
Chapter 4
The Many Entropies in One-Way Functions

Iftach Haitner and Salil Vadhan

Abstract Computational analogues of information-theoretic notions have given rise
to some of the most interesting phenomena in the theory of computation. For exam-
ple, computational indistinguishability, Goldwasser and Micali [9], which is the
computational analogue of statistical distance, enabled the bypassing of Shannon’s
impossibility results on perfectly secure encryption, and provided the basis for the
computational theory of pseudorandomness. Pseudoentropy, Håstad, Impagliazzo,
Levin, and Luby [17], a computational analogue of entropy, was the key to the fun-
damental result establishing the equivalence of pseudorandom generators and one-
way functions, and has become a basic concept in complexity theory and cryptog-
raphy.
This tutorial discusses two rather recent computational notions of entropy, both of
which can be easily found in any one-way function, the most basic cryptographic
primitive. The first notion is next-block pseudoentropy, Haitner, Reingold, and Vad-
han [14], a refinement of pseudoentropy that enables simpler and more efficient con-
struction of pseudorandom generators. The second is inaccessible entropy, Haitner,
Reingold, Vadhan, and Wee [11], which relates to unforgeability and is used to con-
struct simpler and more efficient universal one-way hash functions and statistically
hiding commitments.
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4.1 Introduction
One-way functions (OWFs), functions that are easy to compute and hard to invert,
are the most basic, unstructured form of cryptographic hardness [22]. Yet, in a se-
quence of celebrated results, mostly in the 1980s and early 1990s, one-way functions
were shown to imply a rich collection of cryptographic schemes and protocols, such
as digital signatures and secret-key encryption schemes. At the basis of this beautiful
mathematical structure are a few constructions of basic primitives: pseudorandom
generators (Håstad et al. [17]), universal one-way hash functions (Naor and Yung
[26], Rompel [27]), and more recently, statistically hiding commitment schemes
(Haitner, Nguyen, Ong, Reingold, and Vadhan [10]). These powerful plausibility
results shape our understanding of hardness, secrecy, and unforgeability in cryptog-
raphy. For instance, the construction of pseudorandom generators provides strong
evidence that computationally secure encryption is much richer than information-
theoretically secure encryption, as it allows encrypting many more bits than the key
length, in contrast to Shannon’s impossibility result for information-theoretic secu-
rity [28]. The construction of universal one-way hash functions yields that some
“public-key” objects, such as signature schemes, can be built from “private-key”
primitives, like one-way functions. A recent line of results [11, 12, 14, 29] simpli-
fied and improved all of these constructions. The crux of each new construction is
defining the “right” notion of computational entropy and recovering this form of
entropy from one-way functions.

Computational entropy. Computational analogues of information-theoretic no-
tions have given rise to some of the most interesting phenomena in the theory of
computation. For example, computational indistinguishability, a computational ana-
logue of statistical indistinguishability introduced by Goldwasser and Micali [9],
enabled the bypassing of Shannon’s impossibility results on perfectly secure en-
cryption [28], and provided the basis for the computational theory of pseudoran-
domness [2, 32]. Pseudoentropy, a computational analogue of entropy introduced
by Håstad et al. [17], was the key to their fundamental result establishing the equiv-
alence of pseudorandom generators and one-way functions, and has become a basic
concept in complexity theory and cryptography. The above notions were further re-
fined in [14, 29], and new computational analogues of entropy to quantify unforge-
ability were introduced in [11, 12]. These new abstractions have led to much simpler
and more efficient constructions based on one-way functions, and to a novel equiva-
lence between (parallelizable) constant-round statistical zero-knowledge arguments
and constant-round statistically hiding commitments.

The purpose of this tutorial is to explain these computational notions of entropy
and their application in constructing cryptographic primitives. The utility of the
computational notions of entropy is to bridge between the very unstructured form of
hardness of the primitive we start with (e.g., one-wayness) and the typically much
more structured form of hardness that appears in the primitive we are trying to con-
struct. The benefit of using such computational notions of entropy is that there exists
well-developed machinery for manipulating information-theoretic entropy and mak-
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ing it more structured (e.g., through taking many independent copies and applying
hash functions and randomness extractors); with care, analogous tools can be ap-
plied to the computational notions. For example, in each of the two constructions
presented in this tutorial, the first step is to construct a “generator” with a noticeable
gap between its real output entropy and its computational entropy—entropy from the
point of view of a computationally bounded adversary. (For each construction, we
use a different notion computational entropy.) The next step is to increase the gap be-
tween real and computational entropy and to convert them into worst-case analogues
(e.g., min-entropy and max-entropy) using the standard information-theoretic tools
of taking many independent samples. Finally, hashing and randomness extractors
are used to obtain more structured randomness generators.

In the following, we discuss the two major types of computational entropy no-
tions that can be found in any one-way function: pseudoentropy, which comes to
quantify pseudorandomness and secrecy, and inaccessible entropy, which comes to
quantify unforgeability. We do that while focusing on next-block pseudoentropy, a
refinement of the traditional notion of pseudoentropy, and on the type of inaccessible
entropy that is related to, and used as an intermediate step to construct, statistically
hiding commitment schemes. In the main body of this tutorial, we discuss these two
notions further, and exemplify their usability with applications to one-way function
based primitives.

4.1.1 Pseudoentropy
A random variable X over {0, 1}n is pseudorandom if it is computationally indis-
tinguishable from Un.1 The most natural quantitative variant of pseudorandomness
is the so-called HILL pseudoentropy (stands for Håstad, Impagliazzo, Levin, and
Luby), or just pseudoentropy.

Definition 4.1.1 ((HILL) pseudoentropy, [17], informal). A random variable X is
said to have pseudoentropy (at least) k if there exists a random variable Y such
that:

1. X is computationally indistinguishable from Y.
2. H(Y) ≥ k, where H(·) denotes Shannon entropy.2

A function (i.e., a generator) G : {0, 1}n 7→ {0, 1}m(n) has pseudoentropy k if G(Un)
has pseudoentropy k. An efficiently computable G : {0, 1}n 7→ {0, 1}m(n) is a pseu-
doentropy generator if it has pseudoentropy (at least) H(G(Un))) + ∆(n) for some
∆(n) ≥ 1/ poly(n). We refer to ∆ as the entropy gap of G.3

1 I.e., |Pr [D(X) = 1] = Pr [D(Un) = 1]| = neg(n) for any polynomial-time distinguisher D, where
Un is uniformly distributed over {0, 1}n, and neg(n) is smaller than any inverse polynomial. See
Section 4.2 for the formal definitions.
2 The Shannon entropy of a random variable X is defined by H(X) = Ex←X

[
log 1

Pr[X=x]

]
.

3 Håstad et al. [17] refer to such a generator as a false entropy generator, and require a pseudoen-
tropy generator to have output pseudoentropy (at least) n + ∆(n), rather than just H(G(Un)) + ∆(n).
For the sake of this exposition, however, we ignore this distinction.



162 Iftach Haitner and Salil Vadhan

Pseudoentropy plays a key role in the Håstad et al. [17] construction of pseudo-
random generators from one-way functions. A pseudorandom generator (PRG) is an
efficient length-extending function whose output distribution, over uniformly cho-
sen input, is pseudorandom. Note that every pseudorandom generator G : {0, 1}n 7→
{0, 1}m(n) is a pseudoentropy generator with entropy gap at least m(n) − n; take
Y = Um(n) and note that H(Y) = m(n), but H(G(Un)) ≤ H(Un) = n. Pseudoen-
tropy generators are weaker in that Y may be very far from uniform, and even with
H(Y) � n (as long as H(G(Un)) is even smaller). Yet, Håstad et al. [17] showed that
also the converse is true, using pseudoentropy generators to construct pseudorandom
generators. The first and key step of their main result (that one-way functions imply
pseudorandom generators) was to show that a simple modification of any one-way
function is a pseudoentropy generator with small but noticeable entropy gap, where
the rest of their construction is “purifying” this generator’s pseudoentropy into pseu-
dorandomness, and thus turning it into a PRG. This shows in a sense that (a simple
modification of) one-way functions have the computational notion of entropy that
pseudorandom generators take to the extreme.

Constructing pseudoentropy generator from an injective one-way function is
easy. Given such an injective function f : {0, 1}n 7→ {0, 1}∗, let G(x) = ( f (x), b(x)),
where b is an hardcore predicate of f .4 G’s pseudoentropy is n + 1, which is larger
by one bit than its output (and input) entropy. Similar constructions can be applied
to one-way functions that can be converted to (almost) injective one-way functions
(e.g., regular one-way functions), but generalizing it to arbitrary one-way function
is seemingly a much more challenging task. Yet, Håstad et al. [17] did manage to
get a pseudoentropy generator out of an arbitrary one-way function, alas with poor
parameters compared with what can easily be achieved from an injective one-way
function. Specifically, while its output pseudoentropy is larger than its real output
entropy, and thus it possesses a positive entropy gap, its entropy gap is tiny (i.e.,
log n/n), and its pseudoentropy is smaller than its input length. In addition, the
quantity of its pseudoentropy is not efficiently computable. These issues result in
a complicated and indirect PRG construction. Constructions that followed this ap-
proach ([13, 19]), while improving and simplifying the original construction, also
ended up being rather complicated and inefficient. To deal with this barrier, Haitner,
Reingold, and Vadhan [14] presented a relaxation of this notion called next-block
pseudoentropy, which can be easily obtained with strong parameters from any one-
way function, yet is still strong enough for construction of PRGs.

4.1.1.1 Next-Block Pseudoentropy

Next-block pseudoentropy is similar in spirit to the Blum and Micali [3] notion
of next-bit unpredictability, which was shown by Yao [32] to be equivalent to his
(now-standard) definition of pseudorandomness. This equivalence says that a ran-
dom variable X = (X1, . . . , Xm) is pseudorandom iff each bit of X is unpredictable

4 b is hardcore predicate of f if ( f (Un), b(Un)) is computationally indistinguishable from
( f (Un),U), for Un and U sampled, uniformly and independently, from {0, 1}n and {0, 1}, respec-
tively.
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from the previous bits. That is, Pr [P(X1, X2, . . . , Xi−1) = Xi] ≤ 1
2 +neg(n) for every i

and efficient predictor (i.e., algorithm) P. Equivalently, (X1, X2, . . . , Xi−1, Xi) is com-
putationally indistinguishable from (X1, X2, . . . , Xi−1,U) where U is a uniform bit.
It is thus natural to consider what happens if we relax the pseudorandomness of Xi

to pseudoentropy (capturing the idea that Xi is only somewhat unpredictable from
the previous bits). And more generally, we can allow the Xi’s to be blocks instead of
bits.

Definition 4.1.2 (Next-block pseudoentropy [14], informal). A random variable
X = (X1, . . . , Xm) is said to have next-block pseudoentropy (at least) k if there exists
a sequence of random variables Y = (Y1, . . . ,Ym), jointly distributed with X, such
that:

1. (X1, X2, . . . , Xi−1, Xi) is computationally indistinguishable from
(X1, X2, . . . , Xi−1,Yi), for every i.

2.
∑

i H(Yi|X1, . . . Xi−1) ≥ k.

A function G : {0, 1}n 7→ ({0, 1}`)m is said to have next-block pseudoentropy k if
(X1, . . . , Xm) = G(Un) has next-block pseudoentropy k. A next-block pseudoentropy
generator is a polynomial-time computable function G : {0, 1}n 7→ ({0, 1}`)m that
has next-block pseudoentropy (at least) H(G(Un))+∆(n) for some ∆(n) > 1/ poly(n),
where again ∆ is called the entropy gap.

That is, in total, the blocks of X “look like” they have k bits of entropy given the
previous ones. Note that the case k = m and blocks of size one (the Xi’s are bits)
amounts to the Yao [32] definition of unpredictability discussed above. The case
of one block (m = 1) amounts to Håstad et al. [17] definition of pseudoentropy
(Theorem 4.1.1). Also note that, when m > 1, allowing Y to be correlated with X
in this definition is essential: for example, if all the blocks of X are always equal
to each other (and have noticeable entropy), then there is no way to define Y that is
independent of X and satisfies the first condition.

Unlike the case of (HILL) pseudoentropy, it is known how to use any one-way
function to construct a next-block pseudoentropy generator with good parameters.

Constructing next-block pseudoentropy generators from one-way functions.
Given a one-way function f : {0, 1}n 7→ {0, 1}n, we construct a generator G as

G(x) = ( f (x), x1, . . . , xn). (4.1)

The above construction was proven to achieve next-block pseudoentropy by Vadhan
and Zheng [29]. The original construction of Haitner et al. [14] considered instead
G(x, h) = ( f (x), h(x)1, . . . , h(x)n), for an appropriate family of hash functions with
seed length O(n). In this tutorial, we will analyze the latter construction, using a
family of hash functions of seed length O(n2), as it has a simpler analysis.5

5 Interestingly, the construction we consider in this tutorial is similar to the pseudoentropy genera-
tor used by Håstad et al. [17], but here it is viewed as a next-block pseudoentropy generator.



164 Iftach Haitner and Salil Vadhan

If we consider only the original notion of pseudoentropy (Theorem 4.1.1), the
above construction is problematic; the polynomial-time test T (y, x) that checks
whether y = f (x), distinguishes G(Un) from every random variable of entropy no-
ticeably larger than n (since T accepts only 2n strings). However, it turns out that
it does have next-block pseudoentropy at least n + log n. This has two advantages
compared with the pseudoentropy generator constructed by Håstad et al. [17]. First,
the entropy gap is now ∆ = log n instead of ∆ = log n/n. Second, the total amount
of pseudoentropy in the output (though not the amount contributed by the individual
blocks) is known. These two advantages together yield a simpler and more efficient
one-way function based PRG.

4.1.2 Inaccessible Entropy
Notions of pseudoentropy as above are only useful as a lower bound on the “com-
putational entropy” in a distribution. For instance, it can be shown that every distri-
bution on {0, 1}n is computationally indistinguishable from a distribution of entropy
at most polylog n. In this section we introduce another computational analogue of
entropy, which we call accessible entropy, which is useful as an upper bound on
computational entropy. We motivate the idea of accessible entropy with an exam-
ple. Let G be the following two-block generator:

Algorithm 4.1.3 (G)
Let m � n and let H = {h : {0, 1}n 7→ {0, 1}m} be a family of collision-resistant

hash functions.6

On public parameter h
R
←H.

1. Sample x
R
← {0, 1}n.

2. Output y = h(x).
3. Output x.

Now, information-theoretically, G’s second output block (namely x) has entropy
at least n − m ≥ 1 conditioned on h and its first output block y. This is since (h, y =

h(x)) reveals only m bits of information about x. The collision-resistance property
of h, however, implies that given the state of G after it outputs its first block y, there
is at most one consistent value of x that can be computed in polynomial time with
nonnegligible probability. (Otherwise, we would be able find two distinct messages
x , x′ such that h(x) = h(x′).) This holds even if G is replaced by any polynomial-
time cheating strategy G̃. Thus, there is “real entropy” in x (conditioned on h and
the first output of G), but it is “computationally inaccessible” to G̃, to whom x
effectively has entropy 0.

We generalize this basic idea to allow the upper bound on the “accessible en-
tropy” to be a parameter k, and to consider both the real and accessible entropy
accumulated over several blocks of a generator. In more detail, consider an m-block

6 Given h
R
←H, it is infeasible to find distinct x, x′ ∈ {0, 1}n with h(x) = h(x′).
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generator G : {0, 1}n 7→ ({0, 1}∗)m, and let (Y1, . . . ,Ym) be random variables denot-
ing the m output blocks generated by applying G over randomness Un (no public
parameters are given). We define the real entropy of G as H(G(Un)), the Shannon
entropy of G(Un), which is equal to∑

i∈[m]

H(Yi | Y1, . . . ,Yi−1),

where H(X | Y) = E
y

R
←Y

[H(X |Y=y)] is the standard notion of (Shannon) conditional
entropy.

To define accessible entropy, consider a probabilistic polynomial-time cheating
strategy G̃ that before outputting the i-th block, tosses some fresh random coins ri,
and uses them to output a string yi. We restrict out attention to G-consistent (ad-
versarial) generators—G̃’s output is always in the support of G (though it might
be distributed differently). Now, let (R1,Y1, . . . ,Ym,Rm) be random variables corre-
sponding to a random execution of G̃. We define the accessible entropy achieved by
G̃ to be ∑

i∈[m]

H(Yi | R1, . . . ,Ri−1).

The key point is that now we compute the entropy conditioned not just on the pre-
vious output blocks Y1, . . . ,Yi−1 (which are determined by R1, . . . ,Ri−1), as done
when computing the real entropy of G, but also on the local state of G̃ prior to
outputting the i-th block (which without loss of generality equal its coin tosses
R1, . . . ,Ri−1). We define the accessible entropy of G as the maximal accessible en-
tropy achieved by a G-consistent, polynomial-time generator G̃. We refer to the
difference (real entropy) − (accessible entropy) as the inaccessible entropy of the
generator G, and call G an inaccessible entropy generator if its inaccessible entropy
is noticeably greater than zero.

It is important to note that if we put no computational restrictions on the com-
putational power of a G-consistent G̃, then its accessible entropy can always be as
high as the real entropy of G; to generate its i-th block yi, G̃ samples x uniformly at
random from the set {x′ : G(x′)1 = y1, . . . ,G(x′)i−1 = yi−1}. This strategy, however,
is not always possible for a computationally bounded G̃.

The collision resistance example given earlier provides evidence that when al-
lowing public parameters, there are efficient generators whose computationally ac-
cessible entropy is much smaller than their real Shannon entropy. Indeed, the real
entropy of the generator we considered above is n (namely, the total entropy in x),
but its accessible entropy is at most m + neg(n) � n, where m is the output length
of the collision-resistant hash function.

As we shall see, we do not need collision resistance; any one-way function can be
used to construct an inaccessible entropy generator (without public parameters). An
application of this result is an alternative construction of statistically hiding commit-
ment schemes from arbitrary one-way functions. This construction is significantly
simpler and more efficient than the previous construction of Haitner et al. [10]. It
also conceptually unifies the construction of statistically hiding commitments from
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one-way functions with the construction of pseudorandom generators discussed in
the previous section: the first step of both constructions is to show that the one-
way function directly yields a generator with a gap between its real entropy and
“computational entropy” (pseudoentropy in the case of pseudorandom generators,
and accessible entropy in the case of statistically hiding commitments). This gap is
then amplified by repetitions and finally combined with various forms of hashing to
obtain the desired primitive.

Constructing an inaccessible entropy generator from one-way functions. For
a one-way function f : {0, 1}n 7→ {0, 1}n, consider the (n + 1)-block generator

G(x) = ( f (x)1, f (x)2, . . . , f (x)n, x).

Notice that this construction is the same as the construction of a next-block pseu-
doentropy generator from a one-way function (Construction 4.1), except that we
have broken f (x) into one-bit blocks rather than breaking x. Again, the real entropy
of G(Un) is n. It can be shown that the accessible entropy of G is at most n − log n,
so again we have an entropy gap of log n bit.

4.1.3 Rest of This Tutorial
Standard notations, definitions, and facts, are given in Section 4.2. An elaborated
discussion of next-block pseudoentropy, containing formal definitions, a construc-
tion from one-way functions, and its use in constricting pseudorandom generators,
is given in Section 4.3. An elaborated discussion of inaccessible entropy, with for-
mal definitions, a construction from one-way functions, and its use in constructing
statistically hiding commitment schemes, is given in Section 4.4. In both sections,
we have chosen simplicity and clarity over full generality and efficiency. For details
of the latter, see the Further Reading section below.

4.1.4 Related Work and Further Reading
Pseudoentropy. More details and improvements on the construction of pseudo-
random generator from one-way functions via next-block pseudoentropy can be
found in the works of Haitner et al. [14] and Vadhan and Zheng [29]. In particu-
lar, Vadhan and Zheng [29] also show how to save a factor of n in the seed-length
blow up in the reduction from next-block pseudoentropy generator to PRG, thereby
reducing the seed length from Õ(n4) to Õ(n3) (at the price of making adaptive calls
to the one-way function). Holenstein and Sinha [20] showed that any black-box
construction of a pseudorandom generator from a one-way function on n-bit inputs
must invoke the one-way function Ω(n/ log n) times. Their lower bound also ap-
plies to regular one-way functions (of unknown regularity), and is tight in this case
(due to the constructions of [8, 13]). The constructions of Haitner et al. [14] and of
Vadhan and Zheng [29] from arbitrary one-way functions invoke the one-way func-
tion Õ(n3) times. It remains open whether the super linear number of invocations
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or the super-linear seed length is necessary, or the constructions can be furthered
improved.

Several other computational analogues of entropy have been studied in the liter-
ature (cf. [1, 21]), all of which serve as ways of capturing the idea that a distribution
“behaves like” one of higher entropy.

Inaccessible entropy. The details of the construction of statistically hiding com-
mitments from one-way functions via inaccessible entropy can be found in the work
of Haitner et al. [16]. A preliminary version of that paper [11] uses a more general,
and more complicated, notion of accessible entropy which measures the accessible
entropy of protocols rather than generators. This latter notion is used in [11] to show
that, if NP has constant-round interactive proofs that are black-box zero knowledge
under parallel composition, then there exist constant-round statistically hiding com-
mitment schemes. A subsequent work of Haitner et al. [12] uses a simplified version
of accessible entropy to present a simpler and more efficient construction of uni-
versal one-way functions from any one-way function. One of the two inaccessible
entropy generators considered in [12], for constructing universal one-way functions,
is very similar to the constructionist next-block pseudoentropy and inaccessible en-
tropy generators discussed above (in Sections 4.1.1 and 4.1.2). Hence, all of these
three notions of computational entropy can be found in any one-way function using
very similar constructions, all simple variants of G(x) = ( f (x), x), where f is an
arbitrary one-way function.

The notion of inaccessible entropy, of the simpler variant appearing in [12], is in
a sense implicit in the work of Rompel [27], who first showed how to base universal
one-way functions on any one-way functions.

4.2 Preliminaries

4.2.1 Notation
We use calligraphic letters to denote sets, upper-case for random variables, lower-
case for values, bold-face for vectors. and sanserif for algorithms (i.e., Turing
machines). For n ∈ N, let [n] = {1, . . . , n}. For vector y = (y1, . . . , yn) and
J ⊆ [n], let yJ = (yi1 , . . . , yi|J | ), where i1 < . . . < i|J | are the elements of J .
Let y< j = y[ j−1] = (y1, . . . , y j−1) and y≤ j = y[ j] = (y1, . . . , y j). Both notations natu-
rally extend to an ordered list of elements that is embedded in a larger vector (i.e.,
given (a1, b1, . . . , an, bn), a<3 refers to the vector (a1, a2)). Let poly denote the set of
all positive polynomials, let pptNU stand for a nonuniform probabilistic polynomial-
time algorithm. A function ν : N 7→ [0, 1] is negligible, denoted ν(n) = neg(n), if
ν(n) < 1/p(n) for every p ∈ poly and large enough n. For a function f and a set S ,
let Im( f (S)) = { f (x) : x ∈ S}.
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4.2.2 Random Variables
Let X and Y be random variables taking values in a discrete universe U . We adopt
the convention that, when the same random variable appears multiple times in an
expression, all occurrences refer to the same instantiation. For example, Pr[X = X]
is 1. For an event E, we write X|E to denote the random variable X conditioned on
E. We let PrX|Y

[
x|y

]
stand for Pr

[
X = x | Y = y

]
. The support of a random variable

X, denoted Supp(X), is defined as {x : Pr[X = x] > 0}. The variable X is flat if it is
uniform on its support. Let Un denote a random variable that is uniform over {0, 1}n.
For t ∈ N, let X(t) = (X1, . . . , Xt), where X1, . . . , Xt are independent copies of X.

We write X ≡ Y to indicate that X and Y are identically distributed. We write
∆(X,Y) to denote the statistical difference (also known as variation distance) be-
tween X and Y , i.e.,

∆(X,Y) = max
T⊆U
|Pr[X ∈ T ] − Pr[Y ∈ T ]| .

If ∆(X,Y) ≤ ε [resp., ∆(X,Y) > ε], we say that X and Y are ε-close [resp.,
ε-far]. Two random variables X = X(n) and Y = Y(n) are statistically in-
distinguishable, denoted X ≈S Y , if for any unbounded algorithm D, it holds
that |Pr[D(1n, X(n)) = 1] − Pr[D(1n,Y(n)) = 1]| = neg(n).7 Similarly, X and Y
are nonuniformly computationally indistinguishable, denoted X ≈nu−C Y], if
|Pr[D(1n, X(n)) = 1] − Pr[D(1n,Y(n)) = 1]| = neg(n) for every pptNU D.

4.2.3 Entropy Measures
We refer to several measures of entropy. The relation and motivation of these mea-
sures is best understood by considering a notion that we will refer to as the sample-
entropy: for a random variable X and x ∈ Supp(X), the sample-entropy of x with
respect to X is the quantity

HX(x) := log 1
Pr[X=x] ,

letting HX(x) = ∞ for x < Supp(X), and 2−∞ = 0.
The sample-entropy measures the amount of “randomness” or “surprise” in the

specific sample x, assuming that x has been generated according to X. Using this
notion, we can define the Shannon entropy H(X) and min-entropy H∞(X) as follows:

H(X) := E
x

R
←X

[HX(x)],

H∞(X) := min
x∈Supp(X)

HX(x).

The collision probability of X is defined by CP(X) :=
∑

x∈Supp(X) PrX [x]2 =

Pr
(x,x′)

R
←X2

[x = x′], and its Rényi-entropy is defined by

H2(X) := − log CP(X).

7 This is equivalent to asking that ∆(X(n),Y(n)) = neg(n).
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We will also discuss the max-entropy H0(X) := log(1/|Supp(X)|). The term “max-
entropy” and its relation to the sample-entropy will be made apparent below.

It can be shown that H∞(X) ≤ H2(X) ≤ H(X) ≤ H0(X) with each inequality being
an equality if and only if X is flat. Thus, saying H∞(X) ≥ k is a strong way of saying
that X has “high entropy” and H0(X) ≤ k a strong way of saying that X as “low
entropy”.

The following fact quantifies the probability that the sample-entropy is larger
than the max-entropy.

Lemma 4.2.1. For random variable X it holds that

1. E
x

R
←X

[
2HX (x)

]
=

∣∣∣Supp(X)
∣∣∣.

2. Pr
x

R
←X

[
HX(x) > log 1

ε
+ H0(X)

]
< ε, for any ε > 0.

Proof: For the first item, compute

E
x

R
←X

[
2HX (x)

]
=

∑
x∈Supp(X)

2−HX (x) · 2HX (x)

=
∑

x∈Supp(X)

1

=
∣∣∣Supp(X)

∣∣∣ .
The second item follows by the first item and Markov inequality.

Pr
x

R
←X

[
HX(x) > log

1
ε

+ H0(X)
]

= Pr
x

R
←X

[
2HX (x) >

1
ε
·
∣∣∣Supp(X)

∣∣∣]
< ε.

�

Conditional entropies. We will also be interested in conditional versions of en-
tropy. For jointly distributed random variables (X,Y) and (x, y) ∈ Supp(X,Y), we de-
fine the conditional sample-entropy to be HX|Y (x|y) = log 1

PrX|Y[x|y] = log 1
Pr[X=x|Y=y] .

Then the standard conditional Shannon entropy can be written as

H(X | Y) = E
(x,y)

R
←(X,Y)

[
HX|Y (x | y)

]
= E

y
R
←Y

[
H(X|Y=y)

]
= H(X,Y) − H(Y).

The following known lemma states that conditioning on a “short” variable is
unlikely to change the sample-entropy by much.

Lemma 4.2.2. Let X and Y be random variables, let k = H∞(X), and let ` = H0(Y).
Then, for any t > 0, it holds that

Pr
(x,y)

R
←(X,Y)

[
HX|Y (x|y) < k − ` − t

]
< 2−t.
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Proof: For y ∈ Supp(Y), let Xy = {x ∈ Supp(X) : HX|Y (x|y) < k − ` − t}. We have∣∣∣Xy

∣∣∣ < 2k−`−t. Hence,
∣∣∣X =

⋃
y∈Supp(Y) Xy

∣∣∣ < 2` · 2k−`−t = 2k−t. It follows that

Pr
(x,y)

R
←(X,Y)

[
HX|Y (x|y) < k − ` − t

]
≤ Pr

(x,y)
R
←(X,Y)

[x ∈ X ] < 2−k · 2k−t = 2−t.

�

Smoothed entropies. The following lemma will allow us to think of a random
variable X whose sample-entropy is high with high probability as if it has high min-
entropy (i.e., as if its sample-entropy function is “smoother”, with no picks).

Lemma 4.2.3. Let X,Y be random variable and let ε > 0.

1. Suppose Pr
x

R
←X

[HX(x) ≥ k] ≥ 1 − ε, then X is ε-close to a random variable X′

with H∞(X′) ≥ k.
2. Suppose Pr

(x,y)
R
←(X,Y)

[
HX|Y (x|y) ≥ k

]
≥ 1 − ε, then (X,Y) is ε-close to a random

variable (X′,Y ′) with HX′ |Y ′ (x|y) ≥ k for any (x, y) ∈ Supp(X′,Y ′). Further, Y ′

and Y are identically distributed.

Proof Sketch. For the first item, we modify X on an ε fraction of the probability
space (corresponding to when X takes on a value x such that HX(x) ≥ k) to bring all
probabilities to be smaller than or equal to 2−k.

The second item is proved via similar means, while when changing (X,Y), we do
so without changing the “Y” coordinate.

Flattening Shannon entropy. It is well known that the Shannon entropy of a
random variable can be converted to min-entropy (up to small statistical distance)
by taking independent copies of this variable.

Lemma 4.2.4 ([31], Theorem 3.14). Let X be a random variables taking values in
a universe U , let t ∈ N, and let 0 < ε ≤ 1/e2. Then with probability at least 1 − ε
over x

R
← X(t),

HX(t) (x) − t · H(X) ≥ −O
(√

t · log 1
ε
· log(|U | · t)

)
.

We will make use of the following “conditional variant” of Theorem 4.2.4:

Lemma 4.2.5. Let X and Y be jointly distributed random variables where X takes
values in a universe U , let t ∈ N, and let 0 < ε ≤ 1/e2. Then with probability at
least 1 − ε over (x, y)← (X′,Y ′) = (X,Y)(t),

HX′ |Y ′ (x | y) − t · H(X | Y) ≥ −O
(√

t · log 1
ε
· log(|U | · t)

)
.

The proof of Theorem 4.2.5 follows the same line as the proof of Theorem 4.2.4, by
considering the random variable HX|Y (X|Y) instead of HX(X).
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Sub-additivity. The chain rule for Shannon entropy yields that

H(X = (X1, . . . , Xt)) =
∑

i

H(Xi|X1, . . . , Xi−1) ≤
∑

i

H(Xi).

The following lemma shows that a variant of the above also holds for sample-
entropy.

Lemma 4.2.6. For random variables X = (X1, . . . , Xt), it holds that

1. E
x

R
←X

[
2HX(x)−

∑
t HXi (xi)

]
≤ 1.

2. Pr
x

R
←X

[
HX(x) > log 1

ε
+

∑
i∈[t] HXi (xi)

]
< ε, for any ε > 0.

Proof: As in Theorem 4.2.1, the second part follows from the first by Markov’s
inequality. For the first part, compute

E
x

R
←X

[
2HX(x)−

∑
t HXi (xi)

]
=

∑
x∈Supp(X)

Pr [X = x] ·
∏

i∈[t] Pr [Xi = xi]
Pr [X = x]

=
∑

x∈Supp(X)

∏
i

Pr [Xi = xi]

≤ 1.

�
The following lemma generalizes Theorem 4.2.1 to settings that come up natu-

rally when upper bounding the accessible entropy of a generator (as we do in Sec-
tion 4.4):

Definition 4.2.7. For a t-tuple random variable X = (X1, . . . , Xt), x ∈ Supp(X) and
J ⊆ [t], let

HX,J (x) =
∑
i∈J

HXi |X<i (xi|x<i).

Lemma 4.2.8. Let X = (X1, . . . , Xt) be a sequence of random variables and let
J ⊆ [t]. Then,

1. E
x

R
←X

[
2HX,J (x)

]
≤

∣∣∣Supp(XJ )
∣∣∣.

2. Pr
x

R
←X

[
HX,J (x) > log 1

ε
+ H0(XJ )

]
< ε, for any ε > 0.

Proof: The second item follows from the first one as in the proof of Theorem 4.2.1.
We prove the first item by induction on t and |J|. The case t = 1 is immediate, so we
assume for all (t′,J ′) with (t′, |J ′|) < (t, |J |) and prove it for (t,J ). Assume that
1 ∈ J (the case 1 < J is analogous) and let X−1 = (X2, . . . , Xt) and J−1 = {i−1: i ∈
J \ {1}}. Compute
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E
x

R
←X

[
2HX,J (x)

]
=

∑
x1∈Supp(X1)

2−HX1 (x1) · 2HX1 (x1) · E
x

R
←X−1 |X1=x1

[
2HX−1 |X1=x1

,J−1 (x)]
≤

∑
x1∈Supp(X1)

1 ·
∣∣∣Supp((X−1)J−1 |X1=x1 )

∣∣∣
=

∑
x1∈Supp(X1)

∣∣∣Supp(XJ \{1}|X1=x1 )
∣∣∣

≤
∣∣∣Supp(XJ )

∣∣∣ .
�

4.2.4 Hashing
We will use two types of (combinatorial) “hash” functions.

4.2.4.1 Two-Universal Hashing

Definition 4.2.9 (Two-universal function family). A function family H = {h : D 7→
R} is two universal if ∀x , x′ ∈ D, it holds that Prh←H [h(x) = h(x′)] ≤ 1/ |R|.

An example of such a function family is the set Hs,t = {0, 1}s×t of Boolean matrices,
where for h ∈ Hs,t and x ∈ {0, 1}s, we let h(x) = h× x (i.e., the matrix vector product
over GF2). Another canonical example is Hs,t = {0, 1}s defined by h(x) := h · x over
GF(2s), truncated to its first t bits.

A useful application of two-universal hash functions is to convert a source of
high Rényi entropy into a (close to) uniform distribution.

Lemma 4.2.10 (Leftover hash lemma [24, 23]). Let X be a random variable over
{0, 1}n with H2(X) ≥ k, let H = {g : {0, 1}n 7→ {0, 1}m} be two-universal, and let
H

R
←H. Then SD((H,H(X)), (H,Um)) ≤ 1

2 · 2
(m−k)/2.

4.2.4.2 Many-wise Independent Hashing

Definition 4.2.11 (`-Wise independent function family). A function family H =

{h : D 7→ R} is `-wise independent if for any distinct x1, . . . , x` ∈ D, it holds that
(H(x1), . . . ,H(x`)) for H

R
←H is uniform over R`.

The canonical example of such an `-wise independent function family is Hs,t,` =

({0, 1}s)` defined by (h0, . . . , h`−i)(x) :=
∑

0≤i≤`−1 hi · xi over GF(2s), truncated to its
first t bits.

It is easy to see that, for ` > 1, an `-wise independent function family is two-
universal, but `-wise independent function families, in particular with larger value of
`, have stronger guarantees on their output distribution compared with two-universal
hashing. We will state, and use, one such guarantee in the construction of statisti-
cally hiding commitment schemes presented in Section 4.4.
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4.2.5 One-Way Functions
We recall the standard definition of one-way functions.

Definition 4.2.12 (One-way functions). A polynomial-time computable
f : {0, 1}n 7→ {0, 1}∗ is nonuniformly one way if for every pptNU A

Pry← f (Us(n))

[
A(1n, y) ∈ f −1(y)

]
= neg(n). (4.2)

Without loss of generality, cf. [13], it can be assumed that s(n) = n and f is
length-preserving (i.e., | f (x)| = |x|).

4.3 Next-Block Entropy and Pseudorandom Generators
In this section, we formally define the notion of next-block pseudoentropy, and use it
as intermediate tool to construct pseudorandom generators from one-way functions.
Preferring clarity over generality, we present a simplified version of the definitions
and constructions. For the full details see [14].

We start in Section 4.3.1, by presenting the formal definition of next-block pseu-
doentropy. In Section 4.3.2 we show that any one-way function can be used to
construct a generator with a useful amount of next-block pseudoentropy. In Sec-
tion 4.3.3 we develop means to manipulate next-block pseudoentropy. Finally, in
Section 4.3.4, we show how to convert generators of the type constructed in Sec-
tion 4.3.2 into pseudorandom generators, thus reproving the fundamental result that
pseudorandom generators can be based on any one-way function.

4.3.1 Next-Block Pseudoentropy
Recall from the introduction that the next-block pseudoentropy is of a similar spirit
to the Blum and Micali [3] notion of next-bit unpredictability; a random variable
X = (X1, . . . , Xm) is next-bit unpredictable if the bit Xi cannot be predicted with
nonnegligible advantage from X<i = (X1, X2, . . . , Xi−1), or alternatively, Xi is pseu-
dorandom given X<i. Next-block pseudoentropy relaxes this notion by only requir-
ing that Xi has some pseudoentropy given X<i.

We now formally define the notion of next-block pseudoentropy for the cases
of both Shannon entropy and min-entropy. The definition below differs from the
definition of [14], in that we require the indistinguishability to hold (also) against
nonuniform adversaries. This change simplifies the definitions and proofs (see The-
orem 4.3.3), but at the price that we can only construct such pseudoentropy genera-
tors from functions that are nonuniformly one-way (i.e., ones that are hard to invert
for such nonuniform adversaries). We start by recalling the more standard defini-
tions of pseudoentropy and pseudorandomness (to be consistent with the next-block
pseudoentropy definitions given below, we give the nonuniform version of these
definitions).

Definition 4.3.1 (Pseudoentropy and pseudorandomness). Let n be a security pa-
rameter and X = X(n) be a random variable distributed over strings of length
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`(n) ≤ poly(n). We say that X = X(n) has pseudoentropy (at least) k = k(n) if
there exists a random variable Y = Y(n), such that

1. H(Y) ≥ k, and
2. X and Y are nonuniformly computationally indistinguishable. I.e., for every

pptNU D, it holds that

Pr
[
D(1n, X) = 1

]
− Pr

[
D(1n,Y) = 1

]
= neg(n).

If H∞(Y) ≥ k, we say that X has pseudo-min-entropy (at least) k, where if
k = `(n), we say that X is pseudorandom (which is equivalent to asking that X is
computationally nonuniformly indistinguishable from U`).

Finally, a polynomial-time computable function G : {0, 1}n 7→ {0, 1}`(n) is a pseu-
dorandom generator if ` > n and G(Un) is pseudorandom.

That is, pseudoentropy is the computational analog of entropy. In construct, next-
block pseudoentropy is a computational analog of unpredictability.

Definition 4.3.2. (Next-block pseudoentropy) Let m = m(n) be an integer function.
A random variable X = X(n) = (X1, . . . , Xm) is said to have next-block (Shannon)
pseudoentropy (at least) k = k(n) if there exists a (jointly distributed) random
variable Y = Y(n) = (Y1, . . . ,Ym) such that

1.
∑m

i=1 H(Yi | X<i) ≥ k, and
2. Y is block-wise indistinguishable from X: for every pptNU D and i = i(n) ∈

[m(n)],
Pr

[
D(1n, X≤i) = 1

]
− Pr

[
D(1n, X<i,Yi) = 1

]
= neg(n).

Every block of X has next-block (Shannon) pseudoentropy at least α = α(n) if
condition 1 above is replaced with

1. H(Yi|X<i=x<i ) ≥ α, for every x ∈ Supp(X) and i ∈ [m].

Every block of X has next-block pseudo-min-entropy at least α if condition 1
above is replaced with

1. H∞(Yi|X<i=x<i ) ≥ α, for every x ∈ Supp(X) and i ∈ [m].

Finally, a generator G over {0, 1}∗ has next-block pseudoentropy at least k if
(the random variable) G(Un) has. Similarly, every block of G has next-block pseu-
doentropy [resp., pseudo-min-entropy] at least α if G(Un) has.

The above definitions naturally extend to generators that are only defined over some
input lengths (e.g., on inputs of length n2 + n for all n ∈ N). Our constructions
directly yield such input-restricted generators, but since the inputs on which they
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are defined are the image of a polynomial (such as n2 + n), they can be converted to
ones defined on all inputs in a standard way.8

Throughout, we often omit the parameter n when its value is clear from the con-
text.

Remark 4.3.3 (Uniform distinguishers). When working with a random variable
X with a certain guarantee about its pseudoentropy (here as a generic name for
the different types of pseudoentropy), one often likes to lower-bound the amount of
pseudoentropy several independent copies of X have (jointly). Such lower bounds
are used, for instance, in all constructions of pseudorandom generators from one-
way functions [13, 14, 17, 19, 29]. Proving such lower bounds, however, typically
requires the ability to sample efficiently from X, and also from a random variable Y
that realizes the pseudoentropy of X (cf. Theorem 4.3.1). While the X’s in consider-
ation are typically efficiently samplable, this is often not the case with respect to the
Y’s. Considering nonuniform distinguishers bypasses this issue; such distinguishers
can get the samples as a nonuniform advice. An alternative approach is to alter the
definition of pseudoentropy to require that the random variables in consideration
(i.e., X and Y) are computationally indistinguishable by (uniform) algorithms that
have access to an oracle that samples from the joint distribution of (X,Y). This is
the approach taken in [14], where the construction we present here is proven to
be secure in uniform settings (in order to construct pseudorandom generators se-
cure against uniform distinguishers, from one-way functions secure against uniform
inverters.

4.3.2 Next-Block Pseudoentropy Generators from One-Way
Functions

In this section, we show how to construct a next-block pseudoentropy generator G f
nb

out of a one-way function f : {0, 1}n 7→ {0, 1}n.

Notation 4.3.4 For n, ` ∈ N, let Hn,` be the family of ` × n Boolean matrices, and
let Hn = Hn,n. For h ∈ Hn,` and x ∈ {0, 1}n, let h(x) = hx (i.e., the matrix vector
product over GF(2)). Throughout, we denote by Hn the random variable that is
uniformly distributed over Hn.

Definition 4.3.5. On x ∈ {0, 1}n, h ∈ Hn, and f : {0, 1}n 7→ {0, 1}n, define
G f

nb : {0, 1}n ×Hn 7→ {0, 1}n ×Hn × {0, 1}n by

G f
nb(x, h) = ( f (x), h, h(x)).

Theorem 4.3.6. Let f : {0, 1}n 7→ {0, 1}n and let Gnb = G f
nb be according to Theo-

rem 4.3.5, viewed as a (t(n) = n2 + 2n)-block generator (i.e., each output bit forms

8 I.e., on input of arbitrary length, apply the input-restricted generator on the longest prefix of the
input that matches the restricted set of lengths, and append the unused suffix of the input to the
output.
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a separate block) over (s(n) = n2 + n)-bit strings. Assuming f is nonuniformly one-
way, then G f

nb has next-block pseudoentropy at least s(n) + c · log n, for any c > 0.

Namely, the next-block pseudoentropy of G f
nb is log n bits larger than its input en-

tropy.

Remark 4.3.7 (Tighter reductions). Haitner et al. [14] proved a variant of Theo-
rem 4.3.6 in which the family Hn is replaced by a more sophisticated function family
of description length Θ(n). As discussed in the introduction, Vadhan and Zheng [29]
took this a step further and proved a variant of this theorem without using any func-
tion family. That is, they proved that G f

nb(x) = ( f (x), x) has next-block pseudoen-
tropy n + log n. In both cases, the gap between the real entropy of the output and the
next-block pseudoentropy is log n, as in Theorem 4.3.6, but the input length is only
Θ(n) (versus Θ(n2) in Theorem 4.3.6). This better ratio between the entropy gap and
the input length yields a final pseudorandom generator of much shorter seed length
(see Theorem 4.3.18). Both constructions, and in particular that of [29], require a
more sophisticated analysis than the one we present here (also in their nonuniform
forms).

A key step towards proving Theorem 4.3.6 is analyzing the following (possibly
inefficient) function g f :

Definition 4.3.8. For f : {0, 1}n 7→ {0, 1}n, let Df(y) =⌈
log

∣∣∣ f −1(y) = {x ∈ {0, 1}n : f (x) = y}
∣∣∣⌉, and define g f over {0, 1}n ×Hn, by

g f (x, h) = ( f (x), h, h(x)1,...,Df( f (x))).

That is, g(x, h) outputs a prefix of Gnb(x, h) whose length depends on the “de-
generacy” of f (x). What makes g interesting is that it is both close to being injec-
tive and hard to invert. To see this, note that H∞(Un| f (Un)=y) = H0(Un| f (Un)=y) =

log
∣∣∣ f −1(y)

∣∣∣ ≈ Df(y). Hence, the two-universality of H implies that g(Un,Hn) deter-
mines Un with constant probability. In other words, g(Un,Hn) has a single preimage
with constant probability. But the two-universality of H also yields that, for ev-
ery k(Un) = Df( f (Un))−ω(log n), it holds that Hn(Un)1,...,k(Un) is statistically close to
uniform given ( f (Un),Hn). Hence, Hn(Un)1,...,Df( f (Un)) does not provide enough infor-
mation to enable an efficient inversion of f . (The extra O(log n) bits beyond k(Un)
can only increase the inversion probability by a poly(n) factor.)

The following claims state formally the two properties of g mentioned above.
The first claim states that the collision probability of g is small,9 yielding that g has
high entropy.

Claim 4.3.9. Let f : {0, 1}n 7→ {0, 1}n and let g = g f as in Theorem 4.3.8. Then
CP(g(Un,Hn)) ≤ 3

|Hn×{0,1}n |
.

9 Recall that the collision probability of a random variable X is defined as CP(X) =

Pr
(x,x′)

R
←X2

[x = x′], and that its Rényi entropy defined by H2(X) = − log CP(X) lower-bounds its
Shannon entropy.
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Definition 4.3.10 (Hard-to-invert functions). A function q : {0, 1}n 7→ {0, 1}∗ is
(nonuniformly) hard to invert if Pr

y
R
←q(Un)

[
A(1n, y) ∈ q−1(y)

]
= neg(n) for every

pptNU A.

Namely, an hard-to-invert function is a one-way function without the efficient com-
putability requirement.

Claim 4.3.11. Let f : {0, 1}n 7→ {0, 1}n and let g = g f be according to Theo-
rem 4.3.8. Assuming f is nonuniformly one-way, g is hard to invert.

The proof of the above claims is given below, but first let us use it for proving
Theorem 4.3.6. We will also use the Goldreich–Levin hardcore lemma.

Lemma 4.3.12 (Goldreich–Levin hardcore lemma, [7]). Let q : {0, 1}n 7→ {0, 1}∗

be a hard-to-invert function and let ` = `(n) ∈ O(log n), then (q(Un),Hn,`,Hn,`(Un))
is nonuniform computationally indistinguishable from (q(Un),Hn,`,U′`).

10

Proving Theorem 4.3.6. Proof: [Proof of Theorem 4.3.6] Let s(n) = n2 + n be
Gnb’s input length, and let Df and g = g f be as in Theorem 4.3.8. We prove that Gnb’s
next-block pseudoentropy is at least s(n) + log n− 2, where the proof that it is larger
than s(n) + c · log n for any c > 0 follows along similar lines. Let ` = `(n) = 2 log n
and assume for simplicity that log n ∈ N. The one-wayness of f guarantees that
Df( f (x)) ≤ n − ` for all sufficiently large n and every x ∈ {0, 1}n; otherwise, the
trivial inverter that returns a uniform element in {0, 1}n inverts f with nonnegligible
probability.

Define g′ over {0, 1}n×Hn,n−`, by g′(x, h) = ( f (x), h, h(x)1,...,Df( f (x))) (i.e., we have
removed the last ` rows from the matrix defining the hash function h). The above
observation about f yields that g′ is well defined, and the hardness to invert of g
(Theorem 4.3.9) yields by a simple reduction that g′ is also hard to invert.

Since g′ is hard to invert, Theorem 4.3.12 yields that

( f (Un),Hn,n−`,Hn,n−`(Un)1,...,Df( f (Un)),H′n,`,H
′
n,`(Un)) ≡ (g′(Un,Hn,n−`),H′n,`,H

′
n,`(U

′
`))

≈nu−C (g′(Un,Hn,n−`),H′n,`,U
′
`),

where Un and U′` are uniformly and independently distributed over {0, 1}n and
{0, 1}`, respectively, and Hn−` and H′n, ` are uniformly and independently dis-
tributed over Hn,n−` and Hn,`, respectively. Changing the order in the above and
noting that Hn ≡ (Hn,n−`,Hn,`), yields that

( f (Un),Hn,Hn(Un)1,...,Df( f (Un))+`) ≈nu−C ( f (Un),Hn,Hn(Un)1,...,Df( f (Un),U′`). (4.3)

Let t(n) = 2n + n2 = s(n) + n = Gnb’s output length. Let X = X(n) = Gnb(Un,Hn),
let J = J(n) = s(n) + Df( f (Un)), and let Y = Y(n) = (Y1, . . . ,Ym) be defined by Yi =

Xi if i < [J + 1, J + `], and Yi is set to a uniform bit otherwise (i.e., i ∈ [J + 1, J + `]).

10 [7] states that Hn,`(n)(Un) is computationally unpredictable from (v(Un),Hn,`(n)), but since∣∣∣Hn,`(n)(Un)
∣∣∣ ∈ O(log n), the reduction to the above statement is standard.
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Equation (4.3) yields that XJ+1,...,J+` is computationally indistinguishable from U`

given X1,...,J and J, yielding that

(J, X≤J+r) ≈nu−C (J, X<J+r,U) (4.4)

for every r ∈ [`], where U is a uniform bit. It follows that, for every pptNU D and
i ∈ [m], it holds that

Pr
[
D(1n, X≤i) = 1

]
− Pr

[
D(1n, X<i,Yi) = 1

]
(4.5)

= Pr
[
D(1n, X≤i) = 1 ∧ i < [J, J + `]

]
− Pr

[
D(1n, X<i,Yi) = 1 ∧ i < [J, J + `]

]
+

∑̀
r=1

(
Pr

[
D(1n, X≤i) = 1 ∧ i = J + r

]
− Pr

[
D(1n, X<i,Yi) = 1 ∧ i = J + r

])
= 0 +

∑̀
r=1

(
Pr

[
D(1n, X≤i) = 1 ∧ i = J + r

]
− Pr

[
D(1n, X<i,Yi) = 1 ∧ i = J + r

])
≤ 0 + ` · neg(n)
= neg(n).

The second equality holds since Yi = Xi for i < [J, J +`]. The inequality holds since,
if Pr [D(1n, X≤i) = 1 ∧ i = J + r] − Pr [D(1n, X<i,Yi) = 1 ∧ i = J + r] > neg(n) for
some i and r, then the nonuniform distinguisher D′ that on input ( j, x) returns D(x)
if j = i + r, and a uniform bit otherwise, contradicts Equation (4.4).

It is left to prove that Y has high entropy given the blocks of X. We compute

m∑
i=1

H(Yi | X<i) ≥
m∑

i=1

H(Yi | X<i, J)

= E
j

R
←J

 m∑
i=1

H(Yi | X<i, J = j)


≥ E

j
R
←J

 j∑
i=1

H(Yi | X<i, J = j) +

j+∑̀
i= j+1

H(Yi | X<i, J = j)


= E

j
R
←J

 j∑
i=1

H(Xi | X<i, J = j) +

j+∑̀
i= j+1

1


= E

j
R
←J

[
H(X≤ j|J = j)

]
+ `

= H(X≤J |J) + `.

It follows that
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m∑
i=1

H(Yi | X<i) ≥ ` + H(X≤J) − H(J)

≥ ` + H(X≤J) − log n

≥ ` + s(n) − 2 − log n

= s(n) + log n − 2.

The penultimate inequality follows by Theorem 4.3.9 (since H(X≤J) ≥ H2(X≤J) =

log(1/CP(X≤J)) ≥ s(n) − 2). We conclude that Y realizes the claimed next-block
pseudoentropy of Gnb. �

Proving Theorem 4.3.9. Proof: [Proof of Theorem 4.3.9] Let (U′n,H
′
n) be an

independent copy of (Un,Hn). Then

CP(g(Un,Hn))
= Pr

[
g(U′n,H

′
n) = g(Un,Hn)

]
= Pr

[
( f (U′n),H′n,H

′
n(U′n)1,...,Df( f (U′n))) = ( f (Un),Hn,Hn(Un)1,...,Df( f (Un)))

]
= E

y
R
← f (Un)

[
Pr

[
f (U′n)=y

]
·Pr

[
H′n = Hn

]
·Pr

[
Hn(U′n)1,...,Df(y) = Hn(Un)1,...,Df(y) | f (U′n)=y

]]
≤ E

y
R
← f (Un)

[
2Df(y)

2n ·
1
|Hn|

· (
1

2Df(y)−1 +
1

2Df(y) )
]

≤
3

|{0, 1}n ×Hn|
.

The first inequality holds since Pr
[
Hn(U′n)1,...,Df(y) = Hn(Un)1,...,Df(y) | f (U′n) = y

]
is

upper bounded by Pr
[
U′n = U′n | f (U′n) = y

]
+ Pr

[
Hn(x)1,...,Df(y) = Hn(x′)1,...,Df(y)

]
for

some x , x′. �

Proving Theorem 4.3.11. Proof: [Proof of Theorem 4.3.11] This fact was first
proven in [17] using the leftover hash lemma (Theorem 4.2.10). Here, we present a
different proof that is inspired by Rackoff’s proof of the Leftover Hash Lemma, and
uses the high collision probability of g directly.

Let Invg be a nonuniform polynomial-time algorithm that inverts g(Un,Hn) with
probability δ = δ(n). We show that there exists an inverter Inv that inverts f with
probability at least roughly δ2/n, from which the claim follows.

Fix n ∈ N, and let L ⊆ Im(g({0, 1}n × Hn)) be the set of outputs where Invg
inverts g correctly (without loss of generality Invg is deterministic). By assumption,
Pr

[
g(Un,Hn) ∈ L

]
= δ. Since the collision probability of a distribution is at least

the reciprocal of its support size, it follows that
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CP(g(Un,Hn)) = Pr
[
g(Un,Hn) = g(U′n,H

′
n)
]

≥ Pr
[
g(Un,Hn), g(U′n,H

′
n) ∈ L

]
/ |L|

= δ2/ |L| .

By Theorem 4.3.9, CP(g(Un,Hn)) ≤ 3 · 1
|Hn |
· 1

2n , and therefore

3 · |L|
|Hn| · 2n ≥ δ

2. (4.6)

Now for y ∈ Im( f ({0, 1}n)), let Ly = {(h, z) : (y, h, z) ∈ L}. It follows that

Pr
[
( f (Un),Hn,U′Df( f (Un))) ∈ L

]
= E

y
R
← f (Un)

[
Pr

[
(Hn,U′Df(y)) ∈ Ly

]]
(4.7)

= E
y

R
← f (Un)


∣∣∣Ly

∣∣∣
|Hn| × 2Df(y)


=

∑
y∈Im( f )

∣∣∣ f −1(y)
∣∣∣

2n ·

∣∣∣Ly

∣∣∣
|Hn| × 2Df(y)

≥
∑

y∈Im( f )

2Df(y)−1

2n ·

∣∣∣Ly

∣∣∣
|Hn| × 2Df(y)

=
1

|Hn| · 2n+1 ·
∑

y

∣∣∣Ly

∣∣∣
=

1
|Hn| · 2n+1 · |L|

≥ δ2/6.

Consider the following (randomized) inverter for f :

Algorithm 4.3.13 (Inv)

Oracle: Invg
Input: y ∈ {0, 1}n

1. Let h
R
←Hn, i

R
← [n], and z

R
← {0, 1}i.

2. Let (x, h′) = Invg(y, h, z).
3. Return x.

Let I be the random variable corresponding to the value of i
R
← [y] in the execution

of Inv(y). Compute
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Pr
[
Inv( f (Un)) ∈ f −1( f (Un))

]
≥ Pr

[
I = Df( f (Un))

]
· Pr

[
Inv( f (Un)) ∈ f −1( f (Un)) | I = Df( f (Un))

]
=

1
n
· Pr

[
Invg( f (Un),Hn,UDf( f (Un))) ∈ g−1( f (Un),Hn,UDf( f (Un)))

]
≥

1
n
· δ2/4 = δ2/6n.

The first inequality holds since I is independent of y, and the second inequality is by
Equation (4.7). It follows that there exists a nonuniform polynomial-time algorithm
that inverts f with probability at least δ(n)2/6n, implying that that δ(n) = neg(n).

�

4.3.3 Manipulating Next-Block Pseudoentropy
In this section we develop tools to manipulate next-block pseudoentropy. These
tools are later used in Section 4.3.4 to convert the next-block pseudoentropy con-
structed in Section 4.3.2 into a pseudorandom generator.

The tools considered below are rather standard “entropy manipulations”: entropy
equalization (i.e., picking a random variable at random from a set of random vari-
ables to get a new random variable whose entropy is the average entropy), parallel
repetition, and extraction from high-min-entropy sources, and their effect on the real
entropy of random variables is clear. Fortunately, these manipulations have essen-
tially the same effect also on the next-block pseudoentropy of a random variable.
In Section 4.4.2, we show that these manipulations also have the desired effect on
the accessible entropy of a random variable, a similarity that implies the similarity
between the pseudorandom generator construction presented in this section, and the
construction of statistically hiding commitment scheme, presented in Section 4.4.2.

4.3.3.1 Entropy Equalization via Truncated Sequential Repetition

This manipulation takes independent copies of an m-block random variable with
next-block pseudoentropy at least k and concatenates them. It then truncates, at ran-
dom, some of the first and final output blocks of the concatenated variable. The
effect of this manipulation is that each block of the resulting variable has next-block
pseudoentropy at least k/m. This per-block knowledge of the next-block pseudoen-
tropy becomes very handy for constructing pseudorandom generators.

The price of this manipulation is that we “give away” some next-block pseudoen-
tropy, but when taking enough copies, this loss is not significant.

Definition 4.3.14. For z = (z1, . . . , zt) and 1 ≤ j ≤ m ≤ t, let Equalizerm( j, z) :=
z j, . . . , zt+ j−m−1.

That is, Equalizerm( j, z) removes the first ( j − 1) and last (m − j + 1) elements from
z.
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Lemma 4.3.15. Let m = m(n) be a power of 2,11 assume X = X(n) = (X1, . . . , Xm)
has next-block pseudoentropy (at least) k = k(n), and let w = w(n) ≥ 2 be a polyno-
mially bounded integer function. Let X[w] = X[w](n) be the (m · (w − 1))-block ran-
dom variable defined by X[w](n) = Equalizerm(J, X(w)), where J = J(n) is uniformly
distributed over [m(n)], and X(w) = X(w)(n) = (X1, . . . , Xw), for X1, . . . , Xw being
independent copies of X(n). Then every block of X[w] has next-block pseudoentropy
(at least) k/m.

Namely, the next-block pseudoentropy of each block of X[w] is the average next-
block pseudoentropy of the blocks of X.
Proof: Let Y = Y(n) = (Y1, . . . ,Ym) be a random variable that realizes the
next-block pseudoentropy of X, and let Y (w) = Y (w)(n) = (Y1, . . . ,Yw) be jointly
distributed with X(w) = (X1, . . . , Xw) in the natural way—Y j is jointly distributed
with X j according to the joint distribution (X,Y). We prove that Y [w] = Y [w](n) =

Equalizerm(J,Y (w)) realizes the claimed per-block next-block pseudoentropy of X[w].
In the following we let m̃ = m̃(n) = (w − 1) · m.

We start by proving that each block of Y [w] has high entropy given the previous
blocks of Y [w]. Fix n ∈ N and omit that from the notation, and fix i ∈ [m̃]. By chain
rule for Shannon entropy, it holds that

H(Y [w]
i | X[w]

<i ) ≥ H(Y (w)
i+J−1 | X

(w)
<i+J−1, J) (4.8)

= H(Yi+J−1 mod m | X<i+J−1 mod m),

letting m mod m be m (rather than 0). The equality follows from the fact that, for
any t ∈ [mw], (Y (w)

t , X(w)
t−1, . . . , X

(w)
t′=bt/mc·m+1) is independent of X(w)

<t′ , and is identically
distributed to (Yt mod m, X<t mod m).

Since (i + J − 1 mod m) is uniformly distributed in [m], it follows that

H(Yi+J−1 mod m | X<i+J−1 mod m, J) = E
i′

R
←[m]

[H(Yi′ | X<i′ )] (4.9)

=
1
m
·

∑
i′

R
←[m]

H(Yi′ | X<i′ )

≥ k/m,

and we conclude that H(Y [w]
i | X[w]

<i ) ≥ k/m for every i ∈ [m̃].
For the second part, let D be a pptNU, let i = i(n) ∈ [m̃(n)], and let

εD(n) := Pr
[
D(1n, X[w](n)≤i) = 1

]
− Pr

[
D(1n, X[w](n)<i,Y [w](n)i) = 1

]
(4.10)

In the following we omit n whenever clear from the context. A similar argument to
that used in the first part yields that

11 Any other restriction that allows an efficient sampling from [m(n)] will do.
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εD(n) = Pr
[
D(X[w]

≤i ) = 1
]
− Pr

[
D(X[w]

<i ,Y
[w]
i ) = 1

]
(4.11)

= Pr
[
D(Xw

J,...,i+J−1) = 1
]
− Pr

[
D(Xw

J,...,i+J−2,Y
w
...,i+J−1) = 1

]
= Pr

[
D(Xw−1

J,...,(w−1)m, X≤i+J−1 mod m) = 1
]

(4.12)

− Pr
[
D(Xw−1

J,...,(w−1)m, X<i+J−1 mod m,Yi+J−1 mod m) = 1
]

≤ Pr
[
D(x, X≤i+ j−1 mod m) = 1

]
− Pr

[
D(x, X<i+ j−1 mod m,Yi+ j′ mod m) = 1

]
for some fixing of j ∈ [m] and x ∈ Supp(Xw−1

j,...,(w−1)m). Hence, there exists a pptNU D′

such that

εD′ (n) := Pr
[
D′(X≤i′ ) = 1

]
− Pr

[
D′(X<i′ ,Yi′ ) = 1

]
≥ εD(n) (4.13)

for some i′ = i′(n) ∈ [m(n)]. Since Y is block-wise indistinguishable from X, it
follows that εD′ (n) = neg(n) and therefore εD(n) = neg(n). Hence, Y [w] is block-
wise indistinguishable from X[w]. �

4.3.3.2 Parallel Repetition

This manipulation, which simply takes parallel repetition (i.e., direct product) of a
random variable, has a twofold effect. The first is that the overall next-block pseu-
doentropy a t-fold parallel repetition of a random variable X is t times the next-block
pseudoentropy of X. Hence, if X’s next-block pseudoentropy is larger than the num-
ber of bits it takes to sample it, this gap gets multiplied by t in the resulting random
variable. The second effect of taking such a product is turn next-block pseudoen-
tropy into next-block pseudo-min-entropy.

Lemma 4.3.16. Let m = m(n) and ` = `(n) be integer functions, assume every block
of X = X(n) = (X1, . . . , Xm) is of length `(n) and has next-block pseudoentropy
(at least) α = α(n), and let t = t(n) be polynomially bounded integer function.
Let X〈t〉 = X〈t〉(n) be the m-block random variable defined by X〈t〉 = X〈t〉(n) =((

X1
1 , . . . , X

t
1
)
, . . . ,

(
X1

m, . . . , X
t
m
))

, for X1, . . . , Xt being independent copies of X. Then
every block of X〈t〉 has next-block pseudo-min-entropy (at least) α′(n) = t · α −
O(log n · (` + log n) ·

√
t).

Notice that the t · α term in the above statements is the largest we could hope for
the pseudoentropy—getting α bits of pseudoentropy per copy. However, since we
wish to move from a pseudo-form of Shannon entropy (measuring randomness on
average) to a pseudo-form of min-entropy (measuring randomness with high prob-
ability), we may have a deviation that grows like

√
t. By taking t large enough, this

deviation becomes insignificant. For instance, consider the case that X has next-
block pseudoentropy at least α and ` = 1 (i.e., X is a sequence of bits), and that we
would like to deduce that X〈t〉 has next-block pseudo-min-entropy α′ = t · (α− δ) for
some δ > 0. Theorem 4.3.16 guarantees that this happens for t = polylog(n)/δ2.

Proof: Let Y = Y(n) = (Y1, . . . ,Ym) be a random variable that real-
izes the per-block next-block pseudoentropy of X, and let Y 〈t〉 = Y 〈t〉(n) =
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Y1

1 , . . . ,Y
t
1
)
, . . . ,

(
Y1

m, . . . ,Y
t
m
))

be jointly distributed with X〈t〉 in the natural way—
Y j is jointly distributed with X j according to the joint distribution (X,Y). Since Y
is block-wise indistinguishable from X, and since t(n) ≤ poly(n), a straightforward
hybrid argument yields that Y 〈t〉 is block-wise indistinguishable from X〈t〉.

Since H(Yi | X<i) ≥ α for every i ∈ [m], applying Theorems 4.2.3 and 4.2.5 with
ε = 2− log2 n yields that there exists a random variable W = W(n) = (W1, . . . ,Wm)
jointly distributed with X〈t〉, such that the following hold for every i = i(n) ∈ [m(n)]:

1. ∆((X〈t〉<i ,Y
〈t〉
i ), (X〈t〉<i ,Wi)) = neg(n), and

2. H∞(Wi|X〈t〉<i =x<i
) ≥ α − O((log n + `) · log n ·

√
t), for every x ∈ Supp(X〈t〉<i ).

Item 1 and the previous observation yield that W is block-wise indistinguishable
from X〈t〉, and by item 2 we conclude that W realizes the claimed next-block pseudo-
min-entropy of X〈t〉. �

4.3.3.3 Block-wise Extraction

The tool applies a randomness extractor separately to each of the random variable
blocks, to convert per-block next-block pseudo-min-entropy into pseudorandom-
ness. The result is a sufficiently long pseudorandom sequence. This is a computa-
tional analogue of block-source extraction in literature on randomness extractors
[5, 33]. The price of this manipulation is that the length, and thus the amount of
pseudorandomness, of the resulting variable is shorter than the overall pseudoen-
tropy of the original variable, due to inherent entropy loss in randomness extraction.

Lemma 4.3.17. Let m = m(n) and ` = `(n) be integer functions, and assume that
every block of X = X(n) = (X1, . . . , Xm) over ({0, 1}`)m has next-block pseudoentropy
(at least) α = α(n) ≥

⌈
log2 n

⌉
. Then there exists a polynomial-time computable

Ext : {0, 1}`×({0, 1}`)m 7→
(
{0, 1}bαc−dlog2 ne

)m
such that (R,Ext(R, X)), for R = R(n)

R
←

{0, 1}`, is pseudorandom.

Proof: Let β = β(n) = bαc−
⌈
log2 n

⌉
. For r, x ∈ {0, 1}`, let hr(x) := r · x over GF(2`),

truncated to the first β bits. Note that {hr : r ∈ {0, 1}`} is a two-universal hash family
over {0, 1}`. For x = (x1, . . . , xk) ∈ ({0, 1}`)k, let Ext(r, x) = (hr(x1), . . . , hr(xk)). Let
DPRG be pptNU, and assume that

ε(n) := Pr
[
DPRG(1n,R,Ext(X,R)) = 1

]
− Pr

[
DPRG(1n,R,Um·β) = 1

]
, neg(n).

(4.14)

In the following we omit n whenever clear from the context. A hybrid argument
yields that there exists i ∈ [m] and pptNU D such that

Pr [D(R,Ext(R, X≤i)) = 1] − Pr
[
D(R,Ext(R, X<i),Uβ) = 1

]
≥ ε/m.

Let Y = Y(n) be a random variable that realizes the per-block next-block pseudo-
min-entropy of X. Since H∞(Yi|X<i = x<i) ≥ α for every x ∈ Supp(X), and since
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{hr : r ∈ {0, 1}`} is a two-universal hash family, the leftover hash lemma (Theo-
rem 4.2.10) yields that

SD((R, hR(Yi|X<i = x<i)), (R,Uβ)) ≤ 2− log2 n

for every x ∈ Supp(X). It follows that

SD(R,Ext(R, X<i,Yi), (R,Ext(R, X<i),Uβ)) ≤ 2− log2 n

and therefore

Pr [D(R,Ext(R, X≤i)) = 1] − Pr [D(R,Ext(R, X<i,Yi)) = 1] (4.15)

≥ ε/` − 2− log2 n , neg

For n ∈ N, let rn ∈ Supp(R) be the string that maximizes the above gap, and consider
the distinguisher D′ that on input (1n, z), returns D(1n, rn,Ext(rn, z)). Equation (4.15)
yields that

Pr
[
D′(X≤i) = 1

]
− Pr

[
D′(X<i,Yi) = 1

]
, neg

Hence, the pptNU D′ contradicts the assumed block-wise indistinguishability of Y
from X. �

4.3.4 Putting It Together: One-Way Functions to Pseudorandom
Generators

In this section we use the results of previous sections to construct pseudorandom
generators from next-block pseudoentropy generators.

It is clear that a pseudorandom generator from n bits to m(n) > n has next-block
pseudoentropy m(n), hence, it is a next-block entropy generator with entropy gap
(m(n)−n)—its next-block pseudoentropy is larger than its real entropy by (m(n)−n).
The following theorem provides the converse direction.

Theorem 4.3.18 (Next-block pseudoentropy to pseudorandom generator). For
any polynomial-time computable and polynomially bounded integer function s =

s(n) and polynomial-time computable function ∆ = ∆(n) ≤ 2, there exists a
polynomial-time computable integer function s′ = s′(n) = Θ(s · ∆−3 · polylog(n))
such that the following holds: Assuming there exists a polynomial-time generator
Gnb : {0, 1}s 7→ {0, 1}2s with next-block pseudoentropy s(1 + ∆), then there exists a
pseudorandom generator G : {0, 1}s

′

7→ {0, 1}s
′·(1+Θ(∆). Furthermore, G uses Gnb as

an oracle (i.e., black box) and on inputs of length s′, all calls of G to Gnb are on
inputs of length s.

Proof: The proof is done by manipulating the next-block pseudoentropy of Gnb
using the tools described in Section 4.3.3.
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Let X = X(n) = Gnb(Us). We assume without loss of generality that, for every n,
the number m(n) = 2s(n) of output blocks (=bits) of Gnb is a power of 2 (by padding
with zeros if necessary). By assumption, X has next-block pseudoentropy s(1 + ∆).

Truncated sequential repetition: pseudoentropy equalization. The first step is
to use X to define a random variable X[w] that each of whose blocks has the same
amount of next-block pseudoentropy— the average of the next-block pseudoentropy
of the blocks of X. The entropy gap of X[w], in relative terms, is essentially the same
as that of X.

For w = w(n) = d8/∆e, let X[w] = X[w](n) be the truncated sequential repetition
of X according to Theorem 4.3.15. Namely, X[w] consists of w independent copies
of X, omitting the first (J − 1) blocks of the first copy and the last (m − J + 1)
blocks of the last copy, for J

R
← [m]. Note that X[w] can be generated efficiently using

s′ = s′(n) = log(m) + w · s random bits, and has m′ = m′(n) = m(w − 1) blocks.
By Theorem 4.3.15, each block of X[w] has next-block pseudoentropy α = α(n) =

s(1 + ∆)/m = 1
2 + ∆/2.

Parallel repetition: converting Shannon pseudoentropy to pseudo-min-entropy
and gap amplification. In this step X[w] is used to construct a random variable
(X[w])〈t〉 that each of whose blocks has the same amount of pseudo-min-entropy—
about t time the per-block pseudoentropy of X[w].

For t = t(n) =
⌈
log5 n · ∆−2

⌉
, let (X[w])〈t〉 = (X[w])〈t〉(n) be the t-fold parallel rep-

etition of X[w] (see Theorem 4.3.16). That is, the i-th block of (X[w])〈t〉, contains the
i-th blocks of the t independent copies of X[w]. Note that (X[w])〈t〉 can be generated
efficiently using s′′ = s′′(n) = t · s′ bits, and has m′ blocks.

By Theorem 4.3.16, each block of (X[w])〈t〉 has next-block pseudo-min-entropy
α′ = α′(n) = t ·α−O(log2 n ·

√
t), which is larger than t · ( 1

2 +∆/4) for large enough
n.

Randomness extraction: converting pseudo-min-entropy to pseudorandom-
ness. In the final step, pseudorandom bits are extracted from (X[w])〈t〉, by applying
a randomness extractor on each of its blocks.

Theorem 4.3.17 yields that there exists an efficient Ext : {0, 1}t(n) × ({0, 1}t)m′ 7→(
{0, 1}α

′−dlog2 ne
)m′

such that XPRG = XPRG(n) = (R,Ext(R, (X[w])〈t〉), for R = R(n)
R
←

{0, 1}t, is pseudorandom. We remind the reader that Ext(r, x = (x1, . . . , xm)) merely
applies (the same) two-universal function hr on each of x’s blocks. Note that it takes
s′′′ bits to efficiently sample XPRG, for

s′′′ = s′′′(n) = t + s′′ = t(`s + Θ(log n)) = Θ(s∆−3 · polylog(n)).

It follows that, for large enough n, the length of XPRG(n) is at least
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m′(α′ −
⌈
log2 n

⌉
) ≥ m′(tα − O(log3 n ·

√
t))

> m′(t(
1
2

+ ∆/2) − O(log3 n ·
√

t))

> m′t(
1
2

+ ∆/4)

= s(` − 1)t(1 + ∆/2)
≥ s`t(1 + ∆/4)
≥ s′′′(1 + ∆/8).

Hence,
∣∣∣XPRG

∣∣∣ = s′′′(1 +Ω(∆)), and since all the above manipulations were efficient,
the proof of the theorem follows. �

Remark 4.3.19 (Tighter reduction). Vadhan and Zheng [29] noticed that, by mod-
ifying the construction used in the proof of Theorem 4.3.18, one can construct an
efficient generator G and a random variable Z = Z(n) such that the following hold:

1. It takes s′(n) = Θ(s(n) · ∆(n)−2 · polylog(n)) bits to efficiently sample Z, i.e., a
factor of ∆−1 shorter than the input length of the pseudorandom generator in
Theorem 4.3.18.

2. G(Z) is computationally indistinguishable from (Z,U), where U is a random
string of length Ω(s(n)∆/n).

Then, by iterating G on its output (in a similar manner to the Blum–Micali pseudo-
random generator length extending approach), without investing new randomness,
they get a pseudorandom generator of seed length s(n).

Combining the above Theorem 4.3.18 with Theorem 4.3.6 from the previous
subsection yields the following result:

Theorem 4.3.20 (One-way function to pseudorandom generator). There exists a
polynomial-time computable function s = s(n) = Θ(n7 · polylog n) such that the
following holds: Let f : {0, 1}n 7→ {0, 1}n be nonuniformly one-way function, then
there exists a pseudorandom generator G : {0, 1}s 7→ {0, 1}s·(1+Ω(1/n2)). Furthermore,
G uses f as an oracle (i.e., black box) and on inputs of length s(n), all calls of G to
f are on inputs of length n.

Proof: Pad the output of the next-block pseudoentropy generator guaranteed by
Theorem 4.3.6 to make it length doubling (it is easy to see that this does not change
its next-block pseudoentropy) and apply Theorem 4.3.18. �

Remark 4.3.21 (Tighter reduction, take 2). Plugging into Theorem 4.3.18 the
next-block generators of Haitner et al. [14] or of Vadhan and Zheng [29], both
with s = Θ(n) and ∆ = Θ(log(n)/n), yields a pseudorandom generator of seed
length Θ(n4 · polylog n). If the latter generators are used with the tighter reduction
of Vadhan and Zheng [29] mentioned above, the resulting generator has seed length
Θ(n3 · polylog n), which is the best we know how to achieve today.
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4.4 Inaccessible Entropy and Statistically Hiding
Commitment

In this section, we formally define the notion of inaccessible entropy and use it as
intermediate tool to construct statistically hiding commitment from one-way func-
tions.

We start, Section 4.4.1, by presenting the formal definition of inaccessible en-
tropy. In Section 4.4.2, we show that any one-way function can be used to construct
inaccessible entropy generator. In Section 4.4.3, we develop means to manipulate
inaccessible entropy. Finally, in Section 4.4.4 we give a simplified version of the
(still rather complicated) construction of statistically hiding commitments from in-
accessible entropy generators.

4.4.1 Inaccessible Entropy Generators
We begin by informally recalling the definition from the introduction. Let
G : {0, 1}n 7→ ({0, 1}∗)m be an m-block generator over {0, 1}n and let G(1n) =

(Y1, . . . ,Ym) denote the output of G over a uniformly random input. The real en-
tropy of G is the (Shannon) entropy in G’s output blocks, where for each block Yi,
we take its entropy conditioned on the previous blocks Y<i = (Y1, . . . ,Yi−i). The
accessible entropy of an arbitrary, adversarial m-block generator G̃, with the same
block structure as of G, is the entropy of the block of G̃ conditioned not only on
the previous blocks but also on the coins used by G̃ to generate the previous blocks.
The generator G̃ is allowed to flip fresh random coins to generate its next block, and
this is indeed the source of entropy in the block (everything else is fixed). We insist
that the messages of G̃ will be consistent with G: the support of G̃’s messages is
contained in that of G.

Moving to the formal definitions, we first define an m-block generator and then
define the real and accessible entropy of such a generator.

Definition 4.4.1 (Block generators). Let n be a security parameter, and let m =

m(n) and s = s(n). An m-block generator is a function G : {0, 1}s 7→ ({0, 1}∗)m. The
generator G is efficient if its running time on input of length s(n) is polynomial in n.

We call parameter n the security parameter, s the seed length, m the number
of blocks, and `(n) = maxx∈{0,1}s(n),i∈[m(n)] |G(x)i| the maximal block length of G.

4.4.1.1 Real Entropy

Recall that we are interested in lower bounds on the real entropy of a block gen-
erator. We define two variants of real entropy: real Shannon entropy and real min-
entropy. We connect these two notions through the notion of real sample-entropy. In
other words, for a fixed m-tuple output of the generator, we ask how surprising were
the blocks output by G in this tuple. We then get real Shannon entropy by taking the
expectation of this quantity over a random execution and the min-entropy by taking
the minimum (up to negligible statistical distance). An alternative approach would
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be to define the notions through the sum of conditional entropies (as we do in the
intuitive description in the introduction). This approach would yield closely related
definitions, and in fact exactly the same definition in the case of Shannon entropy
(see Theorem 4.4.4).

Definition 4.4.2 (Real sample-entropy). Let n be a security parameter, and let G
be an m-block generator over {0, 1}s, for m = m(n) and s = s(n). For i ∈ [m], define
the real sample-entropy of y ∈ Supp((Y1, . . . ,Yi) = G(Us)1,...,i) as

RealHG(y) =
∑
j∈[i]

RealH j
G(y)

for
RealH j

G(y) := HY j |Y< j (y j|y< j)

Definition 4.4.3 (Real entropy). Let n be a security parameter, and let G be an m-
block generator over {0, 1}s, for m = m(n) and s = s(n). We say that an m-block
generator G has real entropy at least k = k(n), if

E
y

R
←G(Us)

[
RealHG(y)

]
≥ k

for every n ∈ N.
The generator G has real min-entropy at least k in its i-th block, where i = i(n) ∈

[m(n)], if
Pr

y
R
←G(Us)

[
RealHi

G(y) < k
]

= neg(n).

We observe that the real Shannon entropy simply amounts to measuring the stan-
dard conditional Shannon entropy of G’s output blocks.

Lemma 4.4.4. For an m-block generator G over {0, 1}s, it holds that

E
y

R
←G(Us)

[
RealHG(y)

]
= H(G(Us)).

Proof: Let (Y1, . . . ,Ym) = G(Us), and compute

E
y

R
←G(Us)

[
RealHG(y)

]
:= E

y
R
←G(Us)

∑
i∈[m]

HYi |Y<i (yi | y<i)


=

∑
i∈[m]

E
y

R
←G(Us)

[
HYi |Y<i (yi | y<i)

]
=

∑
i∈[m]

H(Yi|Y<i)

= H(G(Us)).

�
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4.4.1.2 Accessible Entropy

Recall that we are interested in upper bounds on the accessible entropy of a block
generator. We will define two variants of accessible entropy: accessible Shannon
entropy and accessible max-entropy. While the Shannon variant is in a sense more
intuitive, working with the max-entropy variant, as done in Sections 4.4.2 and 4.4.4,
yields simpler and more efficient applications. As in the case of real entropy, we
connect these two notions through the notion of accessible sample-entropy. For a
fixed execution of the adversary G̃, we ask how surprising were the messages sent
by G̃. We then get accessible Shannon entropy by taking the expectation of this
quantity over a random execution and the max-entropy by taking the maximum
(up to negligible statistical distance). Here too, the definitions obtained are closely
related to the definitions one would obtain by considering a sum of conditional
entropies (as we did in the intuitive description earlier). For the Shannon entropy,
the definitions would again be identical. (See Theorem 4.4.7.)

The definition below differs from the definition of [16], in that we require the
bound on the accessible entropy to hold (also) against nonuniform adversarial gen-
erators. This change simplifies the definitions and proofs, but at the price that we can
only construct such inaccessible entropy pseudoentropy generators from functions
that are nonuniformly one-way.

Definition 4.4.5 (Online block generator). Let n be a security parameter, and let
m = m(n). An m-block online generator is a function G̃ : ({0, 1}v)m 7→ ({0, 1}∗)m

for some v = v(n), such that the i-th output block of G̃ is a function of (only) its
first i input blocks. We denote the transcript of G̃ over random input by TG̃(1n) =

(R1,Y1, . . . ,Rm,Ym), for (R1, . . . ,Rm)
R
← ({0, 1}v)m and (Y1, . . . ,Ym) = G̃(R1, . . . ,Ri).

That is, an online block generator is a special type of block generator that tosses
fresh random coins before outputting each new block. In the following we let
G̃(r1, . . . , ri)i stand for G̃(r1, . . . , ri, x∗)i for arbitrary x∗ ∈ ({0, 1}v)m−i (note that the
choice of x∗ has no effect on the value of G̃(r1, . . . , ri, x∗)i).

Definition 4.4.6 (Accessible sample-entropy). Let n be a security parameter, let
m = m(n), let i = i(n) ∈ [m], and let G̃ be an online m-block online generator.
The accessible sample-entropy of t = (r1, y1, . . . , ri, yi) ∈ Supp(R1,Y1 . . . ,Ri,Yi) =

TG̃(1n)1,...,2i is defined as
AccHG̃(t) :=

∑
j∈[i]

AccH j
G̃

(t)

for AccH j
G̃

(t) := HY j |R< j (y j|r< j).

The expected accessible entropy of a random transcript can be expressed in terms
of the standard conditional Shannon entropy.

Lemma 4.4.7. Let G̃ be an online m = m(n)-block generator and let
(R1,Y1, . . . ,Rm,Ym) = TG̃(1n) be its transcript. Then,

E
t

R
←TG̃(1n)

∑
i∈[m]

AccHi
G̃

(t)

 =
∑
i∈[m]

H(Yi|R<i).
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The proof of Theorem 4.4.7 is similar to that of Theorem 4.4.4.
The above definition is only interesting when putting restrictions on the genera-

tor’s actions with respect to the underlying generator G. (Otherwise, the accessible
entropy of G̃ can be arbitrarily large by outputting arbitrarily long strings.) In this
work, we focus on efficient generators that are consistent with respect to G. That is,
the support of their output is contained in that of G.12

Definition 4.4.8 (Consistent generators). Let G be a block generator over {0, 1}s(n).
A block (possible online) generator G′ over {0, 1}s

′(n) is G consistent if, for every
n ∈ N, it holds that Supp(G′(Us′(n))) ⊆ Supp(G(Us(n))).

Definition 4.4.9 (Accessible entropy). A block generator G has accessible entropy
at most k = k(n) if, for every efficient, nonuniform, G-consistent, online generator
G̃ and all large enough n,

E
t

R
←TG̃(1n)

[
AccHG̃(t)

]
≤ k.

The generator G has accessible max-entropy at most k if

Pr
t

R
←TG̃(1n)

[AccHG̃(t) > k] = neg(n),

for every such G̃.

In Section 4.4.2, we prove the existence of one-way functions implies that of
an inaccessible max-entropy entropy generator: an efficient block generator whose
accessible entropy is noticeably larger than its accessible entropy. The converse di-
rection is also true.

Lemma 4.4.10. Let G be an efficient block generator with real entropy k(n), and
assume that G has accessible entropy, or accessible max-entropy, at most k(n) −
1/p(n), for some p ∈ poly. Then one-way functions exist.13

Proof: Omitted. �

4.4.2 Inaccessible Entropy Generator from One-way Functions
In this section, we show how to build an inaccessible entropy generator from any
one-way function. In particular, we prove the following theorem:

12 In the more complicated notion of accessible entropy considered in [11], the “generator” needs
to prove that its output blocks are in the support of G, by providing an input of G that would have
generated the same blocks. It is also allowed there for a generator to fail to prove the latter with
some probability, which requires a measure of accessible entropy that discounts entropy that may
come from failing.
13 Specifically, one can show that a variant of f (x, i) = G(x)1,...,i is a “distributional” one-way
function.
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Construction 4.4.11 For f : {0, 1}n 7→ {0, 1}n, define the (n + 1) block generator G f

over {0, 1}n by
G f (x) = ( f (x)1, . . . , f (x)n, x)

Namely, the first n blocks of G f (x) are the bits of f (x), and its final block is x.

Theorem 4.4.12 (Inaccessible entropy generators from one-way functions). If
f : {0, 1}n 7→ {0, 1}n is nonuniformly one-way, then the efficient block generator G =

G f defined in Construction 4.4.11 has accessible max-entropy at most n −ω(log n).

Remark 4.4.13 (Tighter reduction). [16] prove an analog theorem for the
O(n/ log n)-block generator that groups each consecutive log n bits of f (n) into a
single block.

Proof: Suppose on the contrary that there exists an efficient, nonuniform, G-
consistent online block generator G̃ such that

Pr
t

R
←TG̃(1n)

[
AccHG̃(t) > n − c · log n

]
> ε(n) (4.16)

for some constant c > 0, ε(n) = 1/ poly(n), and infinitely many n’s. In the following
we fix n ∈ N for which the above equation holds, and omit it from the notation when
its value is clear from the context. Let m = n + 1 and let v be abound on the number
of bits used by G̃ in each round. The inverter Inv for f is defined as follows:

Algorithm 4.4.14 (Inverter Inv for f from the accessible entropy generator G̃)

Input: z ∈ {0, 1}n

Operation:

1. For i = 1 to n,

a. Sample ri
R
← {0, 1}v and let yi = G̃(r1, . . . , ri)i.

b. If yi = zi, move to next value of i.
c. Abort after n2/ε failed attempts for sampling good ri.

2. Sample rm
R
← {0, 1}v and output G̃(r1, . . . , rm)m.

Namely, Inv(y) does the only natural thing one can do with G̃; it tries to make, via
rewinding, G̃’s first n output blocks equal to y, knowing that, if this happens then
since G̃ is G-consistent, G̃’s m-th output block is a preimage of y.

It is clear that Inv runs in polynomial time, so we will finish the proof by showing
that

Pr
y

R
← f (Un)

[
Inv(y) ∈ f −1(y)

]
≥ ε2/16n.

We prove the above by relating the transcript distribution induced by the stan-
dalone execution of G̃(1n) to that induced by the embedded execution of G̃ in
Inv( f (Un)). In more detail, we show that high-accessible-entropy transcripts with
respect to the standalone execution of G, i.e., AccHG̃(t) > n − c · log n, happen with
not much smaller probability also in the emulated execution. Since whenever Inv
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does not abort it is guaranteed to invert y, it follows that the success probability of
Inv is lower bounded by the probability that G̃(1n) outputs a high-accessible-entropy
transcript, and thus is nonnegligible.

For intuition about why the above statement about high-accessible-entropy tran-
scripts is true, consider the case of a one-way permutation f . By definition, high-
accessible-entropy transcripts in the stand alone execution of G̃ happen with prob-
ability at most poly(n)/2n. On the other hand, the probability that a “typical” tran-
script is produced by the emulated execution of G̃ is about 2−n—the probability that
random output of f equals the transcript’s first n output blocks.

Proving the above formally for arbitrary one-way functions is the subject of the
following proof:

Standalone execution G̃(1n). Let T̃ = TG̃, and recall that T̃ = (R̃1, Ỹ1, . . . , R̃m, Ỹm)
is associated with a random execution of G̃ on security parameter n by

• R̃i – the random coins of G̃ in the i-th round, and
• Ỹi – G̃’s i-th output block.

Recall that, for t = (r1, y1, . . . , rm, ym) ∈ Supp(T̃ ), we have defined

AccHG̃(t) :=
∑
i∈[m]

HY j |R< j (y j|r< j).

Compute

PrT̃ [t] =

m∏
i=1

PrỸi |R̃<i

[
yi|r<i

]
· PrR̃i |R̃<i,Ỹi

[
ri|r<i, yi

]
(4.17)

= 2−
∑m

i=1 HỸi |R̃<i
(yi |r<i) ·

m∏
i=1

PrR̃i |R̃<i,Ỹi

[
ri|r<i, yi

]
= 2−AccHG̃(t) · R(t)

for

R(t) :=
m∏

i=1

PrR̃i |R̃<i,Ỹi

[
ri|r<i, yi

]
. (4.18)

Execution embedded in Invg( f (Un)). Let T̂ = (R̂1, Ŷ1, . . . , R̂m, Ŷm) denote the
value of G̃’s coins and output blocks, of the execution done in step 2 of a random
execution of the unbounded version of Inv (i.e., step 1.(c) is removed) on input
Z = (Z1, . . . ,Zm−1) = f (Un). (This unboundedness change is only an intermediate
step in the proof that does not significantly change the inversion probability of Inv,
as shown below.)

Since G̃ is G-consistent, it holds that (y1, . . . , ym−1) ∈ Supp( f (Un)) for every
(r1, y1, . . . , rm, ym) ∈ Supp(T̃ ). It follows that every t ∈ Supp(T̃ ) can be “pro-
duced” by the unbounded version of Inv, and therefore Supp(T̃ ) ⊆ Supp(T̂ ). For
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t ∈ Supp(T̃ ), we compute

PrT̂ [t] =

m∏
i=1

PrŶi |R̂<i

[
yi|r<i

]
· PrR̂i |R̂<i,Ŷi

[
ri|r<i, yi

]
(4.19)

=

m−1∏
i=1

PrZi |Ŷ<i

[
yi|y<i

]
· PrŶi |R̂<i,Zi

[
yi|r<i, yi

]
· PrŶm |R̂<m

[
ym|r<m

]
·

m∏
i=1

PrR̂i |R̂<i,Ŷi

[
ri|r<i, yi

]
=

m−1∏
i=1

PrZi |Ŷ<i

[
yi|y<i

]
· 1

 · PrŶm |R̂<m

[
ym|r<m

]
·

m∏
i=1

PrR̂i |R̂<i,Ŷi

[
ri|r<i, yi

]
= Pr f (Un)

[
y<m

]
· PrŶm |R̂<m

[
ym|r<m

]
· R(t)

= Pr f (Un)
[
y<m

]
· PrỸm |R̃<m

[
ym|r<m

]
· R(t).

Note that in the last line we moved from conditioning on R̂<m to conditioning on
R̃<m. The third equality holds since t ∈ Supp(T̃ ) and Inv is unbounded.

Relating the two distributions. Combining Equations (4.17) and (4.19) yields
that, for t = (r1, y1, . . . , rm, ym) ∈ Supp(T̃ ), it holds that

PrT̂ [t] = PrT̃ [t] ·
(
Pr f (Un)

[
y<m

]
· PrỸm |R̃<m

[
ym|r<m

]
· 2AccHG̃(t)

)
. (4.20)

In particular, if AccHG̃(t) ≥ n − c log n, then

PrT̂ [t] ≥ PrT̃ [t] ·
2n · Pr f (Un)

[
y<m

]
nc · PrỸm |R̃<m

[
ym|r<m

]
(4.21)

= PrT̃ [t] ·

∣∣∣ f −1(y<m)
∣∣∣

nc · PrỸm |R̃<m

[
ym|r<m

]
.

If it is also the case that HỸm |R̃<m
(ym|r<m) ≤ log

∣∣∣ f −1(y<m)
∣∣∣ + k for some k > 0, then

PrT̂ [t] ≥ PrT̃ [t] ·

∣∣∣ f −1(y<m)
∣∣∣

nc ·
2−k∣∣∣ f −1(y<m)

∣∣∣ =
PrT̃ [t]
2knc (4.22)

Lower bounding the inversion probability of Inv. We conclude the proof by
showing that Equation (4.22) implies the existence of a large set of transcripts that
(the bounded version of) Inv performs well upon.

Let S denote the set of transcripts t = (r1, y1, . . . , rm, ym) ∈ Supp(T̃ ) with

1. AccHG̃(t) ≥ n − c log n,
2. HỸm |R̃<m

(ym|r<m) ≤ log
∣∣∣ f −1(y<m)

∣∣∣ + log(4/ε), and
3. HỸi |Ỹ<i

(yi|y<i) ≤ log(4n/ε) for all i ∈ [m − 1].
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The first two properties will allow us to use Equations (4.21) and (4.22) to argue
that, if S happens with significant probability with respect to T̃ , then this holds also
with respect to T̂ . The last property will allow us to show that this happens also
with respect to the bounded version of Inv. We start by showing that S happens with
significant probability with respect to T̃ , then show that this holds also with respect
to T̂ , and finally use it to lowerbound the success probability of Inv.

By Theorem 4.2.1,

Pr
(r1,y1,...,rm,ym)

R
←T̃

[
HỸm |R̃<m

(ym|r<m) > log
∣∣∣ f −1(y<m)

∣∣∣ + k
]
< 2−k (4.23)

for any k > 0, where since
∣∣∣Supp(Ỹi)

∣∣∣ = 1 for all i ∈ [m − 1], it holds that

Pr
(y1,...,ym)

R
←(Ỹ1,...,Ỹm)

[
∃i ∈ [m − 1] : HỸi |Ỹ<i

(yi|y<i) > v
]
< (m − 1) · 2−v (4.24)

for any v > 0.
Applying Equations (4.23) and (4.24) with k = log(4/ε) and v = log(4n/ε) ,

respectively, and recalling that, by assumption, Pr
t

R
←T̃

[
AccHG̃(t) ≥ n − c log n

]
≥ ε,

yields that

PrT̃ [S] ≥ ε −
ε

4
−
ε

4
= ε/2 (4.25)

By Equation (4.22) and the first two properties of S, we have that

PrT̂ [S] ≥
ε

4nc · PrT̃ [S] ≥
ε2

8nc . (4.26)

Finally, let T̂ ′ denote the final value of G̃’s coins and output blocks, induced by the
bounded version of Inv (set to ⊥ if Inv aborts). The third property of S yields that

PrT̂ ′ [t] ≥ PrT̂ [t] ·
(
1 − (m − 1) · (1 − ε

4n )n2/ε
)
≥ PrT̂ [t] · (1 − O(m · 2−n)) ≥ PrT̂ [t] /2

(4.27)

for every t ∈ S. We conclude that

Pr
z

R
← f (Un)

[
Inv(z) ∈ f −1(z)

]
= Pr

z
R
← f (Un)

[Inv(z) does not abort]

≥ PrT̂ ′ [S]

≥
1
2
· PrT̂ [S]

≥
ε2

16nc .

�



196 Iftach Haitner and Salil Vadhan

4.4.3 Manipulating Real and Accessible Entropy
Following are two tools to manipulate the real and accessible entropy of a block
generator. Since we are dealing with the more complex accessible entropy notion,
the statements and proofs of the following lemmas are more complicated than those
of Section 4.3.3 (given for the next-block entropy notion). Yet, the bottom line of
the lemmas is essentially the same.

4.4.3.1 Entropy Equalization via Truncated Sequential Repetition

Similarly to what happens in Section 4.3, this tool concatenates several independent
executions of an m-block generator, and then truncates, at random, some of the
first and final output blocks of the concatenated string. Assuming that the (overall)
real entropy of the original generator is at least kreal, then the real entropy of each
block of the resulting generator is at least kreal/m. This per-block knowledge of the
real entropy, is very handy when considering applications of inaccessible entropy
generators, and in particular for constructions of statistically hiding commitment.

The price of this manipulation is that we “give away” some real entropy (as
we do not output all blocks), while we cannot claim that the same happens to the
accessible entropy. Hence, the additive gap between the real and accessible entropy
of the resulting generator gets smaller. Yet, if we do enough repetition, this loss is
insignificant.

Definition 4.4.15. For security parameter n, let m = m(n), let s = s(n), w = w(n),
and let s′ = s′(n) = log(m(n)) + w(n) · s(n). Given an m-block generator G over
{0, 1}s, define the ((w − 1) · m)-block generator G[w] over [m] × ({0, 1}s)w as fol-
lows: on input ( j, (x1, . . . , xw)) ∈ [m] × ({0, 1}s)w, it sets y = (y1, . . . , ywm) =

(G(x1), . . . ,G(xw)), and outputs (( j, y j), y j1 , . . . , y(w−1)m+ j−1).

That is, G[w] truncates the first j − 1 and last m + 1 − j blocks of y, and outputs the
remaining (w − 1) · m blocks one by one, while appending j to each block it out-
puts. (Using the terminology of Section 4.3, G[w] outputs Equalizerm( j, y1, . . . , ywm),
where Equalizer is according to Theorem 4.3.14, while appending j to the first
block.)

Lemma 4.4.16. For security parameter n, let m = m(n) be a power of 2, let s = s(n)
and let G be an efficient m-block generator over {0, 1}s, and let w = w(n) be a poly-
nomially computable and bounded integer function. Then, G[w] defined according
to Theorem 4.4.15 is an efficient,14 ((w − 1) · m)-block generator that satisfies the
following properties:

Real entropy: If G has real entropy at least kreal = kreal(n), then each block of G[w]

has real entropy at least kreal/m.

14 Since m is a power of 2, changing the input domain of G[w] to {0, 1}s
′

for some polynomial-
bounded and polynomial-time computable s′, to make it an efficient block generator according to
Theorem 4.4.1, can be done by standard techniques.
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Accessible max-entropy: The following holds for any d = d(n) ∈ ω(log n). If G has
accessible max-entropy at most kacc = kacc(n), then G[w] has accessible max-
entropy at most

k′acc := (w − 2) · kacc + 2 · H0(G(Us)) + log(m) + d.

Roughly, each of the (w − 2) non-truncated executions of G embedded in G[w] con-
tributes its accessible entropy to the overall accessible entropy of G[w]. In addition,
we pay the max-entropy of the two truncated executions of G embedded in G[w].
Proof: To avoid notational clutter let G = G[w].

Real entropy. The proof of this part is very similar to the proof of the first
part of Theorem 4.3.15. Fix n ∈ N and omit it from the notation when clear
from the context. Let m̃ = (w − 1)m, let Ỹ = G(Us′ = (J, X1, . . . , Xw)), let
Y (w) = (G(X1), . . . ,G(Xw)), and finally for i ∈ [wm], let Y (w)′

i = (J,Y (w)
i ) if J = i, and

Y (w)
i otherwise. For i ∈ [m̃], compute

H(Ỹi | Ỹ<i) = H(Y (w)′
i+J−1 | Y

(w)′
J,...,i+J−2)

≥ H(Y (w)
i+J−1 | Y

(w)
J,...,i+J−2, J).

The proof continues as the first part of the proof of Theorem 4.3.15.

Accessible entropy. To establish the statement on the accessible entropy, let G̃ be
an efficient G-consistent generator, and let

ε = ε(n) := Pr
t

R
←T̃

[
AccHG̃(t) > k′acc

]
(4.28)

for T̃ = TG̃(1n). Our goal is to show that ε is negligible in n. We do that by finding
a subtranscript of T̃ that, with high probability, contributes more than kacc bits of
accessible entropy, if the overall accessible entropy of T̃ is more than k′acc. We then
use this observation to construct a cheating generator for G that achieves accessible
entropy greater than kacc with probability that is negligibly close to ε.

Let (R1,Y1, . . . ,Rm̃,Ym̃) = T̃ and let J be the first part of Y1 (recall that Y1 is of
the form ( j, ·)). Fix j ∈ [m], and let (R j

1,Y
j

1 , . . . ,R
j
m̃,Y

j
m̃) = T̃ j = T̃|J= j. Let I = I( j)

be the indices of the blocks coming from the truncated executions of G in G (i.e.,
{1, . . . ,m + 1− j} ∪ {m̃ + 2− j, . . . , m̃}). Our first step is to show that these blocks do
not contribute much more entropy than the max-entropy of G(Un). Specifically, by
Theorem 4.2.8, letting X = (Y j

1 ,R
j
1, . . . ,Y

j
m̃,R

j
m̃) and J = I, it holds that

Pr
t=(r1,y1,...,rm̃,ym̃)

R
←T̃ j

∑
i∈I

HY j
i |R

j
<i

(yi|r<i) > 2 · H0(G(Us)) + d/2

 ≤ 2 · 2−d/2 = neg(n).

(4.29)
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Namely, with save but negligible probability, the blocks that relate to the truncated
executions of G in G, do not contribute much more than their support size to the
overall accessible entropy.

Our next step is to remove the conditioning on J = j (that we have introduced
to have the indices of interest fixed, which enabled us to use Theorem 4.2.8). By
Theorem 4.2.1, it holds that

Pr
j

R
←J

[
HJ( j) > log(m) + d/2

]
≤ 2−d/2 = neg(n). (4.30)

Since for every i > 1 and (r1, y1 = ( j, ·), . . . , rm̃, ym̃) ∈ Supp(T̃), it holds that
HYi |R<i (yi|r<i) = HY j

i |R
j
<i

(yi|r<i), and for i = 1, it holds that HY1 (y1) = HJ( j) + HY j
1
(y1),

the above yields that

Pr
t=(r1,y1,...,rm̃,ym̃)

R
←T̃

 ∑
i∈[m̃]\I(J)

HYi |R<i (yi|r<i) > (w − 2) · kacc

 ≥ ε − neg(n). (4.31)

Let F( j) = {km + 2 − j : k ∈ [w − 2]}, i.e., the indices of the first blocks of the
non-truncated executions of G in G, when the first block of G is ( j, ·). It follows
that,

Pr
t=(r1,y1,...,rm̃,ym̃)

R
←T̃

∃ f ∈ F(J) :
f +m−1∑

i= f

HYi |R<i (yi|r<i) > kacc

 ≥ ε − neg (4.32)

In particular, there exist j∗ ∈ [m], f ∗ ∈ F( j∗), and r∗ ∈ Supp(R< f ∗ |J= j∗ ) such that

Pr
t=(r1,y1,...,rm̃,ym̃)

R
←T̃

 f ∗+m−1∑
i= f ∗

HYi |R<i (yi|r<i) > kacc | r< f ∗ = r∗
 ≥ (ε − neg)/m. (4.33)

Consider the efficient, nonuniform, G-consistent generator G̃ that acts as follows:
it starts a random execution of G̃ with its first ( f ∗−1) randomness blocks fixed to r∗,
and outputs the blocks indexed by { f ∗, . . . , f ∗ + m − 1}. Let (R′1,Y

′
1, . . . ,R

′
m,Y

′
m) =

TG̃ be the transcript of G̃. It is easy to verify that, for every (r1, y1, . . . , rm, ym) ∈
Supp(TG̃) and 1 < i ≤ m, it holds that

HY ′i |R
′
<i

(yi|r<i) = HY f +i |R< f +i (yi|(r∗, r<i)). (4.34)

Thus, Equation (4.33) yields that

Pr
t

R
←TG̃

[
AccHG̃(t) > kacc

]
> (ε − neg(n))/m.

Hence, the assumption about the inaccessible entropy of G yields that ε is a
negligible function of n, and the proof of the lemma follows. �
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4.4.3.2 Parallel Repetition

This manipulation simply takes parallel repetition of a generator. The effect of this
manipulation is twofold. The first effect is that the overall real entropy of a v-fold
parallel repetition of a generator G is v times the real entropy of G. Hence, if G
real entropy is larger than its accessible entropy, this gap get multiplied by v in the
resulting variable. The second effect of such repetition is turning per-block real en-
tropy into per-block min-entropy. The price of this manipulation is a slight decrease
in the per block min-entropy of the resulting generator, compared to the sum of the
per block real entropies of the independent copies of the generators used to generate
it. (This loss is due to the move from Shannon entropy to min-entropy, rather than
from the parallel repetition itself.) But when taking enough copies, this loss can be
ignored.

Definition 4.4.17. Let m = m(n), s = s(n), and v = v(n). Given an m-block gener-
ator G over {0, 1}s, define the m-block generator G〈v〉 over ({0, 1}s)v as follows: on
input (x1, . . . , xv) ∈ ({0, 1}s)v, the i-th block of G〈v〉 is (G(x1)i, . . . ,G(xv)i).

Lemma 4.4.18. For security parameter n, let m = m(n), let v = v(n) be polynomial-
time polynomially computable and bounded integer functions, and let G be an ef-
ficient,15 m-block generator. Then G〈v〉, defined according to Theorem 4.4.17, is an
efficient m-block generator that satisfies the following properties:

Real entropy: If each block of G has real min-entropy at least kreal = kreal(n), then
each block of G〈v〉 has real min-entropy at least k′real(n) = v · kreal − O((log n +

`) · log n ·
√

v), for ` = `(n) being the maximal block length of G.
Accessible max-entropy: The following holds for every d = d(n) ∈ ω(log n). If G

has accessible max-entropy at most kacc = kacc(n), then G〈v〉 has accessible
max-entropy at most k′acc(n) = v · kacc + d · m.

Proof: The bound on real entropy follows readily from Theorem 4.2.5 by taking
ε = 2− log2 n, and noting that the support size of each block of G is at most ` · 2`.
Therefore, we focus on establishing the bound on accessible max-entropy. Let G =

G〈v〉, let G̃ be an efficient, nonuniform, G-consistent generator, and let

ε = ε(n) := Pr
t

R
←T̃

[
AccHG̃(t) > k′acc

]
(4.35)

for T̃ = TG̃(1n). Our goal is to show that ε is negligible in n.
Let (R1,Y1, . . . ,Rm,Ym) = T̃. By definition, for t = (r1, y1, . . . , rm, ym) ∈ Supp(T̃),

AccHG̃(t) =
∑
i∈[m]

HYi |R<i (yi | r<i). (4.36)

15 Changing the input domain of G to {0, 1}s
′(n) for some polynomial-bounded and polynomial-time

computable s′, to make it an efficient block generator according to Theorem 4.4.1, can be done by
standard techniques.
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Since G̃ is G-consistent, each Yi is of the form (Yi,1, . . . ,Yi,v). Theorem 4.2.6, taking
X = Yi|R<i=r<i , yields that

Pr
t=(r1,y1,...,rm,ym)

R
←T̃

HYi |R<i (yi|r<i) > d +

v∑
j=1

HYi, j |R<i (yi, j|r<i)

 ≤ 2−d = neg(n) (4.37)

for every i ∈ [m]. Summing over all i ∈ [m], we get that

Pr
t=(r1,y1,...,rm,ym)

R
←T̃

∑
i∈[m]

HYi |R<i (yi|r<i) > md +
∑
i∈[m]

∑
j∈[v]

HYi, j |R<i (yi, j|r<i)

 = neg(n)

(4.38)

and therefore

Pr
t=(r1,y1,...,rm,ym)

R
←T̃

∑
i∈[m]

∑
j∈[v]

HYi, j |R<i (yi, j|r<i) ≥ k′acc − m · d

 ≥ ε − neg(n). (4.39)

In particular, there exist j∗ ∈ [v] such that

Pr
t=(r1,y1,...,rm,ym)

R
←T̃

∑
i∈[m]

HYi, j∗ |R<i (yi, j∗ |r<i) > kacc = (k′acc − m · d)/v

 ≥ ε − neg(n)

(4.40)

Consider the following efficient, nonuniform, G-consistent generator G̃. This
generator starts a random execution of G̃, and outputs yi, j∗ as its i-th block, for yi =

(yi,1, . . . , yi,v) being the i-th block (locally) output by G̃. Let (R′1,Y
′
1, . . . ,R

′
m,Y

′
m) =

TG̃. It is easy to verify that, for every (r1, y1, . . . , rm, ym) ∈ Supp(TG̃) and 1 < i ≤ m,
it holds that

HY ′i |R
′
<i

(yi| j, r<i) = HYi, j∗ |R<i (yi|r<i). (4.41)

Thus, Equation (4.40) yields that

Pr
t

R
←TG̃

[
AccHG̃(t) > kacc

]
≥ ε − neg(n).

The assumption about the inaccessible entropy of G yields that ε is negligible in n,
and the proof of the lemma follows. �

4.4.4 Inaccessible Entropy Generator to Statistically Hiding
Commitment

In this section we prove a simplified version of the construction of statistically hid-
ing commitments from inaccessible entropy generators. Specifically, we only prove
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a weaker version of Theorem 4.4.23, stated below, which is the main lemma in this
reduction. But first, we recall the definition of such commitment schemes.

Statistically hiding commitment schemes. A commitment scheme is the cryp-
tographic analogue of a safe. It is a two-party protocol between a sender S and a
receiver R that consists of two stages. The commit stage corresponds to putting an
object in a safe and locking it; the sender “commits” to a private message m. The
reveal stage corresponds to unlocking and opening the safe; the sender “reveals”
the message m and “proves” that it was the value committed to in the commit stage
(without loss of generality by revealing coin tosses consistent with m and the tran-
script of the commit stage).

Definition 4.4.19. A (bit) commitment scheme16 is an efficient two-party protocol
Com = (S,R) consisting of two stages. Throughout, both parties receive the security
parameter 1n as input.

Commit. The sender S has a private input b ∈ {0, 1}, which she wishes to commit to the
receiver R, and a sequence of coin tosses σ. At the end of this stage, both parties receive as
common output a commitment z.

Reveal. Both parties receive as input a commitment z. S also receives the private input b
and coin tosses σ used in the commit stage. After the interaction of (S(b, r),R)(z), R either
outputs a bit, or the reject symbol ⊥.

The commitment is public-coin if the messages the receiver sends are merely the
coins it flips at each round.

For the sake of this tutorial, we focus on commitment schemes with a generic
reveal scheme: the commitment z is simply the transcript of the commit stage, and
in the noninteractive reveal stage, S sends (b, σ) to R, and R outputs b if S, on input
b and randomness σ, would have acted as the sender did in z; otherwise, it outputs
⊥.

Commitment schemes have two security properties. The hiding property infor-
mally says that, at the end of the commit stage, an adversarial receiver has learned
nothing about the message m, except with negligible probability. The binding prop-
erty says that, after the commit stage, an adversarial sender cannot produce valid
openings for two distinct messages (i.e., to both 0 and 1), except with negligible
probability. Both of these security properties come in two flavors—statistical, where
we require security even against a computationally unbounded adversary, and com-
putational, where we only require security against feasible (e.g., polynomial-time)
adversaries.

Statistical security is preferable to computational security, but it is impossible to
have commitment schemes that are both statistically hiding and statistically bind-
ing. In this tutorial, we focus on statistically hiding (and computationally binding)
schemes, which are closely connected with the notion of inaccessible entropy gen-
erators.
16 We present the definition for bit commitment. To commit to multiple bits, we may simply run a
bit commitment scheme in parallel.
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Definition 4.4.20. A commitment scheme Com = (S,R) is statistically hiding if

Completeness. If both parties are honest, then for any bit b ∈ {0, 1} that S gets as private
input, R accepts and outputs b at the end of the reveal stage.

Statistical Hiding. For every unbounded strategy R̃, the distributions viewR̃((S(0), R̃)(1n))
and viewR̃((S(1), R̃)(1n)) are statistically indistinguishable, where viewR̃(e) denotes the col-
lection of all messages exchanged and the coin tosses of R̃ in e.

Computational Binding. A ppt S̃ succeeds in the following game (breaks the commitment)
only with negligible probability in n:

• S̃ = S̃(1n) interacts with an honest R = R(1n) in the commit stage, on security param-
eter 1n, which yields a commitment z.

• S̃ outputs two messages τ0, τ1 such that R(z, τb) outputs b, for both b ∈ {0, 1}.

Com is δ-binding if no ppt S̃ wins the above game with probability larger than δ(n)+neg(n).

We now discuss the intriguing connection between statistically hiding commit-
ment and inaccessible entropy generators. Consider a statistically hiding commit-
ment scheme in which the sender commits to a message of length k, and suppose we
run the protocol with the message m chosen uniformly at random in {0, 1}k. Then,
by the statistical hiding property, the real entropy of the message m after the commit
stage is k − neg(n). On the other hand, the computational binding property says that
the accessible entropy of m after the commit stage is at most neg(n). This is only
an intuitive connection, since we have not discussed real and accessible entropy for
protocols, but only for generators. Such definitions can be found in [11], and for
them it can be proven that statistical hiding commitments imply protocols in which
the real entropy is much larger than the accessible entropy. Here our goal is to estab-
lish the converse, namely that a generator with a gap between its real and accessible
entropy implies a statistical hiding commitment scheme. The extension of this fact
for protocols can be found in [11].

Theorem 4.4.21 (Inaccessible entropy to statistically hiding commitment). Let
k = k(n), s = s(n), and δ = δ(n) be polynomial-time computable functions. Let G be
an efficient m = m(n)-block generator over {0, 1}s. Assume that G’s real Shannon
entropy is at least k, that its accessible max-entropy is at most (1 − δ) · k, and that
kδ ∈ ω(log n/n). Then for any polynomial-time computable g = g(n) ∈ ω(log n) with
g ≥ H0(G(Us)), there exists an O(m · g/δk)-round, public-coin, statistically hiding
and computationally binding commitment scheme. Furthermore, the construction is
black box, and on security parameter 1n, the commitment invokes G on inputs of
length s.17

Combining the above theorem with Theorem 4.4.12 reproves the following fun-
damental result:

17 Given a, per n, polynomial-size advice, the commitment round complexity can be reduced to
O(m). See Theorem 4.4.25 for details.
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Theorem 4.4.22 (One-way functions to statistically hiding commitment). As-
sume there exists a nonuniformly one-way function f : {0, 1}n 7→ {0, 1}n, then there
exists an O(n2/ log n)-round, public-coin statistically hiding and computationally
binding commitment scheme. Furthermore, the construction is black box, and on
security parameter 1n, the commitment invokes f on inputs of length n.18

The heart of the proof of Theorem 4.4.21 lies in the following lemma.

Lemma 4.4.23. Let k = k(n) ≥ 3n be a polynomial-time computable function, let
m = m(n), s = s(n), and let G be an efficient m-block generator over {0, 1}s. Then
there exists a polynomial-time, O(m)-round, public-coin, commitment scheme Com
with the following properties:

Hiding: If each block of G has real min-entropy at least k, then Com is statistically
hiding.

Binding: If the accessible max-entropy of G is at most m(k − 3n), then Com is com-
putationally binding.

Furthermore, on security parameter 1n, the protocol invokes G on inputs of length s.

We prove a weak version of Theorem 4.4.23 in Section 4.4.4.1, but we first use it
for proving Theorem 4.4.21.

Proving Theorem 4.4.21. Proof: We prove Theorem 4.4.21 by manipulating the
real and accessible entropy of G using the tools described in Section 4.4.3, and then
applying Theorem 4.4.23 on the resulting generator.

Truncated sequential repetition: real entropy equalization. In this step we use
G to define a generator G[v] whose each block has the same amount of real entropy—
the average of the real entropy of the blocks of G. In relative terms, the entropy gap
of G[v] is essentially that of G. We assume without loss of generality that m(n) is a
power of two.19 We apply truncated sequential repetition (see Theorem 4.4.15) on
G with parameter w = w(n) = max{4, d16g/δke} ≤ poly(n). Theorem 4.4.16, taking
d = g, yields an efficient m′ = m′(n) = (w − 1) · m)-block generator G[w] such that
the following holds:

• Each block of G[w] has real entropy at least k = k′(n) = k/m.
• The accessible max-entropy of G[w] is at most

18 Applying Theorem 4.4.21 with the O(n/ log n)-block mentioned in Theorem 4.4.13 yields an
O(n2/ log2 n)-round commitment. This is the best such commitment scheme we know how to build
from one-way functions and it is still far from the (n/ log n) lower bound of [15], which we only
know how to achieve via nonuniform protocol (see Theorem 4.4.25).
19 Adding 2dlog m(n)e−m(n) final blocks of constant value transforms a block generator to one whose
block complexity is a power of two, while maintaining the same amount of real and accessible
entropy.
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a′ = a′(n) = (w − 2) · ((1 − δ) · k + log m + 2g + g

≤ (w − 2) · (1 − δ) · k + 4g

≤ (w − 2) · (1 − δ/2) · k − (w − 2) · k · δ/2 + 4g

≤ (w − 2) · (1 − δ/2) · k − w · k · δ/4 + 4g

≤ (w − 2) · (1 − δ/2) · k
< m′ · (1 − δ/2) · k′.

Parallel repetition: converting real entropy to min-entropy and gap amplifica-
tion. In this step we use G[w] to define a generator (G[w])〈v〉 whose each block
has the same amount of min-entropy—about v times the per-block entropy of
G[w]. The accessible entropy of (G[w])〈v〉 is also about v times that of G[w]. Let
` = `(n) ∈ Ω(log n) be a polynomial-time computable function that bounds the
maximal block length of G. We apply the gap amplification transformation (see
Theorem 4.4.17) on G[w] with v = v(n) = max{24mn/kδ,

⌈
c ·

(
log n · `)/k′δ

)2
⌉
}, for

c > 0 to be determined by the analysis. Theorem 4.4.18 yields an efficient m′-block
generator (G[w])〈v〉 with the following properties:

• Each block of (G[w])〈v〉 has real min-entropy at least k′′ = k′′(n) = v · k′ −
O

(
log(n) · ` ·

√
v
)
.

• The accessible max-entropy of (G[w])〈v〉 is at most a′′ = a′′(n) = v · a′ + d · m′,
for d = d(n) = n/8kδ.

Hence for large enough n, it holds that

m′ · k′′ − a′′ ≥ m′ ·
(
v · k′ − O

(
log(n) · ` ·

√
v
))
−

(
v · a′ + d · m′

)
> m′ ·

(
v · k′ − O

(
log(n) · ` ·

√
v
))
−

(
v · (m′ · (1 − δ/2) · k′) + d · m′

)
= v · m′ ·

(
k′δ/2 − O(log(n) · `/

√
v) − d/v

)
≥ v · m′ ·

(
k′δ/2 − O(k′δ/

√
c) − d/mn

)
≥ v · m′ ·

(
k′δ/4 − d/mn

)
(4.42)

= v · (w − 1) · (kδ/4 − d/n)
= v · (w − 1) · kδ/8
≥ 3m′n.

Inequality (4.42) holds by taking a large enough value of c in the definition of v.
Namely, the overall real entropy of (G[w])〈v〉 is larger than its accessible max-

entropy by at least 3m′n. Hence, by applying Theorem 4.4.23 with (G[w])〈v〉 and
k = k′′, we get the claimed (m′ = m · (w − 1) = O(m · g/δk))-round, public-coin,
statistically hiding and computationally binding commitment. �

Remark 4.4.24 (Comparison with the construction of next-block pseudoen-
tropy generators to pseudorandom generators). It is interesting to see the similar-
ity between the manipulations we apply above on the inaccessible entropy generator
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G to construct statistically hiding commitment, and those applied in Section 4.3.4
on the next-block pseudoentropy generator to construct a pseudorandom genera-
tor. The manipulations applied in both constructions are essentially the same and
achieve similar goals: from real entropy to per-block min-entropy whose overall sum
is significantly larger than the accessible entropy in the above, and from next-block
pseudoentropy to per-block pseudo-min-entropy whose overall sum is significantly
larger than the real entropy in Section 4.3.4. Combining this fact with the similar-
ity in the initial steps of constructing the above generators from one-way functions
(inaccessible entropy generator above and next-block pseudoentropy generator in
Section 4.3.4) yields that the structures of the constructions of statistically hiding
commitment schemes and pseudorandom generators from one-way functions are
surprisingly similar.

Remark 4.4.25 (Constant-round and nonuniform commitments). If the genera-
tor’s number of blocks is constant, one might skip the first “entropy equalizing” step
in the proof of Theorem 4.4.21 above, and rather apply parallel repetition directly
on G, to get a generator as G[w] above, but for which we do not know the value of the
(possibly different) min-entropies of each block. Since G and thus G[w] have constant
number of blocks, applying a variant of Theorem 4.4.23 on G[w] for polynomially
many possible values for the min-entropies (up to some 1/ poly additive accuracy
level) yields polynomially many commitments that are all binding and at least one
of them is hiding. Such commitments can then be combined in a standard way to get
a single scheme that is statistically hiding and computationally binding.20

The equalization step can also be skipped if the amount of real entropy of each
block of the m-block generator G is efficiently computable, yielding an Θ(m)-round
commitment scheme (rather than the O(m ·max{log n, g/δk})-round we know how to
achieve without this additional property). This argument also yields an Θ(m)-round,
nonuniform (the parties use a nonuniform polynomial-size advice per security pa-
rameter) commitment scheme, with no additional assumptions on the generator G.
Combining with Theorem 4.4.12, the latter yields a Θ(n/ log n)-round nonuniform
commitment statistically hiding scheme from any one-way function, matching the
lower bound of [15].21

4.4.4.1 Proving a Weaker Variant of Theorem 4.4.23

We prove the following weaker variant of Theorem 4.4.23.

Lemma 4.4.26 (Weaker variant of Theorem 4.4.23). Let k = k(n) ≥ 3n be a
polynomial-time computable function, let m = m(n), s = s(n), and let G be an
efficient m-block generator over {0, 1}s. Then there exists a polynomial-time, O(m)-
round, public-coin, commitment scheme Com with the following properties:

20 [11] used a similar approach to transform a constant-round zero-knowledge proof system for
NP that remains secure under parallel composition into a constant-round statistically hiding and
computationally binding commitment.
21 The bound of [15] is stated for uniform commitment schemes, but the same bound for nonuni-
form commitment schemes readily follows from their proof.
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Hiding (unchanged): If each block of G has real min-entropy at least k, then Com
is statistically hiding.

Binding: If for every efficient, G-consistent generator G̃ there exists i = i(n) ∈ [m]
such that

Pr
t

R
←TG̃(1n)

[AccHi
G̃

(t) > k − 2n] = neg(n),

then Com is computationally binding.

Furthermore, on security parameter 1n, the protocol invokes G on inputs of length
s(n).

That is, rather than requiring the overall accessible entropy of G to be signifi-
cantly smaller than its real entropy, we require that, for every efficient, G-consistent
generator G̃, there exists a block in which its accessible entropy is significantly
smaller than the real entropy of this block. We do know how to construct such a
generator from one-way functions, and moreover, as we show below, such a genera-
tor implies an Θ(1)-round statistically hiding commitment, which by [15] cannot be
constructed black-boxly from one-way functions. Yet, the proof of Theorem 4.4.26
given below does capture some of the main ideas of the proof of Theorem 4.4.23. In
Section 4.4.4.2, we give more ideas about the proof of Theorem 4.4.23.

To keep notation simple, we take the simplifying assumption that G’s input length
on security parameter n is n, and assume without loss of generality that all its output
blocks are of the same length ` = `(n).22 We omit n from the notation whenever
clear from the context.

On the very high level, to prove Theorem 4.4.26 we use a random block of G to
mask the committed bit. The guarantee about the real entropy of G yields that the
resulting commitment is hiding, where the guarantee about G’s accessible entropy,
yields that the commitment is weakly (i.e., Θ(1/m)) binding. This commitment is
then amplified via parallel repetition, into a full-fledged computationally binding
and statistically hiding commitment.

In more detail, the construction of the aforementioned weakly binding commit-
ment scheme goes as follows: The receiver R sends uniformly chosen i∗ ∈ [m] to
S. The sender S starts (privately) computing a random execution of G, and sends
the first i − 1 output blocks to R. Then the parties interact in a (constant round)
“interactive hashing” subprotocol in which S’s input is the i-th block yi of G. This
subprotocol has the following properties:

• After seeing y1, . . . , yi−1 and the hash value of yi (i.e., the transcript of the hash-
ing protocol), the (real) min-entropy of yi is still high (e.g., Ω(n)), and

• If the accessible max-entropy of G in the i-th block is lower than k − 2n (i.e.,
given an adversarial generator view, the support size of yi is smaller than 2k−2n),
then yi is determined from the point of view of (even a cheating) S after sending
the hash value.

22 Using the padding technique one can transform a block generator to one whose all blocks are of
the same length, without changing its real and its accessible entropy.
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Next, S “commits” to its secret bit b by masking it (via XORing) with a bit extracted
(via an inner product with a random string) from yi, and the commit stage halts.

The hiding of the above scheme follows from the guarantee about the min-
entropy of G’s blocks. The 1/m-binding of the scheme follows since the bound
on the accessible max-entropy of G yields that the accessible entropy of at least one
of G’s blocks is low, and thus the sender is bounded to a single bit if the receiver has
chosen this block to use for the commitment.

The aforementioned hashing protocol is defined and analyzed in Sec-
tion 4.4.4.1.1, the weakly binding commitment is defined in Section 4.4.4.1.2, and
in Section 4.4.4.1.3 we put it all together to prove the lemma.

4.4.4.1.1 The Interactive Hashing Protocol

The hashing protocol is the interactive hashing protocol of Ding et al. [6]. (This very
protocol is used as the first step of the computational interactive hashing protocol
used in the commitment constructed in the proof of Theorem 4.4.23.)

Let H1 : {0, 1}` 7→ {0, 1}` and H2 : {0, 1}` 7→ {0, 1}n be function families.

Protocol 4.4.27 (Two-round interactive hashing protocol (SIH,RIH)H1,H2 )
SIH’s private input: x ∈ {0, 1}`

1. RIH sends h1 R
←H1 to SIH.

2. SIH sends y1 = h1(x) back to RIH.
3. RIH sends h2 R

←H2 to SIH.
4. SIH sends y2 = h2(x) back to RIH.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We will use two properties of the above protocol. The first, which we will use for
“hiding”, is that SIH sends only ` + n bits to RIH. Thus, if SIH’s input x comes from
a distribution of min-entropy significantly larger than ` + n, it will still have high
min-entropy conditioned on RIH’s view of the protocol (with high probability). On
the other hand, the following “binding” property says that, if x has max-entropy
smaller than ` (i.e., is restricted to come from a set of size at most 2`) and H1 and
H2 are “sufficiently” independent, then after the interaction ends, x will be uniquely
determined, except with exponentially small probability.

The following proposition readily follows from the proof of [6, Theorem 5.6]:

Proposition 4.4.28 ([6], “statistical binding” property of (SIH,RIH)). Let
H1 : {0, 1}` 7→ {0, 1}` and H2 : {0, 1}` 7→ {0, 1}n be `-wise and 2-wise independent
hash function families, respectively, and let L ⊆ {0, 1}` be a set of size at most 2`.
Let S∗IH be an (unbounded) adversary playing the role of SIH in (SIH,RIH) that, fol-
lowing the protocol’s interaction, outputs two strings x0 and x1. Then, the following
holds with respect to a random execution of (SIH,RIH)H

1,H2
:

Pr[x0 , x1 ∈ L ∧ ∀ j ∈ {0, 1} : h1(x j) = y1 ∧ h2(x j) = y2] < 2−Ω(n).
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4.4.4.1.2 Constructing Weakly Binding Commitment

Let H1 = {H1
n = {h1 : {0, 1}`(n) 7→ {0, 1}k(n)−2n}}n∈N and H2 = {h2

n = {h2 : {0, 1}`(n) 7→

{0, 1}n}}n∈N be function families. Let G : {0, 1}n 7→ ({0, 1}`(n))m(n) be an m-block gen-
erator. The weakly binding commitment is defined as follows:

Protocol 4.4.29 (Weakly binding commitment scheme Com = (S,R))

Common input: security parameter 1n

S’s private input: b ∈ {0, 1}
Commit stage:

1. R sends i∗
R
← [m(n)] to S.

2. S starts an execution of G(r) for r
R
← {0, 1}n, and sends (y1, . . . , yi∗−1) =

G(r)1,...,i∗−1 to R.
3. The two parties interact in (SIH(yi∗ = G(r)i∗ ),RIH)H

1
n,H2

n , with S and R tak-
ing the roles of SIH and RIH, respectively.

4. S samples u
R
←{0, 1}`(n) and sends (〈u, yi∗〉2⊕b, u) to R, for 〈·, ·〉2 being inner

product modulo 2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is clear that, if H1, H2 and G are efficiently computable, then so is Com. We next
prove the hiding and binding properties of Com.

Claim 4.4.30 (Hiding). If each block of G has real min-entropy at least k, then Com
is statistically hiding.

Proof: We fix n ∈ N and omit it from the notation. For i ∈ [m], let Yi denote the i-th
block of G(Un). By assumption, Pr

y
R
←Y1,...,i

[
HYi∗ |Y<i (yi∗ |y<i) < k

]
= neg(n). It follows

(by Theorem 4.2.3) that there exists a distribution (Y<i,Y ′i ) that is statistically indis-
tinguishable from (Y<i,Yi), and Yi |Y<i=y has min-entropy at least k for every value
y ∈ Supp(Y<i).

Let R̃ be an arbitrary algorithm playing the role of R in Com, let i∗ ∈ [m] be
its first message and let V R̃

i∗ be R̃’s view in a random execution of (S, R̃), right after
S sends the first (i∗ − 1) output blocks of G. Since V R̃

i∗ is a probabilistic function
of the first (i∗ − 1) output blocks of G, the distribution of (V R̃

i∗ ,Yi∗ ) is statistically
indistinguishable from (V R̃

i∗ ,Y
′
i∗ ), and Y ′i∗ |V R̃

i∗=vR̃
i∗

has min-entropy at least k for every

vR̃
i∗ ∈ Supp(V R̃

i∗ ).
Let V be the messages sent by S in embedded execution of the interactive hashing

(S, R̃). Since |V | = k − 2n, it follows (by Theorems 4.2.2 and 4.2.3) that (V R̃
i∗ ,V,Yi∗ )

is (neg(n) + 2−Ω(n))-close to a distribution (V R̃
i∗ ,V,Y

′′
i∗ ), for which Y ′′i∗ |(V R̃

i∗ ,Hi∗ )=(vR̃
i∗ ,ai∗ )

has min-entropy at least n for every value (vR̃
i∗ , ai∗ ) ∈ Supp(V R̃

i∗ ,V). Finally, by
the leftover hash lemma (Theorem 4.2.10) and the two-universality of the family
{hu(y) = 〈u, y〉2 : u ∈ {0, 1}n}, it holds that viewR̃(S(0), R̃) and viewR̃(S(1), R̃) are of
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statistical distance at most neg(n) + 2−Ω(n), for viewR̃(S(b), R̃) stands for R̃’s view at
the end, the commit stage interaction (S(b), R̃). �

Claim 4.4.31 (Weak binding). Assume that H1, H2 anf G are efficiently com-
putable,23 that H1 and H2 are `-wise and 2-wise independent, respectively, and
that, for every efficient G-consistent generator G̃, exists i = i(n) ∈ [m(n)] such that
Pr

t
R
←TG̃(1n)

[
AccHi

G̃
(t) > k(n) − 2n

]
= neg(n), then Com is (1 − 1/3m(n))-binding.

The proof of Theorem 4.4.31 immediately follows from the next two claims.

Definition 4.4.32 (Non-failing senders). A sender S̃ is called non-failing with re-
spect to a commitment scheme (S,R), if the following holds. Let Z be the transcript
of the commit stage of (S̃,R)(1n), and let Σ be the first decommitment string that S̃
outputs in the (generic) reveal stage, then Pr [R(Z, Σ) =⊥] = 0.

That is, a non-failing sender never fails to justify its actions in the commit stage.

Claim 4.4.33 (Weak binding against non-failing senders). Let H1, H2 and G
be as in Theorem 4.4.31, then Com is (1 − 1/2m(n))-binding against non-failing
senders.

Claim 4.4.34. Assume a public-coin commitment scheme is α-binding against non-
failing senders, then it is (α + neg)-binding.

Proving Theorem 4.4.33. Proof: Assume toward a contradiction that there exists
a non-failing ppt sender S̃ that breaks the (1 − 1/2m(n))-binding of Com. We use S̃
to construct an efficient adversarial non-failing generator G̃, such that, for infinitely
many n’s,

Pr
(r1,y1,w1,...)

R
←TG̃(1n)

[
HYi |R<i (y j|r<i) > k(n) − 2n

]
= Ω(1) (4.43)

for every i ∈ [m(n)].
In the following we fix n ∈ N on which S̃ breaks the binding with probability at

least 1 − 1/2m(n), and omit n from the notation when clear from the context. We
assume for ease of notation that S̃ is deterministic. The following generator samples
i

R
← [m], and then uses the ability of S̃ for breaking the binding of the embedded

hashing protocol at this round, to output a high-sample-entropy block.

23 Sampling and evaluation time are polynomial in n.
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Algorithm 4.4.35 (G̃—Adversarial cheating generator from cheating sender)
Security parameter: 1n

Operation:

1. Let i
R
← [m].

2. Emulate a random execution of (S̃,R)(1n) for the first two steps, with i∗ = i. Let
(y1, . . . , yi−1) be S̃’s message in this emulation.

3. Output y1, . . . , yi−1 as the first i − 1 output block.
4. Continue the emulation of (S̃,R) till its end. Let z be the transcript of the commit

stage, and let σ0 = (·, r0, ·) and σ1 = (·, r1, ·) be the two strings output by S̃ at
the end of this execution.

5. If R(σ1, z) , ⊥, let r
R
← {r0, r1}. Otherwise, set r = r0.

6. Output G(r)i, . . . ,G(r)m as the last m + 1 − i output block.

The efficiency of G̃ is clear, and since S̃ is non-failing, it is also clear that G̃ is G-
consistent. In the rest of the proof we show that G̃ violates the assumed bounds
on the (maximal) accessible entropy of G̃. Specifically, that, for every i ∈ [m],
the sample-entropy of G̃’s i-th output blocks is larger than k − 2n with probabil-
ity Ω(1/m). For ease of notation we prove it for i = 1.

Let T̃ = (R1,Y1, . . . ,Rm,Ym) = TG̃(1n), i.e., a random transcript of G̃ on security
parameter n. Let Y be the set of all low-entropy first blocks of G̃. That is,

Y := {y : HY1 (y) ≤ k − 2n}.

Let Z, Σ0 = (·,R0, ·), and Σ1 = (·,R1, ·), be the value of the strings z, σ0 and σ1,
respectively, set in Step 4 of G̃ in the execution described by T̃ |i=1. For j ∈ {0, 1},
let Y j = G(R j)1 if R(Z, Σ j) , ⊥, and ⊥ otherwise. Since S̃ (also in the emulated
execution done in G̃) interacts in a random execution of (SIH,RIH), Theorem 4.4.28
yields that

Pr
[
{Y0,Y1} ⊆ Y ∧ Y0 , Y1

]
< 2−Ω(n). (4.44)

In addition, since S̃ breaks the binding with probability 1 − 1/2m, it does so with
probability at least 1/2 when conditioning on i∗ = 1. This yields that

Pr
[
⊥ < {Y0,Y1} ∧ Y0 , Y1

]
≥ 1/2. (4.45)

We conclude that

Pr [Y1 < Y] ≥ Pr [i = 1] · 1/2 · Pr
[
⊥ < {Y0,Y1} ∧ {Y0,Y1} * Y

]
≥ 1/2m · Pr

[
⊥ < {Y0,Y1} ∧ {Y0,Y1} * Y ∧ Y0 , Y1

]
≥ 1/2m · ( 1

2 − 2−Ω(n)) ≥ Ω(1/m).
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Namely, with probability Ω(1/m), the accessible entropy of G̃’s first block is larger
than k − 2n. Since this holds for any of the blocks, it contradicts the assumption
about the accessible entropy of G. �

Proving Theorem 4.4.34. Proof: The proof follows a standard argument. Let
Com = (S,R) be a public-coin commitment scheme, and assume there exists an
efficient cheating sender S̃ that breaks the binding of Com with probability at least
α(n) + 1/p(n), for some p ∈ poly and infinitely many n’s. We construct an efficient
non-failing sender Ŝ that breaks the binding of Com with probability α(n)+1/2p(n),
for infinitely many n’s. It follows that if Com is α(n)-binding for non-failing senders,
then it is

(
α(n) + neg(n)

)
-binding.

We assume for simplicity that S̃ is deterministic, and define the non-failing
sender Ŝ as follows: Ŝ starts acting as S̃, but before forwarding the i-th message
yi from S̃ to R, it first makes sure it will be able to “justify” this message — to
output an input for S that is consistent with yi, and the message y1, . . . , yi−i it sent
in the previous rounds. To find such a justification string, Ŝ continues, in its head,
the interaction between the emulated S̃ and R till its end, using fresh coins for the
receiver’s messages. Since the receiver is public-coin, this efficient random contin-
uation has the same distribution as a (real) random continuation of (S̃,R) has. The
sender Ŝ applies such random continuations polynomially many times, and if fol-
lowing one of them S̃ outputs a valid decommitment string (which by definition is a
valid justification string), it keeps it for future use, and outputs yi as its i-th message.
Otherwise (i.e., it failed to find a justification string for yi), Ŝ continues as the honest
S whose coins and input bit are set to the justification string Ŝ found in the previous
round.

Since Ŝ maintains the invariant that it can always justify its messages, it can
also do that at the very end of the commitment stage, and thus outputting this string
makes it a non-failing sender. In addition, note that Ŝ only fails to find a justification
string if S̃ has a very low probability to open the commitment at the end of the cur-
rent interaction, and thus very low probability to cheat. Hence, deviating from S̃ on
such transcripts will only slightly decrease the cheating probability of Ŝ compared
with that of S̃.

Assume for concreteness that R sends the first message in Com. The non-failing
sender Ŝ is defined as follows:

Algorithm 4.4.36 (Non-failing sender Ŝ from failing sender S̃)
Input: 1n

Operation:

1. Set w = (0s(n), 0), for s(n) being a bound on the number of coins used by S, and
set Fail = false.

2. Start an execution of S̃(1n).
3. Upon getting the i-th message qi from R, do:

a. If Fail = false,
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i. Forward qi to S̃, and continue the execution of S̃ till it sends its i-th
message.

ii. // Try and get a justification string for this i-th message.

Do the following for 3np(n) times:
A. Continue the execution of (S̃,R) till its end, using uniform random

messages for R.

B. Let z′ and w′ be the transcript and first message output by S̃, re-
spectively, at the end of this execution.

C. Rewind S̃ to its state right after sending its i-th message.

D. // Update the justification string.

If R(z′,w′) ,⊥. Set w = w′ and break the loop.

iii. If the maximal number of attempts has been reached, set Fail = true.
b. // Send the i-th message to R. If Fail = false, this will be the message

sent by S̃ in Step 3(a). Otherwise, the string will be computed according
to the justification string found in a previous round.

Send ai to R, for ai being the i-th message that S(1n,w) sends to R upon
getting the first i messages sent by R.

4. If Fail = false, output the same value that S̃ does at the end of the execution.
Otherwise, output w.

It is clear that Ŝ is non-failing and runs in polynomial time. It is left to argue about
its success probability in breaking the binding of Com. We do that by coupling a
random execution of (Ŝ,R) with that of (S̃,R), by letting R send the same, uniformly
chosen, messages in both executions. We will show that the probability that S̃ breaks
the binding, but Ŝ fails to do so, is at most 1/3p(n) + m · 2−n, for m being the round
complexity of Com. If follows that, for infinitely many n’s, Ŝ breaks the binding of
Com with probability α(n) + 1/2p(n).

Let δi denote the probability of S̃ to break the binding after sending its i-th mes-
sage, where the probability is over the messages to be sent by R in the next rounds.
By definition of Ŝ, the probability that δi ≥ 1/3p(n) for all i ∈ [m], and yet Ŝ set
Fail = true, is at most m ·2−n. We conclude that the probability that Ŝ does not break
the commitment, and yet S̃ does, is at most 1/2p(n) + m · 2−n. �

4.4.4.1.3 Putting It Together

Given the above, we prove Theorem 4.4.26 as follows:
Proof: [Proof of Theorem 4.4.26] Recall that we assume without loss of generality
that G’s blocks are all of the same length `. We use efficient `-wise function family
H1 = {H1

n = {h1 : {0, 1}`(n) 7→ {0, 1}k(n)−2n}}n∈N and 2-wise function family H2 =

{h2
n = {h2 : {0, 1}`(n) 7→ {0, 1}n}}n∈N (see [4, 30] for constructions of such families).
Theorems 4.4.30 and 4.4.31 yield that the invocation of Protocol 4.4.29 with the

generator G and the above function families is an O(m)-round, public-coin commit-
ment scheme Com that is statistically hiding if the real entropy of G is sufficiently
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large, and is (1−Θ(1/m))-binding if the generator max accessible entropy in one of
the blocks is sufficiently small. Let Com〈m

2〉 = (S〈m
2〉,R〈m

2〉) be the m2 parallel rep-
etition of Com: an execution of (S〈m

2〉(b),R〈m
2〉)(1n) consists of m(n)2-fold parallel

and independent executions of (S(b),R)(1n). It is easy to see that Com〈m
2〉 is sta-

tistically hiding since Com is statistically hiding, and by [18] it is computationally
binding since Com is (1 − Θ(1/m))-binding. �

4.4.4.2 About Proving Theorem 4.4.23
Recall that the weak binding of Protocol 4.4.29 is only guaranteed to hold if the un-
derlying generator G has the following property: any non-failing cheating generator
has a round in which its accessible entropy is much smaller than the real entropy
G has in this round. However, as we mentioned before, building a generator with
this property from one-way functions is beyond the reach of our current techniques,
and is impossible to do in a black-box manner. Rather, the type of generators we
do know how to build from arbitrary one-way functions are the ones assumed in
the statement of the Theorem 4.4.23: the sum of accessible max-entropy achieved
by a cheating non-failing generator is smaller than the sum of real entropies (of G).
For the latter type of generators, a cheating generator might have high accessible
entropy, i.e., as high as the real entropy of G, in any of the rounds (though not in
all of them simultaneously). In particular, knowing i∗, the sender can put a lot of
entropy in i∗’s block. To address this issue, we change the protocol so that the re-
ceiver reveals the value of i∗ only after the interactive hashing protocol. Our hope is
that, for at least one value of i, the sender must use a “low-entropy” value yi in the
interactive hashing, and thus we get a binding commitment with probability at least
1/m. Specifically, consider the following protocol:

Protocol 4.4.37 (Commitment scheme Com = (S,R), hidden i∗)
Common input: security parameter 1n

S’s private input: b ∈ {0, 1}
Commit stage:

1. R samples i∗
R
← [m(n)].

2. S starts (internally) an execution of G(r) for r
R
← {0, 1}n.

3. For i = 1 to m(n)
a. The two parties interact in (SIH(yi = G(r)i),RIH)H

1
n,H2

n , with S and R
taking the roles of SIH and RIH, respectively.

b. R informs S whether i∗ = i.24

c. If informed that i , i∗, S sends yi to R.
Otherwise,

i. S samples u
R
← {0, 1}`(n) and sends (〈u, yi〉2 ⊕ b, u) to R.

ii. The parties end the execution.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24 As defined, R is not public-coin. This, however, is easy to change, without harming the protocol’s
security, by letting R choose the value of i∗ during the execution of the protocol using public coins.
I.e., if not set before, at round i it sets i∗ to be i with probability 1/(m + 1 − i).
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Unfortunately, the basic interactive hashing protocol does not force the sender to
decide whether yi is a low-entropy string or not during the execution of the inter-
active hashing protocol, and a cheating sender can decide about that after it finds
out that i∗ = i. In more detail, given y<i = (y1, . . . , yi−1), let Yy<i be the set of low-
entropy values for yi conditioned on y<i. (This is defined with respect to a particular
cheating sender strategy S̃). Since there are not too many high probability distinct
strings, the set Yy<i is “small”. Hence, the interactive hashing guarantees that the
probability that the sender can produce two distinct elements of Yy<i that are con-
sistent with the protocol is negligible. However, it does allow the possibility that
the sender can run the interactive hashing protocol consistently with some yi ∈ Yy<i

and afterwards produce a different string yi that is not in Yy<i , but is consistent with
the interactive hashing protocol. This enables a sender to break the binding of the
above as follows: consider a cheating sender that runs the generator honestly to ob-
tain (y1, . . . , ym) and uses yi in the interactive hashing in round i. (Many of these
will be low-entropy strings, since the sender is not using any fresh randomness to
generate each block.) Upon finding out that the yi will be used for the commitment,
the sender finds another string y′i (not in Yy<i ) that is consistent with the transcript
of the interactive hashing protocol. With these two strings, the sender can now pro-
duce a commitment that can be opened in two ways. (Namely, choose u so that
〈u, yi〉2 , 〈u, y′i〉2, and send (〈u, yi〉2, u), which also equals (〈u, y′i〉2 ⊕ 1, u) to the
receiver.)

This problem can be solved by using a different interactive hashing protocol that
makes it infeasible for the receiver to produce two distinct strings consistent with the
protocol where even just one of the strings is in a small set L. The new protocol is
simply the interactive hashing protocol used above, followed by the sender sending
f (yi) to the receiver, for f being a random member of a universal one-way hash func-
tion [26] chosen by the receiver. By Rompel [27] (see also [25, 12]) such universal
one-way hash functions can be constructed, in a black-box way, from any one-way
function, and thus by Theorem 4.4.10, they can be constructed from G. The bind-
ing of the new interactive hashing protocol is only computational (i.e., unbounded
sender can find a collision), compared with the information-theoretic security of the
previous interactive hashing protocol, but since the guarantee on the inaccessible
entropy of G holds only against computationally bounded entities, this change does
not matter to us. The full details of the aforementioned computationally secure inter-
active hashing protocol and the security proof of the resulting commitment scheme
can be found in [16].
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