
Concurrent Zero Knowledge
Without Complexity Assumptions�

Daniele Micciancio1,��, Shien Jin Ong2,� � �, Amit Sahai3,†, and Salil Vadhan2,‡

1 University of California, San Diego, La Jolla CA 92093, USA
daniele@cs.ucsd.edu

2 Harvard University, Cambridge MA 02138, USA
{shienjin, salil}@eecs.harvard.edu

3 University of California, Los Angeles, Los Angeles CA 90095, USA
sahai@cs.ucla.edu

Abstract. We provide unconditional constructions of concurrent sta-
tistical zero-knowledge proofs for a variety of non-trivial problems (not
known to have probabilistic polynomial-time algorithms). The problems
include Graph Isomorphism, Graph Nonisomorphism, Quadratic Resid-
uosity, Quadratic Nonresiduosity, a restricted version of Statistical Dif-
ference, and approximate versions of the (coNP forms of the) Shortest
Vector Problem and Closest Vector Problem in lattices.

For some of the problems, such as Graph Isomorphism and Quadratic
Residuosity, the proof systems have provers that can be implemented in
polynomial time (given an NP witness) and have Õ(log n) rounds, which
is known to be essentially optimal for black-box simulation.

To the best of our knowledge, these are the first constructions of con-
current zero-knowledge proofs in the plain, asynchronous model (i.e.,
without setup or timing assumptions) that do not require complexity
assumptions (such as the existence of one-way functions).

1 Introduction

In the two decades since their introduction [2], zero-knowledge proofs have taken
on a central role in the study of cryptographic protocols, both as a basic building
block for more complex protocols and as a testbed for understanding important
new issues such as composability (e.g., [3]) and concurrency (e.g., [4]). The “clas-
sic” constructions of zero-knowledge proofs came primarily in two flavors. First,
there were direct constructions of zero-knowledge proofs for specific problems,
such as Quadratic Residuosity [2] and Graph Isomorphism [5]. Second,
there were general constructions of zero-knowledge proofs for entire classes of

� A full version of this paper is available [1].
�� Supported by NSF grant 0313241 and an Alfred P. Sloan Research Fellowship.

� � � Supported by ONR grant N00014-04-1-0478.
† Supported by NSF ITR and Cybertrust programs, an equipment grant from Intel,

and an Alfred P. Sloan Foundation Fellowship.
‡ Supported by NSF grants CNS-0430336 and CCR-0205423.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 1–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 D. Micciancio et al.

problems, such as all of NP [5].1 Both types of results have played an important
role in the development of the field.

The general results of the second type show the wide applicability of zero
knowledge, and are often crucial in establishing general feasibility results for
other cryptographic problems, such as secure multiparty computation [8,5] and
CCA-secure public-key encryption [9, 10, 11]. However, they typically are too
inefficient to be used in practice. The specific results of the first type are often
much more efficient, and are therefore used in (or inspire) the construction of
other efficient cryptographic protocols, e.g., identification schemes [12] and again
CCA-secure public-key encryption [13, 14, 15]. Moreover, the specific construc-
tions typically do not require any unproven complexity assumptions (such as the
existence of one-way functions), and yield a higher security guarantee (such as
statistical zero-knowledge proofs).2 The fact that the proof systems are uncon-
ditional is also of conceptual interest, because they illustrate the nontriviality of
the notion of zero knowledge even to those who are unfamiliar with (or who do
not believe in the existence of) one-way functions.3

Concurrent zero knowledge. In recent years, a substantial effort has been de-
voted to understanding the security of cryptographic protocols when many exe-
cutions are occurring concurrently (with adversarial scheduling). As usual, zero-
knowledge proofs led the way in this effort, with early investigations of concur-
rency for relaxations of zero knowledge dating back to Feige’s thesis [22], and
the recent interest being sparked by the work of Dwork, Naor, and Sahai [4],
which first defined the notion of concurrent zero knowledge. Research on con-
current zero knowledge has been very fruitful, with a sequence of works leading
to essentially tight upper and lower bounds on round complexity for black-box
simulation [23, 24, 25, 26, 27, 28], and partly motivating the first non-black-
box-simulation zero-knowledge proof [29]. However, these works are primarily
of the second flavor mentioned in the first paragraph. That is, they are general
feasibility results, giving protocols for all of NP. As a result, these protocols
are fairly inefficient (in terms of computation and communication), rely on un-
proven complexity assumptions, and only yield computational zero knowledge
(or, alternatively, computational soundness).

There have been a couple of works attempting to overcome these deficiencies.
Di Crescenzo [30] gave unconditional constructions of concurrent zero-knowledge
1 See the textbook [6] and survey [7] by Oded Goldreich for a thorough introduction

to zero-knowledge proofs.
2 Of course, this partition into two types of zero-knowledge protocols is not a precise

one. For example, there are some efficient zero-knowledge proofs for specific problems
that use complexity assumptions (e.g., [16] and there are some general results that
are unconditional (e.g., [17, 18, 19]).

3 It should be noted that the results of [20,21] show that the existence of a zero-
knowledge proof for a problem outside BPP implies some weak form of one-way
function. Still, appreciating something like the perfect zero-knowledge proof sys-
tem for Graph Isomorphism [5] only requires believing that there is no worst-case
polynomial-time algorithm for Graph Isomorphism, as opposed to appreciating
notions of average-case complexity as needed for standard one-way functions.

Concurrent Zero Knowledge Without Complexity Assumptions 3

proofs in various timing models. That is, his protocols assume that the honest
parties have some synchronization and may employ delays in the protocol, and
thus do not work in the standard, asynchronous model (and indeed he states
such a strengthening as an open problem). Micciancio and Petrank [31] gave
an efficient (in terms of computation and communication) transformation from
honest-verifier zero-knowledge proofs to concurrent zero-knowledge proofs. How-
ever, their transformation relies on the Decisional Diffie–Hellman assumption,
and yields only computational zero knowledge.

Our Results. We give the first unconditional constructions of concurrent zero-
knowledge proofs in the standard, asynchronous model. Our proof systems are
statistical zero knowledge and statistically sound (i.e. they are interactive proofs,
not arguments [32]). Specifically, our constructions fall into two categories:

1. Efficient proof systems for certain problems in NP, including Quadratic
Residuosity, Graph Isomorphism and a restricted form of quadratic non-
residuosity for Blum integers, which we call Blum Quadratic Nonresid-
uosity. These proof systems all have prover strategies that can be imple-
mented in polynomial time given an NP witness and have Õ(log n) rounds,
which is essentially optimal for black-box simulation [27].

2. Inefficient proof systems for other problems, some of which are not known
to be in NP. These include Quadratic Nonresiduosity, Graph Non-
isomorphism, the approximate versions of the complements of the Clos-
est Vector Problem and Shortest Vector Problem in lattices, and
a restricted version of Statistical Difference (the unrestricted version
is complete for statistical zero knowledge [33]). These proof systems have
a polynomial number of rounds, and do not have polynomial-time prover
strategies. These deficiencies arise from the fact that our construction be-
gins with a public-coin, honest-verifier zero-knowledge proof for the problem
at hand, and the only such proofs known for the problems listed here have
a polynomial number of rounds and an inefficient prover strategy.

Techniques. One of the main tools for constructing zero-knowledge proofs are
commitment schemes, and indeed the only use of complexity assumptions in the
construction of zero-knowledge proofs for all of NP [5] is to obtain a commitment
scheme (used by the prover to commit to the NP witness, encoded as, e.g., a
3-coloring of a graph). Our results rely on a relaxed notion of commitment,
called an instance-dependent commitment scheme,4 which is implicit in [35] and
formally defined in [36,34,19]. Roughly speaking, for a language L (or, more
generally, a promise problem), a instance-dependent commitment scheme for L
is a commitment protocol where the sender and receiver algorithms also depend
on the instance x. The security requirements of the protocol are relaxed so that
the hiding property is only required when x ∈ L, and the binding property is
only required when x /∈ L (or vice-versa).

4 Previous works [34,19] have referred to this as “problem-dependent” commitment
scheme, but this new terminology of “instance-dependent” seems more accurate.

4 D. Micciancio et al.

As observed in [36], many natural problems, such as Graph Isomorphism
and Quadratic Residuosity, have simple, unconditional instance-dependent
commitment schemes. This is useful because in many constructions of zero-
knowledge proofs (such as that of [5]), the hiding property of the commitment
scheme is only used to establish the zero-knowledge property and the bind-
ing property of the commitment scheme is only used to establish soundness.
Since, by definition, the zero-knowledge property is only required when the in-
put x is in the language, and the soundness condition is only required when
x is not in the language, it suffices to use a instance-dependent commitment
scheme. Specifically, if a language L ∈ NP (or even L ∈ IP) has a instance-
dependent commitment scheme, then L has a zero-knowledge proof [36] (see
also [34,19]).

Existing constructions of concurrent zero-knowledge proofs [24,27,28] also rely
on commitment schemes (and this is the only complexity assumption used). Thus it
is natural to try to use instance-dependent commitments to construct them. How-
ever, these protocols use commitments not only from the prover to the verifier,
but also from the verifier to the prover. Naturally, for the latter type of commit-
ments, the roles of the hiding and binding property are reversed from the above —
the hiding property is used to prove soundness and the binding property is used to
prove (concurrent) zero knowledge.Thus, it seems thatweneednot only a instance-
dependent commitment as above, but also one where the security properties are
reversed (i.e. binding when x ∈ L, and hiding when x /∈ L).

Our first observation is that actually we only need to implement the com-
mitment schemes from the verifier to the prover. This is because the concurrent
zero-knowledge proof system of Prabhakaran, Rosen and Sahai [28] is constructed
by a general compiler that converts any public-coin zero-knowledge proof into a
concurrent zero-knowledge proof, and this compiler only uses commitments from
the verifier to the prover. (Intuitively, the verifier commits to its messages in an
initial “preamble” stage, which is designed so as to allow concurrent simulation.)
Since all the problems we study are unconditionally known to have public-coin
zero-knowledge proofs, we only need to implement the compiler. So we are left
with the task finding instance-dependent commitments that are binding when
x ∈ L and hiding when x /∈ L. Thus, for the rest of the paper, we use this as our
definition of instance-dependent commitment.

This idea works directly for some problems, such as Graph Nonisomorphism
and Quadratic Nonresiduosity. For these problems, we have instance-
dependent commitments with the desired security properties, and thus we can
directly use these commitments in the compiler of [28]. Unfortunately, for the com-
plement problems, such as Graph Isomorphism and Quadratic Residuosity,
we only know of instance-dependent commitments that are hiding when x ∈ L,
and binding when x /∈ L.

Thus, for some of our results, we utilize a more sophisticated variant of
instance-dependent commitments, due to Bellare, Micali, and Ostrovsky [35].
Specifically, they construct something like a instance-dependent commitment
scheme for the Graph Isomorphism problem, but both the hiding and binding

Concurrent Zero Knowledge Without Complexity Assumptions 5

properties are non-standard. For example, the binding property is as follows:
they show that if x ∈ L and the sender can open a commitment in two different
ways, then it is possible for the sender to extract an NP witness for x ∈ L. Thus
we call these witness-binding commitments. Intuitively, when we use such com-
mitments, we prove concurrent zero knowledge by the following case analysis:
either the verifier is bound to its commitments, in which case we can simulate
our proof system as in [28], or the simulator can extract a witness, in which case
it can be simulated by running the honest prover strategy. In reality, however,
the analysis does not break into such a simple case analysis, because the veri-
fier may break the commitment scheme in the middle of the protocol. Thus we
require that, in such a case, an already-begun simulation can be “continued”
once we are given an NP witness. Fortunately, the classic (stand-alone) proof
systems for Graph Isomorphism and Quadratic Residuosity turn out to
have the needed “witness-completable simulation” property.

An additional contribution of our paper is to provide abstractions and gen-
eralizations of all of the above tools that allow them to be combined in a mod-
ular way, and may facilitate their use in other settings. First, we show how the
“preamble” of the Prabhakaran–Rosen–Sahai concurrent zero-knowledge proof
system [28] can be viewed as a way to transform any commitment scheme into
one that is “concurrently extractable,” in the sense that we are able to simulate
the concurrent execution of many sessions between an adversarial sender and
the honest receiver in a way that allows us to extract the commitments of the
sender in every session. This may be useful in constructing other concurrently
secure protocols (not just proof systems). Second, we provide general defini-
tions of witness-binding commitment schemes as well as witness-completable
zero-knowledge proofs as possessed by Graph Isomorphism and Quadratic
Residuosity and as discussed above.

Perspective. The recent works of Micciancio and Vadhan [34] and Vadhan [19]
hypothesized that every problem that has a statistical (resp., computational)
zero-knowledge proof has a instance-dependent commitment scheme.5 There are
several pieces of evidence pointing to this possibility:

1. A restricted form of a complete problem for statistical zero knowledge has a
instance-dependent commitment scheme [34].

2. If instance-dependent commitments exist for all problems with statistical
zero-knowledge proofs, then instance-dependent commitments exist for all
of problems with (general, computational) zero-knowledge proofs [19].

3. Every problem that has (general, computational) zero-knowledge proofs also
has inefficient instance-dependent commitments. These commitments are in-

5 Actually, the works of [34] and [19] refer to instance-dependent commitments where
the hiding property holds on yes instances and the binding property on no instances,
which is opposite of what we use. For statistical zero knowledge, this does not mat-
ter because the class of problems having statistical zero-knowledge proofs is closed
under complement [17]. But for computational zero knowledge, it means that out-
line presented here might yield a concurrent zero-knowledge argument system rather
than a proof system.

6 D. Micciancio et al.

efficient in the sense that the sender algorithm is not polynomial-time com-
putable [19]. Unfortunately we cannot use these commitments in our proto-
cols in this paper, because our verifier plays the role of the sender.

If the above hypothesis turns out to be true, then our work suggests that
we should be able prove that any problem that has a zero-knowledge proof has
a concurrent zero-knowledge protocol: simply plug the hypothesized instance-
dependent commitment scheme into our constructions. (We do not claim this as
a theorem because in this paper, we restrict our attention to instance-dependent
commitment schemes that are noninteractive and perfectly binding for simplicity,
but the hypothesis mentioned above make no such restriction.)

Outline. Section 2 details some nonstandard notations that are used in this pa-
per. In Sect. 3, we abstract the preamble stage in the Prabhakaran-Rosen-Sahai
concurrent zero-knowledge protocol [28, Sect. 3.1], showing how it transforms
any noninteractive commitment scheme into one satisfying a desirable extraction
property. In Sect. 4, we apply this transformation to instance-dependent commit-
ments, and thereby obtaining some of our concurrent zero-knowledge proofs. In
Sect. 5, we extend this transformation to problems with witness-binding commit-
ments, and thereby obtaining concurrent zero-knowledge proofs for Quadratic
Residuosity and Graph Isomorphism. Many details and proofs are contained
in the full version of this paper [1].

2 Preliminaries

For the most part, we use standard notations found in the theoretical cryptogra-
phy and complexity theory literature. In the next few paragraphs, we highlight
several nonstandard notations used.

Transcript and output of interactive protocols. For an interactive protocol (A,B),
let 〈A,B〉(x) denote the random variable representing the output of B after
interaction with A on common input x. In addition, let viewA

B(x) denote the
random variable representing the content of the random tape of B together with
the messages received by B from A during the interaction on common input x.

Committed-verifier zero knowledge. Prabhakaran, Rosen and Sahai [28], in their
works on concurrent zero knowledge, showed that adding a Õ(log n)-round pream-
ble to a specific form of zero-knowledge protocol (the Hamiltonicity protocol)
results in a concurrent zero-knowledge proof system, assuming the existence of
a collection of claw-free functions. Alon Rosen, in his PhD thesis, noted that the
preamble can be added to a more general form of zero-knowledge protocol, which
he informally defines as challenge-response zero knowledge [37, Sect. 4.8.1]. We
formalize this notion and call it committed-verifier zero knowledge.

Definition 1 (committed-verifier zero knowledge). A committed-verifier
Vm, where m = (m1,m2, . . . ,mk), is a deterministic verifier that always sends
mi as its i-th round message.

Concurrent Zero Knowledge Without Complexity Assumptions 7

An interactive proof (P, V) for (promise) problem Π is perfect (resp., statis-
tical, computational) committed-verifier zero knowledge (CVZK) if there exists
a probabilistic polynomial-time simulator S such that for all committed verifier
Vm, the ensembles {viewP

Vm
(x)}x∈ΠY and {S(x,m)}x∈ΠY are perfectly (resp.,

statistically, computationally) indistinguishable.

This CVZK property is closely related to notion of honest-verifier zero knowledge
(HVZK) in that any CVZK protocol is also trivially HVZK. Conversely, any
public-coin HVZK protocol can be converted into a public-coin CVZK protocol
by allowing the prover to send random coins m′ before the verifier’s public-coin
message m, and making the prover respond to m′ ⊕m (instead of just m).

Lemma 2. Promise problem Π has public-coin (perfect/statistical/computa-
tional) CVZK proofs if and only if it has public-coin (perfect/statistical/computa-
tional) HVZK proofs.

3 Concurrently-Extractable Commitment Scheme

3.1 Overview

A key component in our concurrent zero-knowledge protocols is a commit-
ment scheme with a concurrent extractability property. We call this scheme
concurrently-extractable commitment (CEC) scheme. The notion of concurrent
extractability informally means that we are able to simulate the concurrent ex-
ecution of many sessions between an adversarial sender and the honest receiver
in a way that allows us to extract the commitments of the sender in every
session.

This notion of concurrent extractability is inspired by the rewinding and sim-
ulation strategy of the Prabhakaran-Rosen-Sahai (PRS) [28] concurrent zero-
knowledge protocol. The PRS protocol essentially consists of two stages, the
preamble (first) stage and the main (second) stage [28, Sect. 3.1]. The concur-
rent zero knowledge feature of the protocol comes from the preamble stage, in
which the verifier is required to commit to the messages that it will use in the
main stage. Our goal in this section is to modularize the PRS protocol by ab-
stracting this key feature (preamble stage) that allows for concurrent security.

3.2 Definitions

Standard commitment schemes. A standard (interactive) commitment scheme
typically consists of a sender S, a receiver R and a verification algorithm Verify.
A message bit m ∈ {0, 1} is given as private input to S, and the common
input to both is 1n, where n is the security parameter. After the interaction
(S(m), R)(1n), R outputs a commitment string c and S outputs a decommitment
pair (m, d). (Without loss of generality, we can assume that c is R’s view of the
interaction and d is S’s coin tosses.) The verification algorithm Verify checks that
(m, d) is a valid decommitment of c by accepting if it is, and rejecting otherwise.

8 D. Micciancio et al.

Commitment schemes with partial verification. To extend standard commit-
ments to concurrently extractable ones, we require an additional verification
procedure denoted as Partial-Verify, which is needed for the special binding prop-
erty (see Definition 6).

Definition 3. A commitment scheme with partial verification consists of prob-
abilistic polynomial-time algorithms (S,R,Verify,Partial-Verify) such that the fol-
lowing conditions hold.

1. After the interaction (S(m), R)(1n), R outputs a commitment string c and
S outputs a decommitment pair (m, d).

2. For all (c, (m, d)) ← (S(m), R)(1n), we have that Verify(c,m, d) = 1.
3. For all c, m and d, Verify(c,m, d) = 1 implies Partial-Verify(c,m, d) = 1.

A decommitment (m, d) to c with Verify(c,m, d) = 1 is called a full decommit-
ment, whereas if we have only that Partial-Verify(c,m, d) = 1, it is called a partial
decommitment. Note that a standard commitment scheme is a special case of the
above definition by imposing Partial-Verify = Verify.

Remark 4. Our above notion of a commitment scheme with partial verification
shares some similarities with mercurial commitments, a notion recently defined
in [38]. For our notion, we have a single kind of commit phase that has two
kinds of decommitments, a full decommitment and a partial decommitment. For
mercurial commitments, the hard commitments correspond to our single com-
mit phase, and thus has two kinds of decommitments; standard decommitments
and tease. Standard decommitments and tease correspond to full decommit-
ments and partial decommitments, respectively. Mercurial commitments also
have a notion of soft commitments (that cannot be opened with standard de-
commitments, but can be teased to any value), which we do not require. Mer-
curial commitments were defined as a primitive for constructing zero-knowledge
sets [39].

Statistical hiding and perfect binding. Definition 3 only refers to the syntax of
a commitment scheme, and does not impose any security requirements (e.g.,
hiding and binding). For that, we have the following two definitions.

Definition 5 (hiding). A commitment scheme with partial verification
(S,R,Verify,Partial-Verify) is statistically hiding if for every adversarial receiver
R∗, the ensembles {〈S(0), R∗〉(1n)}n∈N and {〈S(1), R∗〉(1n)}n∈N are statistically
indistinguishable.

The above definition is restricted to statistically hiding since for the purposes of
our paper, we will only need to consider statistically hiding commitments. It is
straightforward to extend Definition 5 to encompass perfect and computational
hiding. Next, we define the perfectly binding property for commitment schemes
with partial verification. This perfectly binding notion will be used throughout
Sect. 4.

Concurrent Zero Knowledge Without Complexity Assumptions 9

Definition 6 (binding). A commitment scheme with partial verification
(S,R,Verify,Partial-Verify) is perfectly binding if for every commitment c, there
do not exist decommitments (m, d) and (m′, d′) such that m �= m′ and
Verify(c,m, d) = Partial-Verify(c,m′, d′) = 1.

Intuitively the above definition says that a partial decommitment of c to a mes-
sage m is a proof that c can only be full decommitted to m. Also, observe
that Definition 6 implies that the scheme is binding with respect to Verify
alone. That is, there do not exist c, (m, d) and (m′, d′) with m �= m′ and
Verify(c,m, d) = Verify(c,m′, d′) = 1. But the scheme need not be binding with
respect to Partial-Verify alone. Hence, the binding property specified in Defini-
tion 6 is a natural extension of the binding property of standard commitments
(where Partial-Verify = Verify).

Concurrent simulatability with extractability. The commitment scheme with
partial verification (as in Definition 3) will be used as a building block for our
concurrent zero-knowledge protocols in Sects. 4 and 5. For these concurrent zero-
knowledge protocols, the prover P and adversarial verifier V ∗ will play the role
of the receiver R and concurrent adversarial sender Ŝ, respectively. Therefore, we
will need to simulate the concurrent interaction between R and Ŝ, but it turns
out this alone is not sufficient. We will also need the simulator to determine
partial decommitments of Ŝ in every completed session that it has simulated.
This property is called concurrent extractability, a notion we formalize next.

Definition 7. A commitment scheme with partial verification (S,R,Verify,
Partial-Verify) is concurrently extractable if there exists a probabilistic polynomial-
time simulator Sim such that for every Q ≤ poly(n), and for every concurrent
adversary Ŝ that executes at most Q concurrent sessions, we have:

1. (Statistical simulation) The output of SimŜ(1n, 1Q) is statistically indistin-
guishable to the output of Ŝ in the concurrent interaction 〈R, Ŝ〉(1n).

2. (Concurrent extractability) Whenever Sim queries Ŝ on a transcript T , for
every completed session s in T with a commitment c[s], it provides partial
decommitment (m[s], d[s]) such that Partial-Verify(m[s], c[s], d[s]) = 1.

For short, we call this a concurrently-extractable commitment scheme. Also,
Sim is called the concurrently-extracting simulator.

Note that we require that the concurrent extractability property hold for all
adversaries Ŝ, even computationally unbounded ones. The only limitation on
Ŝ is that it executes at most polynomial sessions, which is a natural restric-
tion since it is infeasible to simulate a superpolynomial number of sessions in
polynomial time. In addition, the simulator is only required to provide partial
decommitments for every completed session. This suffices because a valid partial
decommitment (m, d) of a commitment c effectively binds it to the message m
if we insist on a full decommitment later on (see Definition 6).

10 D. Micciancio et al.

3.3 Construction of Concurrently-Extractable Commitments

A circuit Com : {0, 1} × {0, 1}n → {0, 1}n can be viewed as a generic (nonin-
teractive) commitment scheme, with n being the security parameter. The com-
mitment to a message bit m is Com(m; r), where r ← {0, 1}n is a uniformly
chosen random key. Likewise, the decommitment of c to a bit m is a pair (m, r)
such that c = Com(m; r). Note that this definition only refers to the syntax of a
commitment scheme and does not impose any security requirements (i.e., hiding
and binding).

The next lemma states that we can transform any generic commitment scheme
Com : {0, 1} × {0, 1}n → {0, 1}n into a new scheme with the concurrent ex-
tractability property. This new scheme is essentially the preamble stage of the
PRS concurrent ZK protocol [28], with the sender (verifier) using Com to com-
mit in the Õ(log n) rounds of interaction, and the receiver (prover) just sending
random coins.

Lemma 8. For any generic noninteractive commitment scheme Com : {0, 1} ×
{0, 1}n → {0, 1}n, there is a concurrently-extractable commitment scheme CCom

= (SCom, RCom,VerifyCom,Partial-VerifyCom) (taking the circuit Com as auxiliary
input), such that:

1. If Com is perfectly binding, then CCom is perfectly binding.
2. If Com is statistically hiding, then CCom is statistically hiding.
3. (SCom, RCom) has Õ(log n) rounds of interaction.

We denote CEC-SimCom as the concurrently-extracting simulator for CCom.

Committing to multi-bit messages. The concurrently-extractable commitment
scheme obtained from Lemma 8 is for a single-bit message; to commit to a �-bit
message, we independently repeat the scheme � times in parallel. It is important
to note that even if we do so, all the properties required in Definition 7 still hold.
(Concurrent extractability follows because parallel repetition is a special case of
concurrent interaction.) Later in Sect. 4, it will be more convenient to think of Ŝ
as committing to an �-bit message per session, rather than � senders committing
to a single-bit message each.

Finally, when S commits to multi-bit messages, it can full-decommit in mul-
tiple steps, one for each committed bit. This is because the full decommitment
for each bit of the message is independent of the others.

4 Unconditional Concurrent Zero-Knowledge Proofs for
Problems with Instance-Dependent Commitments

In this section, we demonstrate a generic technique for transforming certain stand-
alone public-coin zero-knowledge protocols into concurrent zero-knowledge proto-
cols. In doing so, we construct unconditional concurrent zero-knowledge proofs for

Concurrent Zero Knowledge Without Complexity Assumptions 11

non-trivial problems like Quadratic Nonresiduosity, Graph NonIsomor-
phism, a variant of Statistical Difference and approximate lattice problems.

The main tool used in the transformation is a instance-dependent commitment
scheme, formally defined in Definition 9. Later in Sect. 5, we demonstrated
a modified transformation that works for certain problems possessing witness-
binding commitments.

4.1 Instance-Dependent Commitments

In order to prevent the adversarial verifier from deviating widely from the original
protocol specification, the previous constructions of concurrent zero-knowledge
protocols require the verifier to commit to certain messages in advance [23,25,28].
While these commitments can be constructed from one-way functions [40,41],
proving the existence of one-way functions remains a major open problem in
complexity theory.

To achieve concurrent security without relying on unproven assumptions, we
observe that the standard verifier’s commitments used in [28] can be replaced
by instance-dependent commitments [36] (cf., [34]). A instance-dependent com-
mitment, roughly speaking, is a commitment protocol that takes the problem
instance x as an additional input, is binding on the yes instances (x ∈ ΠY), and
is hiding on the no instances (x ∈ ΠN). Standard commitments, by contrast,
are required to always be both hiding and binding regardless of the problem
instance.

Because the hiding and binding properties of instance-dependent commit-
ments depend on the problem instance, we can construct instance-dependent
commitments that are both perfectly binding (on the yes instances) and sta-
tistically hiding (on the no instances).6 We give a simplified, noninteractive
definition of instance-dependent commitments that suffices for our applications
in this section.

Definition 9. (noninteractive instance-dependentcommitment)Promise
problem Π = (ΠY,ΠN) has a instance-dependent commitment if there exists a
polynomial-time algorithm PD-Com such that the following holds.

1. Algorithm PD-Com takes as input the problem instance x, a bit b, and a
random key r, and produces a commitment c = PD-Comx(b; r). The running
time of PD-Com is bounded by a polynomial in |x|, hence without loss of
generality we can assume that |c| = |r| = poly(|x|).

2. (perfectly binding on yes instances) For all x ∈ ΠY, the distributions
PD-Comx(0) and PD-Comx(1) have disjoint supports. That is, there does
not exist strings r and r′ such that PD-Comx(0; r) = PD-Comx(1; r′).

3. (statistically hiding on no instances) For all x ∈ ΠN, the commitments to
0 and 1 are statistically indistinguishable. In other words, the distributions
PD-Comx(0) and PD-Comx(1) are statistically indistinguishable (w.r.t. |x|,
the length of the instance).

6 By contrast, standard commitments cannot be both statistically binding and statis-
tically hiding.

12 D. Micciancio et al.

The commitment c can be decommitted to by sending the committed bit b and
random key r. Since both parties have access to the problem instance x, this
decommitment can be verified by checking that c = PD-Comx(b; r).

4.2 Main Results

Before presenting the our unconditional concurrent zero-knowledge protocol, we
state our main results for this section.

Theorem 10. If promise problem Π has a public-coin CVZK proof system
(P0, V0) (in the sense of Definition 1) and also a instance-dependent commit-
ment, then Π has a proof system (P, V) with the following properties:

1. If (P0, V0) is statistical (resp., computational) zero knowledge, then (P, V) is
concurrent statistical (resp., computational) zero knowledge.

2. Prover P is black-box simulatable in strict polynomial time.
3. The round complexity of (P, V) increases only by an additive factor of

Õ(log n), with n being the security parameter, compared to the original pro-
tocol (P0, V0).

4. The completeness of (P, V) is exactly the same as that of (P0, V0), while the
soundness error increases by only a negligible additive term (as a function
of n).

5. The prover strategy P can be implemented in probabilistic polynomial-time
with oracle access to P0. In particular, if P0 is efficient, so is P .

We provide an outline of the proof of Theorem 10 in Sects. 4.3 and 4.4. Several
natural problems that Theorem 10 applies to are listed below.

Corollary 11. The following problems have concurrent statistical zero-knowledge
proofs:

– The statistical difference problem SD1
1/2.

– The languages Quadratic Nonresiduosity and Graph NonIsomor-
phism.

– The lattice problems co-GapCVPγ and co-GapSVPγ , for γ = Ω(√
(n/ log n)).

Proof. All the problems listed—SD1
1/2, Quadratic Nonresiduosity, Graph

NonIsomorphism, co-GapCVPγ and co-GapSVPγ , for γ = Ω(
√

(n/ log n))
—have honest-verifier statistical zero-knowledge proofs [2,5,42,33], which can be
made public-coin by [17]. In addition, they all have instance-dependent commit-
ments [36,34].

The above corollary does not guarantee a polynomial-time prover strategy (with
auxiliary input) nor round efficiency. The reason is that the public-coin honest-
verifier zero-knowledge proof systems known for these problems do not have
a polynomial-time prover nor a subpolynomial number of rounds. For Blum

Concurrent Zero Knowledge Without Complexity Assumptions 13

Quadratic Nonresiduosity,7 however, we can start with the noninteractive
statistical zero-knowledge proof8 of [43], whose prover is polynomial time (given
the factorization of the modulus), and obtain the following:

Corollary 12. The language BlumQuadraticNonresiduosity has a concur-
rent statistical zero-knowledge proof systems with Õ(log n) rounds and a prover that
can be implemented in polynomial time given the factorization of the input modulus.

We note that we do not expect to obtain efficient provers for Graph NonI-
somorphism or SD1

1/2, since these problems are not known to be in NP (or
MA), which is a prerequisite for an efficient-prover proof system. However,
Quadratic Nonresiduosity is in NP (the factorization of the input is a wit-
ness), as are co-GapCVPγ and co-GapSVPγ for larger approximation factors
γ = Ω(

√
n) [44], so we could hope to obtain an efficient prover. The bottleneck is

finding public-coin honest-verifier zero-knowledge proofs with a polynomial-time
prover for these problems.

4.3 Our Concurrent Zero-Knowledge Protocol

A high-level description of our unconditional concurrent zero-knowledge protocol
is as follows: We begin with a public-coin CVZK protocol. We make it concurrent
zero knowledge by forcing the verifier to commit in advance to its (public-coin)
messages in the CVZK protocol using concurrently-extractable commitments
CCom provided for by Lemma 8. However, CCom still requires a generic nonin-
teractive commitment scheme Com; for this, we plug-in the instance-dependent
commitment scheme PD-Comx.

Now, let us formally describe our concurrent zero-knowledge protocol. Let
(P0, V0) be a public-coin CVZK proof system for Π with q(|x|) rounds on
common input x. Denote the messages sent by V0 in the protocol as m =
(m1, . . . ,mq), and let �

def= |m| be the verifier-to-prover communication com-
plexity. Let PD-Comx : {0, 1} × {0, 1}n → {0, 1}n, where n = poly(|x|), be a
instance-dependent commitment for Π.

From Protocol 13 and Lemma 8, we can easily derive the prover efficiency, round
complexity and completeness claims of Theorem 10. For soundness, observe that
since PD-Comx is statistically hiding, CPD-Comx is also statistically hiding (by
Lemma 8). Hence, the soundness of Protocol 13 only decreases by a negligible
amount because a cheating prover will not know the committed messages of the
verifier until the verifier decommits to mt (in round t of the main stage).

We show that Protocol 13 is concurrent zero-knowledge by highlighting the
main ideas behind its simulation in the next subsection. The full description of
our concurrent zero-knowledge protocol (P, V) is next.
7 The problem Blum Quadratic Nonresiduosity is a variant of quadratic residu-

osity restricted to Blum integers.
8 Noninteractive zero knowledge implies (in fact is equivalent to) 2-round public-coin

honest-verifier zero knowledge since the honest verifier just sends the common ran-
dom string in the first round, and the prover sends the single-message proof in the
second round.

14 D. Micciancio et al.

Protocol 13 Our unconditional concurrent zero-knowledge protocol
(P, V) for problem Π with instance-dependent commitments.

Input: Instance x of Π.

Preamble stage (using instance-dependent commitments)

Let CPD-Comx
= (Sx, Rx,Verifyx,Partial-Verifyx) be the

concurrently-extractable commitment scheme provided for by
Lemma 8 by substituting Com = PD-Comx.

V : Select a random message m = (m1, . . . ,mq) ← {0, 1}�.
V → P : Send the message "start session".
V ↔ P : Run the following instance-dependent CEC schemes

(Sx(m1), Rx)(1n), · · · , (Sx(mq), Rx)(1n) in parallel, with the
verifier V acting as Sx and the prover P as Rx.

Let the output of Rx be the commitments (c1, . . . , cq), and be
the output of Sx be the decommitments ((m1, d1), . . . , (mq, dq)).
Note that neither P nor V sends the outputs of Rx or Sx to the
other party at this stage.

Main stage (stand-alone zero-knowledge protocol)

V → P : Send the message "start main stage".
P : Select randomness rP0 ← {0, 1}∗ for the original prover P0.

For t = 1, . . . , q, do the following:

V → P : Decommit to mt by sending full decommitment (mt, dt) of
ct.

P → V : Verify the decommitment received is valid by checking if
Verify(ct,mt, dt) = 1. If so, answer as the original prover P0
would, that is, send πt = P0(x,m1, . . . ,mt; rP0). Otherwise,
halt and abort.

Verifier V accepts if the original verifier V0 accepts on
(m1, π1, . . . ,mq, πq).

4.4 Our Simulator

Observe that the prover’s strategy can be broken into two parts, Ppre and Pmain,
denoting the preamble stage and main stage, respectively. Both Ppre and Pmain
use independent randomness. The simulation procedure for our concurrent zero-
knowledge protocol (Protocol 13) is broken into three main steps.

1. First, we analyze the concurrent interaction of P and V ∗ in the context of
concurrently-extractable commitment schemes (provided for by Lemma 8,
substituting Com = PD-Comx). To do so, we define a new adversarial sender

Concurrent Zero Knowledge Without Complexity Assumptions 15

Ŝ that takes V ∗ and Pmain as oracles and only returns the preamble messages
of V ∗. The preamble stage prover Ppre acts as the honest receiver Rx. By
Definition 7 and Lemma 8, we can simulate the output of Ŝ (after interaction
with Ppre), while having the additional property of being able to extract the
commitments.
By virtue of the way we defined Ŝ, its output after concurrently interacting
with Ppre is equivalent to the output of V ∗ after concurrently interacting
with P . Nevertheless, this simulation is inefficient because Ŝ uses an oracle
for Pmain.

2. Since we can extract partial decommitments, we are able to determine the
verifier’s main stage messages in advance.9 Hence, we can replace the adap-
tive queries to Pmain by a single query made to a new oracle, called OP , at
the start of each main stage.

3. However, OP is still not an efficiently implementable oracle. In the final step,
we replace oracle OP with a committed-verifier zero knowledge (CVZK)
simulator SCVZK to obtain an efficient simulation strategy.

5 Unconditional Concurrent Zero-Knowledge Proofs for
Problems with Witness-Binding Commitments

Here we extend the techniques in Sect. 4 to obtain unconditional concurrent
statistical zero-knowledge proofs for certain problems like Quadratic Resid-
uosity and Graph Isomorphism. These problems are not known to have
instance-dependent commitments (in the sense of Definition 9), but have a
variant of instance-dependent commitments called witness-binding commitments
(see Sect. 5.1). Informally, these commitments are not guaranteed to be perfectly
binding but breaking the binding property of these commitments is as hard as
finding a witness.

Using these witness-binding commitments, we proceed to transform them into
ones with the concurrently extractability property. (In Sect. 3.3 we did a similar
transformation for standard instance-dependent commitments.) Our concurrent
zero-knowledge protocol combines the witness-binding concurrently-extractable
commitments with an underlying stand-alone ZK protocol.

Recall that in Sect. 4, we required the stand-alone protocol to be committed-
verifier zero knowledge (CVZK), as in Definition 1. However, since we are using
only witness-binding commitments, we require the underlying stand-alone pro-
tocol to have a stronger property that we call witness-completable CVZK (see
Sect. 5.2). The additional witness-completable property, informally stated, gives
our simulator the ability to complete the simulation even when the verifier sends
a message different from its committed one, if we provide our simulator with a
valid witness at that time. This is important because the binding property of
witness-binding commitments can be broken, but if that is the case, the simulator
can obtain a witness that it can use to complete the simulation.
9 The binding property in the sense of Definition 6 allows us to determine the commit-

ted message in any valid full decommitment by just knowing a partial decommitment.

16 D. Micciancio et al.

5.1 Witness-Binding Commitments

Based on the techniques used in Sect. 4, the first natural step towards construct-
ing concurrent zero-knowledgeprotocolswouldbe to construct instance-dependent
commitments. Consider the naive commitment scheme for Graph Isomorphism
specified as follows: Let (G0, G1) be an instance of the problem. To commit to bit b,
send a random isomorphic copy ofGb. This commitment is perfectly hiding on the
yes instances (when G0 ∼= G1) and perfectly binding on the no instances (when
G0 � G1). However, this is exactly the opposite of what we require in a instance-
dependent commitment (see Definition 9). In fact, every problem satisfying Defi-
nition 9 is in coNP, but Graph Isomorphism is not known to be in coNP.

Protocol 14 Witness-binding commitment scheme for Graph
Isomorphism (implicit in [35]).

To commit to bit b using problem instance (G0, G1), proceed as
follows.

Index generation stage
R → S: Let H1 be a random isomorphic copy of G0, and send

H1. That is, H1 = σ(G0) for a random permutation
σ of the vertices of G0. In addition, both parties set
H0 = G0.

Commitment stage
S → R: To commit to bit b, send F , a random isomorphic

copy of Hb.

Decommitment stage
S → R: To decommit, send b together with the isomorphism

between Hb and F .

Verification stage
After the decommitment stage, the receiver Rx proves that H1,
sent in the index generation stage, is isomorphic toG0 by sending
the isomorphism σ between G0 and H1.

To overcome this apparent difficulty, the above commitment scheme (Pro-
tocol 14) makes use of additional index generation and verification stages to
do instance-dependent commitments. It can be shown that this witness-binding
commitment scheme is perfectly hiding on every instance (in particular the no
instances) if H1 is generated correctly, that is if H1 ∼= G0. On the yes instances,
the scheme is “computationally binding” in that breaking the scheme is as hard
as finding an NP-witness (an isomorphism between G0 and G1). More precisely,
we can extract the witness if we use a simulated index generation stage, whereH1
is taken to be a random isomorphic copy of G1 (which is distributed identically
to the actual index generation).

Concurrent Zero Knowledge Without Complexity Assumptions 17

This scheme can be generalized to a number of other NP languages, and a
formal definition capturing the notion of witness-binding commitments is in the
full version of this paper [1]. In addition, we note that Quadratic Residuos-
ity has a similarly structured witness-binding commitment scheme (based on
Protocol 14 and its 3-round perfect zero-knowledge proof system [2]).

5.2 Witness-Completable CVZK

Recall that witness-completable CVZK (wCVZK) is a strengthening of the no-
tion of CVZK (Definition 1) in that our simulator, when given a valid witness,
must have the ability to complete the simulation even when the verifier sends a
message different from its committed one. The formal definition of wCVZK is
the full version of this paper [1].

The 3-round perfect zero-knowledge protocols for both Quadratic Residu-
osity [2] and Graph Isomorphism [5] turns out to have the witness-completable
property, as desired.

5.3 Main Results

Our main result for this section can be summarized in a very similar manner as
Theorem 10 in Sect. 4.2. The main differences are (1) the promise problemΠ needs
to have awitness-binding commitment scheme and a 3-round, public-coin,wCVZK
proof system (instead of instance-dependent commitment scheme andCVZKproof
system), and (2) our new simulation runs in expected polynomial time instead of
strict polynomial time. With that, we obtain the following theorem.

Theorem 15. Both languages Graph Isomorphism and Quadratic Resid-
uosity have concurrent statistical zero-knowledge proof systems with Õ(log n)
rounds and efficient provers. The simulator for both protocols runs in expected
polynomial time.

Note that the round complexity of Õ(log n) for the concurrent zero-knowledge
protocols of both Graph Isomorphism and Quadratic Residuosity is es-
sentially optimal for black-box simulation [27].

5.4 Our Modified Concurrent Zero-Knowledge Protocol

Since we are dealing with witness-binding commitments, we have to modify
Protocol 13 in Sect. 4.3. Our modified concurrent zero-knowledge protocol is
similar in structure with the main difference being that instead of just the
preamble stage and the main stage, it also an index generation stage before
the preamble stage and a verification stage after the main stage (for imple-
menting the corresponding stages of the witness-binding commitment scheme).
The full description of our modified protocol is in the full version of this
paper [1].

18 D. Micciancio et al.

5.5 Our Simulator

Recall the three main steps of the simulation procedure in Sect. 4.4.

1. Analyze the concurrent interaction of P and V ∗ in the context of the con-
currently-extractable commitment schemes. Specifically, define a new adver-
sarial sender Ŝ that takes V ∗ and Pmain as oracles and only returns the
preamble messages of V ∗, and simulate its interaction while extracting its
commitments.

2. Replace the adaptive queries to Pmain by a single query made to a new oracle,
called OP , at the start of each main stage.

3. Replace oracle OP with a CVZK simulator SCVZK to obtain an efficient
simulation strategy.

For the simulation of our modified concurrent zero-knowledge protocol, we
keep Step 1 the same, but in Step 2 observe that the prover responses provided
by OP depends on the witness w given the to prover. Hence, we denote it more
precisely as OP (w). In Step 3, we simulate the answers from OP (w) with our
wCVZK simulator. However, our wCVZK simulator needs a witness w in order
to continue the simulation when the verifier’s V ∗ response does not match the
expectation of our simulator.

This can only happen if V ∗ breaks the binding of the witness-binding com-
mitment. And when that happens, our simulator is able to obtain a witness w,
which it can then feed to the wCVZK simulator to continue the simulation. Ac-
tually, a subtlety is that the witness-binding commitment allows us to extract
a witness only if we simulate the index generation stage, whereas here we need
to run the actual index generation in order to complete the verification stage.
Thus, if needed, we run a separate offline process to extract a witness, and this
is what causes our simulator to run in expected polynomial time. For details,
see the full version of this paper [1].

Acknowledgements. We thank Alexander Healy, Manoj Prabhakaran and
Alon Rosen for helpful discussions.

References

1. Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.: Concurrent zero knowledge with-
out complexity assumptions. Technical Report 05-093, Electronic Colloquium on
Computational Complexity (2005)
http://eccc.uni-trier.de/eccc-reports/2005/TR05-093/.

2. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1) (1989) 186–208

3. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM Journal on Computing 25(1) (1996) 169–192

4. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: Proc. 30th STOC.
(1998) 409–418

Concurrent Zero Knowledge Without Complexity Assumptions 19

5. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM
38(1) (1991) 691–729

6. Goldreich, O.: Foundations of cryptography. Volume 1. Cambridge University
Press, Cambridge, UK (2001)

7. Goldreich, O.: Zero-knowledge twenty years after its invention.
http://www.wisdom.weizmann.ac.il/∼oded/zk-tut02.html (2002)

8. Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th FOCS. (1986)
162–167

9. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attack. In: Proc. 22nd STOC. (1990) 427–437

10. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on
Computing 30(2) (2001) 391–437

11. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: Proc. 40th FOCS. (1999) 543–553

12. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of
Cryptology 1(2) (1988) 77–94

13. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Proc. CRYPTO ’98. (1998) 13–25

14. Elkind, E., Sahai, A.: A unified methodology for constructing public-key encryp-
tion schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint
Archive, Report 2002/042 (2002) http://eprint.iacr.org/.

15. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1) (2004) 167–226

16. Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical
zero-knowledge proof system for quasi-safe prime products. In: Proc. of the 5th
ACM Conference on Computer and Communications Security. (1998) 67–72

17. Okamoto, T.: On relationships between statistical zero-knowledge proofs. Journal
of Computer and System Sciences 60(1) (2000) 47–108

18. Goldreich, O., Sahai, A., Vadhan, S.: Honest-verifier statistical zero-knowledge
equals general statistical zero-knowledge. In: Proc. 30th STOC. (1998) 399–408

19. Vadhan, S.: An unconditional study of computational zero knowledge. In: Proc.
45th STOC. (2004) 176–185

20. Ostrovsky, R.: One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In: Proceedings of the Sixth Annual Structure in Complexity
Theory Conference. (1991)

21. Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero-
knowledge. In: Second Israel Symposium on Theory of Computing Systems. (1993)
3–17

22. Feige, U.: Alternative models for zero knowledge interactive proofs. PhD thesis,
Weizmann Institute of Science, Israel (1990)

23. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs.
In: Proc. EUROCRYPT ’99. (1999) 415–431

24. Kilian, J., Petrank, E., Rackoff, C.: Lower bounds for zero knowledge on the
Internet. In: Proc. 39th FOCS. (1998) 484–492

25. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-logarithm
rounds. In: Proc. 33rd STOC. (2001) 560–569

26. Rosen, A.: A note on the round-complexity of concurrent zero-knowledge. In: Proc.
CRYPTO ’00. (2000) 451–468

20 D. Micciancio et al.

27. Canetti, R., Kilian, J., Petrank, E., Rosen, R.: Black-box concurrent zero-
knowledge requires (almost) logarithmically many rounds. SIAM Journal on Com-
puting 32(1) (2003) 1–47

28. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: Proc. 43rd FOCS. (2002) 366–375

29. Barak, B.: How to go beyond the black-box simulation barrier. In: Proc. 42nd
FOCS. (2001) 106–115

30. Di Crescenzo, G.: Removing complexity assumptions from concurrent zero-
knowledge proofs. In: Proc. 6th COCOON. (2000) 426–435

31. Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent
zero-knowledge. In: Proc. EUROCRYPT ’03. (2003) 140–159

32. Brassard, G., Chaum, D., Crepeau, C.: Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences 37(2) (1988) 156–189

33. Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge. Journal
of the ACM 50(2) (2003)

34. Micciancio, D., Vadhan, S.: Statistical zero-knowledge proofs with efficient provers:
lattice problems and more. In: Proc. CRYPTO ’03. (2003) 282–298

35. Bellare, M., Micali, S., Ostrovsky, R.: Perfect zero-knowledge in constant rounds.
In: Proc. 22nd STOC. (1990) 482–493

36. Itoh, T., Ohta, Y., Shizuya, H.: A language-dependent cryptographic primitive.
Journal of Cryptology 10(1) (1997) 37–49

37. Rosen, A.: The Round-Complexity of Black-Box Concurrent Zero-Knowledge. PhD
thesis, Weizmann Institute of Science, Israel (2003)

38. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial com-
mitments with applications to zero-knowledge sets. In: Proc. EUROCRYPT ’05.
(2005) 422–439

39. Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: Proc. 44th FOCS.
(2003) 80–91

40. Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4(2)
(1991) 151–158

41. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4) (1999) 1364–1396

42. Goldreich, O., Goldwasser, S.: On the limits of nonapproximability of lattice prob-
lems. Journal of Computer and System Sciences 60(3) (2000) 540–563

43. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM Journal on Computing 20(6) (1991) 1084–1118

44. Aharonov, D., Regev, O.: Lattice problems in NP ∩ coNP. In: Proc. 45th FOCS.
(2004) 362–371

