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ABSTRACT
We study the concurrent composition properties of interactive dif-

ferentially private mechanisms, whereby an adversary can arbitrar-

ily interleave its queries to the different mechanisms. We prove that

all composition theorems for non-interactive differentially private

mechanisms extend to the concurrent composition of interactive

differentially private mechanisms, whenever differential privacy is

measured using the hypothesis testing framework of 𝑓 -DP, which

captures standard (𝜖, 𝛿)-DP as a special case. We prove the concur-

rent composition theorem by showing that every interactive 𝑓 -DP

mechanism can be simulated by interactive post-processing of a

non-interactive 𝑓 -DP mechanism.

In concurrent and independent work, Lyu (NeurIPS ‘22) proves

a similar result to ours for (𝜖, 𝛿)-DP, as well as a concurrent com-

position theorem for Rényi DP. We also provide a simple proof of

Lyu’s concurrent composition theorem for Rényi DP. Lyu leaves

the general case of 𝑓 -DP as an open problem, which we solve in

this paper.
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protocols; Privacy protections.

KEYWORDS
Differential Privacy, Interactive Mechanisms, Concurrent Composi-

tion

ACM Reference Format:
Salil Vadhan andWanrong Zhang. 2023. Concurrent Composition Theorems

for Differential Privacy. In Proceedings of the 55th Annual ACM Symposium
on Theory of Computing (STOC ’23), June 20–23, 2023, Orlando, FL, USA.ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3564246.3585241

1 INTRODUCTION
1.1 Differential Privacy
Differential privacy is a statistical notion of database privacy, which

ensures that the output of an algorithmwill still have approximately

the same distribution if a single data entry were to be changed.

Differential privacy can be defined in terms of a general database

space X, and a binary neighboring relation on X, which we think

of as capturing whether “two datasets” differ on one individual’s

data. For example, if databases are real-valued and contain a fixed
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number 𝑛 of entries, then X = R𝑛 , and two datasets 𝑥, 𝑥 ′ ∈ R𝑛 are

said to be neighboring if they differ in at most one coordinate.

Definition 1.1 (Differential Privacy [5]). A randomized algorithm
M : X → R is (𝜖, 𝛿)-differentially private if for every pair of neigh-
boring datasets 𝑥, 𝑥 ′ ∈ X, and for every subset of possible outputs
S ⊆ R,

Pr[M(𝑥) ∈ S] ≤ exp(𝜖) · Pr[M(𝑥 ′) ∈ S] + 𝛿.

Thus, differential privacy requires that for all neighboring datasets

𝑥, 𝑥 ′,M(𝑥) andM(𝑥 ′) are close as probability distributions (as

measured by the parameters 𝜖 and 𝛿). A number of variants of differ-

ential privacy have been defined based on other ways of measuring

closeness, leading to Concentrated differential privacy (CDP) [2, 9]

and Rényi differential privacy (RDP) [14] and 𝑓 -differential privacy

(𝑓 -DP) [3].

1.2 Interactive Differential Privacy
Definition 1.1 considers only non-interactive mechanismsM that

release query answers in one shot, but data analysts often interact

with a database in an adaptive fashion. In fact, many useful prim-

itives in differential privacy such as the Sparse Vector Technique

[6–8], and the Private Multiplicative Weights [11] allow analysts

to ask an adaptive sequence of queries about a dataset. It moti-

vates the study of interactive mechanisms to capture full-featured

privacy-preserving data analytics. Here, we view the mechanism

M as a party in an interactive protocol, interacting with a (possibly

adversarial) analyst.

Definition 1.2 (Interactive protocols). An interactive protocol

(𝐴, 𝐵) is any pair of functions on tuples of binary strings. The inter-
action between 𝐴 with input 𝑥𝐴 and 𝐵 with input 𝑥𝐵 is the following
random process (denoted (𝐴(𝑥𝐴), 𝐵(𝑥𝐵))):

(1) Uniformly choose random coins 𝑟𝐴 and 𝑟𝐵 for 𝐴 and 𝐵, respec-
tively.

(2) Repeat the following for 𝑖 = 0, 1, . . ..
(a) If 𝑖 is even, let𝑚𝑖 = 𝐴(𝑥𝐴,𝑚1,𝑚3, . . . ,𝑚𝑖−1; 𝑟𝐴).
(b) If 𝑖 is odd, let𝑚𝑖 = 𝐵(𝑥𝐵,𝑚0,𝑚2, . . . ,𝑚𝑖−1; 𝑟𝐵).
(c) If𝑚𝑖 = halt, then exit loop.

The view of a party in an interactive protocol captures everything

the party “sees” during the execution.

Definition 1.3 (View of a party in an interactive protocol). Let
(𝐴, 𝐵) be an interactive protocol. Let 𝑟𝐴 and 𝑟𝐵 be the random coins for
𝐴 and 𝐵, respectively. 𝐴’s view of (𝐴(𝑥𝐴; 𝑟𝐴), 𝐵(𝑥𝐵 ; 𝑟𝐵)) is the tuple
View𝐴 (𝐴(𝑥𝐴; 𝑟𝐴) ← 𝐵(𝑥𝐵 ; 𝑟𝐵)) = (𝑟𝐴, 𝑥𝐴,𝑚1,𝑚3, . . .) consisting
of all the messages received by 𝐴 in the execution of the protocol
together with the private input 𝑥𝐴 and random coins 𝑟𝐴 . 𝐵’s view of
(𝐴(𝑥𝐴; 𝑟𝐴), 𝐵(𝑥𝐵 ; 𝑟𝐵)) is defined symmetrically.
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In the setting of differentially private mechanisms, Party 𝐴 is

the mechanism, where the input 𝑥𝐴 is the dataset. party 𝐵 is the

adversary that does not have an input 𝑥𝐵 . Since we only care about

the view of the adversary, we will drop the subscript and denote

the view of the adversary as View(𝐵 ↔M(𝑥)). With this notation,

interactive differential privacy is defined by asking for the views

of an adversary on any pair of neighboring datasets View(𝐵 ↔
M(𝑥)) and View(𝐵 ↔M(𝑥 ′)) satisfying the same (𝜖, 𝛿)-closeness
notion as in non-interactive differential privacy.

Definition 1.4. A randomized algorithmM is an (𝜖, 𝛿)-differentially
private interactivemechanism if for every pair of neighboring datasets
𝑋,𝑋 ′ ∈ X, every adversary algorithm 𝐵 ∈ B, and every subset of
possible views S ⊆ Range(View), we have

Pr[View(𝐵 ↔M(𝑥)) ∈ S] ≤ exp(𝜖)·Pr[View(𝐵 ↔M(𝑥 ′)) ∈ S]+𝛿.

1.3 Concurrent Composition
A fundamental problem in differential privacy is studying how

the privacy degrades under composition as more computations are

performed on the same database. The composition property is par-

ticularly useful when we want to ask interactive queries on the

same database, and it also allows us to design a complex differen-

tially private algorithm by combining several building blocks. For-

mally, we define the composition of a sequence of non-interactive

𝑘 mechanismsM1,M2, . . . ,M𝑘 as the non-interactive mechanism

M = Comp(M1,M2, . . . ,M𝑘 ) defined as

M(𝑥) := (M1 (𝑥),M2 (𝑥), . . . ,M𝑘 (𝑥)), (1)

where each mechanismM is executed using independent random

coins.

The composition of non-interactive mechanisms has been stud-

ied extensively in the literature. The basic composition theorem

[4] states that the privacy parameters add up linearly when com-

posing private mechanisms. The advanced composition theorem

[10] provides a tighter bound where the privacy parameter grows

sublinearly under 𝑘-fold adaptive composition. Later, the optimal

composition theorem [12, 15] gives an exact characterization of

the privacy guarantee under 𝑘-fold composition. The relaxations

of differential privacy including zero-concentrated differential pri-

vacy (zCDP) [2, 9], Rényi differential privacy (RDP) [14], and 𝑓 -

differential privacy (𝑓 -DP) [3] allows for tighter reasoning about

composition. In the abovementioned work, some of them [10, 15]

are framed in a way that the adversary can adaptively choose the

mechanismsM1,M2, . . . ,M𝑘 , and thus the adaptive composition

can be viewed as an interactive mechanism.

Figure 1: Concurrent composition of interactive mechanisms

In many cases, analysts may wish to perform multiple interactive
analyses on the same dataset concurrently, which raises the ques-

tion of concurrent composition, first studied for differential privacy

in [17]. In this setting (illustrated in Figure 1), an adversary can

arbitrarily interleave its queries to several differentially private

mechanisms, and those queries might be correlated and depends on

the answer received in other mechanisms. As a motivating example,

several organizations might set up multiple DP query systems on

datasets that may refer to the same set of individuals. Each query

system has its own privacy budget 𝜖 . Suppose an adversary can

concurrently access those systems, and a query sent to one system

might depends on all the previous messages that received from

other systems. For example, when we run two Sparse Vector mech-

anismsM1 andM2 concurrently, the queries forM1 depends on

previous answers fromM2, and vice-versa, but we only know the

overall privacy guarantees forM1 andM2 when they are executed

independently. If the executions were sequential, meaning that the

adversary completes its interaction withM1 before issuing any

queries toM2, then we can hardwire the answers fromM1 into

the adversary’s strategy. When attackingM2, the privacy loss for

M2 will be bounded as usual. But when the queries are interleaved,

it is no longer clear how to define a fixed adversary strategy against

either of the mechanismsM1 orM2. It is not clear if the adversary

can run any concurrent attack to break the privacy guarantees, and

therefore, we wish to provide a provable guarantee to account for

the total privacy loss in such systems. Formally, the concurrent

composition of interactive mechanisms is defined as follows.

Definition 1.5 (Concurrent composition of interactivemechanisms[17]).
LetM1, . . . ,M𝑘 be interactivemechanisms.M = 𝐶𝑜𝑛𝐶𝑜𝑚𝑝 (M1, . . . ,M𝑘 )
is the concurrent composition of mechanismsM1, . . . ,M𝑘 defined as
follows:

(1) Random sample 𝑟 = (𝑟1, . . . , 𝑟𝑘 ) where 𝑟 𝑗 are random coin
tosses forM 𝑗 .

(2) Inputs forM consists of 𝑥 = (𝑥1, . . . , 𝑥𝑘 ) where 𝑥 𝑗 is a private
dataset forM 𝑗 .

(3) M(𝑥,𝑚0, . . . ,𝑚𝑖−1; 𝑟 ) is defined as follows:



Concurrent Composition Theorems for Differential Privacy STOC ’23, June 20–23, 2023, Orlando, FL, USA

(a) Parse𝑚𝑖−1 as ( 𝑗, 𝑞) where 𝑗 = 1, . . . , 𝑘 and 𝑞 is a query to
M 𝑗 . If𝑚𝑖−1 cannot be parsed correctly, output halt.

(b) Extract history (𝑚 𝑗

0
, . . . ,𝑚

𝑗

𝑡−1) from (𝑚0, . . . ,𝑚𝑖−1) where
𝑚

𝑗
𝑖
are all of the queries to mechanismM 𝑗 .

(c) OutputM 𝑗 (𝑥 𝑗 ,𝑚 𝑗

0
, . . . ,𝑚

𝑗

𝑡−1; 𝑟 𝑗 ).
For an adversary𝐵, we will use the notationView(𝐵 ↔ (M1, . . . ,M𝑘 ))
as shorthand for View(𝐵 ↔ ConComp(M1, . . . ,M𝑘 ))

Vadhan and Wang [17] showed that the advanced and optimal

composition theorems extend to the concurrent composition of

interactive pure DP mechanisms.

Theorem 1.1 ([17]). Suppose that for all non-interactive mech-
anismsM1, . . . ,M𝑘 such thatM𝑖 is (𝜖𝑖 , 𝛿𝑖 )-differentially private
for 𝛿1 = 𝛿2 = . . . = 𝛿𝑘 = 0, their composition Comp(M1, . . . ,M𝑘 )
is (𝜖, 𝛿)-differentially private. Then for all interactive mechanisms
M1, . . . ,M𝑘 such thatM𝑖 is (𝜖𝑖 , 𝛿𝑖 )-differentially private for 𝛿1 =

𝛿2 = . . . = 𝛿𝑘 = 0, the concurrent composition ConComp(M1, . . . ,M𝑘 )
of interactive mechanismsM1, . . . ,M𝑘 is (𝜖, 𝛿)-differentially private.

They prove this by reducing the analysis of interactive pure DP

mechanism to that of analyzing the Randomized Response mecha-

nism [5, 20]:

Theorem 1.2 ([17]). Suppose that M is an interactive (𝜖, 0)-
differentially private mechanism. Then for every pair of neighboring
datasets 𝑥, 𝑥 ′, there exists an interactive post-processing function P
such that for every adversary 𝐵 ∈ B, we have

View(𝐵 ↔M(𝑥)) ≡ View(𝐵 ↔ P(𝑅𝑅𝜖 (0)))
View(𝐵 ↔M(𝑥 ′)) ≡ View(𝐵 ↔ P(𝑅𝑅𝜖 (1))).

Here P is an interactive post-processing function that depends

onM and a fixed pair of neighboring datasets 𝑥, 𝑥 ′. It receives a
single bit as an output of 𝑅𝑅𝜖 (0) or 𝑅𝑅𝜖 (1), and then interacts with

the adversary 𝐴.

Note that Theorem 1.1 and Theorem 1.2 do not apply to the case

where the composed mechanismsM𝑖 are (𝜖𝑖 , 𝛿𝑖 )-DP for 𝛿𝑖 > 0. In

this case, [17] only show a bound that is similar to the “group pri-

vacy” property of (𝜖, 𝛿)-DP. In particular, if 𝜖1 = 𝜖2 = . . . = 𝜖𝑘 = 𝜖

and 𝛿1 = 𝛿2 = . . . = 𝛿𝑘 = 𝛿 , they show that the concurrent composi-

tion ConComp(M1,M2, . . . ,M𝑘 ) is (𝑘𝜖,
exp(𝑘𝜖)−1
exp(𝜖)−1 𝛿)-differentially

private. This is suboptimal even compared to basic composition. It

left as an open problem that if any composition theorems for non-

interactive mechanisms can extend to all variants of DP interactive

mechanisms.

Open Question. Does Theorem 1.1 extend to other variants of

DP (such as (𝜖𝑖 , 𝛿𝑖 )-DP with 𝛿𝑖 > 0, Rényi DP, 𝑓 -DP)?

1.4 Our Results on Concurrent Composition
In this paper, we close this gap and show that any composition

theorems of non-interactive mechanisms also extend to the concur-

rent composition of interactive DP mechanisms for approximate

DP. In particular, we show that Theorem 1.1 extends to the case

that 𝛿𝑖 > 0:

Theorem 1.3 (Concurrent composition for (𝜖, 𝛿)-DP inter-

active mechanisms). Suppose that for all non-interactive mech-
anismsM1, . . . ,M𝑘 such thatM𝑖 is (𝜖𝑖 , 𝛿𝑖 )-differentially private

for 𝑖 = 1, 2 . . . , 𝑘 , their composition Comp(M1, . . . ,M𝑘 ) is (𝜖, 𝛿)-
differentially private. Then for all interactivemechanismsM1, . . . ,M𝑘

with finite communication such thatM𝑖 is (𝜖𝑖 , 𝛿𝑖 )-differentially pri-
vate for 𝑖 = 1, 2 . . . , 𝑘 , the concurrent composition ConComp(M1, . . . ,M𝑘 )
of interactive mechanismsM1, . . . ,M𝑘 is (𝜖, 𝛿)-differentially private.

We also handle general 𝑓 -DP as defined and discussed in the

section below.

Theorem 1.4 (Concurrent composition for 𝑓 -DP interac-

tive mechanisms). Suppose that for all non-interactive mechanisms
M1, . . . ,M𝑘 such thatM𝑖 is 𝑓𝑖 -DP for 𝑖 = 1, 2 . . . , 𝑘 , their compo-
sition Comp(M1, . . . ,M𝑘 ) is 𝑓 -DP. Then for all interactive mech-
anisms M1, . . . ,M𝑘 such that M𝑖 is 𝑓𝑖 -DP for 𝑖 = 1, 2 . . . , 𝑘 , the
concurrent composition ConComp(M1, . . . ,M𝑘 ) of interactive mech-
anismsM1, . . . ,M𝑘 is 𝑓 -DP.

Theorem 1.3 follows directly from Theorem 1.4 because 𝑓 -DP

defined below captures (𝜖, 𝛿)-DP as a special case [3, 21]. Interest-

ingly, the generalization to 𝑓 -DP is important for our proof, even if

we only want to prove Theorem 1.3. We explain the detailed proof

technique in the section below.

In summary, our results show that there is no extra privacy loss

due to the concurrent access to multiple interactive mechanisms.

We can now safely run multiple interactive differentially private

algorithms in parallel, while allowing communication with all them

during their executions.

1.5 𝑓 -DP and Interactive vs. Noninteractive
Hypothesis Testing

𝑓 -differential privacy (𝑓 -DP) [3] is a generalization of (𝜖, 𝛿)-differential
privacy based on the hypothesis testing interpretation of differen-

tial privacy. Differential privacy attemps to measure the difficulty

of distinguishing two neighboring datasets based on the ouput of

a mechanism. Specifically, an adversary considers the following

hypothesis testing problem:

𝐻0 : the dataset is 𝑥 versus 𝐻1 : the dataset is 𝑥
′.

Denote by 𝑌 and 𝑌 ′ the output distributions ofM on the two

neighboring datasets, namelyM(𝑥) andM(𝑥 ′). For a given rejec-

tion rule𝜙 , the type I error 𝛼𝜙 = E[𝜙 (𝑌 )] is the probability of reject-
ing 𝐻0 when 𝐻0 is true, while the type II error 𝛽𝜙 = 1 − E[𝜙 (𝑌 ′)]
is the probability of failing to reject 𝐻0 when 𝐻1 is true. A trade-

off function serves as the optimal boundary of the achievable and

unachievable regions of these errors.

Definition 1.6 (Trade-off function [3]). For any two probability
distributions𝑌 and𝑌 ′ on the same space, define the trade-off function

𝑇 (𝑌,𝑌 ′) : [0, 1] → [0, 1] as

𝑇 (𝑌,𝑌 ′) (𝛼) = inf{𝛽𝜙 : 𝛼𝜙 ≤ 𝛼}, (2)

where the infimum is taken over all (measurable) rejection rules 𝜙 .

Proposition 1.7 gives the necessary and sufficient condition for

𝑓 to be a trade-off function.

Proposition 1.7 (Class of trade-off functions [3]). A function 𝑓 :

[0, 1] → [0, 1] is a trade-off function if and only if 𝑓 is convex,
continuous, non-increasing, and 𝑓 (𝑥) ≤ 1 − 𝑥 for 𝑥 ∈ [0, 1].
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𝑓 -DP allows the full trade-off between type I and type II errors in

the simple hypothesis testing problem to be governed by a trade-off

function 𝑓 . A larger trade-off functions implies stronger privacy

guarantees.

Definition 1.8 (𝑓 -differential privacy [3]). Let 𝑓 be a trade-off
function. A mechanismM : X → R is 𝑓 -differentially private if for
every pair of neighboring datasets 𝑥, 𝑥 ′ ∈ X, we have

𝑇 (M(𝑥),M(𝑥 ′)) ≥ 𝑓 .

(𝜖, 𝛿)-DP is a special case of 𝑓 -DP, taking 𝑓 = 𝑓𝜖,𝛿 , where 𝑓𝜖,𝛿 =

max{0, 1 − 𝛿 − exp(𝜖)𝛼, exp(−𝜖) (1 − 𝛿 − 𝛼)} [3, 21].
To prove Theorem 1.4 (and hence Theorem 1.3), we prove the

following analogue of Theorem 1.2, showing that every interactive

𝑓 -DPmechanism can be simulated by an interactive post-processing

of a non-interactive mechanism.

Theorem 1.5. For every trade-off function 𝑓 , every interactive
𝑓 -DP mechanismM with finite communication, and every pair of
neighboring datasets 𝑥, 𝑥 ′, there exists a non-interactive 𝑓 -DP mech-
anism N and an randomized interactive post-processing mechanism
P such that for every adversary 𝐵 ∈ B, we have

View(𝐵 ↔M(𝑥)) ≡ View(𝐵 ↔ P(N(𝑥)))
View(𝐵 ↔M(𝑥 ′)) ≡ View(𝐵 ↔ P(N(𝑥 ′))) .

Similarly to Theorem 1.2, in the case of (𝜖, 𝛿)-DP, one can take the
non-interactive mechanism N as the (𝜖, 𝛿)-Randomized Response

mechanism of [12]. Indeed, [12] shows that every non-interactive

(𝜖, 𝛿)-DPmechanism can be simulated as a post-processing of (𝜖, 𝛿)-
Randomized Response.

Theorem 1.4 follows from Theorem 1.5 in the same way as

Theorem 1.1 follows from Theorem 1.2. Indeed, Theorem 1.4 im-

plies that to analyze the concurrent composition of interactive

mechanismsM𝑖 , it suffices to consider the composition of the non-

interactive mechanisms N𝑖 . As a result, composition theorems for

non-interactive mechanisms extend to the concurrent composition

of interactive 𝑓 -DP mechanisms.

Theorem 1.5 is an interesting statement about statistical hypoth-

esis testing even without the application to differential privacy.

Normally, hypothesis testing is presented as the task of distin-

guishing between two distributions or sets of distributions. This

is a noninteractive task: a sample from the distribution is gener-

ated and given to the hypothesis tester, which then tries to decide

whether the distribution is in 𝐻0 or 𝐻1. However, suppose instead

we consider the task of distinguishing between two interactive

mechanismsM0 andM1, each of which responds to queries in a

randomized and stateful manner. Since the mechanisms are stateful,

the hypothesis tester may never learn everything there is to know

about the mechanism; in particular it cannot find out how the mech-

anism would have answered if different queries had been asked in

the past. This is in contrast to ordinary hypothesis testing, where

the full sample from the distribution is given to the hypothesis

tester. Nevertheless, by viewingM0 asM(𝑥) andM1 asM(𝑥 ′),
Theorem 1.5 implies that the two interactive mechanismsM0 and

M1 can be simulated perfectly by noninteractive random variables

N0 = N(𝑥) andN1 = N(𝑥 ′) such that even if we giveN0 orN1 to

a hypothesis tester in its entirety (thereby revealing howM0 or

M1 would answer all questions), it cannot distinguish them any

better than it could distinguishM0 andM1. The trick, of course,

is that the simulation is “perfect” only when executing a single

interaction withM0 orM1 (with no rewinding to explore multiple

paths in the interaction tree).

The proof of Theorem 1.5 relies on the following two lemmas.

Lemma 1.6 (Coupling property of 𝑓 -DP). Let 𝑓 be a trade-off
function, and suppose we have random variables 𝑋 , 𝑌 and 𝑋 ′, 𝑌 ′

such that
𝑇 (𝑋,𝑋 ′) ≥ 𝑓 and 𝑇 (𝑌,𝑌 ′) ≥ 𝑓 .

Then there exists couplings (𝑋,𝑌 ) and (𝑋 ′, 𝑌 ′) such that

𝑇 ((𝑋,𝑌 ) | | (𝑋 ′, 𝑌 ′)) ≥ 𝑓 .

A coupling of random variables 𝑋 and 𝑌 is any random vec-

tor (𝑋̃ , 𝑌̃ ) such that the marginal distributions are identically dis-

tributed to 𝑋 and 𝑌 respectively, i.e., 𝑋̃ ≡ 𝑋 and 𝑌̃ ≡ 𝑌 . Subject to
this constraint on the marginal, 𝑋̃ and 𝑌̃ can be arbitrarily corre-

lated. Allowing correlations is critical to Lemma 1.6. For example,

for the case of (𝜖, 𝛿)-DP, if we keep 𝑋,𝑌 and 𝑋 ′, 𝑌 ′ independent,
then we would just get the “group privacy” like bound.

Lemma 1.7 (Chain rule of 𝑓 -DP). For every pair of random variables
𝑋,𝑋 ′ with finite support, there exists a function ChainRule𝑋,𝑋 ′ such
that for every random variable𝑌 jointly distributed with𝑋 , and every
random variable 𝑌 ′ jointly distributed with 𝑋 ′, we have

𝑇 ((𝑋,𝑌 ), (𝑋 ′, 𝑌 ′))
= ChainRule𝑋,𝑋 ′ ((𝑇 (𝑌 |𝑋 = 𝑥,𝑌 ′ |𝑋 ′ = 𝑥)))𝑥 ∈supp(𝑋 )∩supp(𝑋 ′) ) .

Moreover,ChainRule is a function that is “continuous in each variable”
on the partially ordered set of trade-off functions (see Section 2 for
formal definition).

Lemma 1.7 says that the trade-off function between (𝑋,𝑌 ) and
(𝑋 ′, 𝑌 ′) can be determined by a collection of trade-off functions

between 𝑌 and 𝑌 ′ conditioned on 𝑋 = 𝑋 ′ = 𝑥 for every 𝑥 ∈
supp(𝑋 ) ∩ supp(𝑋 ′) through a ChainRule function. The terminol-

ogy “chain rule” is by analogy with the standard chain rule for KL

divergence, which says

KL((𝑋,𝑌 ) | | (𝑋 ′, 𝑌 ′)) = KL(𝑋 | |𝑋 ′)+E𝑥∼𝑋KL(𝑌 |𝑋 = 𝑥 | |𝑌 ′ |𝑋 ′ = 𝑥) .
(3)

So fixing𝑋 and𝑋 ′, we can calculate the KL divergence for arbitrary

𝑌 and 𝑌 ′ as a function of the KL divergences KL(𝑌 |𝑋 = 𝑥 | |𝑌 ′ |𝑋 ′ =
𝑥). (𝜖, 𝛿)-DP does not admit the chain rule property, because no

pairs of (𝜖, 𝛿) can exactly capture the “closeness” of (𝑋,𝑌 ) and
(𝑋 ′, 𝑌 ′) given a collection of {𝜖 𝑗 , 𝛿 𝑗 } 𝑗 that characterize the “close-
ness” of 𝑌 |𝑋 = 𝑥 and 𝑌 ′ |𝑋 ′ = 𝑥 ′. Working with the general 𝑓 -DP

allows us to capture a complete characterization of “privacy”.

To prove Theorem 1.5 using Lemmas 1.6 and 1.7, our strategy is

to apply induction on the number of messages exchanged (which

we can do sinceM has finite communication by assumptions). To

reduce 𝑘 rounds of interactions to 𝑘 − 1 rounds, we consider the
subsequent interaction conditioned on the first message. Depending

on whether the first message sent from the mechanismM or the

adversary 𝐵, we consider the following two cases.

Case 1. The adversary 𝐵 sends the first query 𝑞1 to the mecha-

nismM. Fix a pair of neighboring datasets 𝑥, 𝑥 ′. Fixing 𝑞1, we de-
note the subsequent interactive mechanism byM𝑞1 . By induction,
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M𝑞1 can be simulated by a post-processing of a non-interactive

𝑓 -DP mechanism N𝑞1 . Then we obtain N(𝑥) and N(𝑥 ′) by cou-

pling the pairs N𝑞1 (𝑥) and N𝑞1 (𝑥 ′) on all the values of 𝑞1, which

is finite by our assumption of finite communication. We note that

the coupling lemma 1.6 extends to finite number of random vari-

ables 𝑌1, . . . , 𝑌𝑘 and 𝑌 ′
1
, . . . , 𝑌 ′

𝑘
by induction on 𝑘 . Following the

coupling lemma, we have 𝑇 (N (𝑥),N(𝑥 ′)) ≥ 𝑓 . We can combine

the interactive post-processing mechanisms P𝑞1 for all 𝑞1 to obtain
the interactive post-processing P that simulatesM(𝑥) andM(𝑥 ′)
from N(𝑥) and N(𝑥 ′). Thus, we have Theorem 1.5 holds for 𝑘

rounds of interactions.

Case 2. The mechanismM sends the first message 𝑎1 to the

adversary 𝐵. Fix a pair of neighboring datasets 𝑥, 𝑥 ′. We denote

the mechanism conditioned on every 𝑎1 byM𝑎1 , and let 𝑓𝑎1 be the

trade-off function ofM𝑎1 (maximized over all adversaries). We de-

note the random variable of the first message as 𝐴1, 𝐴
′
1
on datasets

𝑥, 𝑥 ′, respectively. By induction,M𝑎1 can be simulated by a post-

processing of a non-interactive 𝑓𝑎1 -DP mechanism N𝑎1 . Thus,M
can be simulated by a post-processing of the non-interactive mech-

anismN whereN(𝑥) ≡ (𝐴1,N𝐴1
(𝑥)) andN(𝑥 ′) ≡ (𝐴′

1
,N𝐴′

1

(𝑥 ′)).
We use the chain rule to argue that 𝑇 (N (𝑥),N(𝑥 ′))
≥ ChainRule𝐴1,𝐴

′
1

(
(𝑓𝑎1 )𝑎1∈supp(𝐴1)∩supp(𝐴′

1
)
)
= 𝑓 . We conclude

that Theorem 1.5 holds for 𝑘 rounds of interactions.

1.6 Independent Work by Lyu
In independent and concurrent work, Lyu [13] proves Theorem 1.3

with a different argument. They show that every interactive (𝜖, 𝛿)-
DP mechanism can be simulated by interactive post-processing of

a non-interactive (𝜖, 𝛿)-DP mechanism, via an argument that is

specific to (𝜖, 𝛿)-DP that does not seem to generalize to arbitrary

tradeoff functions 𝑓 . Indeed, they leave the the general case of 𝑓 -DP

as an open problem, which is solved by our Theorems 1.4 and 1.5.

On the other hand, Lyu [13] also proves an optimal concurrent

composition theorem for Rényi DP of any fixed order. In an earlier

version of our paper [18], we also claimed such a result, but our

proof was incorrect (except for the case of Rényi DP of order𝛼 = 1),
1

as pointed out to us by Lyu. In this revision, we give a simple

proof of Lyu’s theorem for Rényi DP by characterizing the optimal

adversary strategy in Section 5.

2 GENERALIZED DEFINITIONS OF DP
MECHANISMS

To prove our results and discuss the several variants of differential

privacy, it is convenient to introduce a more general abstraction,

where distances between probability distributions can be in an

arbitrary partially ordered set.

Definition 2.1 (Generalized probability distance). A generalized

probability distance measure is a tuple (D, ⪯, 𝐷) such that

(1) (D, ⪯) is a partially ordered set (poset).
(2) 𝐷 is a mapping that takes any two random variables 𝑋,𝑋 ′

over the same measurable space to an element 𝐷 (𝑋,𝑋 ′) of D.

1
Specifically, we stated and used a chain rule for Rényi divergence that only holds for

order 𝛼 = 1 (i.e. KL divergence).

(3) (Post-processing.) The generalized distance mapping𝐷 is closed
under post-processing, meaning that for every function 𝑔,
𝐷 (𝑔(𝑋 ), 𝑔(𝑋 ′)) ⪯ 𝐷 (𝑋,𝑋 ′).

(4) (Joint Convexity.) Suppose we have a collection of random
variables (𝑋𝑖 , 𝑋 ′𝑖 )𝑖∈I and a random variable 𝐼 distributed on
I. If 𝐷 (𝑋𝑖 , 𝑋 ′𝑖 ) ⪯ 𝑑 for all 𝑖 ∈ I, then 𝐷 (𝑋𝐼 , 𝑋

′
𝐼
) ⪯ 𝑑 .

For the generalized notion 𝑑-D DP, the difficulty of distinguish-

ing two neighboring datasets is measured by the generalized dis-

tance between the distributions of an adversary’s views. The par-

tially ordered set allows us to compare the level of privacy guaran-

tees of mechanisms.

Definition 2.2 (𝑑-D DP). Let (D, ⪯, 𝐷) be a generalized probability
distance. For 𝑑 ∈ D, we call an interactive mechanismM 𝑑-D DP

if for every adversary 𝐵 ∈ B and every pair of neighboring datasets
𝑥, 𝑥 ′, we have

𝐷 (View(𝐵 ↔M(𝑥)),View(𝐵 ↔M(𝑥 ′))) ⪯ 𝑑.

Let us instantiate the standard pure DP and its variants using

the definition above by specifying the generalized distances.

Example: pure DP.. For pure DP, a smaller 𝜖 provides stronger

privacy guarantee, so the partially ordered set D is defined as

((R≥0) ∪ {∞}, ≤). The distance mapping is the max-divergence

𝐷∞. For two probability distributions 𝑃 and 𝑄 , the max-divergence

is

𝐷∞ (𝑃 | |𝑄) := sup

𝑇 ⊂supp(𝑃 )
log

(
Pr(𝑃 (𝑥) ∈ 𝑇 )
Pr(𝑄 (𝑥) ∈ 𝑇 )

)
.

Max-divergence is closed under post-processing due to the data-

processing inequality. Max-divergence satisfies joint convexity due

to the following lemma.

Lemma 2.1 ([19]). For every two pairs of probability distributions
(𝑃0, 𝑄0) and (𝑃1, 𝑄1), and every 𝜆 ∈ (0, 1),
𝐷∞ ((1−𝜆)𝑃0+𝜆𝑃1 | | (1−𝜆)𝑄0+𝑄1) ≤ max{𝐷∞ (𝑃0 | |𝑄0), 𝐷∞ (𝑃1 | |𝑄1)}.

Example: Rényi DP. For Rényi DP of order 𝛼 , the partially ordered
set D is also ((R≥0) ∪ {∞}, ≤). The distance mapping is 𝛼-Rényi

divergence for 𝛼 ∈ (1,∞). The Rényi divergence is defined as

follows.

Definition 2.3 (Rényi divergence [16]). For two probability distri-
bution 𝑃 and 𝑄 , the Rényi divergence of order 𝛼 > 1 is

𝐷𝛼 (𝑃 | |𝑄) =
1

𝛼 − 1 log

(
E𝑥∼𝑄

[(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼 ] )
.

Rényi divergence is also closed under post-processing due to

the data-processing inequality, and it satisfies the joint convexity

because an analogue of Lemma 2.1 also holds for Rényi divergence:

Lemma 2.2 ([19]). For every order 𝛼 > 1, every two pairs of proba-
bility distributions (𝑃0, 𝑄0) and 𝑃1, 𝑄1, and every 𝜆 ∈ (0, 1),
𝐷𝛼 ((1−𝜆)𝑃0+𝜆𝑃1 | | (1−𝜆)𝑄0+𝑄1) ≤ max{𝐷𝛼 (𝑃0 | |𝑄0), 𝐷∞ (𝑃1 | |𝑄1)}.

Example: 𝑓 -DP.. For 𝑓 -DP, the partially ordered set D is defined

as (F , ⪯), where F is the set of all trade-off functions that satisfies

the conditions in Proposition 1.7. The partial ordering is defined

as 𝑓1 ⪯ 𝑓2 if 𝑓1 (𝛼) ≥ 𝑓2 (𝛼) holds for all 𝛼 ∈ [0, 1]. Note that the
direction of the inequalities is reversed, corresponding to the fact
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Figure 2: Case 1: The adversary 𝐵 sends the first query 𝑞1.

Figure 3: Case 2: The mechanismM sends the first message 𝑎1.

that a larger trade-off function means less privacy loss. The distance

mapping is the trade-off function 𝑇 in Definition 1.6.

𝑓 -DP also satisfies the two properties. First, 𝑓 -DP is preserved un-

der post-processing. We will only need to show the joint convexity

of 𝑓 -DP.

Lemma 2.3. Suppose we have a collection of random variables
(𝑋𝑖 , 𝑋 ′𝑖 )𝑖∈I and a random variable 𝐼 distributed on I. If𝑇 (𝑋𝑖 , 𝑋 ′𝑖 ) ≥
𝑓 for all 𝑖 ∈ I, then 𝑇 (𝑋𝐼 , 𝑋

′
𝐼
) ≥ 𝑓 .

Proof. For any random variable 𝐼 distributed on I. We have

𝑇 (𝑋𝐼 , 𝑋
′
𝐼 ) (𝛼) = inf

𝜙

{
E

[
1 − 𝜙 (𝑋 ′𝐼 )

]
: E[𝜙 (𝑋 ′𝐼 )] ≤ 𝛼

}
= inf

𝜙

{
E𝑖∼𝐼E[1 − 𝜙 (𝑋 ′𝑖 )] : E𝑖∼𝐼E[𝜙 (𝑋𝑖 )] ≤ 𝛼

}
≥ inf

𝜙
{E𝑖∼𝐼 [𝑓 (E[𝜙 (𝑋𝑖 )])] : E𝑖∼𝐼E[𝜙 (𝑋𝑖 )] ≤ 𝛼}

(𝑓 non-decreasing)

≥ inf

𝜙
{𝑓 (E𝑖∼𝐼E[𝜙 (𝑋𝑖 )]) : E𝑖∼𝐼E[𝜙 (𝑋𝑖 )] ≤ 𝛼} (𝑓 convex)

= 𝑓 (𝛼) .
Therefore, we have 𝑇 (𝑋𝐼 , 𝑋

′
𝐼
) ≥ 𝑓 . □

It is useful to work with distance posets that are complete:

Definition 2.4 (Complete poset). A partially ordered set (poset)
(D, ⪯) is complete if for every nonempty subset 𝑆 ⊆ D has a supre-
mum sup(𝑆), where 𝑠 ⪯ sup(𝑆) for every 𝑠 ∈ 𝑆 , and sup(𝑆) ⪯ 𝑡 for
every 𝑡 satisfying 𝑠 ⪯ 𝑡 for every 𝑠 ∈ 𝑆 .

We note that sup(𝑆) is always unique. The poset ((R≥0)∪{∞}, ≤
) used in pure DP and Rènyi DP is complete by the usual complete-

ness of the real numbers. For the poset (F , ⪯) used in 𝑓 -DP, we

prove it below. Note that if (D, ⪯) is complete then in Definition 2.2

we can take 𝑑 = sup𝐵 𝐷 (View(𝐵 ↔ M(𝑥)),View(𝐵 ↔ M(𝑥 ′)))
as the optimal privacy loss for a given interactive mechanismM.

Lemma 2.4. The partially ordered set (F , ⪯), where F consists of
all trade-off functions satisfying the conditions in Proposition 1.7, is
complete. Specifically, for 𝑆 ⊆ F , sup 𝑆 is a trade-off function defined
as follows.

sup 𝑆 = ℎ(𝛼) := inf

𝐹 :supp(𝐹 ) ⊆𝑆
𝐴:𝑆→[0,1]

{E[𝐹 (𝐴(𝐹 ))] : E[𝐴(𝐹 )] ≤ 𝛼} , (4)

where 𝐹 is a random variable that takes value in 𝑆 and𝐴 : 𝑆 → [0, 1]
is a function.

Proof. We first show that ℎ is the least upper bound for 𝑆 . We

shall show that for any tradeoff function ℎ′ such that 𝑓 ⪯ ℎ′ for
every 𝑓 ∈ 𝑆 , we have ℎ ⪯ ℎ′. Let 𝐹 be a random variable such

that supp(𝐹 ) ⊆ 𝑆 , and let 𝐴 : 𝑆 → [0, 1] be a function such that

E[𝐴(𝐹 )] ≤ 𝛼 . As stated in Proposition 1.7, a trade-off function is

convex and non-increasing, so by Jensen’s inequality, we have

ℎ′(𝛼) ≤ ℎ′(E[𝐴(𝐹 )]) ≤ E[ℎ′(𝐴(𝐹 ))] .

By the definition of the partial ordering, we have ℎ′(𝛼) ≤ 𝑓 (𝛼) for
every 𝛼 ∈ [0, 1] and every 𝑓 ∈ 𝑆 , so E[ℎ′(𝐴(𝐹 ))] ≤ E[𝐹 (𝐴(𝐹 ))].
Therefore, we have

ℎ′(𝛼) ≤ E[𝐹 (𝐴(𝐹 ))],

Taking the infimum over 𝐹 and 𝐴 on both sides, we get ℎ′(𝛼) ≤
ℎ(𝛼), and therefore, ℎ ⪯ ℎ′.

Next, we shall show that ℎ is a trade-off function. Following the

proposition 1.7, it suffices to check the four properties for ℎ. We

begin with proving the convexity of ℎ. For every 𝑎, 𝑏 ∈ [0, 1], and
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every 𝜆 ∈ [0, 1], we have
ℎ(𝜆𝑎 + (1 − 𝜆)𝑏) (5)

= inf

𝐹,𝐴
{E[𝐹 (𝐴(𝐹 ))] : E[𝐴(𝐹 )] ≤ 𝜆𝑎 + (1 − 𝜆)𝑏}

≤𝜆 inf
𝐹,𝐴
{E[𝐹 (𝐴(𝐹 ))] : E[𝐴(𝐹 )] ≤ 𝑎}

+ (1 − 𝜆) inf
𝐹,𝐴
{E[𝐹 (𝐴(𝐹 ))] : E[𝐴(𝐹 )] ≤ 𝑏} (6)

=𝜆ℎ(𝑎) + (1 − 𝜆)ℎ(𝑏) .
where inequality (6) is because that for every 𝐴𝑎, 𝐹𝑎 that satis-

fies E[𝐴(𝐹 )] ≤ 𝑎 and every 𝐴𝑏 , 𝐹𝑏 that satisfies E[𝐴(𝐹 )] ≤ 𝑏,

the linear combination 𝐴(𝐹 ) = 𝜆𝐴𝑎 (𝐹𝑎) + (1 − 𝜆)𝐴𝑏 (𝐹𝑏 ) satisfies
E[𝐴(𝐹 )] ≤ 𝜆𝑎 + (1 − 𝜆)𝑏. Thus, ℎ is convex. ℎ is non-increasing

and continuous on [0, 1] due to the monotonicity and continuity

of 𝑓 ∈ F (Proposition 1.7). Finally, since 𝑓 (𝑥) ≤ 1 − 𝑥 for every

𝑓 ∈ F , we have
ℎ(𝛼) ≤ E[𝐹 (𝐴(𝐹 ))] ≤ E[1 −𝐴(𝐹 )] ≤ 1 − 𝛼.

Therefore, ℎ is a trade-off function, and sup 𝑆 exists.

□

A convenient consequence of joint convexity is that it suffices

to consider deterministic adversaries.

Lemma 2.5. An interactive mechanismM is 𝑑-D DP, if and only if
for every pair of neighboring datasets 𝑥, 𝑥 ′, for every deterministic ad-
versary algorithm𝐵, we have𝐷 (View(𝐵,M(𝑥)),View(𝐵,M(𝑥 ′))) ⪯
𝑑 .

Proof. The necessity is immediately implied by Definition 2.2.

We shall prove the sufficiency. Let 𝐵 be a randomized adversary. If

we fix the coin tosses of 𝐵 to a value 𝑟 , we obtain a deterministic

adversary 𝐵𝑟 . By hypothesis, we have

𝐷 (View(𝐵𝑟 ,M(𝑥)),View(𝐵𝑟 ,M(𝑥 ′))) ⪯ 𝑑 . Now let random vari-

able 𝑅 be uniformly distributed over the coins of 𝐴. Then the view

of the randomized adversary 𝐵 when interacting withM consists

of the coins 𝑅 and the view of the deterministic adversary 𝐵𝑅 . That

is,

View(𝐵 ↔M(𝑥)) = (𝑅,View(𝐵𝑅 ↔M(𝑥))),
and similarly for 𝑥 ′. By joint convexity, we deduce:

View(𝐵 ↔M(𝑥)) ⪯ 𝑑.

□

3 COUPLING AND CHAIN RULE PROPERTIES
OF 𝑓 -DP

In this section, we prove that 𝑓 -DP has the coupling and chain rule

properties that we use to prove Theorems 1.4 and 1.5.

Definition 3.1 (Coupling property). We say that a generalized dis-
tance𝐷 has the coupling property if for any two pairs of random vari-
able 𝑋,𝑋 ′ and 𝑌,𝑌 ′, we have 𝐷 (𝑋,𝑋 ′) ⪯ 𝑑 and 𝐷 (𝑌,𝑌 ′) ⪯ 𝑑 , then
there exists a coupling of 𝑋 and 𝑌 (denoted as (𝑋,𝑌 )), and a coupling
of𝑋 ′ and𝑌 ′ (denoted as (𝑋 ′, 𝑌 ′)), such that𝐷 ((𝑋,𝑌 ), (𝑋 ′, 𝑌 ′)) ⪯ 𝑑 .

Lemma 3.1 (Lemma 1.6 restated). (F , ⪯,𝑇 ) has the coupling prop-
erty: Suppose 𝑓 is a trade-off function and we have random variables
𝑋 , 𝑌 and 𝑋 ′, 𝑌 ′ such that

𝑇 (𝑋,𝑋 ′) ≥ 𝑓 and 𝑇 (𝑌,𝑌 ′) ≥ 𝑓 .

Then there exists couplings (𝑋,𝑌 ) and (𝑋 ′, 𝑌 ′) such that

𝑇 ((𝑋,𝑌 ) | | (𝑋 ′, 𝑌 ′)) ≥ 𝑓 .

We prove this lemma using the following result:

Theorem 3.2 (Blackwell Theorem [3] (also see [1, 12])). Let
𝑃,𝑄 be probability distributions on 𝑋 and 𝑃 ′, 𝑄 ′ be probability dis-
tributions on 𝑌 . The following two statements are equivalent:

(1) 𝑇 (𝑃,𝑄) ≤ 𝑇 (𝑃 ′, 𝑄 ′).
(2) There exists a randomized algorithm Proc : 𝑋 → 𝑌 such that

Proc(𝑃) = 𝑃 ′ and Proc(𝑄) = 𝑄 ′.

Proof of Lemma 3.1. Since a function is called a trade-off func-

tion if it is equal to 𝑇 (𝑃, 𝑃 ′) for some distribution 𝑃 and 𝑃 ′, for
a given rade-off function 𝑓 , there exists a pair of random vari-

ables 𝑃, 𝑃 ′ such that𝑇 (𝑃, 𝑃 ′) = 𝑓 . By the Blackwell Theorem, since

𝑇 (𝑃, 𝑃 ′) = 𝑓 ≤ 𝑇 (𝑋,𝑋 ′), there exists a randomized algorithm P0
such that P0 (𝑃) and P0 (𝑃 ′) are identically distributed to 𝑋 and 𝑋 ′,
respectively. Similarly, since𝑇 (𝑃, 𝑃 ′) = 𝑓 ≤ 𝑇 (𝑌,𝑌 ′), there exists a
randomized algorithm P1 such that P1 (𝑃),P1 (𝑃 ′) is identically dis-
tributed to 𝑌,𝑌 ′, respectively. We construct a coupling of 𝑋 and 𝑌

as (P0 (𝑃),P1 (𝑃)), and a coupling of𝑋 ′ and𝑌 ′ as (P0 (𝑃 ′),P1 (𝑃 ′)).
Then the trade-off function between the two couplings satisfies the

following inequality.

𝑇 ((P0 (𝑃),P1 (𝑃)), (P0 (𝑃 ′),P1 (𝑃 ′)))
≥ 𝑇 (𝑃, 𝑃 ′) (7)

= 𝑓 , (8)

where Equation (7) follows from Lemma 2.9 in [3], completing the

proof. □

To formally state the chain rule property, we need a couple of

definitions.

Definition 3.2 (Continuous function). Let (𝐴, ⪯) and (𝐵, ⪯) be
complete posets. A function 𝑓 : 𝐴→ 𝐵 is continuous if 𝑓 (sup(𝑆)) =
sup(𝑓 (𝑆)) for every set 𝑆 ⊆ 𝐴.

Observe that every continuous function is monotone: if 𝑎 ⪯ 𝑎′

are elements of𝐴, then 𝑓 (𝑎′) = 𝑓 (sup(𝑎, 𝑎′)) = sup(𝑓 (𝑎), 𝑓 (𝑎′)) ⪰
𝑓 (𝑎).

Definition 3.3 (Continuous in each variable). Let 𝑆 be a finite
set and |𝑆 | = 𝑛. Let (𝐴, ⪯) and (𝐵, ⪯) be complete posets. A func-
tion 𝑓 : 𝐴𝑆 → 𝐵 is continuous in each variable if for every 𝑖 ,
and for every 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1, . . . , 𝑎𝑛 ∈ 𝐴, the function 𝑔(𝑥) =

𝑓 (𝑎1, . . . , 𝑎𝑖−1, 𝑥, 𝑎𝑖+1, . . . , 𝑎𝑛) is a continuous function from 𝐴 to 𝐵.

Definition 3.4 (Chain rule). We say that a generalized proba-
bility distance (D, ⪯, 𝐷) satisfies the chain rule property if for ev-
ery pair of random variables (𝑋,𝑋 ′) on the same domain X, there
is a function that is continuous in each variable: ChainRule𝑋,𝑋 ′ :

Dsupp(𝑋 )∩supp(𝑋 ′) → D such that for every pair of random vari-
ables 𝑌 and 𝑌 ′ where 𝑌 is jointly distributed with 𝑋 and 𝑌 ′ is jointly
distributed with 𝑋 ′, we have

𝐷 ((𝑋,𝑌 ), (𝑋 ′, 𝑌 ′))
= ChainRule𝑋,𝑋 ′ ((𝐷 (𝑌 |𝑋 = 𝑥,𝑌 ′ |𝑋 ′ = 𝑥)𝑥 ∈supp(𝑋 )∩supp(𝑋 ′) ) .
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As an example, the standard chain rule of KL divergence is as

follows.

𝐷KL ((𝑋,𝑌 ) | | (𝑋 ′, 𝑌 ′))
= 𝐷KL (𝑋 | |𝑋 ′) + 𝐷KL (𝑌 |𝑋 | |𝑌 ′ |𝑋 ′)
= 𝐷KL (𝑋 | |𝑋 ′) + E𝑥∼𝑋𝐷KL (𝑌 |𝑋 = 𝑥 | |𝑌 ′ |𝑋 ′ = 𝑥) .

So fixing𝑋 and𝑋 ′, we can calculate the KL divergence for arbitrary

𝑌 and 𝑌 ′ as a function of the KL divergences KL(𝑌 |𝑋 = 𝑥 | |𝑌 ′ |𝑋 ′ =
𝑥).

In Lemma 3.3, we show that 𝑓 -DP has the chain rule property.

Lemma3.3 (Lemma 1.7 restated). For every pair of random variables
𝑋,𝑋 ′ with finite support, there exists a function that is continuous
in each variable ChainRule𝑋,𝑋 ′ such that for every random variable
𝑌 jointly distributed with 𝑋 , and every random variable 𝑌 ′ jointly
distributed with 𝑋 ′, we have

𝑇 ((𝑋,𝑌 ), (𝑋 ′, 𝑌 ′))
= ChainRule𝑋,𝑋 ′ ((𝑇 (𝑌 |𝑋 = 𝑥,𝑌 ′ |𝑋 ′ = 𝑥)))𝑥 ∈supp(𝑋 )∩supp(𝑋 ′) ) .

where 𝑇 is a trade-off function.

Proof.

Claim 3.4. The ChainRule function for 𝑓 -DP is given as follows.

ChainRule𝑋,𝑋 ′
(
(𝑓𝑥 )𝑥 ∈supp(𝑋 )∩supp(𝑋 ′)

)
(𝛼)

= inf

𝛼𝑥 ∈[0,1]
{E𝑥∼𝑋 ′ [𝑓𝑥 (𝛼𝑥 )] : E𝑥∼𝑋 [𝛼𝑥 ] ≤ 𝛼} . (9)

We first prove this claim. Suppose 𝑌 is jointly distributed with

𝑋 , and 𝑌 ′ is jointly distributed with 𝑋 ′. We consider hypothesis

tests distinguishing (𝑋,𝑌 ) and (𝑋 ′, 𝑌 ′). Let 𝜙 be any decision rule

for this testing, 𝛼 (𝜙) and 𝛽 (𝜙) be the corresponding Type I error
and Type II error, respectively. For a given instance 𝑥 ∈ supp(𝑋 ) ∩
supp(𝑋 ′), let 𝜙𝑥 (𝑦) := 𝜙 (𝑥,𝑦). Additionally, let 𝑓𝑥 be the trade-off

function conditioned on 𝑥 , i.e.,

𝑓𝑥 (𝛼) := 𝑇 (𝑌 |𝑋 = 𝑥,𝑌 ′ |𝑋 ′ = 𝑥) (𝛼) . (10)

The type I error 𝛼𝜙 and type II error 𝛽𝜙 are given as

𝛼𝜙 = E[𝜙 (𝑥,𝑦)] = E𝑥∼𝑋E𝑦∼𝑌 [𝜙𝑥 (𝑦)],

and

𝛽𝜙 = 1 − E[𝜙 (𝑥 ′, 𝑦′)] = 1 − E𝑥∼𝑋 ′E𝑦′∼𝑌 ′ [𝜙𝑥 ′ (𝑦′)] .

For every fixed 𝑥 ∈ supp(𝑋 ) ∩ supp(𝑋 ′) and every decision rule

𝜙 such that E𝑦∼𝑌 [𝜙𝑥 (𝑦)] = 𝛼𝑥 , by the definition of 𝑓𝑥 in (10), we

have

1 − E𝑦′∼𝑌 ′ [𝜙𝑥 ′ (𝑦′)] ≥ 𝑓𝑥 (𝛼𝑥 ).
Therefore, the trade-off function between (𝑋,𝑌 ) and (𝑋 ′, 𝑌 ′) satis-
fies the following inequality:

𝑇 ((𝑋,𝑌 ), (𝑋 ′, 𝑌 ′)) (𝛼)
= inf

𝜙

{
𝛽𝜙 : 𝛼𝜙 ≤ 𝛼

}
= inf

𝜙

{
1 − E𝑥∼𝑋 ′E𝑦′∼𝑌 ′ [𝜙𝑥 ′ (𝑦′)] : E𝑥∼𝑋E𝑦∼𝑌 [𝜙𝑥 (𝑦)] ≤ 𝛼

}
≥ inf

{𝛼𝑥 }
{E𝑥∼𝑋 ′ [𝑓𝑥 (𝛼𝑥 )] : E𝑥∼𝑋 [𝛼𝑥 ] ≤ 𝛼} . (11)

On the other hand, by the definition of 𝑓𝑥 , for every 0 < 𝛼𝑥 < 1 and

𝛿 > 0, there exists a decision rule𝜙𝛿 such that 1−E𝑦′∼𝑌 ′ [𝜙𝛿𝑥 ′ (𝑦
′)] ≤

𝑓𝑥 (𝛼𝑥 ) + 𝛿 and E𝑦∼𝑌 [𝜙𝛿𝑥 (𝑦)] ≤ 𝛼𝑥 . Then we have

inf

{𝛼𝑥 }
{E𝑥∼𝑋 ′ [𝑓𝑥 (𝛼𝑥 )] : E𝑥∼𝑋 [𝛼𝑥 ] ≤ 𝛼}

≥ inf

𝛿

{
E𝑥∼𝑋 ′ [1 − E𝑦′∼𝑌 ′ [𝜙𝛿𝑥 ′ (𝑦

′)] − 𝛿] : E𝑥∼𝑋 [E𝑦∼𝑌 [𝜙𝛿𝑥 (𝑦)]] ≤ 𝛼

}
.

= inf

𝛿

{
𝛽𝜙𝛿 : 𝛼𝜙𝛿 ≤ 𝛼

}
− 𝛿

≥ inf

𝜙

{
𝛽𝜙 : 𝛼𝜙 ≤ 𝛼

}
− 𝛿

= 𝑇 ((𝑋,𝑌 ), (𝑋 ′, 𝑌 ′)) (𝛼) − 𝛿.

Let 𝛿 go to 0, and combining with Equation (11), we have

𝑇 ((𝑋,𝑌 ), (𝑋 ′, 𝑌 ′)) (𝛼) = inf {E𝑥∼𝑋 ′ [𝑓𝑥 (𝛼𝑥 )] : E𝑥∼𝑋 [𝛼𝑥 ] ≤ 𝛼} .
(12)

completing the proof for this claim.

Next, we shall show that the ChainRule function defined in (9)

is continuous in each variable. Our goal is to show that for every 𝑖 ,

every 𝑆𝑖 ⊆ D, and for every 𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖+1, . . . , 𝑓𝑛 ∈ D, we have

ChainRule𝑋,𝑋 ′ (𝑓1, . . . , 𝑓𝑖−1, sup 𝑆𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛)
= sup(ChainRule𝑋,𝑋 ′ (𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛) : 𝑓𝑖 ∈ 𝑆𝑖 ) .

Let 𝑆 = (ChainRule𝑋,𝑋 ′ (𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛) : 𝑓𝑖 ∈ 𝑆𝑖 ).
For every random variable 𝐹 such that supp(𝐹 ) ⊆ 𝑆 , we have 𝐹

taking values as ChainRule𝑋,𝑋 ′ (𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛) : 𝑓𝑖 ∈
𝑆𝑖 , so it is equivalent to consider a random variable 𝐹𝑖 such that

supp(𝐹𝑖 ) ⊆ 𝑆𝑖 . For every function 𝐴 : 𝑆 → [0, 1], we also slightly

abuse the notation and use 𝐴(𝐹𝑖 ) to represent 𝐴(𝐹 ). For every
𝛼 ∈ [0, 1], we have

sup(ChainRule𝑋,𝑋 ′ (𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛) : 𝑓𝑖 ∈ 𝑆𝑖 ) (𝛼)
= inf

𝐹𝑖 :supp(𝐹𝑖 ) ⊆𝑆𝑖
𝐴:𝑆→[0,1]

{
E𝐹𝑖

[
ChainRule𝑋,𝑋 ′ (𝑓1, . . . , 𝑓𝑖−1, 𝐹𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛) (𝐴(𝐹𝑖 ))

]
: E𝐹𝑖 [𝐴(𝐹𝑖 )] ≤ 𝛼

}
(by Lemma 2.4)

= inf

𝐹𝑖 :supp(𝐹𝑖 ) ⊆𝑆𝑖
𝐴:𝑆→[0,1]

E𝐹𝑖
 inf

𝐴1,...,𝐴𝑛

𝐴 𝑗 :𝑆𝑖→[0,1]

{
E𝑗∼𝑋 ′

[
𝑓𝑗 (𝐴 𝑗 (𝐹𝑖 )) · I( 𝑗 ≠ 𝑖)

+𝐹𝑖 (𝐴𝑖 (𝐹𝑖 )) · I( 𝑗 = 𝑖)] : E𝑗∼𝑋 [𝐴 𝑗 (𝐹𝑖 )] ≤ 𝐴(𝐹𝑖 )
}]

: E𝐹𝑖 [𝐴(𝐹𝑖 )] ≤ 𝛼
}

(by (9))

= inf

𝐹𝑖 :supp(𝐹𝑖 ) ⊆𝑆𝑖
𝐴:𝑆𝑖→[0,1]
𝐴 𝑗 :𝑆𝑖→[0,1]

{
E𝐹𝑖E𝑗∼𝑋 ′

[
𝑓𝑗 (𝐴 𝑗 (𝐹𝑖 )) · I( 𝑗 ≠ 𝑖) + 𝐹𝑖 (𝐴𝑖 (𝐹𝑖 )) · I( 𝑗 = 𝑖)

]
: E𝑗∼𝑋 [𝐴 𝑗 (𝐹𝑖 )] ≤ 𝐴(𝐹𝑖 ), E𝐹𝑖 [𝐴(𝐹𝑖 )] ≤ 𝛼

}
. (13)

We can interchange the expectation and the infimum in Equa-

tion (13) because𝐴 𝑗 (𝑓𝑖 ), 𝑗 = 1, . . . , 𝑛, are independent across 𝑓𝑖 ∈ 𝐹𝑖 .
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We also have that

ChainRule𝑋,𝑋 ′ (𝑓1, . . . , 𝑓𝑖−1, sup 𝑆𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛) (𝛼)
= inf

𝛼1,...,𝛼𝑛

{
E𝑗∼𝑋 ′

[
𝑓𝑗 (𝛼 𝑗 ) · I( 𝑗 ≠ 𝑖) + (sup 𝑆𝑖 ) (𝛼𝑖 ) · I( 𝑗 = 𝑖)

]
: E𝑗∼𝑋 [𝛼 𝑗 ] ≤ 𝛼

}
(by (9))

= inf

𝛼1,...,𝛼𝑛

E𝑗∼𝑋 ′
𝑓𝑗 (𝛼 𝑗 ) · I( 𝑗 ≠ 𝑖) + inf

𝐹𝑖 :supp(𝐹𝑖 ) ⊆𝑆𝑖
𝐴𝑖 :𝑆𝑖→[0,1]

{
E𝐹𝑖 [𝐹𝑖 (𝐴𝑖 (𝐹𝑖 ))]

: E[𝐴𝑖 (𝐹𝑖 )] ≤ 𝛼𝑖 } · I( 𝑗 = 𝑖)] : E𝑗∼𝑋 [𝛼 𝑗 ] ≤ 𝛼
}

(by Lemma 2.4)

= inf

𝐹𝑖 :supp(𝐹𝑖 ) ⊆𝑆𝑖
𝐴𝑖 :𝑆𝑖→[0,1]
𝛼1,...,𝛼𝑛

{
E𝐹𝑖E𝑗∼𝑋 ′

[
𝑓𝑗 (𝛼 𝑗 ) · I( 𝑗 ≠ 𝑖) + 𝐹𝑖 (𝐴𝑖 (𝐹𝑖 )) · I( 𝑗 = 𝑖)

]
: E𝑗∼𝑋 [𝛼 𝑗 ] ≤ 𝛼, E𝐹𝑖 [𝐴𝑖 (𝐹𝑖 )] ≤ 𝛼𝑖

}
. (14)

The constraints in (13) are equivalent to the constraints in (14),

which can be seen as follows. For all 𝛼 𝑗 (𝐹𝑖 ) ( 𝑗 = 1, . . . , 𝑘 , and

𝐹𝑖 ∈ supp(𝑆𝑖 )) satisfy the constraints in (13), let 𝛼 𝑗 = E𝐹𝑖 [𝐴 𝑗 (𝐹𝑖 )],
then 𝛼 𝑗 satisfy the constraints in (14). On the other hand, for all 𝛼 𝑗
( 𝑗 = 1, . . . , 𝑘) satisfy the constraints in (14), let 𝛼 𝑗 = E𝐹𝑖 [𝐴 𝑗 (𝐹𝑖 )],
then 𝛼 𝑗 (𝐹𝑖 ) satisfy the constraints in (13). Moreover, with 𝛼 𝑗 =

E𝐹𝑖 [𝐴 𝑗 (𝐹𝑖 )], we have

E𝑗∼𝑋 ′
[
𝑓𝑗 (𝛼 𝑗 ) · I( 𝑗 ≠ 𝑖)

]
=E𝑗∼𝑋 ′

[
𝑓𝑗 (E𝐹𝑖 [𝐴 𝑗 (𝐹𝑖 )]) · I( 𝑗 ≠ 𝑖)

]
≤E𝑗∼𝑋 ′E𝐹𝑖

[
𝑓𝑗 (𝐴 𝑗 (𝐹𝑖 )) · I( 𝑗 ≠ 𝑖)

]
, (15)

where (15) is because trade-off functions are convex. Hence,

inf

𝐹𝑖 :supp(𝐹𝑖 ) ⊆𝑆𝑖
𝐴𝑖 :𝑆𝑖→[0,1]
𝛼1,...,𝛼𝑛

E𝑗∼𝑋 ′
[
𝑓𝑗 (𝛼 𝑗 ) · I( 𝑗 ≠ 𝑖)

]
≤ inf

𝐹𝑖 :supp(𝐹𝑖 ) ⊆𝑆𝑖
𝐴:𝑆𝑖→[0,1]
𝐴 𝑗 :𝑆𝑖→[0,1]

E𝑗∼𝑋 ′E𝐹𝑖
[
𝑓𝑗 (𝐴 𝑗 (𝐹𝑖 )) · I( 𝑗 ≠ 𝑖)

]
.

On the other hand, by setting 𝐴 𝑗 (𝐹𝑖 ) = 𝛼 𝑗 for all 𝐹𝑖 ∈ 𝑆𝑖 , the above
equal sign is reached.

Therefore, we have

ChainRule𝑋,𝑋 ′ (𝑓1, . . . , 𝑓𝑖−1, sup 𝑆𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛)
= sup(ChainRule𝑋,𝑋 ′ (𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛) : 𝑓𝑖 ∈ 𝑆𝑖 ) .

□

4 CONCURRENT COMPOSITION OF 𝑑-D DP
Theorem 4.1 shows that if the generalized distance satisfies the

coupling property in Definition 3.1 and the chain rule in Definition

3.4 , then every interactive 𝑑-D DP mechanism can be simulated

by an interactive post-processing of a non-interactive 𝑑-D DP

mechanism. This is a generalized statement of Theorem 1.5, as

𝑓 -DP is an example of 𝑑-D DP.

Theorem 4.1 (Theorem 1.5 generalized). Assume that the gen-
eralized probability distance measure (D, ⪯, 𝐷) satisfies

(1) (D, ⪯) is complete.
(2) D satisfies the chain rule.
(3) every 𝑑 ∈ D satisfies the coupling property.

Then for every 𝑑 ∈ D and every interactive 𝑑-D DP mechanism
M with finite communication complexity, and every pair of two
neighboring datasets 𝑥 and 𝑥 ′, there exists a pair of random variables
𝑌,𝑌 ′ and an randomized interactive post-processing mechanism P
such that 𝐷 (𝑌,𝑌 ′) ⪯ 𝑑 , and for every adversary 𝐵 ∈ B, we have

View(𝐵 ↔M(𝑥)) ≡ View(𝐵 ↔ P(𝑌 )) (16)

View(𝐵 ↔M(𝑥 ′)) ≡ View(𝐵 ↔ P(𝑌 ′)) . (17)

Note that the theorem is stated for mechanisms with finite com-
munication, which is formally defined as follows.

Definition 4.1. Let (𝐴, 𝐵) be an interactive protocol (as in Definition
1.2). We say that 𝐴 has finite communication if for every 𝑥𝐴 there is
a constant 𝑐 , such that for all 𝑟𝐴,𝑚1, . . . ,𝑚𝑖−1, we have

(1) If max{𝑖, |𝑚1 |, . . . , |𝑚𝑖−1 |} > 𝑐 , then

𝐴(𝑥𝐴,𝑚1,𝑚3, . . . ,𝑚𝑖−1; 𝑟𝐴) = halt.

(2) If max{𝑖, |𝑚1 |, . . . , |𝑚𝑖−1 |} ≤ 𝑐 , then

𝑖−1∑︁
𝑗=0

��𝐴(𝑥𝐴,𝑚1,𝑚3, . . . ,𝑚 𝑗 ; 𝑟𝐴)
�� ≤ 𝑐.

Here |𝑦 | denotes the bit length of string 𝑦. 𝐵 having finite communi-
cation is defined symmetrically.

Proof of Theorem 4.1. Our strategy is to apply the induction

argument by the number of rounds of interactions. Fix a pair of

neighboring datasets 𝑥, 𝑥 ′. We consider two cases depending on

whether the first message sent from the mechanism M or the

adversary 𝐵.

Case 1. The adversary 𝐵 sends the first query 𝑞1 to the mech-

anismM. Fixing 𝑞1, the subsequent interactive mechanismM𝑞1

with input 𝑥 is defined by

M𝑞1 (𝑥, 𝑞2, . . . , 𝑞𝑚, 𝑟 ) =M(𝑥, 𝑞1, . . . , 𝑞𝑚, 𝑟 ) .

We claim that View(𝐴 ↔ M𝑞1 ) consists of𝑚 − 1 messages, and

M𝑞1 satisfies 𝑑-D DP on the two neighboring datasets 𝑥 and 𝑥 ′.
By induction, there exists a randomized interactive post-processing

P𝑞1 and a pair of random variables 𝑌𝑞1 , 𝑌
′
𝑞1

such that

𝐷 (𝑌𝑞1 , 𝑌 ′𝑞1 ) ⪯ 𝑑,

and

P𝑞1 (𝑌𝑞1 ) ≡ M𝑞1 (𝑥) P𝑞1 (𝑌 ′𝑞1 ) ≡ M𝑞1 (𝑥 ′) .

By coupling property, there exists a pair of random variables 𝑌 , 𝑌 ′

and a randomized post-processing functionQ𝑞1 such that𝐷 (𝑌,𝑌 ′) ⪯
𝑑 , and we have that

Q𝑞1 (𝑌 ) = 𝑌𝑞1 ,

Q𝑞1 (𝑌 ′) = 𝑌 ′𝑞1 .

So 𝑌 and 𝑌 ′ are produced by coupling all possible queries. Then

the interactive post-processing P is defined by P𝑞1 ◦ Q𝑞1 , i.e.,

P(𝑦, 𝑞1, 𝑞2, . . . , 𝑞𝑚) = P𝑞1 (Q𝑞1 (𝑦), 𝑞2, . . . , 𝑞𝑚).
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Case 2. The mechanism M sends the first message 𝑎1 to the

adversary 𝐵. Let 𝑞1, . . . 𝑞𝑚−1 be the queries from the adversary, and

𝐴1, . . . , 𝐴𝑚 be messages from the mechanism. Fixing 𝐴1 = 𝑎1, the

subsequent interactive mechanismM𝑎1 is defined by

M𝑎1 (𝑥, 𝑞1, . . . , 𝑞𝑚−1;𝑔𝑥 (𝑟 )) =M(𝑥, 𝑞1, . . . , 𝑞𝑚−1; 𝑟 ) .

M𝑎1 uses its randomness to choose uniformly from randomness

ofM conditioned onM(𝑥) = 𝑎1. Specifically, let 𝑔𝑥 be a random

transformation such that if 𝑅 is uniform random forM, then for

all 𝑥 , 𝑔𝑥 (𝑅) is uniform on the randomness ofM conditioned on

M(𝑥) = 𝑎1.

We define the subsequent adversary

𝐵𝑎1 (𝐴2, . . . , 𝐴𝑚) = 𝐵(𝑎1, 𝐴2, . . . , 𝐴𝑚).

Weknow that for all adversary strategy𝐵 ∈ B, we have𝐷 (View(𝐵 ↔
M(𝑥)),View(𝐵 ↔M(𝑥 ′))) ⪯ 𝑑 , so we have

sup

𝐵

𝐷 (View(𝐵 ↔M(𝑥)),View(𝐵 ↔M(𝑥 ′))) ⪯ 𝑑.

We have

sup

𝐵

𝐷 (View(𝐵 ↔M(𝑥)),View(𝐵 ↔M(𝑥 ′)))

= sup

𝐵

(ChainRule𝐴1,𝐴
′
1

((𝐷 (View(𝐵𝑎1 ↔M𝑎1 (𝑥)),

View(𝐵𝑎1 ↔M𝑎1 (𝑥 ′))))𝑎1∈supp(𝐴1)∩supp(𝐴′
1
) )) (18)

= sup

(𝐵𝑎
1
)𝑎

1
∈supp(𝐴

1
)∩supp(𝐴′

1
)

(ChainRule𝐴1,𝐴
′
1

((𝐷 (View(𝐵𝑎1 ↔M𝑎1 (𝑥)),

View(𝐵𝑎1 ↔M𝑎1 (𝑥 ′))))𝑎1∈supp(𝐴1)∩supp(𝐴′
1
) )) (19)

=ChainRule𝐴1,𝐴
′
1

(sup
𝐵

(𝐷 (View(𝐵𝑎1 ↔M𝑎1 (𝑥)),

View(𝐵𝑎1 ↔M𝑎1 (𝑥 ′))))𝑎1∈supp(𝐴1)∩supp(𝐴′
1
) ), (20)

where (18) follows from the chain rule, and (19) is because that

in the case that the first message 𝑎1 comes from the mechanism,

specifying an adversary 𝐵 for the entire mechanism is equivalent to

specifying 𝐵𝑎1 for ever 𝑎1, then the set of deterministic adversary

strategies 𝐵 we need to sup over is a product set over adversary

strategies 𝐵𝑎1 . Equation (20) follows from that the ChainRule𝐴1,𝐴
′
1

function is continuous with respect to each variable. For every

𝑎1 ∈ supp(𝐴1) ∩ supp(𝐴′
1
), define 𝑑𝑎1 = sup𝐵𝑎

1

𝐷 (View(𝐵𝑎1 ↔
M𝑎1 (𝑥)),View(𝐵𝑎1 ↔ M𝑎1 (𝑥 ′))). Then M𝑎1 is 𝑑𝑎1 -D DP, by

induction, there exists a pair of random variables 𝑌𝑎1 , 𝑌
′
𝑎1

and a

post-processing P𝑎1 such that

𝐷 (𝑌𝑎1 , 𝑌 ′𝑎1 ) ⪯ 𝑑𝑎1 ,

and

P𝑎1 (𝑌𝑎1 ) ≡ M𝑎1 (𝑥) and P𝑎1 (𝑌 ′𝑎1 ) ≡ M𝑎1 (𝑥 ′) .

Let 𝑌𝐴1
be the random variable that defined as 𝑌𝐴1

|𝐴1=𝑎1 ∼ 𝑌𝑎1 . 𝑌 ′𝐴1

is defined similarly. By the chain rule, we have

𝐷 ((𝐴1, 𝑌𝐴1
), (𝐴′

1
, 𝑌 ′𝐴1

))
=ChainRule𝐴1,𝐴

′
1

((𝐷 (𝑌𝑎1 , 𝑌 ′𝑎1 ))𝑎1∈supp(𝐴1)∩supp(𝐴′
1
) )

⪯ChainRule𝐴1,𝐴
′
1

((𝑑𝑎1 )𝑎1∈supp(𝐴1)∩supp(𝐴′
1
) )

(by monotonicity of ChainRule)

=ChainRule𝐴1,𝐴
′
1

((sup
𝐵𝑎

1

𝐷 (View(𝐵𝑎1 ↔M𝑎1 (𝑥)),

View(𝐵𝑎1 ↔M𝑎1 (𝑥 ′))))𝑎1∈supp(𝐴1)∩supp(𝐴′
1
) )

=ChainRule𝐴1,𝐴
′
1

(sup
𝐵

(𝐷 (View(𝐵𝑎1 ↔M𝑎1 (𝑥)),

View(𝐵𝑎1 ↔M𝑎1 (𝑥 ′))))𝑎1∈supp(𝐴1)∩supp(𝐴′
1
) )

= sup

𝐵

(ChainRule𝐴1,𝐴
′
1

((𝐷 (View(𝐵𝑎1 ↔M𝑎1 (𝑥)),

View(𝐵𝑎1 ↔M𝑎1 (𝑥 ′))))𝑎1∈supp(𝐴1)∩supp(𝐴′
1
) ))

⪯𝑑

Let𝑌 = (𝐴1, 𝑌𝐴1
) and𝑌 ′ = (𝐴′

1
, 𝑌 ′

𝐴1

), we define the post-processing
P as

P((𝑎1, 𝑦), 𝑞1, . . . , 𝑞𝑚−1) = (𝑎1,P𝑎1 (𝑦, 𝑞1, . . . , 𝑞𝑚−1)).

□

We now use Theorem 4.1 to prove that the concurrent composi-

tion of interactive mechanisms can be reduced to the composition

of the non-interactive mechanisms.

Theorem 4.2 (Theorem 1.4 generalized). Suppose that the gen-
eralized probability distance (D, ⪯, 𝐷) satisfies the chain rule, every
𝑑 ∈ D satisfies the coupling property, and (D, ⪯) is complete. Sup-
pose for all non-interactive mechanismM1, . . . ,M𝑘 such thatM𝑖 is
𝑑𝑖 -D DP for 𝑖 = 1, 2 . . . , 𝑘 , their composition Comp(M1, . . . ,M𝑘 ) is
𝑑-D DP, then the concurrent composition ConComp(M1, . . . ,M𝑘 )
of interactive mechanismsM1, . . . ,M𝑘 such thatM𝑖 is 𝑑𝑖 -D DP is
also 𝑑-D DP.

Proof of Theorem 4.2. Following Theorem 4.1, for every in-

teractive 𝑑 𝑗 -D DP mechanism M 𝑗 , 𝑗 = 1, . . . , 𝑘 , and every pair

of neighboring datasets 𝑥, 𝑥 ′, there exists a pair of of random

variables 𝑌𝑗 , 𝑌
′
𝑗
and an interactive post-processing P𝑗 such that

𝐷 (𝑌𝑗 , 𝑌 ′𝑗 ) ⪯ 𝑑 𝑗 , and for every adversary 𝐵 ∈ B, View(𝐵 ↔M 𝑗 (𝑥))
(resp.,View(𝐵 ↔M 𝑗 (𝑥 ′)) ) is identically distributed as View(𝐵 ↔
P𝑗 (𝑌𝑗 )) (resp., View(𝐵 ↔ P𝑗 (𝑌 ′𝑗 ))). Since 𝑌𝑗 , 𝑌

′
𝑗
, 𝑗 = 1, . . . , 𝑘 , are

noninteractive random variables, which can be viewed as the output

distributions of a noninteractive mechanism N𝑗 on 𝑥, 𝑥 ′. Suppose
Comp(N1, . . . ,N𝑘 ) is 𝑑-D DP. By the post-processing property, we

know that Comp((P1 (N1), . . . ,P𝑘 (N𝑘 )) is also𝑑-D DP. Therefore,

we have that ConComp(M1, . . . ,M𝑘 ) is also 𝑑-D DP.

□

5 CONCURRENT COMPOSITION OF RÉNYI DP
In this section, we give a different and simpler proof of the optimal

concurrent composition of Rényi DP given in [13]:

Theorem 5.1 ([13]). For all 𝛼 > 1, 𝑘 ∈ N, 𝜖1, . . . , 𝜖𝑘 > 0, and all
interactive mechanismsM1, . . . ,M𝑘 such thatM𝑖 is (𝛼, 𝜖𝑖 )-RDP for
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𝑖 = 1, 2 . . . , 𝑘 , the concurrent composition ConComp(M1, . . . ,M𝑘 )
of interactive mechanismsM1, . . . ,M𝑘 is (𝛼,∑𝑘

𝑖=1 𝜖𝑖 )-RDP.

We prove this theorem by characterizing optimal 𝛼-RDP adver-

sary strategy in Lemma 5.5.

Definition 5.1 (Optimal𝛼-RDP adversary). For an interactive mech-
anism M, and neighboring datasets 𝑥 and 𝑥 ′, an optimal 𝛼-RDP
adversary with respect to 𝑥 and 𝑥 ′ is a strategy 𝐵OPT such that for
all adversary strategies 𝐵,

𝐷𝛼 (View(𝐵OPT ↔M(𝑥)) | |View(𝐵OPT ↔M(𝑥 ′)))
≥ 𝐷𝛼 (View(𝐵 ↔M(𝑥)) | |View(𝐵 ↔M(𝑥 ′))).

We show that the optimal adversary strategy against the concur-

rent composition of 𝑘 mechanisms can be decomposed as a product

of optimal adversaries against each mechanism independently:

Lemma 5.2. Let 𝐵OPT(1) , 𝐵OPT(2) , . . . , 𝐵OPT(𝑘) be optimal 𝛼-RDP
adversaries againstM1,M2, . . . ,M𝑘 . Then

𝐵OPT = 𝐵OPT(1) × 𝐵OPT(2) × . . . × 𝐵OPT(𝑘)

is an optimal𝛼-RDP adversary against ConComp(M1,M2, . . . ,M𝑘 ),
where 𝐵OPT(1) × 𝐵OPT(2) denotes the adversary’s strategy where it
takes 𝐵OPT(1) to interact withM1 and takes 𝐵OPT(2) to interact with
M2.

Although this property of the optimal adversary strategy can be

derived as a consequence of the optimal concurrent composition of

Rényi DP in [13], we take a different approach to first prove this

property and then use it to prove the optimal concurrent composi-

tion theorem for Rényi DP.

Our proof relies on the following two properties of Rényi diver-

gence: the monotonicity property in Lemma 5.3 and the indepen-

dence property in Lemma 5.4. The Rényi divergence is defined as

follows.

Definition 5.2 (Rényi divergence [16]). For two probability distri-
butions 𝑃 and 𝑄 , the Rényi divergence of order 𝛼 > 1 is

𝐷𝛼 (𝑃 | |𝑄) =
1

𝛼 − 1 log E𝑥∼𝑄

[
𝑃 (𝑥)
𝑄 (𝑥)

]𝛼
.

Lemma 5.3. For any two tuples of jointly distributed random vari-
ables (𝑈 ,𝑉 ,𝑊 ) and (𝑈 ′,𝑉 ′,𝑊 ′) over the same measureable space,
if for every 𝑢 ∈ supp(𝑈 ), we have

𝐷𝛼 (𝑉 |𝑈=𝑢 | |𝑉 ′ |𝑈 ′=𝑢 ) ≤ 𝐷𝛼 (𝑊 |𝑈=𝑢 | |𝑊 ′ |𝑈 ′=𝑢 ),
then

𝐷𝛼 ((𝑈 ,𝑉 ) | | (𝑈 ′,𝑉 ′)) ≤ 𝐷𝛼 ((𝑈 ,𝑊 ) | | (𝑈 ′,𝑊 ′)) .

Proof.

𝐷𝛼 ((𝑈 ,𝑉 ) | | (𝑈 ′,𝑉 ′))

=
1

𝛼 − 1 log

∑︁
𝑢,𝑣

(Pr(𝑈 = 𝑢) Pr(𝑉 = 𝑣 |𝑈 = 𝑢))𝛼

(𝑃𝑟 (𝑈 ′ = 𝑢) Pr(𝑉 ′ = 𝑣 |𝑈 ′ = 𝑢))𝛼−1

=
1

𝛼 − 1 log

∑︁
𝑢

(Pr(𝑈 = 𝑢))𝛼

(𝑃𝑟 (𝑈 ′ = 𝑢))𝛼−1

(∑︁
𝑣

(Pr(𝑉 = 𝑣 |𝑈 = 𝑢))𝛼

(𝑃𝑟 (𝑉 ′ = 𝑣 |𝑈 ′ = 𝑢))𝛼−1

)
=

1

𝛼 − 1 log

∑︁
𝑢

(Pr(𝑈 = 𝑢))𝛼

(𝑃𝑟 (𝑈 ′ = 𝑢))𝛼−1
(
exp(𝛼 − 1)𝐷𝛼 (𝑉 |𝑈=𝑢 | |𝑉 ′ |𝑈 ′=𝑢 )

)
.

Hence, 𝐷𝛼 ((𝑈 ,𝑉 ) | | (𝑈 ′,𝑉 ′)) is monotonically increasing as

𝐷𝛼 (𝑉 |𝑈=𝑢 | |𝑉 ′ |𝑈 ′=𝑢 ) increases. So if

𝐷𝛼 (𝑉 |𝑈=𝑢 | |𝑉 ′ |𝑈 ′=𝑢 ) ≤ 𝐷𝛼 (𝑊 |𝑈=𝑢 | |𝑊 ′ |𝑈 ′=𝑢 ),

then we have 𝐷𝛼 ((𝑈 ,𝑉 ) | | (𝑈 ′,𝑉 ′)) ≤ 𝐷𝛼 ((𝑈 ,𝑊 ) | | (𝑈 ′,𝑊 ′)) .
□

Lemma 5.4. For any two pairs of random variables𝑈 ,𝑈 ′ and𝑉 ,𝑉 ′,
if𝑈 and 𝑉 (𝑈 ′ and 𝑉 ′ resp.) are independent, then

𝐷𝛼 ((𝑈 ,𝑉 ) | | (𝑈 ′,𝑉 ′)) = 𝐷𝛼 (𝑈 | |𝑈 ′) + 𝐷𝛼 (𝑉 | |𝑉 ′) .

Proof.

𝐷𝛼 ((𝑈 ,𝑉 ) | | (𝑈 ′,𝑉 ′))

=
1

𝛼 − 1 log

∑︁
𝑢,𝑣

(Pr(𝑈 = 𝑢) Pr(𝑉 = 𝑣))𝛼

(𝑃𝑟 (𝑈 ′ = 𝑢) Pr(𝑉 ′ = 𝑣))𝛼−1

=
1

𝛼 − 1 log

∑︁
𝑢

(Pr(𝑈 = 𝑢))𝛼

(𝑃𝑟 (𝑈 ′ = 𝑢))𝛼−1
(
exp(𝛼 − 1)𝐷𝛼 (𝑉 | |𝑉 ′)

)
= 𝐷𝛼 (𝑈 | |𝑈 ′) + 𝐷𝛼 (𝑉 | |𝑉 ′).

□

The following lemma describes the optimal adversary’s strategy

against an interactive mechanism. The proof of Lemma 5.5 uses the

monotonicity property of Rényi divergence.

Lemma 5.5. The optimal adversary 𝐵OPT with respect to 𝑥 and 𝑥 ′ ,
which is the adversary strategy that maximizes the Rényi divergence
of the views for all fixed 𝑥, 𝑥 ′, chooses the first query 𝑞1 to maximize

𝐷𝛼

((
𝐴1,View

(
𝐵OPT𝑞1,𝐴1

↔ 𝑀𝑞1,𝐴1
(𝑥)

))
| |

(
𝐴′
1
,View

(
𝐵OPT
𝑞1,𝐴

′
1

↔ 𝑀𝑞1,𝐴
′
1

(𝑥 ′)
)))

,

where𝐴1 =M(𝑥, 𝑞1) and𝐴′
1
=M(𝑥 ′, 𝑞1), and 𝐵OPT𝑞1,𝑎1

is any optimal
adversary againstM𝑞1,𝑎1 , which denotes the subsequent mechanism
when fixing 𝑞1, 𝑎1.

Proof. We decompose the view of the adversary into two parts:

the first answer 𝐴1 to the query 𝑞1, and the view of the subsequent

interaction. Fixing 𝑞1, for every adversary 𝐵, we have

𝐷𝛼 (View(𝐵 ↔M(𝑥)) | |View(𝐵 ↔M(𝑥 ′))) (21)

=𝐷𝛼

((
𝐴1 (𝑞1),View

(
𝐵𝑞1,𝐴1

↔M𝑞1,𝐴1
(𝑥)

))
| |(

𝐴′
1
(𝑞1),View

(
𝐵𝑞1,𝐴′

1

↔M𝑞1,𝐴
′
1

(𝑥 ′)
)))

,

where 𝐵𝑞1,𝐴1
↔ M𝑞1,𝐴1

denotes the subsequent interaction. For

every 𝑎1 ∈ supp(𝐴1) ∩ supp(𝐴′
1
) and for every 𝐵𝑞1,𝐴1

, by the defi-

nition of 𝐵OPT
𝑞1,𝐴1

, we have

𝐷𝛼

(
View(𝐵𝑞1,𝐴1

↔M𝑞1,𝐴1
(𝑥)) |𝐴1=𝑎1 | |View(𝐵𝑞1,𝐴′

1

↔M𝑞1,𝐴
′
1

(𝑥 ′)) |𝐴′
1
=𝑎1

)
≤ 𝐷𝛼

(
View(𝐵OPT

𝑞1,𝐴1

↔M𝑞1,𝐴1
(𝑥)) |𝐴1=𝑎1 | |View(𝐵

OPT

𝑞1,𝐴
′
1

↔M𝑞1,𝐴
′
1

(𝑥 ′)) |𝐴′
1
=𝑎1

)
.
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Thus, we have

𝐷𝛼

((
𝐴1 (𝑞1),View

(
𝐵𝑞1,𝐴1

↔M𝑞1,𝐴1
(𝑥)

))
| |(

𝐴′
1
(𝑞1),View

(
𝐵𝑞1,𝐴′

1

↔M𝑞1,𝐴
′
1

(𝑥 ′)
)))

≤𝐷𝛼

((
𝐴1 (𝑞1),View

(
𝐵OPT
𝑞1,𝐴1

↔M𝑞1,𝐴1
(𝑥)

))
| |(

𝐴′
1
(𝑞1),View

(
𝐵OPT
𝑞1,𝐴

′
1

↔M𝑞1,𝐴
′
1

(𝑥 ′)
)))

, (22)

where (22) follows from Lemma 5.3. It implies that in order to

maxmize (21), it suffices to choose 𝑞1 to maximize the quantity in

(22). □

We then use Lemma 5.5 to prove Lemma 5.2.

proof of Lemma 5.2. We will use induction on the rounds of

messages to prove this lemma. We can use induction argument

because of the assumption of finite communication. Without loss

of generality, suppose the first query from the adversary is sent

toM1, and we use ConComp = ConComp(M1,M2, . . . ,M𝑘 ) to
simplify the notation. Following Lemma 5.5, the optimal adversary

𝐵OPT chooses 𝑞1 as follows.

𝐵OPT =argmax𝑞1
𝐷𝛼

((
𝐴1,View

(
𝐵OPT
𝑞1,𝐴1

↔ ConComp𝑞1,𝐴1

(𝑥)
))
| |(

𝐴′
1
,View

(
𝐵OPT
𝑞1,𝐴

′
1

↔ ConComp𝑞1,𝐴
′
1

(𝑥 ′)
)))

,

where 𝐴1 = M1 (𝑥, 𝑞1) and 𝐴′
1
= M1 (𝑥 ′, 𝑞1). By induction, we

assume that 𝐵OPT
𝑞1,𝐴1

= 𝐵
OPT(1)
𝑞1,𝐴1

× 𝐵OPT(2) × . . . × 𝐵OPT(𝑘) . Let

𝑉𝑞1,𝐴1
= View

(
𝐵
OPT(1)
𝑞1,𝐴1

↔M𝑞1,𝐴1
(𝑥)

)
,

and similarly,

𝑉 ′𝑞1,𝐴1

= View

(
𝐵
OPT(1)
𝑞1,𝐴

′
1

↔M𝑞1,𝐴
′
1

(𝑥 ′)
)
.

Let

𝑉̃ = View

(
𝐵OPT(2) × . . . × 𝐵OPT(𝑘) ↔ ConComp(M2, . . . ,M𝑘 ) (𝑥)

)
,

and

𝑉̃ ′ = View

(
𝐵OPT(2) × . . . × 𝐵OPT(𝑘) ↔ ConComp(M2, . . . ,M𝑘 ) (𝑥 ′)

)
.

With these notations, we have

argmax𝑞1
𝐷𝛼

((
𝐴1,View

(
𝐵OPT
𝑞1,𝐴1

↔ ConComp𝑞1,𝐴1

(𝑥)
))
| |(

𝐴′
1
,View

(
𝐵OPT
𝑞1,𝐴

′
1

↔ ConComp𝑞1,𝐴
′
1

(𝑥 ′)
)))

=argmax𝑞1
𝐷𝛼

((
𝐴1,𝑉𝑞1,𝐴1

, 𝑉̃

)
| |

(
𝐴′
1
,𝑉 ′𝑞1,𝐴1

, 𝑉̃ ′
))

=argmax𝑞1

{
𝐷𝛼

((
𝐴1,𝑉𝑞1,𝐴1

)
| |

(
𝐴′
1
,𝑉 ′𝑞1,𝐴1

))
+ 𝐷𝛼 (𝑉̃ | |𝑉̃ ′)

}
,

(by Lemma 5.4)

=argmax𝑞1
𝐷𝛼

((
𝐴1,𝑉𝑞1,𝐴1

)
| |

(
𝐴′
1
,𝑉 ′𝑞1,𝐴1

))
=𝐵OPT(1) . (23)

Therefore, the optimal adversary 𝐵OPT chooses 𝑞1 just as the opti-

mal adversary 𝐵OPT(1) against only𝑀1. Since 𝐵
OPT

𝑞1,𝐴1

= 𝐵
OPT(1)
𝑞1,𝐴1

×
𝐵OPT(2) × . . .×𝐵OPT(𝑘) , we have 𝐵OPT = 𝐵OPT(1) ×𝐵OPT(2) × . . .×
𝐵OPT(𝑘) , completing the proof. □

We now prove Theorem 5.1 using Lemma 5.2.

Proof of Theorem 5.1. Following Lemma 5.2, we have

𝐷𝛼

(
View

(
𝐵OPT ↔ ConComp(𝑥)

)
| |View

(
𝐵OPT ↔ ConComp(𝑥 ′)

))
=𝐷𝛼

(
View

(
𝐵OPT(1) ↔M1 (𝑥)

)
| |View

(
𝐵OPT(1) ↔M1 (𝑥 ′)

))
+ . . .

+ 𝐷𝛼

(
View

(
𝐵OPT(𝑘) ↔M𝑘 (𝑥)

)
| |View

(
𝐵OPT(𝑘) ↔M𝑘 (𝑥 ′)

))
=

𝑘∑︁
𝑖

𝜖𝑖 ,

completing the proof. □
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