresponding to the value of i
R← [y] in the execution of Inv(y). Compute

Pr
[
Inv(f(Un)) ∈ f−1(f(Un))

]
≥ Pr [I = Df(f(Un))] · Pr

[
Inv(f(Un)) ∈ f−1(f(Un)) | I = Df(f(Un))

]
=

1

n
· Pr

[
Invg(f(Un), Hn, UDf(f(Un))) ∈ g

−1(f(Un), Hn, UDf(f(Un)))
]

≥ 1

n
· δ2/4 = δ2/6n.

The first inequality holds since I is independent of y, and the second inequality is by Equation (.7). It follows
that there exists a nonuniform polynomial-time algorithm that inverts f with probability at least δ(n)2/6n,
implying that that δ(n) = neg(n). �

3.3 Manipulating Next-Block Pseudoentropy

In this section we develop tools to manipulate next-block pseudoentropy. These tools are later used in Sec-
tion 3.4 to convert the next-block pseudoentropy constructed in Section 3.2 into a pseudorandom generator.

The tools considered below are rather standard “entropy manipulations”: entropy equalization (i.e., picking
a random variable at random from a set of random variables to get a new random variable whose entropy is
the average entropy), parallel repetition, and extraction from high-min-entropy sources, and their effect on
the real entropy of random variables is clear. Fortunately, these manipulations have essentially the same effect
also on the next-block pseudoentropy of a random variable. In Section 4.2, we show that these manipulations
also have the desired effect on the accessible entropy of a random variable, a similarity that implies the

17



similarity between the pseudorandom generator construction presented in this section, and the construction
of statistically hiding commitment scheme, presented in Section 4.2.

3.3.1 Entropy Equalization via Truncated Sequential Repetition

This manipulation takes independent copies of an m-block random variable with next-block pseudoentropy
at least k and concatenates them. It then truncates, at random, some of the first and final output blocks
of the concatenated variable. The effect of this manipulation is that each block of the resulting variable has
next-block pseudoentropy at least k/m. This per-block knowledge of the next-block pseudoentropy becomes
very handy for constructing pseudorandom generators.

The price of this manipulation is that we “give away” some next-block pseudoentropy, but when taking
enough copies, this loss is not significant.

Definition 12. For z = (z1, . . . , zt) and 1 ≤ j ≤ m ≤ t, let Equalizerm(j, z) := zj , . . . , zt+j−m−1.

That is, Equalizerm(j, z) removes the first (j − 1) and last (m− j + 1) elements from z.

Lemma 10. Let m = m(n) be a power of 2,11 assume X = X(n) = (X1, . . . , Xm) has next-block pseu-
doentropy (at least) k = k(n), and let w = w(n) ≥ 2 be a polynomially bounded integer function. Let
X [w] = X [w](n) be the (m · (w− 1))-block random variable defined by X [w](n) = Equalizerm(J,X(w)), where
J = J(n) is uniformly distributed over [m(n)], and X(w) = X(w)(n) = (X1, . . . , Xw), for X1, . . . , Xw being
independent copies of X(n). Then every block of X [w] has next-block pseudoentropy (at least) k/m.

Namely, the next-block pseudoentropy of each block of X [w] is the average next-block pseudoentropy of
the blocks of X.

Proof. Let Y = Y (n) = (Y1, . . . , Ym) be a random variable that realizes the next-block pseudoentropy
of X, and let Y (w) = Y (w)(n) = (Y 1, . . . , Y w) be jointly distributed with X(w) = (X1, . . . , Xw) in the
natural way—Y j is jointly distributed with Xj according to the joint distribution (X,Y ). We prove that
Y [w] = Y [w](n) = Equalizerm(J, Y (w)) realizes the claimed per-block next-block pseudoentropy of X [w]. In
the following we let m̃ = m̃(n) = (w − 1) ·m.

We start by proving that each block of Y [w] has high entropy given the previous blocks of Y [w]. Fix n ∈ N
and omit that from the notation, and fix i ∈ [m̃]. By chain rule for Shannon entropy, it holds that

H(Y
[w]
i | X [w]

<i ) ≥ H(Y
(w)
i+J−1 | X

(w)
<i+J−1, J) (.8)

= H(Yi+J−1 mod m | X<i+J−1 mod m),

letting m mod m be m (rather than 0). The equality follows from the fact that, for any t ∈
[mw], (Y

(w)
t , X

(w)
t−1, . . . , X

(w)
t′=bt/mc·m+1) is independent of X

(w)
<t′ , and is identically distributed to

(Yt mod m, X<t mod m).
Since (i+ J − 1 mod m) is uniformly distributed in [m], it follows that

H(Yi+J−1 mod m | X<i+J−1 mod m, J) = E
i′

R←[m]
[H(Yi′ | X<i′)] (.9)

=
1

m
·
∑

i′
R←[m]

H(Yi′ | X<i′)

≥ k/m,

and we conclude that H(Y
[w]
i | X [w]

<i ) ≥ k/m for every i ∈ [m̃].
For the second part, let D be a pptNU, let i = i(n) ∈ [m̃(n)], and let

11 Any other restriction that allows an efficient sampling from [m(n)] will do.

18



εD(n) := Pr
[
D(1n, X [w](n)≤i) = 1

]
− Pr

[
D(1n, X [w](n)<i, Y

[w](n)i) = 1
]

(.10)

In the following we omit n whenever clear from the context. A similar argument to that used in the first
part yields that

εD(n) = Pr
[
D(X

[w]
≤i ) = 1

]
− Pr

[
D(X

[w]
<i , Y

[w]
i ) = 1

]
(.11)

= Pr
[
D(Xw

J,...,i+J−1) = 1
]
− Pr

[
D(Xw

J,...,i+J−2, Y
w
...,i+J−1) = 1

]
= Pr

[
D(Xw−1

J,...,(w−1)m, X≤i+J−1 mod m) = 1
]
− Pr

[
D(Xw−1

J,...,(w−1)m, X<i+J−1 mod m, Yi+J−1 mod m) = 1
]

≤ Pr [D(x,X≤i+j−1 mod m) = 1]− Pr [D(x,X<i+j−1 mod m, Yi+j′ mod m) = 1]

for some fixing of j ∈ [m] and x ∈ Supp(Xw−1
j,...,(w−1)m). Hence, there exists a pptNU D′ such that

εD′(n) := Pr [D′(X≤i′) = 1]− Pr [D′(X<i′ , Yi′) = 1] ≥ εD(n) (.12)

for some i′ = i′(n) ∈ [m(n)]. Since Y is block-wise indistinguishable from X, it follows that εD′(n) = neg(n)
and therefore εD(n) = neg(n). Hence, Y [w] is block-wise indistinguishable from X [w]. �

3.3.2 Parallel Repetition

This manipulation, which simply takes parallel repetition (i.e., direct product) of a random variable, has a
twofold effect. The first is that the overall next-block pseudoentropy a t-fold parallel repetition of a random
variable X is t times the next-block pseudoentropy of X. Hence, if X’s next-block pseudoentropy is larger
than the number of bits it takes to sample it, this gap gets multiplied by t in the resulting random variable.
The second effect of taking such a product is turn next-block pseudoentropy into next-block pseudo-min-
entropy.

Lemma 11. Let m = m(n) and ` = `(n) be integer functions, assume every block of X = X(n) =
(X1, . . . , Xm) is of length `(n) and has next-block pseudoentropy (at least) α = α(n), and let t = t(n)
be polynomially bounded integer function. Let X〈t〉 = X〈t〉(n) be the m-block random variable defined by
X〈t〉 = X〈t〉(n) =

((
X1

1 , . . . , X
t
1

)
, . . . ,

(
X1
m, . . . , X

t
m

))
, for X1, . . . , Xt being independent copies of X. Then

every block of X〈t〉 has next-block pseudo-min-entropy (at least) α′(n) = t · α−O(log n · (`+ log n) ·
√
t).

Notice that the t · α term in the above statements is the largest we could hope for the pseudoentropy—
getting α bits of pseudoentropy per copy. However, since we wish to move from a pseudo-form of Shannon
entropy (measuring randomness on average) to a pseudo-form of min-entropy (measuring randomness with
high probability), we may have a deviation that grows like

√
t. By taking t large enough, this deviation

becomes insignificant. For instance, consider the case that X has next-block pseudoentropy at least α and
` = 1 (i.e., X is a sequence of bits), and that we would like to deduce that X〈t〉 has next-block pseudo-
min-entropy α′ = t · (α− δ) for some δ > 0. Lemma 11 guarantees that this happens for t = polylog(n)/δ2.

Proof. Let Y = Y (n) = (Y1, . . . , Ym) be a random variable that realizes the per-block next-block pseudoen-
tropy of X, and let Y 〈t〉 = Y 〈t〉(n) =

((
Y 1
1 , . . . , Y

t
1

)
, . . . ,

(
Y 1
m, . . . , Y

t
m

))
be jointly distributed with X〈t〉 in

the natural way—Y j is jointly distributed with Xj according to the joint distribution (X,Y ). Since Y is
block-wise indistinguishable from X, and since t(n) ≤ poly(n), a straightforward hybrid argument yields
that Y 〈t〉 is block-wise indistinguishable from X〈t〉.

Since H(Yi | X<i) ≥ α for every i ∈ [m], applying Lemmas 3 and 5 with ε = 2− log2 n yields that there
exists a random variable W = W (n) = (W1, . . . ,Wm) jointly distributed with X〈t〉, such that the following
hold for every i = i(n) ∈ [m(n)]:

19



1. ∆((X
〈t〉
<i , Y

〈t〉
i ), (X

〈t〉
<i ,Wi)) = neg(n), and

2. H∞(Wi|X〈t〉<i =x<i
) ≥ α−O((log n+ `) · log n ·

√
t), for every x ∈ Supp(X

〈t〉
<i ).

Item 1 and the previous observation yield that W is block-wise indistinguishable from X〈t〉, and by item 2
we conclude that W realizes the claimed next-block pseudo-min-entropy of X〈t〉. �

3.3.3 Block-wise Extraction

The tool applies a randomness extractor separately to each of the random variable blocks, to convert per-
block next-block pseudo-min-entropy into pseudorandomness. The result is a sufficiently long pseudorandom
sequence. This is a computational analogue of block-source extraction in literature on randomness extractors
[5, 33]. The price of this manipulation is that the length, and thus the amount of pseudorandomness, of the
resulting variable is shorter than the overall pseudoentropy of the original variable, due to inherent entropy
loss in randomness extraction.

Lemma 12. Let m = m(n) and ` = `(n) be integer functions, and assume that every block of X = X(n) =
(X1, . . . , Xm) over ({0, 1}`)m has next-block pseudoentropy (at least) α = α(n) ≥

⌈
log2 n

⌉
. Then there exists

a polynomial-time computable Ext: {0, 1}` × ({0, 1}`)m 7→
(
{0, 1}bαc−dlog

2 ne
)m

such that (R,Ext(R,X)),

for R = R(n)
R←{0, 1}`, is pseudorandom.

Proof. Let β = β(n) = bαc−
⌈
log2 n

⌉
. For r, x ∈ {0, 1}`, let hr(x) := r ·x over GF(2`), truncated to the first β

bits. Note that {hr : r ∈ {0, 1}`} is a two-universal hash family over {0, 1}`. For x = (x1, . . . , xk) ∈ ({0, 1}`)k,
let Ext(r, x) = (hr(x1), . . . , hr(xk)). Let DPRG be pptNU, and assume that

ε(n) := Pr [DPRG(1n, R,Ext(X,R)) = 1]− Pr [DPRG(1n, R, Um·β) = 1] 6= neg(n). (.13)

In the following we omit n whenever clear from the context. A hybrid argument yields that there exists
i ∈ [m] and pptNU D such that

Pr [D(R,Ext(R,X≤i)) = 1]− Pr [D(R,Ext(R,X<i), Uβ) = 1] ≥ ε/m.

Let Y = Y (n) be a random variable that realizes the per-block next-block pseudo-min-entropy of X.
Since H∞(Yi|X<i = x<i) ≥ α for every x ∈ Supp(X), and since {hr : r ∈ {0, 1}`} is a two-universal hash
family, the leftover hash lemma (Lemma 8) yields that

SD((R, hR(Yi|X<i = x<i)), (R,Uβ)) ≤ 2− log2 n

for every x ∈ Supp(X). It follows that

SD(R,Ext(R,X<i, Yi), (R,Ext(R,X<i), Uβ)) ≤ 2− log2 n

and therefore

Pr [D(R,Ext(R,X≤i)) = 1]− Pr [D(R,Ext(R,X<i, Yi)) = 1] (.14)

≥ ε/`− 2− log2 n 6= neg

For n ∈ N, let rn ∈ Supp(R) be the string that maximizes the above gap, and consider the distinguisher D′

that on input (1n, z), returns D(1n, rn,Ext(rn, z)). Equation (.14) yields that

Pr [D′(X≤i) = 1]− Pr [D′(X<i, Yi) = 1] 6= neg

Hence, the pptNU D′ contradicts the assumed block-wise indistinguishability of Y from X. �

20



3.4 Putting It Together: One-Way Functions to Pseudorandom Generators

In this section we use the results of previous sections to construct pseudorandom generators from next-block
pseudoentropy generators.

It is clear that a pseudorandom generator from n bits to m(n) > n has next-block pseudoentropy m(n),
hence, it is a next-block entropy generator with entropy gap (m(n) − n)—its next-block pseudoentropy is
larger than its real entropy by (m(n)− n). The following theorem provides the converse direction.

Theorem 7 (Next-block pseudoentropy to pseudorandom generator). For any polynomial-time
computable and polynomially bounded integer function s = s(n) and polynomial-time computable function
∆ = ∆(n) ≤ 2, there exists a polynomial-time computable integer function s′ = s′(n) = Θ(s·∆−3 ·polylog(n))
such that the following holds: Assuming there exists a polynomial-time generator Gnb : {0, 1}s 7→ {0, 1}2s with
next-block pseudoentropy s(1+∆), then there exists a pseudorandom generator G : {0, 1}s′ 7→ {0, 1}s′·(1+Θ(∆).
Furthermore, G uses Gnb as an oracle (i.e., black box) and on inputs of length s′, all calls of G to Gnb are
on inputs of length s.

Proof. The proof is done by manipulating the next-block pseudoentropy of Gnb using the tools described in
Section 3.3.

Let X = X(n) = Gnb(Us). We assume without loss of generality that, for every n, the number m(n) =
2s(n) of output blocks (=bits) of Gnb is a power of 2 (by padding with zeros if necessary). By assumption,
X has next-block pseudoentropy s(1 +∆).

Truncated sequential repetition: pseudoentropy equalization. The first step is to use X to define
a random variable X [w] that each of whose blocks has the same amount of next-block pseudoentropy— the
average of the next-block pseudoentropy of the blocks of X. The entropy gap of X [w], in relative terms, is
essentially the same as that of X.

For w = w(n) = d8/∆e, let X [w] = X [w](n) be the truncated sequential repetition of X according to
Lemma 10. Namely, X [w] consists of w independent copies of X, omitting the first (J − 1) blocks of the first

copy and the last (m−J+1) blocks of the last copy, for J
R← [m]. Note that X [w] can be generated efficiently

using s′ = s′(n) = log(m) + w · s random bits, and has m′ = m′(n) = m(w − 1) blocks.
By Lemma 10, each block of X [w] has next-block pseudoentropy α = α(n) = s(1 +∆)/m = 1

2 +∆/2.

Parallel repetition: converting Shannon pseudoentropy to pseudo-min-entropy and gap ampli-
fication. In this step X [w] is used to construct a random variable (X [w])〈t〉 that each of whose blocks has
the same amount of pseudo-min-entropy—about t time the per-block pseudoentropy of X [w].

For t = t(n) =
⌈
log5 n ·∆−2

⌉
, let (X [w])〈t〉 = (X [w])〈t〉(n) be the t-fold parallel repetition of X [w] (see

Lemma 11). That is, the i-th block of (X [w])〈t〉, contains the i-th blocks of the t independent copies of X [w].
Note that (X [w])〈t〉 can be generated efficiently using s′′ = s′′(n) = t · s′ bits, and has m′ blocks.

By Lemma 11, each block of (X [w])〈t〉 has next-block pseudo-min-entropy α′ = α′(n) = t·α−O(log2 n·
√
t),

which is larger than t · ( 1
2 +∆/4) for large enough n.

Randomness extraction: converting pseudo-min-entropy to pseudorandomness. In the final step,
pseudorandom bits are extracted from (X [w])〈t〉, by applying a randomness extractor on each of its blocks.

Lemma 12 yields that there exists an efficient Ext: {0, 1}t(n) × ({0, 1}t)m′ 7→
(
{0, 1}α

′−dlog2 ne
)m′

such

that XPRG = XPRG(n) = (R,Ext(R, (X [w])〈t〉), for R = R(n)
R← {0, 1}t, is pseudorandom. We remind the

reader that Ext(r, x = (x1, . . . , xm)) merely applies (the same) two-universal function hr on each of x’s
blocks. Note that it takes s′′′ bits to efficiently sample XPRG, for

s′′′ = s′′′(n) = t+ s′′ = t(`s+Θ(log n)) = Θ(s∆−3 · polylog(n)).

It follows that, for large enough n, the length of XPRG(n) is at least

21



m′(α′ −
⌈
log2 n

⌉
) ≥ m′(tα−O(log3 n ·

√
t))

> m′(t(
1

2
+∆/2)−O(log3 n ·

√
t))

> m′t(
1

2
+∆/4)

= s(`− 1)t(1 +∆/2)

≥ s`t(1 +∆/4)

≥ s′′′(1 +∆/8).

Hence,
∣∣XPRG

∣∣ = s′′′(1 + Ω(∆)), and since all the above manipulations were efficient, the proof of the
theorem follows. �

Remark 3 (Tighter reduction). Vadhan and Zheng [29] noticed that, by modifying the construction used in
the proof of Theorem 7, one can construct an efficient generator G and a random variable Z = Z(n) such
that the following hold:

1. It takes s′(n) = Θ(s(n) ·∆(n)−2 · polylog(n)) bits to efficiently sample Z, i.e., a factor of ∆−1 shorter
than the input length of the pseudorandom generator in Theorem 7.

2. G(Z) is computationally indistinguishable from (Z,U), where U is a random string of length Ω(s(n)∆/n).

Then, by iterating G on its output (in a similar manner to the Blum-Micali pseudorandom generator length
extending approach), without investing new randomness, they get a pseudorandom generator of seed length
s(n).

Combining the above Theorem 7 with Theorem 3 from the previous subsection yields the following result:

Theorem 8 (One-way function to pseudorandom generator). There exists a polynomial-time com-
putable function s = s(n) = Θ(n7 · polylog n) such that the following holds: Let f : {0, 1}n 7→ {0, 1}n be

nonuniformly one-way function, then there exists a pseudorandom generator G : {0, 1}s 7→ {0, 1}s·(1+Ω(1/n2)).
Furthermore, G uses f as an oracle (i.e., black box) and on inputs of length s(n), all calls of G to f are on
inputs of length n.

Proof. Pad the output of the next-block pseudoentropy generator guaranteed by Theorem 3 to make it length
doubling (it is easy to see that this does not change its next-block pseudoentropy) and apply Theorem 7. �

Remark 4 (Tighter reduction, take 2). Plugging into Theorem 7 the next-block generators of Haitner et al.
[14] or of Vadhan and Zheng [29], both with s = Θ(n) and ∆ = Θ(log(n)/n), yields a pseudorandom
generator of seed length Θ(n4 · polylog n). If the latter generators are used with the tighter reduction of
Vadhan and Zheng [29] mentioned above, the resulting generator has seed length Θ(n3 · polylog n), which is
the best we know how to achieve today.

4 Inaccessible Entropy and Statistically Hiding Commitment

In this section, we formally define the notion of inaccessible entropy and use it as intermediate tool to
construct statistically hiding commitment from one-way functions.

We start, Section 4.1, by presenting the formal definition of inaccessible entropy. In Section 4.2, we show
that any one-way function can be used to construct inaccessible entropy generator. In Section 4.3, we develop
means to manipulate inaccessible entropy. Finally, in Section 4.4 we give a simplified version of the (still
rather complicated) construction of statistically hiding commitments from inaccessible entropy generators.

22



4.1 Inaccessible Entropy Generators

We begin by informally recalling the definition from the introduction. Let G : {0, 1}n 7→ ({0, 1}∗)m be an
m-block generator over {0, 1}n and let G(1n) = (Y1, . . . , Ym) denote the output of G over a uniformly random
input. The real entropy of G is the (Shannon) entropy in G’s output blocks, where for each block Yi, we take
its entropy conditioned on the previous blocks Y<i = (Y1, . . . , Yi−i). The accessible entropy of an arbitrary,

adversarial m-block generator G̃, with the same block structure as of G, is the entropy of the block of G̃
conditioned not only on the previous blocks but also on the coins used by G̃ to generate the previous blocks.
The generator G̃ is allowed to flip fresh random coins to generate its next block, and this is indeed the source
of entropy in the block (everything else is fixed). We insist that the messages of G̃ will be consistent with G:

the support of G̃’s messages is contained in that of G.
Moving to the formal definitions, we first define an m-block generator and then define the real and

accessible entropy of such a generator.

Definition 13 (Block generators). Let n be a security parameter, and let m = m(n) and s = s(n). An
m-block generator is a function G : {0, 1}s 7→ ({0, 1}∗)m. The generator G is efficient if its running time on
input of length s(n) is polynomial in n.

We call parameter n the security parameter, s the seed length, m the number of blocks, and `(n) =
maxx∈{0,1}s(n),i∈[m(n)] |G(x)i| the maximal block length of G.

4.1.1 Real Entropy

Recall that we are interested in lower bounds on the real entropy of a block generator. We define two variants
of real entropy: real Shannon entropy and real min-entropy. We connect these two notions through the notion
of real sample-entropy. In other words, for a fixed m-tuple output of the generator, we ask how surprising
were the blocks output by G in this tuple. We then get real Shannon entropy by taking the expectation
of this quantity over a random execution and the min-entropy by taking the minimum (up to negligible
statistical distance). An alternative approach would be to define the notions through the sum of conditional
entropies (as we do in the intuitive description in the introduction). This approach would yield closely related
definitions, and in fact exactly the same definition in the case of Shannon entropy (see Lemma 13).

Definition 14 (Real sample-entropy). Let n be a security parameter, and let G be an m-block gen-
erator over {0, 1}s, for m = m(n) and s = s(n). For i ∈ [m], define the real sample-entropy of
y ∈ Supp((Y1, . . . , Yi) = G(Us)1,...,i) as

RealHG(y) =
∑
j∈[i]

RealHj
G(y)

for
RealHj

G(y) := HYj |Y<j
(yj |y<j)

Definition 15 (Real entropy). Let n be a security parameter, and let G be an m-block generator over
{0, 1}s, for m = m(n) and s = s(n). We say that an m-block generator G has real entropy at least k = k(n),
if

E
y

R←G(Us)

[RealHG(y)] ≥ k

for every n ∈ N.
The generator G has real min-entropy at least k in its i-th block, where i = i(n) ∈ [m(n)], if

Pr
y

R←G(Us)

[
RealHi

G(y) < k
]

= neg(n).

23



We observe that the real Shannon entropy simply amounts to measuring the standard conditional Shannon
entropy of G’s output blocks.

Lemma 13. For an m-block generator G over {0, 1}s, it holds that

E
y

R←G(Us)

[RealHG(y)] = H(G(Us)).

Proof. Let (Y1, . . . , Ym) = G(Us), and compute

E
y

R←G(Us)

[RealHG(y)] := E
y

R←G(Us)

∑
i∈[m]

HYi|Y<i
(yi | y<i)


=
∑
i∈[m]

E
y

R←G(Us)

[
HYi|Y<i

(yi | y<i)
]

=
∑
i∈[m]

H(Yi|Y<i)

= H(G(Us)).

�

4.1.2 Accessible Entropy

Recall that we are interested in upper bounds on the accessible entropy of a block generator. We will define two
variants of accessible entropy: accessible Shannon entropy and accessible max-entropy. While the Shannon
variant is in a sense more intuitive, working with the max-entropy variant, as done in Sections 4.2 and 4.4,
yields simpler and more efficient applications. As in the case of real entropy, we connect these two notions
through the notion of accessible sample-entropy. For a fixed execution of the adversary G̃, we ask how
surprising were the messages sent by G̃. We then get accessible Shannon entropy by taking the expectation
of this quantity over a random execution and the max-entropy by taking the maximum (up to negligible
statistical distance). Here too, the definitions obtained are closely related to the definitions one would obtain
by considering a sum of conditional entropies (as we did in the intuitive description earlier). For the Shannon
entropy, the definitions would again be identical. (See Lemma 14.)

The definition below differs from the definition of [16], in that we require the bound on the accessible
entropy to hold (also) against nonuniform adversarial generators. This change simplifies the definitions and
proofs, but at the price that we can only construct such inaccessible entropy pseudoentropy generators from
functions that are nonuniformly one-way.

Definition 16 (Online block generator). Let n be a security parameter, and let m = m(n). An m-block

online generator is a function G̃ : ({0, 1}v)m 7→ ({0, 1}∗)m for some v = v(n), such that the i-th output block

of G̃ is a function of (only) its first i input blocks. We denote the transcript of G̃ over random input by

TG̃(1n) = (R1, Y1, . . . , Rm, Ym), for (R1, . . . , Rm)
R← ({0, 1}v)m and (Y1, . . . , Ym) = G̃(R1, . . . , Ri).

That is, an online block generator is a special type of block generator that tosses fresh random coins before
outputting each new block. In the following we let G̃(r1, . . . , ri)i stand for G̃(r1, . . . , ri, x

∗)i for arbitrary

x∗ ∈ ({0, 1}v)m−i (note that the choice of x∗ has no effect on the value of G̃(r1, . . . , ri, x
∗)i).

Definition 17 (Accessible sample-entropy). Let n be a security parameter, let m = m(n), let i = i(n) ∈
[m], and let G̃ be an online m-block online generator. The accessible sample-entropy of t = (r1, y1, . . . , ri, yi) ∈
Supp(R1, Y1 . . . , Ri, Yi) = TG̃(1n)1,...,2i is defined as

24



AccHG̃(t) :=
∑
j∈[i]

AccHj

G̃
(t)

for
AccHj

G̃
(t) := HYj |R<j

(yj |r<j).

The expected accessible entropy of a random transcript can be expressed in terms of the standard condi-
tional Shannon entropy.

Lemma 14. Let G̃ be an online m = m(n)-block generator and let (R1, Y1, . . . , Rm, Ym) = TG̃(1n) be its
transcript. Then,

E
t
R←TG̃(1n)

∑
i∈[m]

AccHi
G̃

(t)

 =
∑
i∈[m]

H(Yi|R<i).

The proof of Lemma 14 is similar to that of Lemma 13.
The above definition is only interesting when putting restrictions on the generator’s actions with respect

to the underlying generator G. (Otherwise, the accessible entropy of G̃ can be arbitrarily large by outputting
arbitrarily long strings.) In this work, we focus on efficient generators that are consistent with respect to G.
That is, the support of their output is contained in that of G.12

Definition 18 (Consistent generators). Let G be a block generator over {0, 1}s(n). A block (possible
online) generator G′ over {0, 1}s′(n) is G consistent if, for every n ∈ N, it holds that Supp(G′(Us′(n))) ⊆
Supp(G(Us(n))).

Definition 19 (Accessible entropy). A block generator G has accessible entropy at most k = k(n) if, for

every efficient, nonuniform, G-consistent, online generator G̃ and all large enough n,

E
t
R←TG̃(1n)

[
AccHG̃(t)

]
≤ k.

The generator G has accessible max-entropy at most k if

Pr
t
R←TG̃(1n)

[AccHG̃(t) > k] = neg(n),

for every such G̃.

In Section 4.2, we prove the existence of one-way functions implies that of an inaccessible max-entropy
entropy generator: an efficient block generator whose accessible entropy is noticeably larger than its accessible
entropy. The converse direction is also true.

Lemma 15. Let G be an efficient block generator with real entropy k(n), and assume that G has accessible
entropy, or accessible max-entropy, at most k(n) − 1/p(n), for some p ∈ poly. Then one-way functions
exist.13

Proof. Omitted. �

12 In the more complicated notion of accessible entropy considered in [11], the “generator” needs to prove that its output blocks
are in the support of G, by providing an input of G that would have generated the same blocks. It is also allowed there for a

generator to fail to prove the latter with some probability, which requires a measure of accessible entropy that discounts entropy
that may come from failing.
13 Specifically, one can show that a variant of f(x, i) = G(x)1,...,i is a “distributional” one-way function.

25



4.2 Inaccessible Entropy Generator from One-way Functions

In this section, we show how to build an inaccessible entropy generator from any one-way function. In
particular, we prove the following theorem:

Construction 9. For f : {0, 1}n 7→ {0, 1}n, define the (n+ 1) block generator Gf over {0, 1}n by

Gf (x) = (f(x)1, . . . , f(x)n, x)

Namely, the first n blocks of Gf (x) are the bits of f(x), and its final block is x.

Theorem 10 (Inaccessible entropy generators from one-way functions). If f : {0, 1}n 7→ {0, 1}n is
nonuniformly one-way, then the efficient block generator G = Gf defined in Construction 9 has accessible
max-entropy at most n− ω(log n).

Remark 5 (Tighter reduction). [16] prove an analog theorem for the O(n/ log n)-block generator that groups
each consecutive log n bits of f(n) into a single block.

Proof. Suppose on the contrary that there exists an efficient, nonuniform, G-consistent online block generator
G̃ such that

Pr
t

R←TG̃(1n)

[
AccHG̃(t) > n− c · log n

]
> ε(n) (.15)

for some constant c > 0, ε(n) = 1/ poly(n), and infinitely many n’s. In the following we fix n ∈ N for
which the above equation holds, and omit it from the notation when its value is clear from the context. Let
m = n + 1 and let v be abound on the number of bits used by G̃ in each round. The inverter Inv for f is
defined as follows:

Algorithm 11 (Inverter Inv for f from the accessible entropy generator G̃).

Input: z ∈ {0, 1}n
Operation:

1. For i = 1 to n,

a. Sample ri
R←{0, 1}v and let yi = G̃(r1, . . . , ri)i.

b. If yi = zi, move to next value of i.
c. Abort after n2/ε failed attempts for sampling good ri.

2. Sample rm
R←{0, 1}v and output G̃(r1, . . . , rm)m.

Namely, Inv(y) does the only natural thing one can do with G̃; it tries to make, via rewinding, G̃’s first n

output blocks equal to y, knowing that, if this happens then since G̃ is G-consistent, G̃’s m-th output block
is a preimage of y.

It is clear that Inv runs in polynomial time, so we will finish the proof by showing that

Pr
y

R←f(Un)

[
Inv(y) ∈ f−1(y)

]
≥ ε2/16n.

We prove the above by relating the transcript distribution induced by the standalone execution of G̃(1n)

to that induced by the embedded execution of G̃ in Inv(f(Un)). In more detail, we show that high-accessible-
entropy transcripts with respect to the standalone execution of G, i.e., AccHG̃(t) > n − c · log n, happen
with not much smaller probability also in the emulated execution. Since whenever Inv does not abort it is
guaranteed to invert y, it follows that the success probability of Inv is lower bounded by the probability that
G̃(1n) outputs a high-accessible-entropy transcript, and thus is nonnegligible.

26



For intuition about why the above statement about high-accessible-entropy transcripts is true, consider
the case of a one-way permutation f . By definition, high-accessible-entropy transcripts in the stand alone
execution of G̃ happen with probability at most poly(n)/2n. On the other hand, the probability that a

“typical” transcript is produced by the emulated execution of G̃ is about 2−n—the probability that random
output of f equals the transcript’s first n output blocks.

Proving the above formally for arbitrary one-way functions is the subject of the following proof:

Standalone execution G̃(1n). Let T̃ = TG̃, and recall that T̃ = (R̃1, Ỹ1, . . . , R̃m, Ỹm) is associated with

a random execution of G̃ on security parameter n by

• R̃i – the random coins of G̃ in the i-th round, and
• Ỹi – G̃’s i-th output block.

Recall that, for t = (r1, y1, . . . , rm, ym) ∈ Supp(T̃ ), we have defined

AccHG̃(t) :=
∑
i∈[m]

HYj |R<j
(yj |r<j).

Compute

PrT̃ [t] =

m∏
i=1

PrỸi|R̃<i
[yi|r<i] · PrR̃i|R̃<i,Ỹi

[ri|r<i, yi] (.16)

= 2
−

∑m
i=1 HỸi|R̃<i

(yi|r<i) ·
m∏
i=1

PrR̃i|R̃<i,Ỹi
[ri|r<i, yi]

= 2−AccHG̃(t) ·R(t)

for

R(t) :=

m∏
i=1

PrR̃i|R̃<i,Ỹi
[ri|r<i, yi] . (.17)

Execution embedded in Invg(f(Un)). Let T̂ = (R̂1, Ŷ1, . . . , R̂m, Ŷm) denote the value of G̃’s coins and
output blocks, of the execution done in step 2 of a random execution of the unbounded version of Inv (i.e.,
step 1.(c) is removed) on input Z = (Z1, . . . , Zm−1) = f(Un). (This unboundedness change is only an
intermediate step in the proof that does not significantly change the inversion probability of Inv, as shown
below.)

Since G̃ is G-consistent, it holds that (y1, . . . , ym−1) ∈ Supp(f(Un)) for every (r1, y1, . . . , rm, ym) ∈
Supp(T̃ ). It follows that every t ∈ Supp(T̃ ) can be “produced” by the unbounded version of Inv, and

therefore Supp(T̃ ) ⊆ Supp(T̂ ). For t ∈ Supp(T̃ ), we compute

27



PrT̂ [t] =

m∏
i=1

PrŶi|R̂<i
[yi|r<i] · PrR̂i|R̂<i,Ŷi

[ri|r<i, yi] (.18)

=

(
m−1∏
i=1

PrZi|Ŷ<i
[yi|y<i] · PrŶi|R̂<i,Zi

[yi|r<i, yi]

)
· PrŶm|R̂<m

[ym|r<m] ·
m∏
i=1

PrR̂i|R̂<i,Ŷi
[ri|r<i, yi]

=

(
m−1∏
i=1

PrZi|Ŷ<i
[yi|y<i] · 1

)
· PrŶm|R̂<m

[ym|r<m] ·
m∏
i=1

PrR̂i|R̂<i,Ŷi
[ri|r<i, yi]

= Prf(Un) [y<m] · PrŶm|R̂<m
[ym|r<m] ·R(t)

= Prf(Un) [y<m] · PrỸm|R̃<m
[ym|r<m] ·R(t).

Note that in the last line we moved from conditioning on R̂<m to conditioning on R̃<m. The third equality
holds since t ∈ Supp(T̃ ) and Inv is unbounded.

Relating the two distributions. Combining Equations (.16) and (.18) yields that, for t =

(r1, y1, . . . , rm, ym) ∈ Supp(T̃ ), it holds that

PrT̂ [t] = PrT̃ [t] ·
(

Prf(Un) [y<m] · PrỸm|R̃<m
[ym|r<m] · 2AccHG̃(t)

)
. (.19)

In particular, if AccHG̃(t) ≥ n− c log n, then

PrT̂ [t] ≥ PrT̃ [t] ·
2n · Prf(Un) [y<m]

nc
· PrỸm|R̃<m

[ym|r<m] (.20)

= PrT̃ [t] ·
∣∣f−1(y<m)

∣∣
nc

· PrỸm|R̃<m
[ym|r<m] .

If it is also the case that HỸm|R̃<m
(ym|r<m) ≤ log

∣∣f−1(y<m)
∣∣+ k for some k > 0, then

PrT̂ [t] ≥ PrT̃ [t] ·
∣∣f−1(y<m)

∣∣
nc

· 2−k

|f−1(y<m)|
=

PrT̃ [t]

2knc
(.21)

Lower bounding the inversion probability of Inv. We conclude the proof by showing that Equa-
tion (.21) implies the existence of a large set of transcripts that (the bounded version of) Inv performs well
upon.

Let S denote the set of transcripts t = (r1, y1, . . . , rm, ym) ∈ Supp(T̃ ) with

1. AccHG̃(t) ≥ n− c log n,
2. HỸm|R̃<m

(ym|r<m) ≤ log
∣∣f−1(y<m)

∣∣+ log(4/ε), and

3. HỸi|Ỹ<i
(yi|y<i) ≤ log(4n/ε) for all i ∈ [m− 1].

The first two properties will allow us to use Equations (.20) and (.21) to argue that, if S happens with

significant probability with respect to T̃ , then this holds also with respect to T̂ . The last property will allow
us to show that this happens also with respect to the bounded version of Inv. We start by showing that S
happens with significant probability with respect to T̃ , then show that this holds also with respect to T̂ , and
finally use it to lowerbound the success probability of Inv.

By Lemma 1,

Pr
(r1,y1,...,rm,ym)

R←T̃

[
HỸm|R̃<m

(ym|r<m) > log
∣∣f−1(y<m)

∣∣+ k
]
< 2−k (.22)

for any k > 0, where since
∣∣∣Supp(Ỹi)

∣∣∣ = 1 for all i ∈ [m− 1], it holds that

28



Pr
(y1,...,ym)

R←(Ỹ1,...,Ỹm)

[
∃i ∈ [m− 1] : HỸi|Ỹ<i

(yi|y<i) > v
]
< (m− 1) · 2−v (.23)

for any v > 0.
Applying Equations (.22) and (.23) with k = log(4/ε) and v = log(4n/ε) , respectively, and recalling that,

by assumption, Pr
t

R←T̃

[
AccHG̃(t) ≥ n− c log n

]
≥ ε, yields that

PrT̃ [S] ≥ ε− ε

4
− ε

4
= ε/2 (.24)

By Equation (.21) and the first two properties of S, we have that

PrT̂ [S] ≥ ε

4nc
· PrT̃ [S] ≥ ε2

8nc
. (.25)

Finally, let T̂ ′ denote the final value of G̃’s coins and output blocks, induced by the bounded version of Inv
(set to ⊥ if Inv aborts). The third property of S yields that

PrT̂ ′ [t] ≥ PrT̂ [t] ·
(

1− (m− 1) · (1− ε
4n )n

2/ε
)
≥ PrT̂ [t] · (1−O(m · 2−n)) ≥ PrT̂ [t] /2 (.26)

for every t ∈ S. We conclude that

Pr
z

R←f(Un)

[
Inv(z) ∈ f−1(z)

]
= Pr

z
R←f(Un)

[Inv(z) does not abort]

≥ PrT̂ ′ [S]

≥ 1

2
· PrT̂ [S]

≥ ε2

16nc
.

�

4.3 Manipulating Real and Accessible Entropy

Following are two tools to manipulate the real and accessible entropy of a block generator. Since we are
dealing with the more complex accessible entropy notion, the statements and proofs of the following lemmas
are more complicated than those of Section 3.3 (given for the next-block entropy notion). Yet, the bottom
line of the lemmas is essentially the same.

4.3.1 Entropy Equalization via Truncated Sequential Repetition

Similarly to what happens in Section 3, this tool concatenates several independent executions of an m-block
generator, and then truncates, at random, some of the first and final output blocks of the concatenated
string. Assuming that the (overall) real entropy of the original generator is at least kreal, then the real
entropy of each block of the resulting generator is at least kreal/m. This per-block knowledge of the real
entropy, is very handy when considering applications of inaccessible entropy generators, and in particular
for constructions of statistically hiding commitment.

The price of this manipulation is that we “give away” some real entropy (as we do not output all blocks),
while we cannot claim that the same happens to the accessible entropy. Hence, the additive gap between the
real and accessible entropy of the resulting generator gets smaller. Yet, if we do enough repetition, this loss
is insignificant.

29



Definition 20. For security parameter n, let m = m(n), let s = s(n), w = w(n), and let s′ = s′(n) =
log(m(n)) +w(n) · s(n). Given an m-block generator G over {0, 1}s, define the ((w − 1) ·m)-block generator
G[w] over [m]×({0, 1}s)w as follows: on input (j, (x1, . . . , xw)) ∈ [m]×({0, 1}s)w, it sets y = (y1, . . . , ywm) =
(G(x1), . . . ,G(xw)), and outputs ((j, yj), yj1 , . . . , y(w−1)m+j−1).

That is, G[w] truncates the first j−1 and last m+ 1− j blocks of y, and outputs the remaining (w−1) ·m
blocks one by one, while appending j to each block it outputs. (Using the terminology of Section 3, G[w]

outputs Equalizerm(j, y1, . . . , ywm), where Equalizer is according to Definition 12, while appending j to the
first block.)

Lemma 16. For security parameter n, let m = m(n) be a power of 2, let s = s(n) and let G be an efficient
m-block generator over {0, 1}s, and let w = w(n) be a polynomially computable and bounded integer function.
Then, G[w] defined according to Definition 20 is an efficient,14 ((w − 1) ·m)-block generator that satisfies the
following properties:

Real entropy: If G has real entropy at least kreal = kreal(n), then each block of G[w] has real entropy at
least kreal/m.

Accessible max-entropy: The following holds for any d = d(n) ∈ ω(log n). If G has accessible max-entropy
at most kacc = kacc(n), then G[w] has accessible max-entropy at most

k′acc := (w − 2) · kacc + 2 ·H0(G(Us)) + log(m) + d.

Roughly, each of the (w − 2) non truncated executions of G embedded in G[w] contributes its accessible
entropy to the overall accessible entropy of G[w]. In addition, we pay the max-entropy of the two truncated
executions of G embedded in G[w].

Proof. To avoid notational clutter let G = G[w].

Real entropy. The proof of this part is very similar to the proof of the first part of Lemma 10. Fix
n ∈ N and omit it from the notation when clear from the context. Let m̃ = (w − 1)m, let Ỹ = G(Us′ =

(J,X1, . . . , Xw)), let Y (w) = (G(X1), . . . ,G(Xw)), and finally for i ∈ [wm], let Y (w)′
i = (J, Y

(w)
i ) if J = i,

and Y
(w)
i otherwise. For i ∈ [m̃], compute

H(Ỹi | Ỹ<i) = H(Y (w)′
i+J−1 | Y (w)′

J,...,i+J−2)

≥ H(Y
(w)
i+J−1 | Y

(w)
J,...,i+J−2, J).

The proof continues as the first part of the proof of Lemma 10.

Accessible entropy. To establish the statement on the accessible entropy, let G̃ be an efficient G-consistent
generator, and let

ε = ε(n) := Pr
t

R←T̃

[
AccHG̃(t) > k′acc

]
(.27)

for T̃ = TG̃(1n). Our goal is to show that ε is negligible in n. We do that by finding a subtranscript of T̃ that,
with high probability, contributes more than kacc bits of accessible entropy, if the overall accessible entropy
of T̃ is more than k′acc. We then use this observation to construct a cheating generator for G that achieves
accessible entropy greater than kacc with probability that is negligibly close to ε.

Let (R1, Y1, . . . , Rm̃, Ym̃) = T̃ and let J be the first part of Y1 (recall that Y1 is of the form (j, ·)). Fix

j ∈ [m], and let (Rj1, Y
j
1 , . . . , R

j
m̃, Y

j
m̃) = T̃j = T̃|J=j . Let I = I(j) be the indices of the blocks coming

14 Since m is a power of 2, changing the input domain of G[w] to {0, 1}s′ for some polynomial-bounded and polynomial-time
computable s′, to make it an efficient block generator according to Definition 13, can be done by standard techniques.

30



from the truncated executions of G in G (i.e., {1, . . . ,m+ 1− j} ∪ {m̃+ 2− j, . . . , m̃}). Our first step is to
show that these blocks do not contribute much more entropy than the max-entropy of G(Un). Specifically,
by Lemma 7, letting X = (Y j1 , R

j
1, . . . , Y

j
m̃, R

j
m̃) and J = I, it holds that

Pr
t=(r1,y1,...,rm̃,ym̃)

R←T̃j

[∑
i∈I

HY j
i |R

j
<i

(yi|r<i) > 2 ·H0(G(Us)) + d/2

]
≤ 2 · 2−d/2 = neg(n). (.28)

Namely, with save but negligible probability, the blocks that relate to the truncated executions of G in G,
do not contribute much more than their support size to the overall accessible entropy.

Our next step is to remove the conditioning on J = j (that we have introduced to have the indices of
interest fixed, which enabled us to use Lemma 7). By Lemma 1, it holds that

Pr
j

R←J
[HJ(j) > log(m) + d/2] ≤ 2−d/2 = neg(n). (.29)

Since for every i > 1 and (r1, y1 = (j, ·), . . . , rm̃, ym̃) ∈ Supp(T̃), it holds that HYi|R<i
(yi|r<i) =

HY j
i |R

j
<i

(yi|r<i), and for i = 1, it holds that HY1
(y1) = HJ(j) + HY j

1
(y1), the above yields that

Pr
t=(r1,y1,...,rm̃,ym̃)

R←T̃

 ∑
i∈[m̃]\I(J)

HYi|R<i
(yi|r<i) > (w − 2) · kacc

 ≥ ε− neg(n). (.30)

Let F(j) = {km+ 2− j : k ∈ [w − 2]}, i.e., the indices of the first blocks of the non-truncated executions of
G in G, when the first block of G is (j, ·). It follows that,

Pr
t=(r1,y1,...,rm̃,ym̃)

R←T̃

∃f ∈ F(J) :

f+m−1∑
i=f

HYi|R<i
(yi|r<i) > kacc

 ≥ ε− neg (.31)

In particular, there exist j∗ ∈ [m], f∗ ∈ F(j∗), and r∗ ∈ Supp(R<f∗ |J=j∗) such that

Pr
t=(r1,y1,...,rm̃,ym̃)

R←T̃

f∗+m−1∑
i=f∗

HYi|R<i
(yi|r<i) > kacc | r<f∗ = r∗

 ≥ (ε− neg)/m. (.32)

Consider the efficient, nonuniform, G-consistent generator G̃ that acts as follows: it starts a random
execution of G̃ with its first (f∗ − 1) randomness blocks fixed to r∗, and outputs the blocks indexed by

{f∗, . . . , f∗ + m − 1}. Let (R′1, Y
′
1 , . . . , R

′
m, Y

′
m) = TG̃ be the transcript of G̃. It is easy to verify that, for

every (r1, y1, . . . , rm, ym) ∈ Supp(TG̃) and 1 < i ≤ m, it holds that

HY ′i |R′<i
(yi|r<i) = HYf+i|R<f+i

(yi|(r∗, r<i)). (.33)

Thus, Equation (.32) yields that

Pr
t

R←TG̃

[
AccHG̃(t) > kacc

]
> (ε− neg(n))/m.

Hence, the assumption about the inaccessible entropy of G yields that ε is a negligible function of n, and
the proof of the lemma follows. �

31



4.3.2 Parallel Repetition

This manipulation simply takes parallel repetition of a generator. The effect of this manipulation is twofold.
The first effect is that the overall real entropy of a v-fold parallel repetition of a generator G is v times the
real entropy of G. Hence, if G real entropy is larger than its accessible entropy, this gap get multiplied by v
in the resulting variable. The second effect of such repetition is turning per-block real entropy into per-block
min-entropy. The price of this manipulation is a slight decrease in the per block min-entropy of the resulting
generator, compared to the sum of the per block real entropies of the independent copies of the generators
used to generate it. (This loss is due to the move from Shannon entropy to min-entropy, rather than from
the parallel repetition itself.) But when taking enough copies, this loss can be ignored.

Definition 21. Let m = m(n), s = s(n), and v = v(n). Given an m-block generator G over {0, 1}s, define
the m-block generator G〈v〉 over ({0, 1}s)v as follows: on input (x1, . . . , xv) ∈ ({0, 1}s)v, the i-th block of
G〈v〉 is (G(x1)i, . . . ,G(xv)i).

Lemma 17. For security parameter n, let m = m(n), let v = v(n) be polynomial-time polynomially com-
putable and bounded integer functions, and let G be an efficient,15 m-block generator. Then G〈v〉, defined
according to Definition 21, is an efficient m-block generator that satisfies the following properties:

Real entropy: If each block of G has real min-entropy at least kreal = kreal(n), then each block of G〈v〉 has
real min-entropy at least k′real(n) = v · kreal − O((log n+ `) · log n ·

√
v), for ` = `(n) being the maximal

block length of G.
Accessible max-entropy: The following holds for every d = d(n) ∈ ω(log n). If G has accessible max-entropy

at most kacc = kacc(n), then G〈v〉 has accessible max-entropy at most k′acc(n) = v · kacc + d ·m.

Proof. The bound on real entropy follows readily from Lemma 5 by taking ε = 2− log2 n, and noting that the
support size of each block of G is at most ` · 2`. Therefore, we focus on establishing the bound on accessible
max-entropy. Let G = G〈v〉, let G̃ be an efficient, nonuniform, G-consistent generator, and let

ε = ε(n) := Pr
t

R←T̃

[
AccHG̃(t) > k′acc

]
(.34)

for T̃ = TG̃(1n). Our goal is to show that ε is negligible in n.

Let (R1, Y1, . . . , Rm, Ym) = T̃. By definition, for t = (r1, y1, . . . , rm, ym) ∈ Supp(T̃),

AccHG̃(t) =
∑
i∈[m]

HYi|R<i
(yi | r<i). (.35)

Since G̃ is G-consistent, each Yi is of the form (Yi,1, . . . , Yi,v). Lemma 6, taking X = Yi|R<i=r<i
, yields that

Pr
t=(r1,y1,...,rm,ym)

R←T̃

HYi|R<i
(yi|r<i) > d+

v∑
j=1

HYi,j |R<i
(yi,j |r<i)

 ≤ 2−d = neg(n) (.36)

for every i ∈ [m]. Summing over all i ∈ [m], we get that

Pr
t=(r1,y1,...,rm,ym)

R←T̃

∑
i∈[m]

HYi|R<i
(yi|r<i) > md+

∑
i∈[m]

∑
j∈[v]

HYi,j |R<i
(yi,j |r<i)

 = neg(n) (.37)

and therefore

15 Changing the input domain of G to {0, 1}s′(n) for some polynomial-bounded and polynomial-time computable s′, to make

it an efficient block generator according to Definition 13, can be done by standard techniques.

32



Pr
t=(r1,y1,...,rm,ym)

R←T̃

∑
i∈[m]

∑
j∈[v]

HYi,j |R<i
(yi,j |r<i) ≥ k′acc −m · d

 ≥ ε− neg(n). (.38)

In particular, there exist j∗ ∈ [v] such that

Pr
t=(r1,y1,...,rm,ym)

R←T̃

∑
i∈[m]

HYi,j∗ |R<i
(yi,j∗ |r<i) > kacc = (k′acc −m · d)/v

 ≥ ε− neg(n) (.39)

Consider the following efficient, nonuniform, G-consistent generator G̃. This generator starts a random
execution of G̃, and outputs yi,j∗ as its i-th block, for yi = (yi,1, . . . , yi,v) being the i-th block (locally) output

by G̃. Let (R′1, Y
′
1 , . . . , R

′
m, Y

′
m) = TG̃. It is easy to verify that, for every (r1, y1, . . . , rm, ym) ∈ Supp(TG̃) and

1 < i ≤ m, it holds that

HY ′i |R′<i
(yi|j, r<i) = HYi,j∗ |R<i

(yi|r<i). (.40)

Thus, Equation (.39) yields that

Pr
t

R←TG̃

[
AccHG̃(t) > kacc

]
≥ ε− neg(n).

The assumption about the inaccessible entropy of G yields that ε is negligible in n, and the proof of the
lemma follows. �

4.4 Inaccessible Entropy Generator to Statistically Hiding Commitment

In this section we prove a simplified version of the construction of statistically hiding commitments from
inaccessible entropy generators. Specifically, we only prove a weaker version of Lemma 18, stated below,
which is the main lemma in this reduction. But first, we recall the definition of such commitment schemes.

Statistically hiding commitment schemes. A commitment scheme is the cryptographic analogue of a
safe. It is a two-party protocol between a sender S and a receiver R that consists of two stages. The commit
stage corresponds to putting an object in a safe and locking it; the sender “commits” to a private message
m. The reveal stage corresponds to unlocking and opening the safe; the sender “reveals” the message m and
“proves” that it was the value committed to in the commit stage (without loss of generality by revealing
coin tosses consistent with m and the transcript of the commit stage).

Definition 22. A (bit) commitment scheme16 is an efficient two-party protocol Com = (S,R) consisting of
two stages. Throughout, both parties receive the security parameter 1n as input.

Commit. The sender S has a private input b ∈ {0, 1}, which she wishes to commit to the receiver R, and a sequence of
coin tosses σ. At the end of this stage, both parties receive as common output a commitment z.

Reveal. Both parties receive as input a commitment z. S also receives the private input b and coin tosses σ used in the

commit stage. After the interaction of (S(b, r),R)(z), R either outputs a bit, or the reject symbol ⊥.

The commitment is public-coin if the messages the receiver sends are merely the coins it flips at each
round.

16 We present the definition for bit commitment. To commit to multiple bits, we may simply run a bit commitment scheme in
parallel.

33



For the sake of this tutorial, we focus on commitment schemes with a generic reveal scheme: the commit-
ment z is simply the transcript of the commit stage, and in the noninteractive reveal stage, S sends (b, σ) to
R, and R outputs b if S, on input b and randomness σ, would have acted as the sender did in z; otherwise,
it outputs ⊥.

Commitment schemes have two security properties. The hiding property informally says that, at the
end of the commit stage, an adversarial receiver has learned nothing about the message m, except with
negligible probability. The binding property says that, after the commit stage, an adversarial sender cannot
produce valid openings for two distinct messages (i.e., to both 0 and 1), except with negligible probability.
Both of these security properties come in two flavors—statistical, where we require security even against a
computationally unbounded adversary, and computational, where we only require security against feasible
(e.g., polynomial-time) adversaries.

Statistical security is preferable to computational security, but it is impossible to have commitment
schemes that are both statistically hiding and statistically binding. In this tutorial, we focus on statistically
hiding (and computationally binding) schemes, which are closely connected with the notion of inaccessible
entropy generators.

Definition 23. A commitment scheme Com = (S,R) is statistically hiding if

Completeness. If both parties are honest, then for any bit b ∈ {0, 1} that S gets as private input, R accepts and outputs

b at the end of the reveal stage.

Statistical Hiding. For every unbounded strategy R̃, the distributions view
R̃
((S(0), R̃)(1n)) and view

R̃
((S(1), R̃)(1n))

are statistically indistinguishable, where view
R̃
(e) denotes the collection of all messages exchanged and the coin tosses

of R̃ in e.

Computational Binding. A ppt S̃ succeeds in the following game (breaks the commitment) only with negligible probability

in n:

• S̃ = S̃(1n) interacts with an honest R = R(1n) in the commit stage, on security parameter 1n, which yields a

commitment z.

• S̃ outputs two messages τ0, τ1 such that R(z, τb) outputs b, for both b ∈ {0, 1}.

Com is δ-binding if no ppt S̃ wins the above game with probability larger than δ(n) + neg(n).

We now discuss the intriguing connection between statistically hiding commitment and inaccessible en-
tropy generators. Consider a statistically hiding commitment scheme in which the sender commits to a
message of length k, and suppose we run the protocol with the message m chosen uniformly at random in
{0, 1}k. Then, by the statistical hiding property, the real entropy of the message m after the commit stage
is k − neg(n). On the other hand, the computational binding property says that the accessible entropy of m
after the commit stage is at most neg(n). This is only an intuitive connection, since we have not discussed
real and accessible entropy for protocols, but only for generators. Such definitions can be found in [11], and
for them it can be proven that statistical hiding commitments imply protocols in which the real entropy is
much larger than the accessible entropy. Here our goal is to establish the converse, namely that a generator
with a gap between its real and accessible entropy implies a statistical hiding commitment scheme. The
extension of this fact for protocols can be found in [11].

Theorem 12 (Inaccessible entropy to statistically hiding commitment). Let k = k(n), s = s(n),
and δ = δ(n) be polynomial-time computable functions. Let G be an efficient m = m(n)-block generator
over {0, 1}s. Assume that G’s real Shannon entropy is at least k, that its accessible max-entropy is at most
(1 − δ) · k, and that kδ ∈ ω(log n/n). Then for any polynomial-time computable g = g(n) ∈ ω(log n) with
g ≥ H0(G(Us)), there exists an O(m · g/δk)-round, public-coin, statistically hiding and computationally
binding commitment scheme. Furthermore, the construction is black box, and on security parameter 1n, the
commitment invokes G on inputs of length s.17

17 Given a, per n, polynomial-size advice, the commitment round complexity can be reduced to O(m). See Remark 7 for details.

34



Combining the above theorem with Theorem 10 reproves the following fundamental result:

Theorem 13 (One-way functions to statistically hiding commitment). Assume there exists a
nonuniformly one-way function f : {0, 1}n 7→ {0, 1}n, then there exists an O(n2/ log n)-round, public-coin
statistically hiding and computationally binding commitment scheme. Furthermore, the construction is black
box, and on security parameter 1n, the commitment invokes f on inputs of length n.18

The heart of the proof of Theorem 12 lies in the following lemma.

Lemma 18. Let k = k(n) ≥ 3n be a polynomial-time computable function, let m = m(n), s = s(n), and let G
be an efficient m-block generator over {0, 1}s. Then there exists a polynomial-time, O(m)-round, public-coin,
commitment scheme Com with the following properties:

Hiding: If each block of G has real min-entropy at least k, then Com is statistically hiding.
Binding: If the accessible max-entropy of G is at most m(k − 3n), then Com is computationally binding.

Furthermore, on security parameter 1n, the protocol invokes G on inputs of length s.

We prove a weak version of Lemma 18 in Section 4.4.1, but we first use it for proving Theorem 12.

Proving Theorem 12.

Proof of Theorem 12. We prove Theorem 12 by manipulating the real and accessible entropy of G using the
tools described in Section 4.3, and then applying Lemma 18 on the resulting generator.

Truncated sequential repetition: real entropy equalization. In this step we use G to define a gen-
erator G[v] whose each block has the same amount of real entropy— the average of the real entropy of the
blocks of G. In relative terms, the entropy gap of G[v] is essentially that of G. We assume without loss of
generality that m(n) is a power of two.19 We apply truncated sequential repetition (see Definition 20) on
G with parameter w = w(n) = max{4, d16g/δke} ≤ poly(n). Lemma 16, taking d = g, yields an efficient
m′ = m′(n) = (w − 1) ·m)-block generator G[w] such that the following holds:

• Each block of G[w] has real entropy at least k = k′(n) = k/m.
• The accessible max-entropy of G[w] is at most

a′ = a′(n) = (w − 2) · ((1− δ) · k + logm+ 2g + g

≤ (w − 2) · (1− δ) · k + 4g

≤ (w − 2) · (1− δ/2) · k − (w − 2) · k · δ/2 + 4g

≤ (w − 2) · (1− δ/2) · k − w · k · δ/4 + 4g

≤ (w − 2) · (1− δ/2) · k
< m′ · (1− δ/2) · k′.

Parallel repetition: converting real entropy to min-entropy and gap amplification. In this step
we use G[w] to define a generator (G[w])〈v〉 whose each block has the same amount of min-entropy—about
v times the per-block entropy of G[w]. The accessible entropy of (G[w])〈v〉 is also about v times that of
G[w]. Let ` = `(n) ∈ Ω(log n) be a polynomial-time computable function that bounds the maximal block
length of G. We apply the gap amplification transformation (see Definition 21) on G[w] with v = v(n) =

max{24mn/kδ,
⌈
c · (log n · `)/k′δ)2

⌉
}, for c > 0 to be determined by the analysis. Lemma 17 yields an efficient

m′-block generator (G[w])〈v〉 with the following properties:

18 Applying Theorem 12 with the O(n/ logn)-block mentioned in Remark 5 yields an O(n2/ log2 n)-round commitment. This

is the best such commitment scheme we know how to build from one-way functions and it is still far from the (n/ logn) lower
bound of [15], which we only know how to achieve via nonuniform protocol (see Remark 7).
19 Adding 2dlogm(n)e −m(n) final blocks of constant value transforms a block generator to one whose block complexity is a

power of two, while maintaining the same amount of real and accessible entropy.

35



• Each block of (G[w])〈v〉 has real min-entropy at least k′′ = k′′(n) = v · k′ −O (log(n) · ` ·
√
v).

• The accessible max-entropy of (G[w])〈v〉 is at most a′′ = a′′(n) = v · a′ + d ·m′, for d = d(n) = n/8kδ.

Hence for large enough n, it holds that

m′ · k′′ − a′′ ≥ m′ ·
(
v · k′ −O

(
log(n) · ` ·

√
v
))
− (v · a′ + d ·m′)

> m′ ·
(
v · k′ −O

(
log(n) · ` ·

√
v
))
− (v · (m′ · (1− δ/2) · k′) + d ·m′)

= v ·m′ ·
(
k′δ/2−O(log(n) · `/

√
v)− d/v

)
≥ v ·m′ ·

(
k′δ/2−O(k′δ/

√
c)− d/mn

)
≥ v ·m′ · (k′δ/4− d/mn) (.41)

= v · (w − 1) · (kδ/4− d/n)

= v · (w − 1) · kδ/8
≥ 3m′n.

Inequality (.41) holds by taking a large enough value of c in the definition of v.
Namely, the overall real entropy of (G[w])〈v〉 is larger than its accessible max-entropy by at

least 3m′n. Hence, by applying Lemma 18 with (G[w])〈v〉 and k = k′′, we get the claimed
(m′ = m · (w − 1) = O(m · g/δk))-round, public-coin, statistically hiding and computationally binding com-
mitment. �

Remark 6 (Comparison with the construction of next-block pseudoentropy generators to pseudorandom gen-
erators). It is interesting to see the similarity between the manipulations we apply above on the inaccessible
entropy generator G to construct statistically hiding commitment, and those applied in Section 3.4 on the
next-block pseudoentropy generator to construct a pseudorandom generator. The manipulations applied
in both constructions are essentially the same and achieve similar goals: from real entropy to per-block
min-entropy whose overall sum is significantly larger than the accessible entropy in the above, and from
next-block pseudoentropy to per-block pseudo-min-entropy whose overall sum is significantly larger than
the real entropy in Section 3.4. Combining this fact with the similarity in the initial steps of constructing
the above generators from one-way functions (inaccessible entropy generator above and next-block pseu-
doentropy generator in Section 3.4) yields that the structures of the constructions of statistically hiding
commitment schemes and pseudorandom generators from one-way functions are surprisingly similar.

Remark 7 (Constant-round and nonuniform commitments). If the generator’s number of blocks is constant,
one might skip the first “entropy equalizing” step in the proof of Theorem 12 above, and rather apply
parallel repetition directly on G, to get a generator as G[w] above, but for which we do not know the value of
the (possibly different) min-entropies of each block. Since G and thus G[w] have constant number of blocks,
applying a variant of Lemma 18 on G[w] for polynomially many possible values for the min-entropies (up
to some 1/ poly additive accuracy level) yields polynomially many commitments that are all binding and
at least one of them is hiding. Such commitments can then be combined in a standard way to get a single
scheme that is statistically hiding and computationally binding.20

The equalization step can also be skipped if the amount of real entropy of each block of the m-block
generator G is efficiently computable, yielding an Θ(m)-round commitment scheme (rather than the O(m ·
max{log n, g/δk})-round we know how to achieve without this additional property). This argument also yields
an Θ(m)-round, nonuniform (the parties use a nonuniform polynomial-size advice per security parameter)
commitment scheme, with no additional assumptions on the generator G. Combining with Theorem 10,
the latter yields a Θ(n/ log n)-round nonuniform commitment statistically hiding scheme from any one-way
function, matching the lower bound of [15].21

20 [11] used a similar approach to transform a constant-round zero-knowledge proof system for NP that remains secure under

parallel composition into a constant-round statistically hiding and computationally binding commitment.
21 The bound of [15] is stated for uniform commitment schemes, but the same bound for nonuniform commitment schemes
readily follows from their proof.

36



4.4.1 Proving a Weaker Variant of Lemma 18

We prove the following weaker variant of Lemma 18.

Lemma 19 (Weaker variant of Lemma 18). Let k = k(n) ≥ 3n be a polynomial-time computable
function, let m = m(n), s = s(n), and let G be an efficient m-block generator over {0, 1}s. Then there exists
a polynomial-time, O(m)-round, public-coin, commitment scheme Com with the following properties:

Hiding (unchanged): If each block of G has real min-entropy at least k, then Com is statistically hiding.

Binding: If for every efficient, G-consistent generator G̃ there exists i = i(n) ∈ [m] such that

Pr
t
R←TG̃(1n)

[AccHi
G̃

(t) > k − 2n] = neg(n),

then Com is computationally binding.

Furthermore, on security parameter 1n, the protocol invokes G on inputs of length s(n).

That is, rather than requiring the overall accessible entropy of G to be significantly smaller than its
real entropy, we require that, for every efficient, G-consistent generator G̃, there exists a block in which its
accessible entropy is significantly smaller than the real entropy of this block. We do know how to construct
such a generator from one-way functions, and moreover, as we show below, such a generator implies an
Θ(1)-round statistically hiding commitment, which by [15] cannot be constructed black-boxly from one-way
functions. Yet, the proof of Lemma 19 given below does capture some of the main ideas of the proof of
Lemma 18. In Section 4.4.2, we give more ideas about the proof of Lemma 18.

To keep notation simple, we take the simplifying assumption that G’s input length on security parameter
n is n, and assume without loss of generality that all its output blocks are of the same length ` = `(n).22

We omit n from the notation whenever clear from the context.
On the very high level, to prove Lemma 19 we use a random block of G to mask the committed bit. The

guarantee about the real entropy of G yields that the resulting commitment is hiding, where the guarantee
about G’s accessible entropy, yields that the commitment is weakly (i.e., Θ(1/m)) binding. This commitment
is then amplified via parallel repetition, into a full-fledged computationally binding and statistically hiding
commitment.

In more detail, the construction of the aforementioned weakly binding commitment scheme goes as follows:
The receiver R sends uniformly chosen i∗ ∈ [m] to S. The sender S starts (privately) computing a random
execution of G, and sends the first i− 1 output blocks to R. Then the parties interact in a (constant round)
“interactive hashing” subprotocol in which S’s input is the i-th block yi of G. This subprotocol has the
following properties:

• After seeing y1, . . . , yi−1 and the hash value of yi (i.e., the transcript of the hashing protocol), the (real)
min-entropy of yi is still high (e.g., Ω(n)), and
• If the accessible max-entropy of G in the i-th block is lower than k − 2n (i.e., given an adversarial

generator view, the support size of yi is smaller than 2k−2n), then yi is determined from the point of
view of (even a cheating) S after sending the hash value.

Next, S “commits” to its secret bit b by masking it (via XORing) with a bit extracted (via an inner product
with a random string) from yi, and the commit stage halts.

The hiding of the above scheme follows from the guarantee about the min-entropy of G’s blocks. The 1/m-
binding of the scheme follows since the bound on the accessible max-entropy of G yields that the accessible
entropy of at least one of G’s blocks is low, and thus the sender is bounded to a single bit if the receiver has
chosen this block to use for the commitment.

The aforementioned hashing protocol is defined and analyzed in Section 4.4.1.1, the weakly binding com-
mitment is defined in Section 4.4.1.2, and in Section 4.4.1.3 we put it all together to prove the lemma.

22 Using padding technique one can transform a block generator to one whose all blocks are of the same length, without changing

its real and its accessible entropy.

37



4.4.1.1 The Interactive Hashing Protocol

The hashing protocol is the interactive hashing protocol of Ding et al. [6]. (This very protocol is used as the
first step of the computational interactive hashing protocol used in the commitment constructed in the proof
of Lemma 18.)

Let H1 : {0, 1}` 7→ {0, 1}` and H2 : {0, 1}` 7→ {0, 1}n be function families.

Protocol 14 (Two-round interactive hashing protocol (SIH,RIH)H1,H2).
SIH’s private input: x ∈ {0, 1}`

1. RIH sends h1
R←H1 to SIH.

2. SIH sends y1 = h1(x) back to RIH.

3. RIH sends h2
R←H2 to SIH.

4. SIH sends y2 = h2(x) back to RIH.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We will use two properties of the above protocol. The first, which we will use for “hiding”, is that SIH

sends only ` + n bits to RIH. Thus, if SIH’s input x comes from a distribution of min-entropy significantly
larger than ` + n, it will still have high min-entropy conditioned on RIH’s view of the protocol (with high
probability). On the other hand, the following “binding” property says that, if x has max-entropy smaller
than ` (i.e., is restricted to come from a set of size at most 2`) and H1 and H2 are “sufficiently” independent,
then after the interaction ends, x will be uniquely determined, except with exponentially small probability.

The following proposition readily follows from the proof of [6, Theorem 5.6]:

Proposition 1 ([6], “statistical binding” property of (SIH,RIH)). Let H1 : {0, 1}` 7→ {0, 1}` and
H2 : {0, 1}` 7→ {0, 1}n be `-wise and 2-wise independent hash function families, respectively, and let
L ⊆ {0, 1}` be a set of size at most 2`. Let S∗IH be an (unbounded) adversary playing the role of SIH in
(SIH,RIH) that, following the protocol’s interaction, outputs two strings x0 and x1. Then, the following holds

with respect to a random execution of (SIH,RIH)H
1,H2

:

Pr[x0 6= x1 ∈ L ∧ ∀j ∈ {0, 1} : h1(xj) = y1 ∧ h2(xj) = y2] < 2−Ω(n).

4.4.1.2 Constructing Weakly Binding Commitment

Let H1 = {H1
n = {h1 : {0, 1}`(n) 7→ {0, 1}k(n)−2n}}n∈N and H2 = {h2n = {h2 : {0, 1}`(n) 7→ {0, 1}n}}n∈N be

function families. Let G : {0, 1}n 7→ ({0, 1}`(n))m(n) be an m-block generator. The weakly binding commit-
ment is defined as follows:

Protocol 15 (Weakly binding commitment scheme Com = (S,R)).

Common input: security parameter 1n

S’s private input: b ∈ {0, 1}
Commit stage:

1. R sends i∗
R← [m(n)] to S.

2. S starts an execution of G(r) for r
R←{0, 1}n, and sends (y1, . . . , yi∗−1) = G(r)1,...,i∗−1 to R.

3. The two parties interact in (SIH(yi∗ = G(r)i∗),RIH)H
1
n,H

2
n , with S and R taking the roles of SIH and

RIH, respectively.

4. S samples u
R←{0, 1}`(n) and sends (〈u, yi∗〉2 ⊕ b, u) to R, for 〈·, ·〉2 being inner product modulo 2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is clear that, if H1, H2 and G are efficiently computable, then so is Com. We next prove the hiding and
binding properties of Com.

Claim 16 (Hiding). If each block of G has real min-entropy at least k, then Com is statistically hiding.

38



Proof. We fix n ∈ N and omit it from the notation. For i ∈ [m], let Yi denote the i-th block of G(Un).
By assumption, Pr

y
R←Y1,...,i

[
HYi∗ |Y<i

(yi∗ |y<i) < k
]

= neg(n). It follows (by Lemma 3) that there exists a

distribution (Y<i, Y
′
i ) that is statistically indistinguishable from (Y<i, Yi), and Yi |Y<i=y has min-entropy at

least k for every value y ∈ Supp(Y<i).

Let R̃ be an arbitrary algorithm playing the role of R in Com, let i∗ ∈ [m] be its first message and let V R̃
i∗

be R̃’s view in a random execution of (S, R̃), right after S sends the first (i∗−1) output blocks of G. Since V R̃
i∗

is a probabilistic function of the first (i∗ − 1) output blocks of G, the distribution of (V R̃
i∗ , Yi∗) is statistically

indistinguishable from (V R̃
i∗ , Y

′
i∗), and Y ′i∗ |V R̃

i∗=v
R̃
i∗

has min-entropy at least k for every vR̃i∗ ∈ Supp(V R̃
i∗).

Let V be the messages sent by S in embedded execution of the interactive hashing (S, R̃). Since |V | = k−2n,

it follows (by Lemmas 2 and 3) that (V R̃
i∗ , V, Yi∗) is (neg(n) + 2−Ω(n))-close to a distribution (V R̃

i∗ , V, Y
′′
i∗), for

which Y ′′i∗ |(V R̃
i∗ ,Hi∗ )=(vR̃

i∗ ,ai∗ )
has min-entropy at least n for every value (vR̃i∗ , ai∗) ∈ Supp(V R̃

i∗ , V ). Finally, by

the leftover hash lemma (Lemma 8) and the two-universality of the family {hu(y) = 〈u, y〉2 : u ∈ {0, 1}n},
it holds that viewR̃(S(0), R̃) and viewR̃(S(1), R̃) are of statistical distance at most neg(n) + 2−Ω(n), for

viewR̃(S(b), R̃) stands for R̃’s view at the end, the commit stage interaction (S(b), R̃). �

Claim 17 (Weak binding). Assume that H1, H2 anf G are efficiently computable,23 that H1 and H2 are

`-wise and 2-wise independent, respectively, and that, for every efficient G-consistent generator G̃, exists
i = i(n) ∈ [m(n)] such that Pr

t
R←TG̃(1n)

[
AccHi

G̃
(t) > k(n)− 2n

]
= neg(n), then Com is (1 − 1/3m(n))-

binding.

The proof of Claim 17 immediately follows from the next two claims.

Definition 24 (Non-failing senders). A sender S̃ is called non-failing with respect to a commitment scheme

(S,R), if the following holds. Let Z be the transcript of the commit stage of (S̃,R)(1n), and let Σ be the first

decommitment string that S̃ outputs in the (generic) reveal stage, then Pr [R(Z,Σ) =⊥] = 0.

That is, a non-failing sender never fails to justify its actions in the commit stage.

Claim 18 (Weak binding against non-failing senders). Let H1, H2 and G be as in Claim 17, then Com is
(1− 1/2m(n))-binding against non-failing senders.

Claim 19. Assume a public-coin commitment scheme is α-binding against non-failing senders, then it is
(α+ neg)-binding.

Proving Claim 18.

Proof. Assume toward a contradiction that there exists a non-failing ppt sender S̃ that breaks the (1 −
1/2m(n))-binding of Com. We use S̃ to construct an efficient adversarial non-failing generator G̃, such that,
for infinitely many n’s,

Pr
(r1,y1,w1,...)

R←TG̃(1n)

[
HYi|R<i

(yj |r<i) > k(n)− 2n
]

= Ω(1) (.42)

for every i ∈ [m(n)].

In the following we fix n ∈ N on which S̃ breaks the binding with probability at least 1−1/2m(n), and omit

n from the notation when clear from the context. We assume for ease of notation that S̃ is deterministic. The
following generator samples i

R← [m], and then uses the ability of S̃ for breaking the binding of the embedded
hashing protocol at this round, to output a high-sample-entropy block.

23 Sampling and evaluation time are polynomial in n.

39



Algorithm 20 (G̃—Adversarial cheating generator from cheating sender).
Security paramter: 1n

Operation:

1. Let i
R← [m].

2. Emulate a random execution of (S̃,R)(1n) for the first two steps, with i∗ = i. Let (y1, . . . , yi−1) be S̃’s
message in this emulation.

3. Output y1, . . . , yi−1 as the first i− 1 output block.

4. Continue the emulation of (S̃,R) till its end. Let z be the transcript of the commit stage, and let σ0 =

(·, r0, ·) and σ1 = (·, r1, ·) be the two strings output by S̃ at the end of this execution.

5. If R(σ1, z) 6= ⊥, let r
R←{r0, r1}. Otherwise, set r = r0.

6. Output G(r)i, . . . ,G(r)m as the last m+ 1− i output block.

The efficiency of G̃ is clear, and since S̃ is non-failing, it is also clear that G̃ is G-consistent. In the rest of
the proof we show that G̃ violates the assumed bounds on the (maximal) accessible entropy of G̃. Specifically,

that, for every i ∈ [m], the sample-entropy of G̃’s i-th output blocks is larger than k − 2n with probability
Ω(1/m). For ease of notation we prove it for i = 1.

Let T̃ = (R1, Y1, . . . , Rm, Ym) = TG̃(1n), i.e., a random transcript of G̃ on security parameter n. Let Y be

the set of all low-entropy first blocks of G̃. That is,

Y := {y : HY1(y) ≤ k − 2n}.

Let Z, Σ0 = (·, R0, ·), and Σ1 = (·, R1, ·), be the value of the strings z, σ0 and σ1, respectively, set in

Step 4 of G̃ in the execution described by T̃ |i=1. For j ∈ {0, 1}, let Y j = G(Rj)1 if R(Z,Σj) 6= ⊥, and ⊥
otherwise. Since S̃ (also in the emulated execution done in G̃) interacts in a random execution of (SIH,RIH),
Proposition 1 yields that

Pr
[
{Y 0, Y 1} ⊆ Y ∧ Y 0 6= Y 1

]
< 2−Ω(n). (.43)

In addition, since S̃ breaks the binding with probability 1 − 1/2m, it does so with probability at least 1/2
when conditioning on i∗ = 1. This yields that

Pr
[
⊥ /∈ {Y 0, Y 1} ∧ Y 0 6= Y 1

]
≥ 1/2. (.44)

We conclude that

Pr [Y1 /∈ Y] ≥ Pr [i = 1] · 1/2 · Pr
[
⊥ /∈ {Y 0, Y 1} ∧ {Y 0, Y 1} * Y

]
≥ 1/2m · Pr

[
⊥ /∈ {Y 0, Y 1} ∧ {Y 0, Y 1} * Y ∧ Y 0 6= Y 1

]
≥ 1/2m · ( 1

2 − 2−Ω(n)) ≥ Ω(1/m).

Namely, with probability Ω(1/m), the accessible entropy of G̃’s first block is larger than k − 2n. Since this
holds for any of the blocks, it contradicts the assumption about the accessible entropy of G. �

Proving Claim 19.

Proof. The proof follows a standard argument. Let Com = (S,R) be a public-coin commitment scheme, and

assume there exists an efficient cheating sender S̃ that breaks the binding of Com with probability at least
α(n) + 1/p(n), for some p ∈ poly and infinitely many n’s. We construct an efficient non-failing sender Ŝ that
breaks the binding of Com with probability α(n) + 1/2p(n), for infinitely many n’s. It follows that if Com is
α(n)-binding for non-failing senders, then it is (α(n) + neg(n))-binding.

40



We assume for simplicity that S̃ is deterministic, and define the non-failing sender Ŝ as follows: Ŝ starts
acting as S̃, but before forwarding the i-th message yi from S̃ to R, it first makes sure it will be able to
“justify” this message —to output an input for S that is consistent with yi, and the message y1, . . . , yi−i
it sent in the previous rounds. To find such a justification string, Ŝ continues, in its head, the interaction
between the emulated S̃ and R till its end, using fresh coins for the receiver’s messages. Since the receiver is
public-coin, this efficient random continuation has the same distribution as a (real) random continuation of

(S̃,R) has. The sender Ŝ applies such random continuations polynomially many times, and if following one

of them S̃ outputs a valid decommitment string (which by definition is a valid justification string), it keeps
it for future use, and outputs yi as its i-th message. Otherwise (i.e., it failed to find a justification string for

yi), Ŝ continues as the honest S whose coins and input bit are set to the justification string Ŝ found in the
previous round.

Since Ŝ maintains the invariant that it can always justify its messages, it can also do that at the very end
of the commitment stage, and thus outputting this string makes it a non-failing sender. In addition, note
that Ŝ only fails to find a justification string if S̃ has a very low probability to open the commitment at
the end of the current interaction, and thus very low probability to cheat. Hence, deviating from S̃ on such
transcripts will only slightly decrease the cheating probability of Ŝ compared with that of S̃.

Assume for concreteness that R sends the first message in Com. The non-failing sender Ŝ is defined as
follows:

Algorithm 21 (Non-failing sender Ŝ from failing sender S̃).
Input: 1n

Operation:

1. Set w = (0s(n), 0), for s(n) being a bound on the number of coins used by S, and set Fail = false.

2. Start an execution of S̃(1n).
3. Upon getting the i-th message qi from R, do:

a. If Fail = false,
i. Forward qi to S̃, and continue the execution of S̃ till it sends its i-th message.

ii. // Try and get a justification string for this i-th message.

Do the following for 3np(n) times:

A. Continue the execution of (S̃,R) till its end, using uniform random messages for R.

B. Let z′ and w′ be the transcript and first message output by S̃, respectively, at the end of this
execution.

C. Rewind S̃ to its state right after sending its i-th message.

D. // Update the justification string.

If R(z′, w′) 6=⊥. Set w = w′ and break the loop.

iii. If the maximal number of attempts has been reached, set Fail = true.
b. // Send the i-th message to R. If Fail = false, this will be the message sent by S̃ in Step 3(a). Otherwise,

the string will be computed according to the justification string found in a previous round.

Send ai to R, for ai being the i-th message that S(1n, w) sends to R upon getting the first i messages
sent by R.

4. If Fail = false, output the same value that S̃ does at the end of the execution.
Otherwise, output w.

It is clear that Ŝ is non-failing and runs in polynomial time. It is left to argue about its success probability
in breaking the binding of Com. We do that by coupling a random execution of (Ŝ,R) with that of (S̃,R), by
letting R send the same, uniformly chosen, messages in both executions. We will show that the probability
that S̃ breaks the binding, but Ŝ fails to do so, is at most 1/3p(n)+m ·2−n, for m being the round complexity

of Com. If follows that, for infinitely many n’s, Ŝ breaks the binding of Com with probability α(n) + 1/2p(n).

41



Let δi denote the probability of S̃ to break the binding after sending its i-th message, where the probability
is over the messages to be sent by R in the next rounds. By definition of Ŝ, the probability that δi ≥ 1/3p(n)

for all i ∈ [m], and yet Ŝ set Fail = true, is at most m · 2−n. We conclude that the probability that Ŝ does

not break the commitment, and yet S̃ does, is at most 1/2p(n) +m · 2−n. �

4.4.1.3 Putting It Together

Given the above, we prove Lemma 19 as follows:

Proof of Lemma 19. Recall that we assume without loss of generality that G’s blocks are all of the same
length `. We use efficient `-wise function family H1 = {H1

n = {h1 : {0, 1}`(n) 7→ {0, 1}k(n)−2n}}n∈N and
2-wise function family H2 = {h2n = {h2 : {0, 1}`(n) 7→ {0, 1}n}}n∈N (see [4, 30] for constructions of such
families).

Claims 16 and 17 yield that the invocation of Protocol 15 with the generator G and the above function
families is an O(m)-round, public-coin commitment scheme Com that is statistically hiding if the real entropy
of G is sufficiently large, and is (1− Θ(1/m))-binding if the generator max accessible entropy in one of the

blocks is sufficiently small. Let Com〈m
2〉 = (S〈m

2〉,R〈m
2〉) be the m2 parallel repetition of Com: an execution

of (S〈m
2〉(b),R〈m

2〉)(1n) consists of m(n)2-fold parallel and independent executions of (S(b),R)(1n). It is easy

to see that Com〈m
2〉 is statistically hiding since Com is statistically hiding, and by [18] it is computationally

binding since Com is (1−Θ(1/m))-binding. �

4.4.2 About Proving Lemma 18

Recall that the weak binding of Protocol 15 is only guaranteed to hold if the underlying generator G has the
following property: any non-failing cheating generator has a round in which its accessible entropy is much
smaller than the real entropy G has in this round. However, as we mentioned before, building a generator
with this property from one-way functions is beyond the reach of our current techniques, and is impossible
to do in a black-box manner. Rather, the type of generators we do know how to build from arbitrary one-
way functions are the ones assumed in the statement of the Lemma 18: the sum of accessible max-entropy
achieved by a cheating non-failing generator is smaller than the sum of real entropies (of G). For the latter
type of generators, a cheating generator might have high accessible entropy, i.e., as high as the real entropy
of G, in any of the rounds (though not in all of them simultaneously). In particular, knowing i∗, the sender
can put a lot of entropy in i∗’s block. To address this issue, we change the protocol so that the receiver
reveals the value of i∗ only after the interactive hashing protocol. Our hope is that, for at least one value
of i, the sender must use a “low-entropy” value yi in the interactive hashing, and thus we get a binding
commitment with probability at least 1/m. Specifically, consider the following protocol:

Protocol 22 (Commitment scheme Com = (S,R), hidden i∗).

Common input: security parameter 1n

S’s private input: b ∈ {0, 1}
Commit stage:

1. R samples i∗
R← [m(n)].

2. S starts (internally) an execution of G(r) for r
R←{0, 1}n.

3. For i = 1 to m(n)

a. The two parties interact in (SIH(yi = G(r)i),RIH)H
1
n,H

2
n , with S and R taking the roles of SIH and

RIH, respectively.
b. R informs S whether i∗ = i.24

24 As defined, R is not public-coin. This, however, is easy to change, without harming the protocol’s security, by letting R choose
the value of i∗ during the execution of the protocol using public coins. I.e., if not set before, at round i it sets i∗ to be i with

probability 1/(m+ 1− i).

42



c. If informed that i 6= i∗, S sends yi to R.
Otherwise,

i. S samples u
R←{0, 1}`(n) and sends (〈u, yi〉2 ⊕ b, u) to R.

ii. The parties end the execution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Unfortunately, the basic interactive hashing protocol does not force the sender to decide whether yi is a
low-entropy string or not during the execution of the interactive hashing protocol, and a cheating sender can
decide about that after it finds out that i∗ = i. In more detail, given y<i = (y1, . . . , yi−1), let Yy<i

be the set
of low-entropy values for yi conditioned on y<i. (This is defined with respect to a particular cheating sender

strategy S̃). Since there are not too many high probability distinct strings, the set Yy<i is “small”. Hence,
the interactive hashing guarantees that the probability that the sender can produce two distinct elements of
Yy<i

that are consistent with the protocol is negligible. However, it does allow the possibility that the sender
can run the interactive hashing protocol consistently with some yi ∈ Yy<i

and afterwards produce a different
string yi that is not in Yy<i

, but is consistent with the interactive hashing protocol. This enables a sender
to break the binding of the above as follows: consider a cheating sender that runs the generator honestly
to obtain (y1, . . . , ym) and uses yi in the interactive hashing in round i. (Many of these will be low-entropy
strings, since the sender is not using any fresh randomness to generate each block.) Upon finding out that
the yi will be used for the commitment, the sender finds another string y′i (not in Yy<i

) that is consistent
with the transcript of the interactive hashing protocol. With these two strings, the sender can now produce
a commitment that can be opened in two ways. (Namely, choose u so that 〈u, yi〉2 6= 〈u, y′i〉2, and send
(〈u, yi〉2, u), which also equals (〈u, y′i〉2 ⊕ 1, u) to the receiver.)

This problem can be solved by using a different interactive hashing protocol that makes it infeasible for the
receiver to produce two distinct strings consistent with the protocol where even just one of the strings is in a
small set L. The new protocol is simply the interactive hashing protocol used above, followed by the sender
sending f(yi) to the receiver, for f being a random member of a universal one-way hash function [26] chosen
by the receiver. By Rompel [27] (see also [25, 12]) such universal one-way hash functions can be constructed,
in a black-box way, from any one-way function, and thus by Lemma 15, they can be constructed from G.
The binding of the new interactive hashing protocol is only computational (i.e., unbounded sender can find a
collision), compared with the information-theoretic security of the previous interactive hashing protocol, but
since the guarantee on the inaccessible entropy of G holds only against computationally bounded entities,
this change does not matter to us. The full details of the aforementioned computationally secure interactive
hashing protocol and the security proof of the resulting commitment scheme can be found in [16].

Acknowledgment

This tutorial is based on the work we did with Omer Reingold and Hoeteck Wee on inaccessible entropy [16]
and with Omer on next-block pseudoentropy [14], and on the understanding developed through the numerous
meetings different subsets of the four of us had through the years. We are grateful to Omer and Hoeteck for
this collaboration. We also thank Caf Fixe for the excellent coffee that fueled the two of us through much of
this research.

We each have individual remarks for Oded.
Iftach: I would like to thank Oded for teaching me the foundation of cryptography course in the most

exciting way at the very beginning of my master’s studies, and for being my very devoted and inspiring
Masters adviser. Without Oded, I would probably not be doing cryptography, and possible not even doing
research at all.

Salil: I am indebted to Oded for teaching me many things about research (and life in general). Most
relevant to this tutorial, he guided me as I began to study the theory of pseudorandomness, and emphasized
the value in seeking simpler and more intuitive proofs and expositions of important results (which motivates
much of the work described in this tutorial, not to mention the tutorial itself).

43



References

[1] B. Barak, R. Shaltiel, and A. Wigderson. Computational analogues of entropy. In RANDOM-APPROX,
2003.

[2] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo random bits.
In Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (FOCS), pages
112–117, 1982.

[3] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudorandom bits.
SIAM Journal on Computing, 13(4):850–864, 1984.

[4] L. J. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and System
Sciences, pages 143–154, 1979.

[5] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communi-
cation complexity. SIAM J. Comput., 17(2):230–261, 1988.

[6] Y. Z. Ding, D. Harnik, A. Rosen, and R. Shaltiel. Constant-round oblivious transfer in the bounded
storage model. In Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004, pages
446–472, 2004.

[7] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In Proceedings of the
21st Annual ACM Symposium on Theory of Computing (STOC), pages 25–32, 1989.

[8] O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom generators. SIAM Journal
on Computing, 22(6):1163–1175, 1993.

[9] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, pages
270–299, 1984.

[10] I. Haitner, M. Nguyen, S. J. Ong, O. Reingold, and S. Vadhan. Statistically hiding commitments and
statistical zero-knowledge arguments from any one-way function. SIAM Journal on Computing, 39(3):
1153–1218, 2009.

[11] I. Haitner, O. Reingold, S. Vadhan, and H. Wee. Inaccessible entropy. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing (STOC), pages 611–620, 2009.

[12] I. Haitner, T. Holenstein, O. Reingold, S. Vadhan, and H. Wee. Universal one-way hash functions via
inaccessible entropy. In Advances in Cryptology – EUROCRYPT 2010, pages 616–637, 2010.

[13] I. Haitner, D. Harnik, and O. Reingold. On the power of the randomized iterate. SIAM J. Comput., 40
(6):1486–1528, 2011. Preliminary version in Crypto’06.

[14] I. Haitner, O. Reingold, and S. Vadhan. Efficiency improvements in constructing pseudorandom gener-
ators from one-way functions. SIAM Journal on Computing, 42(3):1405–1430, 2013.

[15] I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in interactive protocols—tight
lower bounds on the round and communication complexities of statistically hiding commitments. SIAM
Journal on Computing, 44(1):193–242, 2015.

[16] I. Haitner, O. Reingold, S. Vadhan, and H. Wee. Inaccessible entropy i: I.e. generators and
statistically hiding commitments from one-way functions. www.cs.tau.ac.il/~iftachh/papers/

AccessibleEntropy/IE1.pdf, 2016. To apper. Prelimanry version,named Inaccessible Entropy, ap-
perared in STOC 09.

[17] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way
function. SIAM Journal on Computing, pages 1364–1396, 1999.

[18] J. Hästad, R. Pass, K. Pietrzak, and D. Wikström. An efficient parallel repetition theorem. In Theory
of Cryptography, Sixth Theory of Cryptography Conference, TCC 2010, 2010.

[19] T. Holenstein. Pseudorandom generators from one-way functions: A simple construction for any hard-
ness. In Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, 2006.

[20] T. Holenstein and M. Sinha. Constructing a pseudorandom generator requires an almost linear number
of calls. In Proceedings of the 53rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 698–707, 2012.

[21] C.-Y. Hsiao, C.-J. Lu, and L. Reyzin. Conditional computational entropy, or toward separating pseu-
doentropy from compressibility. In Advances in Cryptology – EUROCRYPT 2007, pages 169–186, 2007.

44

www.cs.tau.ac.il/~iftachh/papers/AccessibleEntropy/IE1.pdf
www.cs.tau.ac.il/~iftachh/papers/AccessibleEntropy/IE1.pdf


[22] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptography. In
Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS), pages 230–
235, 1989.

[23] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proceedings of the 30th Annual
Symposium on Foundations of Computer Science (FOCS), pages 248–253, 1989.

[24] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions. In
Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages 12–24. ACM
Press, 1989.

[25] J. Katz and C. Koo. On constructing universal one-way hash functions from arbitrary one-way functions.
Technical Report 2005/328, Cryptology ePrint Archive, 2005.

[26] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In
Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages 33–43, 1989.

[27] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceedings of the
22nd Annual ACM Symposium on Theory of Computing (STOC), pages 387–394, 1990.

[28] C. Shannon. Communication theory of secrecy systems. Bell System Technical Journal, pages 656–715,
1949.

[29] S. Vadhan and C. J. Zheng. Characterizing pseudoentropy and simplifying pseudorandom generator
constructions. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC),
pages 817–836, 2012.

[30] M. N. Wegman and J. L. Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 1981.

[31] G. Yang. Cryptography and Randomness Extraction in the Multi-Stream Model. PhD thesis, Ts-
inghua University, Beijing, China, 2015. http://eccc.hpi-web.de/static/books/Cryptography_

and_Randomness_Extraction_in_the_Multi_Stream_Model.
[32] A. C. Yao. Theory and applications of trapdoor functions. In Proceedings of the 23rd Annual Symposium

on Foundations of Computer Science (FOCS), pages 80–91, 1982.
[33] D. Zuckerman. Simulating BPP using a general weak random source. Algorithmica, 16(4/5):367–391,

1996.

45

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il

http://eccc.hpi-web.de/static/books/Cryptography_and_Randomness_Extraction_in_the_Multi_Stream_Model
http://eccc.hpi-web.de/static/books/Cryptography_and_Randomness_Extraction_in_the_Multi_Stream_Model

