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ROBUST PCPS OF PROXIMITY, SHORTER PCPS,
AND APPLICATIONS TO CODING∗

ELI BEN-SASSON† , ODED GOLDREICH‡ , PRAHLADH HARSHA§ , MADHU SUDAN¶,

AND SALIL VADHAN‖

Abstract. We continue the study of the trade-off between the length of probabilistically check-
able proofs (PCPs) and their query complexity, establishing the following main results (which refer
to proofs of satisfiability of circuits of size n):

1. We present PCPs of length exp(o(log logn)2) ·n that can be verified by making o(log logn)
Boolean queries.

2. For every ε > 0, we present PCPs of length exp(logε n) · n that can be verified by making
a constant number of Boolean queries.

In both cases, false assertions are rejected with constant probability (which may be set to be arbitrar-
ily close to 1). The multiplicative overhead on the length of the proof, introduced by transforming
a proof into a probabilistically checkable one, is just quasi polylogarithmic in the first case (of query
complexity o(log logn)), and is 2(log n)ε , for any ε > 0, in the second case (of constant query com-
plexity). Our techniques include the introduction of a new variant of PCPs that we call “robust
PCPs of proximity.” These new PCPs facilitate proof composition, which is a central ingredient
in the construction of PCP systems. (A related notion and its composition properties were discov-
ered independently by Dinur and Reingold.) Our main technical contribution is a construction of a
“length-efficient” robust PCP of proximity. While the new construction uses many of the standard
techniques used in PCP constructions, it does differ from previous constructions in fundamental
ways, and in particular does not use the “parallelization” step of Arora et al. [J. ACM, 45 (1998),
pp. 501–555]. The alternative approach may be of independent interest. We also obtain analogous
quantitative results for locally testable codes. In addition, we introduce a relaxed notion of locally
decodable codes and present such codes mapping k information bits to codewords of length k1+ε for
any ε > 0.
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890 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

1. Introduction. Probabilistically checkable proofs (PCPs) [FGL+96, AS98,
ALM+98] (aka holographic proofs [BFLS91]) are NP witnesses that allow efficient
probabilistic verification based on probing few bits of the NP witness. The celebrated
PCP theorem [AS98, ALM+98] asserts that probing a constant number of bits suffices,
and it turned out that three bits suffice for rejecting false assertions with probability
almost 1/2 (cf. [H̊as01, GLST98]).

Optimizing the query complexity of PCPs has attracted a lot of attention, moti-
vated in part by the significance of query complexity for nonapproximability results
(see, for example, [BGLR93, BGS95, H̊as01, GLST98, ST00]). However, these works
guarantee only that the new NP witness (i.e., the PCP) is of a length that is upper-
bounded by a polynomial in the length of the original NP witness.1 Optimizing the
length of the new NP witness was the focus of [BFLS91, PS94, HS00, GS02, BSVW03],
and in this work we continue the latter research direction.

In our view, the significance of PCPs extends far beyond their applicability to
deriving nonapproximability results. The mere fact that NP witnesses can be trans-
formed into a format that supports superfast probabilistic verification is remarkable.
From this perspective, the question of how much redundancy is introduced by such a
transformation is fundamental. Furthermore, PCPs have been used not only to derive
nonapproximability results but also for obtaining positive results (e.g., computation-
ally sound (CS) proofs [Kil92, Mic00] and their applications [Bar01, CGH04]), and
the length of the PCP affects the complexity of those applications.

In any case, the length of PCPs is also relevant to nonapproximability results;
specifically, it affects their tightness with respect to the running time (as noted in
[Sze99]). For example, suppose (exact) satisfiability (SAT) has complexity 2Ω(n). The
original PCP theorem [AS98, ALM+98] implies only that approximating maximum
satisfiability (MaxSAT) requires time 2n

α

for some (small) α > 0. The work of [PS94]
makes α arbitrarily close to 1, whereas the results of [GS02, BSVW03] further improve

the lower-bound to 2n
1−o(1)

. Our results reduce the o(1) term.2

1.1. PCPs with better length versus query trade-off. How short can a
PCP be? The answer may depend on the number of bits we are willing to read in
order to reject false assertions (say) with probability at least 1/2. It is implicit in the
work of [PS94] that, for proofs of satisfiability of circuits of size n, if we are willing to

read n0.01 bits, then the length of the new NP witness may be Õ(n). That is, stretching
the NP witness by only a polylogarithmic amount, allows us to dramatically reduce
the number of bits read (from n to n0.01). More precisely, see the following theorem.3

Theorem 1.1 (implicit in [PS94]). Satisfiability of circuits of size n can be
probabilistically verified by probing an NP witness of length poly(logn) · n in no(1) bit
locations. In fact, for any integer value of a parameter m ≤ log n, there is a PCP
having randomness complexity (1−m−1) · log2 n+O(log log n)+O(m logm) and query
complexity poly(logn) · n1/m.

Recall that the proof length of a PCP is at most 2r · q, where r is the randomness
complexity and q is the query complexity of the PCP. Thus, the first part of the above
theorem follows by setting m = log logn/ log log log n in the second part.

Our results show that the query complexity can be reduced dramatically if we are

1We stress that in all the above works, as well as in the current work, the new NP witness can
be computed in polynomial time from the original NP witness.

2A caveat: It is currently not known whether these improved lower-bounds can be achieved
simultaneously with optimal approximation ratios, but the hope is that this can eventually be done.

3All logarithms in this work are of base 2, but in some places we choose to emphasize this fact
by using the notation log2 rather than log.

D
ow

nl
oa

de
d 

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ROBUST PCPS OF PROXIMITY 891

willing to increase the length of the proof slightly. First, with a quasi-polylogarithmic
stretch, the query complexity can be made double-logarithmic as follows.

Theorem 1.2. Satisfiability of circuits of size n can be probabilistically verified
by probing an NP witness of length exp(o(log log n)2)·n in o(log log n) bit locations. In
fact, it has a PCP having randomness complexity log2 n+O

(
(log log n)2/ log log log n

)
and query complexity O(log log n/ log log logn).

We mention that the only prior work claiming query complexity below exp(
√

log n)
(cf. [GS02, BSVW03]) required stretching the NP witness by at least an exp(

√
log n)

factor. With approximately such a stretch factor, these works actually achieved con-
stant query complexity (cf. [GS02, BSVW03]). Thus, Theorem 1.2 represents a vast
improvement in the query complexity of PCPs that use very short proofs (i.e., in
the range between exp(o(log log n)2) · n and exp(

√
log n) · n). On the other hand,

considering NP witnesses that allow probabilistic verification by a constant number
of queries, we reduce the best known stretch factor from exp(log0.5+ε n) (established
in [GS02, BSVW03]) to exp(logε n), for any ε > 0 as follows.

Theorem 1.3. For every constant ε > 0, satisfiability of circuits of size n can
be probabilistically verified by probing an NP witness of length exp(logε n) · n in a
constant number of bit locations. In fact, it has a PCP having randomness complexity
log2 n + logε n and query complexity O(1/ε).

It may indeed be the case that the trade-off (between length blow-up factors
and query complexity) offered by Theorems 1.1–1.3 merely reflects our (incomplete)
state of knowledge. In particular, we wonder whether circuit satisfiability can be
probabilistically verified by a PCP having proof length n · poly(logn) and constant
query complexity.

1.2. New notions and main techniques. A natural approach to reducing the
query complexity of the PCP provided by Theorem 1.1 is via the “proof composition”
paradigm of [AS98]. However, that PCP (as constructed in [PS94]) does not seem
amenable to composition when the parameter m is nonconstant.4 The reason is that
standard proof composition requires the “outer” proof system to make a constant
number of multivalue oracle queries (or be converted to such), whereas this specific
PCP does not have this property and we cannot afford the standard parallelization
involved in a suitable conversion. Thus, we begin by giving a new PCP construction
whose parameters match those in Theorem 1.1, but is suitable for composition. As we
will see, we cannot afford the standard proof composition techniques, and thus also
introduce a new, more efficient composition paradigm.

The initial PCP. Our new proof of Theorem 1.1 modifies the constructions of
[PS94] and [HS00]. The latter construction was already improved in [GS02, BSVW03]

to reduce the length of PCPs to n · 2Õ(
√

logn). Our results go further by re-examining
the “low-degree test” (query-efficient tests that verify if a given function is close to
being a low-degree polynomial) and observing that the small-biased sample sets of
[BSVW03] give an even more significant savings on the randomness complexity of
low-degree tests than noticed in that work. However, exploiting this advantage takes
a significant effort in modifying known PCP modules and redefining the ingredients
in “proof composition.”

For starters, PCP constructions tend to use many (i.e., a superconstant number
of) functions and need to test if each is a low-degree polynomial. In prior results,

4Also for constant m, we get stronger quantitative results by using our new PCP construction
as a starting point.
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892 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

this was performed efficiently by combining the many different functions on, say, m
variables, into a single new one on m+ 1 variables, where the extra variable provides
an index into the many different old functions. Testing if the new function is of low-
degree implicitly tests all the old functions. Such tricks, which involve introducing
a few extra variables, turn out to be too expensive in our context. Furthermore,
for similar reasons, we cannot use other “parallelization” techniques [FRS94, LS97,
ALM+98, GS00, Raz98], which were instrumental to the proof composition technique
of [AS98]. In turn, this forces us to introduce a new variant of the proof composition
method, which is much more flexible than the one of [AS98]. Going back to the PCP
derived in Theorem 1.1, we adapt it for our new composition method by introducing a
“bundling” technique that offers a randomness-efficient alternative to parallelization.

Our new proof composition method refers to two new notions: the notion of a
PCP of proximity and the notion of a robust PCP. Our method is related to the
method discovered independently by Dinur and Reingold [DR04]. (There are signifi-
cant differences between the two methods, as explained in section 1.3, where we also
discuss our method in relation to Szegedy’s work [Sze99].)

PCPs of proximity. Recall that a standard PCP is given an explicit input (which
is supposedly in some NP language) as well as access to an oracle that is supposed
to encode a “probabilistically verifiable” NP witness. The PCP verifier uses oracle
queries (which are counted) in order to probabilistically verify whether the input,
which is explicitly given to it, is in the language. In contrast, a PCP of proximity is
given access to two oracles, one representing an input (supposedly in the NP language)
and the other being a redundant encoding of an NP witness (as in a PCP). Indeed,
the verifier may query both the input oracle and the proof oracle, but its queries
to the input oracle are also counted in its query complexity. As usual we focus on
verifiers having very low query complexity, certainly smaller than the length of the
input. Needless to say, such a constrained verifier cannot distinguish inputs in the
language from inputs out of the language, but it is not required to do so. A verifier
for a PCP of proximity is required only to accept inputs that are in the language
and reject inputs that are far from the language (i.e., far in Hamming distance from
any input in the language). Indeed, PCPs of proximity are related to holographic
proofs [BFLS91] and to “PCP spot-checkers” [EKR04]; see a further discussion in
section 1.3.

Robust PCPs. To discuss robust PCPs, let us review the soundness guarantee
of standard (nonadaptive) PCPs. The corresponding verifier can be thought of as
determining, based on its coin tosses, a sequence of oracle positions and a predicate
such that evaluating this predicate on the indicated oracle bits always accepts if the
input is in the language and rejects with high probability otherwise. That is, in the
latter case, we require that the assignment of oracle bits to the predicate satisfies the
predicate. In a robust PCP we strengthen the latter requirement. We require that
the said assignment (of oracle bits) not only fail to satisfy the predicate but also be
far from any assignment that satisfies the predicate.

Proof composition. The key observation is that our proof composition works very
smoothly when we compose an outer robust PCP with an inner PCP of proximity.
We need neither worry about how many queries the outer robust PCP makes nor
care about what coding the inner PCP of proximity uses in its proof oracle (much
less apply the same encoding to the outer answers). All that we should make sure
of is that the lengths of the objects match and that the distance parameter in the
robustness condition (of the outer verifier) is at least as big as the distance parameter
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ROBUST PCPS OF PROXIMITY 893

in the proximity condition (of the inner verifier).
Indeed, Theorems 1.2 and 1.3 are proved by first extending Theorem 1.1 to pro-

vide a robust PCP of proximity of similar complexities, and then applying the new
“proof composition” method. We stress that our contribution is in providing a proof of
Theorem 1.1 that lends itself to a modification that satisfies the robustness property,
and in establishing the latter property. In particular, the aforementioned “bundling”
is applied in order to establish the robustness property. Some care is required when
deriving Theorem 1.2 using a nonconstant number of proof compositions. In partic-
ular, Theorem 1.2 (resp., Theorem 1.3) is derived in a way that guarantees that the
query complexity is linear rather than exponential in the number of proof composi-
tions, where the latter is o(log log n) (resp., 1/ε). This, in turn, requires obtaining
strong bounds on the robustness property of the (“robust”) extension of Theorem 1.1.

We stress that the flexibility in composing robust PCPs of proximity plays an
important role in our ability to derive quantitatively stronger results regarding PCPs.
We believe that robust PCPs of proximity may play a similar role in other quantitative
studies of PCPs. We note that the standard PCP theorem of [AS98, ALM+98] can
be easily derived using a much weaker and simpler variant of our basic robust PCP
of proximity, and the said construction seems easier than the basic PCPs used in the
proof composition of [AS98, ALM+98].

In addition to their role in our proof composition method, PCPs of proximity
also provide a good starting point for deriving improved locally testable codes (see
the discussion in section 1.4). The relation of PCPs of proximity to “property testing”
is further discussed in section 1.3.

1.3. Related work. As mentioned above, the notion of a PCP of proximity is
related to notions that have appeared in the literature.

Relation to holographic proofs. First, the notion of a PCP of proximity generalizes
the notion of holographic proofs set forth by Babai et al. [BFLS91]. In both cases,
the verifier is given oracle access to the input, and we count its probes to the input in
its query complexity. The key issue is that holographic proofs refer to inputs that are
presented in an error-correcting format (e.g., one aims to verify that a graph that is
represented by an error-correcting encoding of its adjacency matrix (or incidence list)
is 3-colorable). In contrast, a PCP of proximity refers to inputs that are presented
in any format but makes assertions only about their proximity to acceptable inputs
(e.g., one is interested in whether a graph, represented by its adjacency matrix (or
incidence list), is 3-colorable or is far from being 3-colorable).

Relation to property testing. PCPs of proximity are implicit in the low-degree
testers that utilize auxiliary oracles (e.g., an oracle that provides the polynomial
representing the value of the function restricted to a queried line); cf. [AS98, ALM+98].
PCPs of proximity are a natural special case of the PCP spot-checkers defined by
Ergün, Kumar, and Rubinfeld [EKR04]. On the other hand, PCPs of proximity
extend property testing [RS96, GGR98]. Loosely speaking, a property tester is given
oracle access to an input and is required to distinguish the case in which the input
has the property from the case in which it is far (say, in Hamming distance) from any
input having the property. Typically, the interest is in testers that query their input
on few bit locations (or at the very least on a sublinear number of such locations).
In a PCP of proximity such a tester (now called a verifier) is also given oracle access
to an alleged proof. Thus, the relation of PCPs of proximity to property testing
is analogous to the relation of NP to BPP (or RP). Put differently, while property
testing provides a notion of approximation for decision procedures, a PCP of proximity
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894 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

provides a notion of approximation for (probabilistic) proof-verification procedures.
In both cases, approximation means that inputs in the language should be accepted
(when accompanied by suitable proofs), while inputs that are far from the language
should be rejected (no matter what false proof is provided).

We comment that PCPs of proximity are provably stronger than property testers;
that is, there are (natural) separations between property testers and PCPs of prox-
imity (which may be viewed as the “approximation” versions of BPP and NP). For
further discussions, refer to section 2.2.

Relation to assignment testers and another proof composition method. As stated
above, our proof composition method is related to the method discovered indepen-
dently by Dinur and Reingold [DR04]. Both methods use the same notion of PCPs of
proximity (which are called assignment testers in [DR04]). A key difference between
the two methods is that, while our method refers to the new notion of robustness
(i.e., to the robustness of the outer verifier), the method of Dinur and Reingold refers
to the number of (non-Boolean) queries (made by the outer verifier). Indeed, the
method of Dinur and Reingold uses a (new) parallelization procedure (which reduces
the number of queries by a constant factor), whereas we avoid parallelization alto-
gether (but rather use a related “bundling” of queries into a nonconstant number of
“bundles” such that robustness is satisfied at the bundle level).5 We stress that we
cannot afford the cost of any known parallelization procedure because, at the very
least, these procedures increase the length of the proof by a factor related to the
answer length, which is far too large in the context of Theorem 1.1 (which in turn
serves as the starting point for all the other results in this work). We comment that
the parallelization procedure of [DR04] is combinatorial (albeit inapplicable in our
context), whereas our bundling relies on the algebraic structure of our proof system.

Relation to Szegedy’s work [Sze99]. Some of the ideas presented in the current
work are implicit in Szegedy’s work [Sze99]. In particular, notions of robustness
and proximity are implicit in [Sze99], in which a robust PCP of proximity (attributed
to [PS94]) is composed with itself in a way that is similar to our composition theorem.
We note that Szegedy does not seek to obtain PCPs with improved parameters, but
rather to suggest a framework for deriving nicer proofs of existing results such as
those in [PS94]. Actually, he focuses on proving the main result of [PS94] (i.e., a PCP
of nearly linear length and constant number of queries) using as a building block a

robust PCP of proximity that has length Õ(n) and makes Õ(
√
n) queries (plus the

constant query PCP of [ALM+98]).
We note that the aforementioned robust PCP of proximity is not presented

in [Sze99], but is rather attributed to [PS94]. Indeed, observe that Theorem 1.1

above (implicit in [PS94]) achieves Õ(n) length and Õ(
√
n) queries when the param-

eter m = 2. Thus, Szegedy’s assertion is that this PCP can be strengthened to be a
robust PCP of proximity, similarly to our main construct (specifically, Theorem 3.1,
specialized to m = 2). However, our main construct achieves stronger parameters
than those claimed in [Sze99], especially with respect to robust soundness. Indeed,

5The main part of the bundling technique takes place at the level of analysis, without modifying
the proof system at all. Specifically, we show that the answers read by the verifier can be partitioned
into a nonconstant number of (a priori fixed) bundles so that on any no instance, with high probability
a constant fraction of the bundles read should be modified to make the verifier accept. We stress
that the fact that certain sets of queries (namely, those in each bundle) are always made together
is a feature that our particular proof system happens to have (or rather it was somewhat massaged
to have). Once robust soundness is established at the bundle level, we need only modify the proof
system so that the bundles become queries and the answers are placed in (any) good error-correcting
format, which implies robustness at the bit level.
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ROBUST PCPS OF PROXIMITY 895

the parameters claimed in [Sze99] allow only for the robust PCP of proximity to be
composed with itself a constant number of times.6 As mentioned above, a signifi-
cant amount of our effort is aimed at ensuring that our robust PCP of proximity has
sufficiently strong parameters to be composed a nonconstant number of times and,
moreover, to ensure that the query complexity grows only linearly rather than expo-
nentially with the number of compositions. (See section 3.2 for further explanation.)

1.4. Applications to coding problems. The flexibility of PCPs of proximity
makes them relatively easy to use towards obtaining results regarding locally testable
and decodable error-correcting codes. In particular, using a suitable PCP of proxim-
ity, we obtain an improvement in the rate of locally testable codes (improving over
the results of [GS02, BSVW03]). Loosely speaking, a codeword test (for a code C) is
a randomized oracle machine that is given oracle access to a string. The tester may
query the oracle at a constant number of bit locations and is required to (always)
accept every codeword and reject with (relatively) high probability every string that
is “far” from the code. The locally testable codes of [GS02, BSVW03] used codewords
of length exp(log0.5+ε k) · k in order to encode k bits of information for any constant
ε > 0. Here we reduce the length of the codewords to exp(logε k) · k as follows.

Theorem 1.4 (loosely stated; see section 4.1 for details). For every constant
ε > 0, there exists locally testable codes that use codewords of length exp(logε k) · k in
order to encode k bits of information.

We also introduce a relaxed notion of locally decodable codes and show how to
construct such codes using any PCP of proximity (and ours in particular). Loosely
speaking, a code is said to be locally decodable if, whenever relatively few location are
corrupted, the decoder is able to recover each information bit, with high probability,
based on a constant number of queries to the (corrupted) codeword. This notion was
formally defined by Katz and Trevisan [KT00] and the best known locally decodable
code has codewords of a length that is subexponential in the number of information
bits. We relax the definition of locally decodable codes by requiring that, whenever
few locations are corrupted, the decoder be able to recover most of the individual
information bits (based on few queries), and for the rest of the locations, the decoder
may output a fail symbol (but not the wrong value). That is, the decoder must still
avoid errors (with high probability), but is allowed to say “don’t know” on a few bit
locations. We show that this relaxed notion of local decodability can be supported
by codes that have codewords of a length that is almost linear in the number of
information bits as follows.

Theorem 1.5 (loosely stated; see section 4.2 for details). For every constant
ε > 0, there exists relaxed locally decodable codes that use codewords of length k1+ε in
order to encode k bits of information.

1.5. Subsequent work. Since the presentation of our results, there has been
considerable progress in the construction of short PCPs.

Ben-Sasson and Sudan [BS05] constructed “shorter” PCPs for NP at the cost
of a slightly larger query complexity. More precisely, they construct PCPs of length
n · poly(logn) (to prove satisfiability of circuits of size n) that can be verified by
querying at most poly(logn) bits of the proof. They achieve this improvement in

6In the language of section 2, his soundness and robustness parameters are unspecified functions
of the proximity parameter. In retrospect, it seems that the ideas of [PS94] may lead to a robust PCP
of proximity with robustness that is at best linearly related to the proximity parameter; this would
make the query complexity increase exponentially with the number of compositions (as discussed in
section 3.2).
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896 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

length by constructing PCPs of proximity for a specific problem, verifying membership
in a Reed–Solomon code (i.e., verifying if a given function is close to the evaluation of
some univariate polynomial of specified degree). Their construction also yields locally
testable codes with similar parameters.

More recently, Dinur introduced a novel gap amplification technique to yield a
fully combinatorial proof of the PCP theorem [Din06]. In addition, by applying the
gap-amplification technique to the PCP constructed by Ben-Sasson and Sudan [BS05],
she obtained PCPs for NP of length n · poly(logn) and verifiable with a constant
number of probes into the proof. Thus while Ben-Sasson and Sudan [BS05] reduce
the proof length while increasing the number of queries, Dinur shows how to reduce
the query size back to a constant, thereby improving both our results and those of
[BS05].

The PCP verifiers in the constructions of both our paper and [BS05] require time
at least polynomial in the length of the proof, though the verifiers probe at most
poly(logn) locations in the proof. In a subsequent paper [BGH+05], we demonstrate
that both these constructions can in fact be accompanied with superefficient verifiers,
i.e., verifiers that run in time at most polylogarithmic in the length of the proof.

Finally, the question of whether there exist nearly linear-sized PCPs for NP that
achieve strong query-soundness trade-offs (e.g., achieving the parameters of H̊astad
[H̊as01]) remains open. The recent work of Moshkovitz and Raz [MR06] may be useful
towards answering this.

1.6. Organization. Theorems 1.2 and 1.3, which are the work’s main results,
are proved by constructing and using a robust PCP of proximity that achieves a very
good trade-off between randomness and query complexity. Thus, this robust PCP
of proximity is the main building block that underlies our work. Unfortunately, the
construction of a very efficient robust PCP of proximity is quite involved and is thus
deferred to the second part of this work (which starts with an overview). In the
first part of this work we show how the aforementioned robust PCP of proximity can
be used to derive all the results mentioned in the introduction (and, in particular,
Theorems 1.2 and 1.3). Thus, the overall structure of this work is as follows.

Part I: Using the main building block (sections 2–4). We start by pro-
viding a definitional treatment of PCPs of proximity and robust PCPs. The basic
definitions as well as some observations and useful transformations are presented in
section 2. Most important, we analyze the natural composition of an outer robust
PCP with an inner PCP of proximity.

In section 3, we state the properties of our main building block (i.e., a highly
efficient robust PCP of proximity), and show how to derive Theorems 1.2 and 1.3,
by composing this robust PCP of proximity with itself multiple times. Specifically,
o(log log n) compositions are used to derive Theorem 1.2, and 1/ε compositions are
used to derive Theorem 1.3. The coding applications stated in Theorems 1.4 and 1.5
are presented in section 4.

Part II: Constructing the main building block (sections 5–8). We start
this part by providing an overview of the construction. This overview (i.e., section 5)
can be read before reading Part I, provided that the reader is comfortable with the
notion of a robust PCP of proximity.

The construction itself is presented in section 6–8. We start by presenting a
(highly efficient) ordinary PCP (establishing Theorem 1.1), which lends itself to the
subsequent modifications. In section 7, we augment this PCP with a test of proximity,
deriving an analogous PCP of proximity. In section 8 we present a robust version of
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ROBUST PCPS OF PROXIMITY 897

the PCP of proximity derived in the previous sections.
Part III: Appendices. The construction presented in section 3 also uses a PCP

of proximity of polynomial randomness complexity and constant query complexity.
Such a PCP of proximity can be derived by a simple augment of the Hadamard-based
PCP of [ALM+98], which we present in Appendix A.

In Appendix B, we recall results regarding randomness-efficient low-degree tests
and a related sampling lemma, which are used in Part II.

1.7. Relation to previous versions of this work. The current version in-
cludes a discussion of Szegedy’s work [Sze99], of which we were unaware when writing
the first version [BGH+04b]. The relation of his work to ours is now discussed in
section 1.3.

Section 4 has been extensively revised, adding formal definitions and providing
more precise descriptions of the main constructions and proofs. In addition, we iden-
tified a weaker form of the definition of a relaxed locally decodable code, proved that
it essentially implies the original form, and restructured our presentation accordingly
(see section 4.2).

The parameters of Theorem 1.2 in this version are stronger (to a limited extent)
than that of earlier versions of this paper [BGH+04b, BGH+04a]. More specifically,
we show that satisfiability of circuits of size n can be verified by probing o(log log n)
bit locations in an NP witness of length exp(o(log log n)2) · n as opposed to an NP

witness of length exp(Õ(log log n)2) ·n, as was claimed in earlier versions. We achieve
this strengthening by improving the robustness parameter of the ALMSS-type robust
PCP of proximity (Theorem 7.2) constructed in Part II of this paper, taking advantage
of the greater slackness allowed in the randomness complexity of this PCP. (ALMSS-
type robust PCP of proximity is one of the PCPs of proximity constructed in Part II.
It is so called as it has parameters similar to the PCP constructed in [ALM+98].)

Part I. All but the main construct.

2. PCPs and variants: Definitions, observations, and transformations.
Notation. Except when otherwise noted, all circuits in this paper have fan-in 2

and fan-out 2, and we allow arbitrary unary and binary Boolean operations as internal
gates. The size of a circuit is the number of gates. We will refer to the following
languages associated with circuits: the P-complete language Circuit Value, defined
as CktVal = {(C,w) : C(w) = 1}; the NP-complete Circuit Satisfiability,
defined as CktSAT = {C : ∃wC(w) = 1}; and the NP-complete Nondeterministic

CircuitValue, defined as NCktVal = {(C,w) : ∃zC(w, z) = 1}. (In the latter, we
assume that the partition of the variables of C into w-variables and z-variables is
explicit in the encoding of C.)

We will extensively refer to the relative distance between strings/sequences over
some alphabet Σ: For u, v ∈ Σ�, we denote by Δ(u, v) the fraction of locations on
which u and v differ (i.e., Δ(u, v) � |{i : ui �= vi}|/�, where u = u1 · · ·u� ∈ Σ� and
v = v1 · · · v� ∈ Σ�). We say that u is δ-close to v (resp., δ-far from v) if Δ(u, v) ≤ δ
(resp., Δ(u, v) > δ). The relative distance of a string from a set of strings is defined in
the natural manner; that is, Δ(u, S) � minv∈S{Δ(u, v)}. Occasionally, we will refer
to the absolute Hamming distance, which we will denote by Δ(u, v) � |{i : ui �= vi}|.
We will also use the t-repetition xt of a string x to denote the string formed by
concatenating t copies of x (i.e., xt = x . . . t times . . . x).

Organization of this section. After recalling the standard definition of PCP (in
section 2.1), we present the definitions of PCPs of proximity and robust PCPs (in
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898 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

section 2.2 and 2.3, respectively). We then discuss (in section 2.4) the composition
of a robust PCP with a PCP of proximity. Various observations and transformations
regarding the new notions are presented in section 2.5.

2.1. Standard PCPs. We begin by recalling the formalism of a PCP verifier.
Throughout this work, we restrict our attention to nonadaptive verifiers, not only for
simplicity but also because one of our variants (namely robust PCPs) only makes
sense for nonadaptive verifiers.

Definition 2.1 (PCP verifiers).
• A verifier is a probabilistic polynomial-time algorithm V that, on an input
x of length n, tosses r = r(n) random coins R and generates a sequence of
q = q(n) queries I = (i1, . . . , iq) and a circuit D : {0, 1}q → {0, 1} of size at
most d(n).
We think of V as representing a probabilistic oracle machine that queries its
oracle π for the positions in I, receives the q answer bits π|I � (πi1 , . . . , πiq ),
and accepts iff D(π|I) = 1.

• We write (I,D)
R← V (x) to denote the queries and circuit generated by V on

input x and random coin tosses and write (I,D) = V (x;R) if we wish to
specify the coin tosses R.

• We call r the randomness complexity, q the query complexity, and d the
decision complexity of V .

For simplicity in these definitions, we treat the parameters r, q, and d above (and
other parameters below) as functions of only the input length n. However, at times
we may also allow them to depend on other parameters, which should be understood
as being given to the verifier together with the input. We now present the standard
notion of PCPs, restricted to perfect completeness for simplicity.

Definition 2.2 (standard PCPs). For a function s : Z
+ → [0, 1], a verifier V is

a probabilistically checkable proof system for a language L with soundness error s if
the following two conditions hold for every string x:

Completeness: If x ∈ L, then there exists π such that V (x) accepts oracle π with
probability 1. Formally,

∃π Pr
(I,D)

R←V (x)

[D(π|I) = 1] = 1.

Soundness: If x �∈ L, then for every oracle π, the verifier V (x) accepts π with
probability strictly less than s. Formally,

∀π Pr
(I,D)

R←V (x)

[D(π|I) = 1] < s(|x|).

If s is not specified, then it is assumed to be a constant in (0, 1).

Our main goal in this work is to construct short PCPs that use very few queries.
Recalling that the length of a (nonadaptive) PCP is upper-bounded by 2r(n) · q(n),
we focus on optimizing the (trade-off between) randomness and query complexities.

We will focus on constructing PCPs for the NP-complete problem Circuit Satis-

fiability, defined as CktSAT = {C : ∃w C(w) = 1}. Recall that every language in
NTIME(t(n)) reduces to CktSAT in time O(t(n) log t(n)) (cf. [HS66, PF79, Coo88]),
and so a nearly linear-sized PCP for CktSAT implies PCPs for NTIME(t(n)) of
length nearly linear in t(n) for every polynomial t(n).
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ROBUST PCPS OF PROXIMITY 899

2.2. PCPs of proximity. We now present a relaxation of PCPs that verify only
that the input is close to an element of the language. The advantage of this relaxation
is that it allows for the possibility that the verifier may read only a small number of
bits from the input. Actually, for greater generality, we will divide the input into
two parts (x, y), giving the verifier x explicitly and y as an oracle, and we count only
the verifier’s queries to the latter. Thus we consider languages consisting of pairs of
strings, which we refer to as pair languages. One pair language to keep in mind is
the CircuitValue problem CktVal = {(C,w) : C(w) = 1}. For a pair language L,
we define L(x) = {y : (x, y) ∈ L}. For example, CktVal(C) is the set of satisfying
assignments to C. It will be useful below to treat the two oracles to which the verifier
has access as a single oracle; thus for oracles π0 and π1, we define the concatenated
oracle π = π0 ◦ π1 as πb,i = πb

i .

Definition 2.3 (PCPs of proximity (PCPPs)). For functions s, δ : Z
+ → [0, 1],

a verifier V is a probabilistically checkable proof of proximity (PCPP) system for a
pair language L with proximity parameter δ and soundness error s if the following
two conditions hold for every pair of strings (x, y):

Completeness: If (x, y) ∈ L, then there exists π such that V (x) accepts oracle
y ◦ π with probability 1. Formally,

∃π Pr
(I,D)

R←V (x)

[D((y ◦ π)|I) = 1] = 1.

Soundness: If y is δ(|x|)-far from L(x), then for every π, the verifier V (x) accepts
oracle y ◦ π with probability strictly less than s(|x|). Formally,

∀π Pr
(I,D)

R←V (x)

[D((y ◦ π)|I) = 1] < s(|x|).

If s and δ are not specified, then both are assumed to be constants in (0, 1).

Note that the parameters (soundness, randomness, etc.) of a PCPP are measured
as a function of the length of x, the explicit portion of the input.

In comparing PCPPs and PCPs, one should note two differences that have con-
flicting effects. On one hand, the soundness criterion of PCPPs is a relaxation of the
soundness of PCPs. Whereas a PCP is required to reject (with high probability) every
input that is not in the language, a PCPP is only required to reject input pairs (x, y)
in which the second element (i.e., y) is far from being suitable for the first element
(i.e., y is far from L(x)). That is, in a PCPP, nothing is required in the case that y is
close to L(x) and yet y �∈ L(x). On the other hand, the query complexity of a PCPP
is measured more stringently, as it accounts also for the queries to the input-part y
(on top of the standard queries to the proof π). This should be contrasted with a
standard PCP that has free access to all its input and is charged only for access to an
auxiliary proof. To summarize, PCPPs are required to do less (i.e., their performance
requirements are more relaxed), but they are charged for more things (i.e., their com-
plexity is evaluated more stringently). Although it may not be a priori clear, the
stringent complexity requirement prevails. That is, PCPPs tend to be more difficult
to construct than PCPs of the same parameters. For example, while CktVal has a
trivial PCP (since it is in P), a PCPP for it implies a PCP for CktSAT as follows.

Proposition 2.4. If CktVal has a PCPP, then CktSAT has a PCP with
identical parameters (randomness, query complexity, decision complexity, and sound-
ness).
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900 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

An analogous statement holds for any pair language L and the corresponding
projection on first element L1 � {x : ∃y s.t. (x, y) ∈ L}; that is, if L has a PCPP,
then L1 has a PCP with identical parameters.

Proof. A PCP π for “C ∈ CktSAT” can be taken to be w ◦ π′, where w
is a satisfying assignment to C and π′ is a PCPP for (C,w) ∈ CktVal. This proof π
can be verified using the PCPP verifier. The key observation is that if C �∈ CktSAT,
then there exists no w that is 1-close to CktVal(C), because the latter set is
empty.

Note that we obtain only a standard PCP for CktSAT rather than a PCP of
proximity. Indeed, CktSAT is not a pair language, so it does not even fit syntactically
into the definition of a PCPP. However, we can give a PCPP for the closely related
(and also NP-complete) pair language Nondeterministic Circuit Value. Recall
that it is the language NCktVal = {(C,w) : ∃zC(w, z) = 1} (where the variables of
C are explicitly partitioned into w-variables and z-variables).

Proposition 2.5. If CktVal has a PCPP with proximity parameter δ(n),
soundness s(n), randomness r(n), query complexity q(n), and decision complexity
d(n), then Nondeterministic Circuit Value has a PCPP with proximity parame-
ter 2δ(4n), soundness s(4n), randomness r(4n), query complexity q(4n), and decision
complexity d(4n).

Proof. Given a circuit C(·, ·) of size n whose variables are partitioned into one
group of size k and another of size �, we transform it into a new circuit C ′(·, ·) of
size n′ = 4n in which the first group has size k′ ≥ � and the second group has size �.
Specifically, we set t = ��/k and k′ = t · k and define C ′(x′, y) to be a circuit that
checks whether x′ = xt for some x such that C(x, y) = 1. It can be verified that this
can be done in size n+ 3tk ≤ 4n (over the full binary basis). In addition, if w is δ-far
from being extendable to a satisfying assignment of C, then wt is δ-far from being
extendable to a satisfying assignment of C ′.

Now, the NCktVal-verifier, on explicit input C and input oracle w ∈ {0, 1}k, will
construct C ′ as above and expect a proof oracle of the form z ◦ π, where z ∈ {0, 1}m
and π is a PCPP for (C ′, wt ◦ z) ∈ CktVal satisfies as constructed above. That is,
the NCktVal-verifier will simulate the CktVal-verifier on explicit input C ′, input
oracle wt ◦z (which can easily be simulated given oracle access to w and z), and proof
oracle π. Completeness can be verified by inspection. For soundness, suppose that
w is 2δ-far from being extendable to a satisfying assignment of C. Then wt is 2δ-far
from being extendable to a satisfying assignment of C ′, which implies that, for any
z, wt ◦ z is δ-far from satisfying C ′. Thus, by the soundness of the CktVal-verifier,
the acceptance probability is at most s(n′) = s(4n) for any proof oracle π.

Relation to property testing. Actually, the requirements of a PCPP for a pair lan-
guage L refer only to its performance on the (“gap”) promise problem Π = (ΠY ,ΠN ),
where ΠY = L and ΠN = {(x, y) : y is δ-far from L(x)}. That is, this PCPP is
required only to (always) accept inputs in ΠY and reject (with high probability) in-
puts in ΠN (whereas nothing is required with respect to inputs not in ΠY ∪ ΠN ).
Such a gap problem corresponds to the notion of approximation in property test-
ing [RS96, GGR98].7 Indeed, property testers are equivalent to PCPP verifiers
that have no access to an auxiliary proof π. Thus, the relation between property
testing and PCPPs is analogous to the relation between BPP and NP (or MA).
For example, the problem of testing bipartiteness can be cast by the pair language

7This notion of approximation (of decision problems) should not be confused with the approxi-
mation of (search) optimization problems, which is also closely related to PCPs [FGL+96, ALM+98].

D
ow

nl
oa

de
d 

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ROBUST PCPS OF PROXIMITY 901

L = {(n,G) : the n-vertex graph G is bipartite}, where the first (i.e., explicit) input
is used only to specify the length of the second (i.e., nonexplicit) input G, to which
the tester has oracle access (measured in its query complexity). We comment that
the formulation of pair languages allows us to capture more general property testing
problems, where more information about the property (to be tested) itself is specified
as part of the input (e.g., by a circuit, as in CktVal).

In both property testers and PCPPs, the interest is in testers/verifiers that query
their input (and proof oracle) in only a small (preferably constant, and certainly
sublinear) number of bit locations. It turns out that PCPPs are provably stronger
than property testers; that is, there are (natural) separations between property testers
and PCPPs. (Some of the following examples were pointed out in [EKR04].) In the
adjacency matrix model (cf. [GGR98]), bipartiteness has a PCPP in which the verifier
makes only O(1/δ) queries and rejects any graph that is δ-far from being bipartite
with probability at least 2/3. (The proof oracle consists of an assignment of vertices
to the two parts, and the verifier queries the assignment of the end-points of O(1/δ)
random edges. This construction also generalizes to k-colorability, and in fact to any
generalized graph partition property (cf. [GGR98]) with an efficient one-sided tester.)
In contrast, Bogdanov and Trevisan [BT04] showed that any tester for bipartiteness
that rejects graphs that are δ-far from being bipartite must make Ω(δ−3/2) queries.
More drastic separations are known in the incidence-lists (bounded-degree) model
(of [GR02]): testing bipartiteness (resp., 3-colorability) of n-vertex graphs has query
complexity Ω(

√
n) [GR02] (resp., Ω(n) [BOT02]), but again a PCPP will use only

O(1/δ) queries.
Another example comes from the domain of codes. For any good code (or “even”

any code of linear distance), there exists a PCPP with constant queries for checking
whether a given word is a codeword.8 This stands in contrast to the linear lower-
bound on the query complexity of codeword testing for some (good) linear codes,
proved by Ben-Sasson, Harsha, and Raskhodnikova [BHR05].

Needless to say, there may be interesting cases in which PCPPs do not outperform
property testers.

Queries versus proximity. Intuitively, the query complexity of a PCPP should
depend on the proximity parameter δ. Proposition 2.8 (in section 2.5) confirms this
intuition.

The relation of PCPP to other works. As discussed in the introduction (see sec-
tion 1.3), notions related to (and equivalent to) PCPPs have appeared previously in
the literature [BFLS91, EKR04]. In particular, holographic proofs are a special case
of PCPPs (which refer to pair languages L = {(n, C(x)) : x ∈ L′ ∩ {0, 1}n}, where C
is an error-correcting code and L′ ∈ NP), whereas PCPPs are a special case of PCP
spot-checkers (when viewing decision problems as a special case of search problems).
In addition, PCPPs play an important role also in the work of Dinur and Rein-
gold [DR04]; again, see section 1.3. Recall that both our use and their use of PCPPs
is for facilitating proof composition (of PCP-type constructs). Finally, existing PCP
constructions (such as [ALM+98]) can be modified to yield PCPPs.

2.3. Robust soundness. In this section, we present a strengthening of the stan-
dard PCP soundness condition. Instead of asking that the bits which the verifier reads
from the oracle be merely rejected with high probability, we ask that the bits which

8Indeed, this is a special case of our extension of the result of Babai et al. [BFLS91], discussed
in section 1.3. On the other hand, this result is simpler than the locally testable code mentioned in
section 1.4 because here the PCPP is not part of the codeword.
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902 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

the verifier reads be far from being accepted with high probability. The main moti-
vation for this notion is that, in conjunction with PCPPs, it allows for a very simple
composition without the usual costs of “parallelization.”

Definition 2.6 (robust soundness). For functions s, ρ : Z
+ → [0, 1], a PCP

verifier V for a language L has robust-soundness error s with robustness parameter ρ
if the following holds for every x /∈ L: For every oracle π, the bits read by the verifier
V are ρ-close to being accepted with probability strictly less than s. Formally,

∀π Pr
(I,D)

R←V (x)

[∃a s.t. D(a) = 1 and Δ(a, π|I) ≤ ρ] < s(|x|).

If s and ρ are not specified, then they are assumed to be constants in (0, 1). PCPPs
with robust soundness are defined analogously, with the π|I being replaced by (y ◦π)|I .

Note that for PCPs with query complexity q, robust soundness with any robust-
ness parameter ρ < 1/q is equivalent to standard PCP soundness. However, there can
be robust PCPs with large query complexity (e.g., q = nΩ(1)) yet constant robustness,
and indeed such robust PCPs will be the main building block of our construction.

Various observations regarding robust PCPs are presented in section 2.5. We
briefly mention here the relation of robustness to parallelization; specifically, when
applied to a robust PCP, the simple query-reduction technique of Fortnow, Rompel,
and Sipser [FRS94] performs less poorly than usual (i.e., the resulting soundness is
determined by the robustness parameter rather than by the number of queries).

2.4. Composition. As promised, a robust “outer” PCP composes very easily
with an “inner” PCPP. Loosely speaking, we can compose such schemes provided
that the decision complexity of the outer verifier matches the input length of the
inner verifier, and soundness holds provided that the robustness parameter of the
outer verifier upper-bounds the proximity parameter of the inner verifier. Note that
composition does not refer to the query complexity of the outer verifier, which is
always upper-bounded by its decision complexity.

Theorem 2.7 (composition theorem). Suppose that for functions rout, rin, dout,
din, qin : N→N, and εout, εin, ρout, δin : N→ [0, 1], the following hold:

• Language L has a robust PCP verifier Vout with randomness complexity rout,
decision complexity dout, robust-soundness error 1− εout, and robustness pa-
rameter ρout.

• CktVal has a PCPP verifier Vin with randomness complexity rin, query com-
plexity qin, decision complexity din, proximity parameter δin, and soundness
error 1 − εin.

• δin(dout(n)) ≤ ρout(n) for every n.
Then, L has a (standard) PCP, denoted Vcomp, with

• randomness complexity rout(n) + rin(dout(n)),
• query complexity qin(dout(n)),
• decision complexity din(dout(n)), and
• soundness error 1 − εout(n) · εin(dout(n)).

Furthermore, there exists a universal algorithm with black-box access to Vout and Vin

that can perform the actions of Vcomp (i.e., evaluating (I,D) ← Vcomp(x;R)). On
inputs of length n, this algorithm runs in time nc for a universal constant c, with one
call to Vout on an input of length n and one call to Vin on an input of length dout(n).
In addition,

• if (instead of being a PCP) the verifier Vout is a PCPP with proximity pa-
rameter δout(n), then Vcomp is a PCPP with proximity parameter δout(n);
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ROBUST PCPS OF PROXIMITY 903

• if Vin has robust soundness with robustness parameter ρin(n), then Vcomp has
robust soundness with robustness parameter ρin(dout(n)).

Proof. We will use the inner PCPP to verify that the oracle positions selected by
the (robust) outer verifier are close to being accepted by the outer verifier’s decision
circuit. Thus, the new proof will consist of a proof for the outer verifier as well as
proofs for the inner verifier, where each of the latter corresponds to a possible setting
of the outer verifier’s coin tosses (and is intended to prove that the bits that should
have been read by the outer verifier satisfy its decision circuit). We will index the
positions of the new (combined) oracle by pairs such that (out, i) denotes the ith
position in the part of the oracle that represents the outer verifier’s proof oracle, and
(R, j) denotes the jth position in the Rth auxiliary block (which represents the Rth
possible proof oracle (for the inner verifiers), which in turn is associated with the
outer verifier’s coins R ∈ {0, 1}rout). For notational convenience, we drop the input
length n from the notation below; all parameters of Vout are with respect to length n
and all parameters of Vin are with respect to length dout(n). With these conventions,
the following is the description of the composed verifier Vcomp(x):

1. Choose R
R←{0, 1}rout .

2. Run Vout(x;R) to obtain Iout = (i1, . . . , iqout) and Dout.
3. Run Vin(Dout) (on random coin tosses) to obtain Iin = ((b1, j1), . . . , (bqin , jqin))

and Din.
(Recall that Vin, as a PCPP verifier, expects two oracles, an input oracle and
a proof oracle, and thus makes queries of the form (b, j), where b ∈ {0, 1}
indicates which oracle it wishes to query.)

4. For each � = 1, . . . , qin, determine the queries of the composed verifier as
follows:
(a) If b� = 0, set k� = (out, ij�); that is, Vin’s queries to its input oracle

are directed to the corresponding locations in Vout’s proof oracle. Recall
that the jth bit in Vin’s input oracle is the jth bit in the input to Dout,
which in turn is the ijth bit in the proof oracle of Vout.

(b) If b� = 1, set k� = (R, j�); that is, Vin’s queries to its Rth possible proof
oracle are directed to the corresponding locations in the auxiliary proof.
Recall that the jth bit in the proof oracle that Vin is using to verify the
claim referring to the outer verifier’s coins R is the jth bit in the Rth
block of the auxiliary proof.

5. Output Icomp = (k1, . . . , kqin) and Din.

The claims about Vcomp’s randomness, query, decision, and computational com-
plexities can be verified by inspection. Thus, we proceed to check completeness and
soundness.

Suppose that x ∈ L. Then, by completeness of the outer verifier, there ex-
ists a proof πout making Vout accept with probability 1. In other words, for every
R ∈ {0, 1}rout , if we set (Iout, Dout) = Vout(x;R), we have Dout(πout|Iout

) = 1. By
completeness of the inner verifier, there exists a proof πR such that Vin(Dout) ac-
cepts the oracle πout|Iout ◦ πR with probability 1. If we set π(t, ·) = πt(·) for all
t ∈ {out} ∪ {0, 1}rout , then Vcomp accepts π with probability 1.

Suppose that x /∈ L, and let π be any oracle. Define oracles πt(·) = π(t, ·). By
the robust soundness (of Vout), with probability greater than εout over the choices
of R ∈ {0, 1}rout , if we set (Iout, Dout) = Vout(x;R), then πout|Iout is ρout-far from
satisfying Dout. Fixing such an R, by the PCPP soundness of Vin (and δin ≤ ρout),
it holds that Vin(Dout) rejects the oracle πout|Iout ◦ πR (or, actually, any proof oracle
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904 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

augmenting the input oracle πout|Iout
) with probability greater than εin. Therefore,

Vcomp(x) rejects oracle π with probability at least εout · εin.
The additional items follow by similar arguments. If Vout is a PCPP verifier,

then the input is of the form (x, y), where y is given via oracle access. In this case,
throughout the proof above we should replace oracle πout with oracle y ◦ πout, and
for soundness we should consider the case that y is δout-far from L(x). If Vin has
robust soundness, then at the end of the soundness analysis, we note that not only
is πout|Iout ◦ πR rejected with probability greater than εin but it is also ρin-far from
being accepted by Vin (and hence also by Vcomp).

The above theorem can serve as a substitute for the original composition theorem
in the derivation of the original PCP theorem [ALM+98]. Specifically, one simply
needs to modify the (precomposition) verifiers of [ALM+98] to both test proximity
and have robust soundness. As we shall see in the next section, robust soundness
can be obtained automatically from “parallelized PCPs” (as already constructed in
[ALM+98]). In addition, the PCPs [ALM+98] can easily be made PCPPs by aug-
menting them with appropriate “proximity tests.” Thus, all the technical work in
Part II is not forced by the new notion of robust PCPPs, but rather is aimed at
constructing PCPPs (and thus PCPs) which have nearly linear length.

2.5. Various observations and transformations. Most of this subsection
refers to robust PCPs, but we start with an observation regarding PCPPs.

Queries versus proximity. Intuitively, the query complexity of a PCPP should
depend on the proximity parameter δ. The following proposition confirms this intu-
ition.

Proposition 2.8 (queries versus proximity). Suppose pair language L has a
PCPP with proximity parameter δ, soundness error 1 − ε, and query complexity q.
Suppose further that there exists (x, y) ∈ L such that |x| = n and |y| = m, such that
if we let z ∈ {0, 1}m be a random string of relative Hamming distance δ′ � δ′(x) from
y, we have

Pr
z

[z is δ-far from L(x)] ≥ γ � γ(x).

Then

q >
ε · γ
δ′

In particular, if L = CktVal, then q ≥ ε/(δ + O(1/n)).
The first part of Proposition 2.8 does not specify the relation of δ′ to δ (although,

surely, δ′ > δ must hold for any γ > 0 because Δ(z, L(x)) ≤ Δ(z, y) = δ′). The second
part relies on the fact that, for Circuit Value, one may set δ′ as low as δ+O(1/n).

Proof. By completeness, there exists an oracle π such that the PCPP verifier
V (x) accepts oracle y ◦ π with probability 1. Consider z = y⊕η, where η ∈ {0, 1}m
is a uniformly distributed string with relative Hamming weight δ′. If we invoke V (x)
with oracle z ◦ π, then the probability (over the choice of η) that any of the positions
read by V has been changed is at most q · δ′. Thus, V (x) rejects oracle (y ⊕ η) ◦ π
with probability at most q · δ′.

On the other hand, by assumption z is δ-far from L(x) with probability at least
γ, in which case V (x) should reject oracle z ◦π with probability greater than ε by the
PCPP soundness. Thus, V (x) should reject with probability greater than γ · ε (over
the choice of z and the coin tosses of V ), and we conclude that q ·δ′ > γ ·ε, as desired.
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ROBUST PCPS OF PROXIMITY 905

For the application to Circuit Value, let C : {0, 1}m → {0, 1} be a circuit
of size n that accepts only the all-zeroes string 0m, for m = Ω(n). Then we have
(C, 0m) ∈ CktVal, but for every δ′ > δ and every string z of relative Hamming
weight δ′, we see that (C, z) is δ-far from satisfying C. Setting γ = 1 and δ′ such that
δ′m is the least integer greater than δm completes the proof.

Expected robustness. Occasionally, we will be interested in a variant of robust
soundness, which refers to distance on average rather than with high probability.

Definition 2.9 (expected robustness). For a function ρ : Z
+ → [0, 1], a PCP

has expected robustness ρ if for every x /∈ L, we have

∀π,E
(I,D)

R←V (x)
[Δ(π|I , D−1(1))] > ρ(|x|).

Expected robustness for PCPPs is defined analogously.
We now present several generic transformations regarding robustness and sound-

ness. Although we state them only for PCPs, all of these results also hold for PCPPs,
with no change in the proximity parameter. The following proposition relates robust
soundness to expected robustness.

Proposition 2.10 (robust soundness versus expected robustness). If a PCP has
robust-soundness error 1 − ε with robustness ρ, then it has expected robustness ε · ρ.
On the other hand, if a PCP has expected robustness ρ, then for every ε ≤ ρ, it has
robust-soundness error 1 − ε with robustness parameter ρ− ε.

Expected robustness can easily be amplified to standard robustness with low
robust-soundness error, using any averaging (i.e., oblivious) sampler (cf. [Gol97]).
Combined with Proposition 2.10, we get a (soundness) error reduction for robust
PCPs. For example, using the expander-neighborhood sampler of [GW97], we have
the following.

Lemma 2.11 (error reduction via expander neighborhoods). If a language L has
a PCP with expected robustness ρ, randomness complexity r, query complexity q, and
decision complexity d, then for every two functions s, γ : Z

+ → [0, 1] then L has a
PCP with

• robust-soundness error s with robustness parameter ρ− γ,
• randomness complexity r + O(log(1/s) + log(1/γ)),
• query complexity O(1/(sγ2)) · q, and
• decision complexity O(1/(sγ2)) · d.

An alternative error-reduction procedure that will also be used is given by pairwise
independent samples as follows.

Lemma 2.12 (error reduction via pairwise independence). If a language L has
a PCP with expected robustness ρ, randomness complexity r, query complexity q, and
decision complexity d such that ρ · 2r ≥ 2, then L has a PCP with

• robust-soundness error 1/2 with robustness parameter ρ/2,
• randomness complexity 2r,
• query complexity 2q/ρ, and
• decision complexity 2d/ρ.

Non-Boolean PCPs. The next few transformations involve non-Boolean PCPs,
that is, PCPs in which the oracle returns symbols over some larger alphabet Σ =
{0, 1}a rather than bits; we refer to a = a(n) as the answer length of the PCP. (Often,
non-Boolean PCPs are discussed in the language of multiprover interactive proofs,
but it is simpler for us to work with the PCP formulation.)

Robust soundness of a non-Boolean PCP is defined in the natural way, using
Hamming distance over the alphabet Σ. (In the case of a robust non-Boolean PCPP,
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906 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

we still treat the input oracle as binary.)
The first transformation provides a way of converting non-Boolean PCPs to

Boolean PCPs in a way that preserves robust soundness.
Lemma 2.13 (alphabet reduction). If a language L has a non-Boolean PCP with

answer length a, query complexity q, randomness complexity r, decision complexity
d, and robust-soundness error s with robustness parameter ρ, then L has a Boolean
PCP with query complexity O(a · q), randomness complexity r, decision complexity
d+O(a · q), and robust soundness error s with robustness parameter Ω(ρ). If, instead
of robust-soundness, the non-Boolean PCP has expected robustness ρ, then the Boolean
PCP has expected robustness Ω(ρ).

The proof uses a good error-correcting code (i.e., constant relative distance and
rate). Furthermore, to obtain decision complexity d + O(a · q) we should use a code
having linear-sized circuits for encoding (cf. [Spi96]). Using more classical codes would

only give decision complexity d+Õ(a ·q), which is actually sufficient for our purposes.
Proof. This transformation is analogous to converting non-Boolean error-correcting

codes to Boolean ones via “code concatenation.” Let V be the given non-Boolean PCP
verifier, with answer length a. Let ECC : {0, 1}a → {0, 1}b for b = O(a) a binary
error-correcting code of constant relative minimum distance, which can be computed
by an explicit circuit of size O(a). We will augment the original oracle π having a-bit
entries with an additional oracle τ having b-bit entries, where τi is supposed to be
ECC(πi). (We note that including the original oracle simplifies the argument as well
as frees us from assuming a noiseless decoding algorithm.)

Our new verifier V ′(x), on oracle access to π ◦ τ , will simulate V (x), and for each
query i made by V , will query the a bits in πi and the b bits in τi, for a total of
q · (a+ b) binary queries. That is, if V queries positions I = (i1, . . . , iq), V

′ will query
positions I ′ = ((0, i1), . . . , (0, iq), (1, i1), . . . , (1, iq)). If V outputs a decision circuit
D : ({0, 1}a)q → {0, 1}, V ′ will output the circuit D′ : ({0, 1}a)q × ({0, 1}b)q → {0, 1}
defined by

D′(x1, . . . , xq, y1, . . . , yq) = D(x1, . . . , xq) ∧ C(x1, . . . , xq, y1, . . . , yq),

where

C(x1, . . . , xq, y1, . . . , yq) =

q∧
i=1

(yi = ECC(xi)).

Since ECC can be evaluated by a circuit of size O(a), we see that |D′| = |D|+O(a ·q),
as desired.

For completeness of V ′, we note that any accepting oracle π for V can be aug-
mented to be an accepting oracle for V ′ by setting τi = ECC(πi) for all i. For
soundness of V ′, suppose x /∈ L and let (π, τ) be any pair of oracles. Define a “de-
coded” oracle π̂ by setting π̂i to be the string x ∈ {0, 1}a which minimizes the distance
between ECC(x) and τi. We will relate the robustness of V on oracle π̂ to the ro-
bustness of V ′ on oracles π and τ . Specifically, let β > 0 be a constant such that
the (absolute) minimum distance of ECC is greater than 2β · (a + b). Then we will
show that for every sequence R of coin tosses and for every α > 0, if the bits read
by V ′(x;R) from π ◦ τ are αβ-close to being accepted, then the bits read by V from
π̂ are α-close to being accepted. Thus, both robustness parameters (standard and
expected) decrease by at most a factor of β.

Consider any sequence R of coin tosses, let (I,D) = V (x;R), and write I =
(i1, . . . , iq). Suppose that (πi1 , . . . , πiq , τi1 , . . . , τiq ) is αβ-close to some (π′

i1
, . . . , π′

iq
,
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ROBUST PCPS OF PROXIMITY 907

τ ′i1 , . . . , τ
′
iq

) that satisfies D′ = D ∧ C. Then, for at least a 1 − α fraction of j ∈ [q],

the pair (πij , τij ) is β-close to (π′
ij
, τ ′ij ) = (π′

ij
,ECC(π′

ij
)). For such j, the choice of β

implies that ECC(π′
ij

) is the closest codeword to τij and hence π̂ij = π′
ij

. Since the

π′’s satisfy D, we conclude that the π̂’s are α-close to satisfying D, as desired.

The usual “parallelization” paradigm of PCPs [LS97, ALM+98] converts a Boolean
PCP with many queries into a non-Boolean PCP with a constant number of queries,
where this is typically the first step in PCP composition. As mentioned in the intro-
duction, we cannot afford parallelization, and robust soundness will be our substitute.
Nevertheless, there is a close (but not close enough for us) connection between paral-
lelized PCPs and PCPs with robust soundness as follows.

Proposition 2.14 (parallelization versus robustness).

1. If a language L has a non-Boolean PCP with answer length a, query complex-
ity q, randomness complexity r, decision complexity d, and soundness error s, then L
has a (Boolean) PCP with query complexity O(a · q), randomness complexity r, deci-
sion complexity d + O(a · q), and robust-soundness error s with robustness parameter
ρ = Ω(1/q).

2. If a language L has a (Boolean) PCP with query complexity q, randomness
complexity r, decision complexity d, and expected robustness ρ, then L has a 2-query
non-Boolean PCP with answer length q, randomness complexity r + log q, decision
complexity d + O(1), and soundness error 1 − ρ.

Thus, for constant soundness and constant robustness parameters, q-query robust
(Boolean) PCPs are essentially equivalent to constant query non-Boolean PCPs with
answer length Θ(q). However, note that in passing from robust soundness to a 2-query
non-Boolean PCP, the randomness complexity increases by log q. It is precisely this
cost that we cannot afford, and hence we work with robust soundness in the rest of
the paper.

Proof. For item 1, note that any non-Boolean PCP with query complexity q and
soundness error s has robust-soundness error s for any robustness parameter ρ < 1/q.
Thus, the claim follows from Lemma 2.13.

Turning to item 2, let V be a robust PCP verifier for L with the stated parameters.
We use the usual query-reduction technique for PCPs [FRS94] and observe that when
applied to a robust PCP, the detection probability (i.e., one minus the soundness
error) does not deteriorate by a factor of q as usual. Instead, the detection probability
of the resulting 2-query (non-Boolean) PCP equals the expected robustness of V .9

Specifically, the 2-query non-Boolean PCP verifier V ′ is defined as follows:

• V ′ expects two oracles: one Boolean oracle π corresponding to the oracle for
V , and a second oracle τ with answer length q, indexed by random strings of
V .

• On input x, the verifier V ′ selects a random string R for V and j
R← [q]

and computes (I,D) = V (x;R), where I = (i1, . . . , iq). It sets I ′ = (R, ij)
(which means the queries for the values τR and πij ) and D′(a, b) = [(D(a) =
1) ∧ (aj = b)]; that is, it accepts if and only if [D(τR) = 1] ∧ [(τR)j = πij ].

9It may be more instructive (but more cumbersome) to discuss what is happening in terms of
ordinary robustness. Suppose that V has robust-soundness error s = 1−d with respect to robustness
ρ. The standard analysis ignores the robustness and asserts that the 2-query (non-Boolean) PCP
has soundness error s′ = 1 − d′, where d′ = d/q. This crude analysis implicitly assumes the trivial
bound (i.e., 1/q) of the robustness parameter. A more refined analysis takes advantage of the actual
bound of the robustness parameter and asserts that the 2-query (non-Boolean) PCP has soundness
error s′ = 1 − ρ · d.
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908 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

It can be verified that the probability that V ′ rejects a false assertion is precisely the
expected robustness of V . In particular, suppose that V ′(x) accepts the oracle pair
(π, τ) with probability p. We may assume, without loss of generality, that D(τR) = 1
for any R, where (·, D) = V (x;R). Then, it follows that the expected (relative)
distance of π|I from τR, where (I,D) = V (x;R) for a random R, equals 1−p (because
1− p = PrR,j [(τR)j �= πij ], which in turn equals ER[Δ(τR, π|I)]). This means that on
the average, π is (1 − p)-close to assignments that satisfy the corresponding decision
circuits. Thus, if x �∈ L, then 1 − p > ρ, and p < 1 − ρ follows.

Robustness versus proximity. Finally, for PCPPs, we prove that the robustness
parameter is upper-bounded by the proximity parameter.

Proposition 2.15 (robustness versus proximity). Suppose a pair language L has
a PCPP with proximity parameter δ and expected robustness ρ. Suppose further that
there exists (x, y) ∈ L such that |x| = n and |y| = m, such that if we let z ∈ {0, 1}m
be a random string at relative Hamming distance δ′ � δ′(x) from y, we have

Pr
z

[z is δ-far to L(x)] ≥ γ � γ(x).

Then

ρ ≤ δ′/γ.

In particular, if L = CktVal, then ρ ≤ δ + O(1/n).
Proof. The proof is similar to that of Proposition 2.8. By completeness, there

exists an oracle π such that the PCPP verifier V (x) accepts oracle y ◦ π with proba-
bility 1. If we run V (x) with oracle z ◦ π instead, then bits read by V have expected
distance at most δ′ from being accepted, where the expectation is taken over the
choices of z (even when fixing the coins of V ).

On the other hand, z is δ-far from L(x) with probability at least γ, and for any
such fixed z the bits read by V from z ◦π should have expected distance greater than
ρ from being accepted (over the coin tosses of V ). Thus, the expected distance of
z ◦ π from being accepted is greater than γ · ρ, where here the expectation is taken
over the choice of z and the coin tosses of V . We conclude that δ′ > γ · ρ, as desired.

Recall that in the proof of Proposition 2.8, we have demonstrated the existence
of a pair (C,w) such that for any string z at distance δ′ = δ+O(1/n) from w it holds
that w is δ-far from satisfying C. Setting γ = 1, the second part follows.

3. Very short PCPs with very few queries. In this section we prove the
main results of this work; that is, we establish Theorems 1.2 and 1.3. Our starting
point is the following robust PCPP, which is constructed in Part II, sections 5–8.

Theorem 3.1 (main construct). There exists a universal constant c such for all
n,m ∈ Z

+, 0 < δ, γ < 1/2 satisfying n1/m ≥ mcm/(γδ)3 and δ ≤ γ/c, CktVal has a
robust PCPP (for circuits of size n) with the following parameters:

• randomness
(
1 − 1

m

)
log n + O(m logm) + O(log log n) + O(log(1/δ));

• decision complexity n1/m ·poly(logn, 1/δ); which also upper-bounds the query
complexity;10

• perfect completeness; and
• for proximity parameter δ, a verifier having robust-soundness error γ with

robustness parameter (1 − γ)δ.

10In fact, we will upper-bound the query complexity by q = n1/m ·poly(logn, 1/δ) and show that

the verifier’s decision can be implemented by a circuit of size Õ(q), which can also be bounded by
n1/m · poly(logn, 1/δ) with a slightly larger unspecified polynomial.

D
ow

nl
oa

de
d 

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ROBUST PCPS OF PROXIMITY 909

We comment that the condition δ < γ/c merely means that we present robust
PCPPs only for the more difficult cases (when δ is small), and our robustness pa-
rameter does not improve for larger values of δ. We call the reader’s attention to
the typically small values of the query and randomness complexities, which yield a
proof length that is upper-bounded by poly(mm log n) · n (for δ and γ as small as
1/poly(mm, log n)), as well as to the small values of the soundness error and the small
deterioration of robustness with respect to proximity.

Note that the main construct (of Theorem 3.1) works only when n, the size of
the input circuit, is not too small (more precisely, when n1/m ≥ mcm/δ3). While
constructing our short PCPs (via proof composition), we need robust PCPPs that
work for even smaller values of n. For this purpose, we also construct the following
robust PCPP (of Theorem 3.2) that has parameters similar to a PCP constructed
in [ALM+98]. In comparison to the main construct (of Theorem 3.1), this PCPP
is not as efficient in randomness (i.e., it has randomness complexity O(log n) rather
than (1 − o(1)) log2 n). However, since we plan to use the latter (robust) PCPP only
towards the final stages of composition, we can afford to pay this cost in randomness.
Theorem 3.2 will be proved in the second part of this work by modifying the proof
of Theorem 3.1. An alternate construction of this robust PCPP can be obtained by
adding a suitable proximity test to the “parallelized PCPs” of [ALM+98].

Theorem 3.2 (ALMSS-type robust PCPP). For all n ∈ Z
+ and δ ∈ (0, 1),

CktVal has a robust PCPP (for circuits of size n) with the following parameters:
• randomness O(log n);
• decision complexity poly logn, which also upper-bounds the query complexity;
• perfect completeness; and
• for proximity parameter δ, a verifier having robust-soundness error 1 − Ω(δ)

with robustness parameter Ω(1).
Theorems 3.1 and 3.2 differ also in their robustness parameters. Theorem 3.2

provides a better bound on the robustness parameter (i.e., Ω(1) rather than (1− γ)δ
provided by Theorem 3.1), while guaranteeing only a much weaker robust-soundness
error (i.e., 1−Ω(δ) rather than γ), where γ > δ > 0 is typically small. It is instructive
to compare the expected robustness provided by the two results: The expected robust-
ness in Theorem 3.1 is at least (1−γ)2δ, while that in Theorem 3.2 is Ω(δ)·Ω(1) = Ω(δ).
Thus, for γ � 1, the expected robustness in Theorem 3.1 can be very close to the
proximity parameter δ (which is close to optimal; see Proposition 2.15), whereas in
Theorem 3.2 the expected robustness is always a constant factor smaller than the
proximity parameter. Hence, the robust PCPP of Theorem 3.1 is suitable for a large
number of proof composition operations, whereas the one in Theorem 3.2 is useful
when the query complexity of the outer verifier is already very small (and Theo-
rem 3.1 can no longer be applied). Indeed, this is exactly how these two theorems are
used in the construction of our short PCPs. Using Theorems 3.1 and 3.2, we derive a
general trade-off between the length of PCPs and their query complexity as follows.

Theorem 3.3 (randomness versus query complexity trade-off for PCPPs). For
every parameter n, t ∈ N such that 3 ≤ t ≤ 2 log log n

log log log n there exists a PCPP for

CktVal (for circuits of size n) with the following parameters:
• randomness complexity log2 n + At(n), where

At(n) � O(t + (logn)1/t) log log n + O((log n)2/t);(3.1)

• query complexity O(1);
• perfect completeness; and
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910 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

• soundness error 1 − Ω(1/t) with respect to proximity parameter Θ(1/t).

Alternatively, we can have query complexity O(t) and soundness error 1/2 maintaining
all other parameters.

For t ∈ [3, . . . , 0.99 log log n
log log log n ], we have (log n)1/t > (log log n)1/0.99, and thus At(n) =

O((log n)2/t). On the other hand, for t ≥ 1.01 log log n
log log log n , we have (log n)1/t ≤ (log log n)1/1.01,

and thus At(n) = O
( (log log n)2

log log log n

)
= o(log log n)2.

Theorem 3.3 actually asserts a PCPP (for CktVal), but a PCP for CktSAT and
a PCPP for Nondeterministic Circuit Value (of the same complexity) follow;
see Propositions 2.4 and 2.5. Theorems 1.2 and 1.3 follow by suitable settings of the
parameter t. Further details as well as a corollary appear in section 3.2.

3.1. Proof of Theorem 3.3. Theorem 3.3 is proved by using the robust PCPP
described in Theorem 3.1. Specifically, this robust PCPP is composed with itself
several times (using the composition theorem from section 2). Each such composition
drastically reduces the query complexity of the resulting PCP, while only increasing
very moderately its randomness complexity. The deterioration of the soundness error
and the robustness is also very moderate. After composing the robust PCPP with
itself O(t(n)) times, we compose the resulting robust PCP with the ALMSS-type
robust PCPP thrice to reduce the query complexity to poly log log logn. Finally, we
compose this resultant robust PCPP with a PCPP parameter roughly Ω(1/t) that
has query complexity O(1) and exponential length. The latter PCPP can be obtained
by a suitable modification of the Hadamard-based PCP of [ALM+98], as shown in
Appendix A. We now turn to the actual proof.

Proof. We construct the PCPP of Theorem 3.3 by composing the robust PCPP
described in Theorem 3.1 with itself several times. Each such composition reduces
the query complexity from n to approximately n1/m. Ideally, we would like to do
the following: Set m = (logn)1/t and compose the robust PCPP of Theorem 3.1
with parameter m with itself t − 1 times. This would result in a robust PCPP of
query complexity roughly n1/mt

= n1/logn = O(1), giving us the desired result.
However, we cannot continue this repeated composition for all the t − 1 steps, as
the requirements of Theorem 3.1 (namely, n1/m ≥ mcm/(δγ)3) are violated in the
last two steps of the repeated composition. So we instead do the following: In the
first stage, we compose the (new and) highly efficient verifier from Theorem 3.1 with

itself t − 3 times. This yields a verifier with query complexity roughly n1/mt−2

=
(n1/mt

)m
2

= 2m
2

= exp(log2/t n) � n, while the soundness error is bounded away
from 1 and robustness is Ω(1/t). In the second stage, we compose the resultant robust
PCPP a constant number of times with the ALMSS-type robust PCPP described in
Theorem 3.2 to reduce the query complexity to poly log log logn (and keeping the
other parameters essentially the same). The ALMSS-type PCPP is (relatively) poor
in terms of randomness; however, the input size to the ALMSS-type PCPP is too
small to affect the randomness of the resultant PCPP. Finally, we compose with the
Hadamard-based verifier of Theorem A.1 to bring the query complexity down to O(1).
In all stages, we invoke the composition theorem (Theorem 2.7).

Throughout the proof, n denotes the size of the circuit that is given as the explicit
input to the PCPP verifier that we construct. We shall actually construct a sequence
of such verifiers. Each verifier in the sequence will be obtained by composing the prior
verifier (used as the outer verifier in the composition) with an adequate inner verifier.
In the first stage, the inner verifier will be the verifier obtained from Theorem 3.1,
whereas in the second and third stages it will be the one obtained from Theorem 3.2
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ROBUST PCPS OF PROXIMITY 911

and Theorem A.1, respectively. Either way, the inner verifier will operate on circuits of
much smaller size (than n) and will use a proximity parameter that is upper-bounded
by the robustness parameter of the corresponding outer verifier.

Stage I. Let m = (logn)
1
t ≥ 2 and γ = 1

t . For this choice of m and γ, let V0

be the verifier obtained from Theorem 3.1. We recall the parameters of this verifier:
For circuits of size � and any proximity parameter δ0 ∈ (γ/3c, γ/c), its randomness
complexity is r0(�) � (1− 1

m ) · log2 �+O(log log �)+O(m logm)+O(log t), its decision

(and query) complexity is d0(�) � �
1
m ·poly(log �, t), its soundness error is s0 � γ, and

its robustness is ρ0 ≥ (1 − γ)δ0.

We compose V0 with itself t − 3 times for the same fixed choice of m and γ to
obtain a sequence of verifiers of increasingly smaller query complexity.11 While doing
so, we will use the largest possible proximity parameter for the inner verifier (V0) in
each step; that is, in the ith composition, we set the proximity parameter of the inner
verifier to equal the robustness of the outer verifier, where the latter is the result of
i − 1 compositions of V0 with itself. We get a sequence of verifiers V1, . . . , Vt−2 such
that V1 = V0 and the verifier Vi is obtained by composing (the outer verifier) Vi−1

with (the inner verifier) V0, where the proximity parameter of the latter is set to equal
the robustness of the former. Unlike V0, which is invoked on different circuit sizes and
(slightly) different values of the proximity parameter, all the Vi’s (i ∈ [t− 2]) refer to
circuit size n and proximity parameter δ � γ/c < 1/t.

Let ri, di, δi, si, and ρi denote the randomness complexity, decision (and query)
complexity, proximity parameter, soundness error, and the robustness parameter of
the verifier Vi. (Recall that Vi will be composed with the inner verifier V0, where in this
composition the input size and proximity parameter of the latter will be set to di and

ρi, respectively, and so we will need to verify that d
1/m
i ≥ mcm/(γρi)

3 and ρi < γ/c for
i < t− 2).12 We first claim that the decision complexity, proximity, soundness-error,
robustness, and proof length parameters satisfy the following conditions:

(1) Decision complexity: di(n) ≤ a(n,m)2 · n1/mi

, where a(�,m) � d0(�)/�
1/m =

poly(log �, t). On the other hand, di(n) ≥ n1/mi

.
(2) Proximity: δi = δ.
(3) Soundness error: si ≤ 1 − (1 − γ)i. (In particular, si < iγ.)
(4) Robustness: ρi ≥ (1 − γ)i · δ. On the other hand, ρi ≤ ρ0 < γ/c.
(5) Proof length: 2ri(n)di(n) ≤ b(n,m)i · n, where b(�,m) � 2r0(�) · d0(�)/� =

poly(mm, log �, t).

We prove this claim by induction on i. For starters, note that the base case (i.e.,
i = 1) follows from the properties of V0; in particular, d1(n) ≤ poly(logn, t) · n1/m

and 2r1(n)d1(n) ≤ poly(mm, log n, t) ·n. Turning to the induction step, assuming that

11We assume, for simplicity, that t ≥ 3. Note that it suffices to establish the claimed result for t
greater than any universal constant.

12We also need to verify that n1/m ≥ mcm/(γδ0)3 and δ0 < γ/c for the initial verifier V1 = V0,
but this is true for our choice of parameters. Furthermore, as ρi can only deteriorate with each
composition, we have that δ0 = ρi ≤ ρ0 ≤ γ/c. Thus, the only condition that needs to be verified is

d
1/m
i ≥ mcm/(γρi)

3 for i < t− 2.
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912 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

these claims holds for Vi, we prove that they hold also for Vi+1. For (1), note that

di+1(n) = d0(di(n)) [by the composition theorem]
= a(di(n),m) · di(n)1/m [by definition of a(·, ·)]
≤ a(n,m) · di(n)1/m [by monotonicity of a(·, ·) and

di(n) ≤ n]

≤ a(n,m) ·
(
a(n,m)2 · n1/mi

)1/m

[by induction]

≤ a(n,m)2 · n1/mi+1

[using m ≥ 2]

and di+1(n) ≥ di(n)1/m ≥ n1/mi+1

also holds. Clearly δi = δ and the bound on
si is straightforward from the composition theorem. Recalling that the proximity
parameter for V0 in this composition is set to ρi, we see that the robustness of the
composed verifier Vi+1 is ρi+1 = (1 − γ)ρi = (1 − γ)i+1δ as desired. Furthermore,
ρi = (1 − γ)iδ ≥ (1 − 1

t )
tδ ≥ e−1δ = γ/O(1). We now move to the last condition

(essentially bounding the randomness). Notice first that ri+1(n) = ri(n) + r0(di(n)),
and thus

2ri+1(n) · di+1(n) = 2ri(n) · 2r0(di(n)) · d0(di(n)) [by the composition theorem]
= 2ri(n) · di(n) · b(di(n),m) [by definition of b(·, ·)]
≤ b(n,m)i · n · b(n,m) [by induction and

monotonicity of b(·, ·)]
= n · b(n,m)i+1.

Thus, Part (5) is verified. Recall that we have to verify that d
1/m
i ≥ mcm/(γρi)

3

for i < t − 2 as promised. We have d
1/m
i ≥ (n1/mi

)1/m = n1/mi+1 ≥ n1/mt−2

(since

i < t − 2). Since m = (logn)1/t, we have n1/mt

= 2. Hence, d
1/m
i ≥ (n1/mt

)m
2

=

2m
2

. On the other hand, mcm/(γρi)
3 ≤ mcm/(e−1γδ)3 = mcm · poly(t) because

δ = γ/c and γ = 1/t. Thus it suffices to verify that 2m
2

/mcm ≥ poly(t) for 2 ≤ t ≤
2 log log n/ log log log n, which is straightforward.13

Lastly, we consider the running time of Vi, denoted Ti, which ought to be poly-
nomial. A careful use of the composition theorem (Theorem 2.7) indicates that
Ti(n) = poly(n) + Ti−1(n) for every i = 2, . . . , t − 2, where T1(n) = poly(n) (since
V1 = V0). Alternatively, unraveling the inductive composition, we note that Vi con-
sists of invoking V0 i times, where in the first invocation V0 is invoked on Vi’s input
and in later invocations V0 is invoked on an input obtained from the previous invoca-
tion. Furthermore, the output of Vi is obtained by combining the inputs obtained in
these i ≤ t− 2 < n invocations.

We now conclude the first stage by showing that the final verifier Vc = Vt−2 has the
desired properties. By Part (5) above (and the fact that dt−2 ≥ 1), we have rc(n) =
rt−2(n) ≤ log n+(t−2)·log b(n,m) ≤ log n+t log b(n,m). By the definition of b(n,m),
we have log b(n,m) = O(log log n) + O(m logm) + O(log t) = O(log log n + m logm),

whereas m logm = (logn)
1
t · 1

t log log n. Thus rc(n) ≤ log2 n + O(t · log log n) + t ·
O(m logm) = log2 n + O(t + (logn)

1
t ) · log log n. The decision complexity of Vc is

dc(n) = dt−2(n) ≤ a(n,m)2 · n1/mt−2

= a(n,m)2 · 2m
2

, because n1/mt

= 2. Using

13Note that as t varies from 2 to 2 log log n/ log log log n, the value of m varies from√
logn to

√
log logn. For t ∈ [2, 2 log log n/ log log log n], the maximum value of poly(t) is

poly(log log n/ log log log n) = poly(log log n). On the other hand, for m ∈ [
√

log logn,
√

logn], the

minimum value of 2m
2
/mcm > 2m

2/2 is 2
√

log log n2/2 =
√

logn � poly(log log n).
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ROBUST PCPS OF PROXIMITY 913

a(n,m) = poly(logn, t), it follows that dc(n) ≤ 2m
2 ·poly(logn). The proximity of Vc

equals δ, its soundness error is sc = st−2 = 1−(1−γ)t−2 = 1−(1−1/t)t−2 < 1−Ω(1),
and its robustness is ρc = ρt−2 ≥ (1 − γ)t−2δ = δ/e = Ω(1/t).

Stage II. We now compose the verifier Vc with the ALMSS-type verifier Va de-
scribed in Theorem 3.2 thrice to obtain the verifiers V ′, V ′′, and V ′′′, respectively; that
is, V ′ equals Vc composed with Va, whereas V ′′ equals V ′ composed with Va, and V ′′′

equals V ′′ composed with Va. We apply composition as before, setting the proximity
parameter of the inner verifier to equal the robustness parameter of the outer verifier.
Recall from Theorem 3.2 that the ALMSS-type verifier Va has the following param-
eters: randomness ra(�, δa) = O(log �), decision complexity da(�, δa) = poly log �,
soundness error sa(�, δa) = 1 − Ω(δa), and robustness ρa(�, δa) = Ω(1) for input
size � and proximity parameter δa. Recall that when composing Vc with Va we
set δa = ρc = Ω(1/t), whereas when composing V ′ (resp., V ′′) with Va we set
δa = ρ′ = Ω(1) (resp., δa = ρ′′ = Ω(1)). Each composition with the inner verifier Va

adds O(log d) to the randomness, while reducing the query complexity to poly log d,
where d is the decision complexity of the outer verifier. Furthermore, when composing
any of these outer verifiers (i.e., either Vc, V

′, or V ′′) with Va, the resulting verifier
has robustness parameter Ω(1) while its robust-soundness error is 1 − Ω((1 − s)ρ),
where ρ and s are the robustness parameter and soundness error of the outer verifier.
Hence, the parameters of the verifiers V ′, V ′′, and V ′′′ are as follows:

Parameters of V ′ (recall that dc = 2m
2 · poly(logn) and ρc = Ω(δ)):

r′ = rc + O(log dc(n)) = rc + O(m2 + log log n),
d′ = poly(log dc(n)) = poly(m, log log n),
s′ = 1 − Ω((1 − sc)ρc) = 1 − Ω(δ),
and ρ′ = Ω(1).

Parameters of V ′′:
r′′ = r′ + O(log d′) = r′ + O(logm + log log logn),
d′′ = poly(log d′) = poly(logm, log log log n),
s′′ = 1 − Ω((1 − s′)ρ′) = 1 − Ω(δ),
and ρ′′ = Ω(1).

Parameters of V ′′′:
r′′′ = r′′ + O(log d′′) = r′′ + O(log logm + log log log logn),
d′′′ = poly(log d′′) = poly(log logm, log log log logn),
s′′′ = 1 − Ω((1 − s′′)ρ′′) = 1 − Ω(δ),
and ρ′′′ = Ω(1).

Recall that the proximity parameter for all three verifiers equals that of Vc (i.e., δ).
We have that

r′′′ = rc + O(m2 + log log n)

= log2 n + O(t + (logn)1/t) · log log n + O(m2),

q′′′ < d′′′ = poly(log log log logn, log logm),

whereas s′′′ = 1 − Ω(δ) and ρ′′′ = Ω(1). Substituting m = (logn)1/t, we get r′′′ =
log2 n + O(t + (logn)1/t) · log log n + O((log n)2/t) and q′′′ = poly(log log logn).

Stage III. Finally, we compose V ′′′ with the Hadamard-based inner verifier Vh

of Theorem A.1 to obtain our final verifier Vf . The query complexity of Vh, and

hence that of Vf , is constant. The randomness complexity of Vf is rf (n) � r′′′(n) +
rh(q′′′(n)) = r′′′(n) + poly(log log logn), because rh(�) = O(�2). Thus, rf (n) =
log2 n + O(t + (logn)1/t) · log log n + O((log n)2/t). On proximity parameter δh, the
soundness error of Vh is sh = 1 − Ω(δh). Setting δh = ρ′′′ = Ω(1), we conclude that
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914 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

the soundness error of Vf on proximity parameter δ is 1 − Ω(δ) = 1 − Ω(1/t), since
the soundness error of V ′′′ is 1 − Ω(δ).

To obtain soundness error 1/2, we perform O(t) repetitions of Vf , yielding a query
complexity of O(t). This can be done without increasing the randomness complexity
by using “recycled randomness” (specifically, the neighbors of a uniformly selected
vertex in a Ramanujan expander graph; see [Gol97, Apdx. C.4]).

Comment. We note that the tight bound on the robustness (as a function of the
proximity parameter) in our main construct (Theorem 3.1) plays an important role in
the proof of Theorem 3.3. The reason is that when we compose two robust PCPPs,
the proximity parameter of the second must be upper-bounded by the robustness
parameter of the first. Thus, when we compose many robust PCPPs, the robustness
parameter deteriorates exponentially in the number of composed systems, where the
base of the exponent is determined by the tightness of the robustness (of the second
verifier). That is, let τ � ρ/δ, where δ and ρ are the proximity and robustness
parameters of the system. Then composing this system t times with itself means
that at the lowest PCP-instance we need to set the proximity parameter to be τ t−1

times the initial proximity. This requires the lowest PCP-instance to make at least
1/τ t−1 queries (or be composed with a PCPP that can handle proximity parameter
τ t, which again lower-bounds the number of queries). For a constant τ < 1, we get
exp(t) query complexity, whereas for τ = 1− γ = (1− (1/t)) we get query complexity
that is linear in 1/((1 − γ)t · γ) = O(t). Finally, we argue that in the context of such
an application, setting γ = 1/t is actually the “natural” choice. Such a choice assigns
to each proof oracle encountered in the composition an almost equal weight (of 1/t);
that is, such a proof oracle is assigned weight 1/t when it appears as the current
proof oracle and maintains its weight when it appears as part of the input oracle in
subsequent compositions.

3.2. Corollary to Theorem 3.3. Recall that Theorem 3.3 asserts a PCPP
(for CktVal) with randomness complexity log2 n + At(n), where At(n) � O(t +
(log n)1/t) log logn + O((log n)2/t) and query complexity O(t) (for soundness error
1/2). For constant t ≥ 3, we have At(n) = O((log n)2/t). On the other hand, for
t ≥ 1.01 log log n

log log log n , we have At(n) = o(log log n)2. Using Proposition 2.4, these PCPPs
yield corresponding PCPs for CktSAT.

Deriving Theorems 1.2 and 1.3. Two extreme choices of t(n) are when t(n) = 2
ε

for some ε > 0 (which maintains a constant query complexity) and t(n) = 2 log log n
log log log n

(which minimizes the randomness complexity of the verifier). Setting t(n) = 2
ε

yields Theorem 1.3 (i.e., constant query complexity O( 1
ε ) and randomness log2 n +

O(logε n)), whereas setting t(n) = 2 log log n
log log log n yields Theorem 1.2 (i.e., query complex-

ity O
(

log log n
log log log n

)
and randomness log2 n+O

(
(log log n)2

log log log n

)
. Thus, both Theorems 1.2

and 1.3 follow from Theorem 3.3.
Deriving a PCPP for Nondeterministic Circuit Value. By Proposition 2.5,

we conclude that for every 3 ≤ t(n) ≤ 2 log log n
log log log n , there exists a PCPP for Nonde-

terministic Circuit Value of the same complexities (i.e., randomness complexity
log2 n + At(n), query complexity O(t(n)), perfect completeness, and soundness error
1/2 with respect to proximity δ = Ω(1/t(n))).

A more flexible notion of a PCPP. Our definition of a PCPP (see Definition 2.3)
specifies for each system a unique proximity parameter. In many settings (see, e.g.,
section 4.1), it is better that the proximity parameter is given as an input to the
verifier and that the latter behaves accordingly (i.e., makes an adequate number of
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ROBUST PCPS OF PROXIMITY 915

queries). We refrain from presenting either a formal definition of such relaxed PCPPs
or a general transformation of PCPPs into their more relaxed form. Instead, we state
the following corollary to Theorem 3.3.

Corollary 3.4. For all parameters n, t1, t2 ∈ N such that 3 ≤ t1 ≤ t2 ≤
2 log log n

log log log n there exists a PCPP for CktVal (for circuits of size n) with proof length

2At1 (n) · n, where At(n) is as in (3.1), query complexity O(t2), perfect completeness,
and soundness error 1/2 with respect to proximity parameter 1/t2. Furthermore, when
given (as auxiliary input) a proximity parameter δ ≥ 1/t2, the verifier makes only
O(max{1/δ, t1}) queries and rejects any input oracle that is δ-far from satisfying the
circuit with probability at least 1/2.

Underlying the following proof is a general transformation of PCPPs to the more
relaxed form as stated in Corollary 3.4.

Proof. The proof oracle consists of a sequence of proofs for the system of Theo-
rem 3.3, when instantiated with proximity parameter 2−i for i = �log2 t1�, . . . , �log2 t2.
When the new verifier is invoked with proximity parameter δ, it invokes the original
verifier with proximity parameter 2−i, where i = �log2 1/δ, and emulates the answers
using the ith portion of its proof oracle.

4. Applications to coding problems. In this section we show that, combined
with any good code, any PCPP yields a locally testable code (LTC). Using our PCPPs,
we obtain an improvement in the rate of LTCs (improving over the results of [GS02,
BSVW03]). We also introduce a relaxed notion of locally decodable codes (LDCs)
and show how to construct such codes using any PCPP (and ours in particular).

Preliminaries For a string w ∈ {0, 1}n and i ∈ [n] � {1, 2, . . . , n}, unless stated
differently, wi denotes the ith bit of w.

We consider codes mapping sequences of k (input) bits into sequences of n ≥ k
(output) bits. Such a generic code is denoted by C : {0, 1}k → {0, 1}n, and the
elements of {C(x) : x ∈ {0, 1}k} ⊆ {0, 1}n are called codewords (of C). Throughout
this section, the integers k and n are to be thought of as parameters, and we are
typically interested in the relation of n to k (i.e., how n grows as a function of k).
Thus, we actually discuss infinite families of codes (which are associated with infinite
sets of possible k’s), and whenever we say that some quantity of the code is a constant
we mean that this quantity is constant for the entire family (of codes).

The distance of a code C : {0, 1}k → {0, 1}n is the minimum (Hamming) distance
between its codewords; that is, minx�=y{Δ(C(x),C(y))}, where Δ(u, v) denotes the
number of bit locations on which u and v differ. Throughout this work, we focus on
codes of “linear distance,” that is, codes C : {0, 1}k → {0, 1}n of distance Ω(n). The
distance of w ∈ {0, 1}n from a code C : {0, 1}k → {0, 1}n, denoted ΔC(w), is the min-
imum distance between w and the codewords, that is, ΔC(w) � minx{Δ(w,C(x))}.
For δ ∈ [0, 1], the n-bit long strings u and v are said to be δ-far (resp., δ-close) if
Δ(u, v) > δ · n (resp., Δ(u, v) ≤ δ · n). Similarly, w is δ-far from C (resp., δ-close to
C) if ΔC(w) > δ · n (resp., ΔC(w) ≤ δ · n).

As in the case of PCPs, all oracle machines considered below are nonadaptive.
Here these oracle machines will model highly efficient testing and decoding procedures,
which probe their input w ∈ {0, 1}n in relatively few places. Thus, these procedures
are modeled as oracle machines having oracle access to w (which is viewed as a function
w : {1, . . . , n} → {0, 1}).

4.1. LTCs. Loosely speaking, by a codeword test (for the code C : {0, 1}k →
{0, 1}n) we mean a randomized (nonadaptive) oracle machine, also called a tester,
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916 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

that is given oracle access to w ∈ {0, 1}n. The tester may query the oracle at a
constant number of bit locations and is required to (always) accept every codeword
and reject with (relatively) high probability every oracle that is “far” from the code.
Indeed, since our focus is on positive results, we use a strict formulation in which
the tester is required to accept each codeword with probability 1. (This corresponds
to “perfect completeness” in the PCP setting.) The first definition below provides a
general template (in terms of several parameters) for the rejection condition. Later
we will discuss the kinds of asymptotic parameters we would like to achieve.

Definition 4.1 (codeword tests). A randomized (nonadaptive) oracle machine
M is called a (δ, s)-codeword test for C : {0, 1}k → {0, 1}n if it satisfies the following
two conditions:

1. Accepting codewords (i.e., completeness): For every x ∈ {0, 1}k, given oracle
access to w = C(x), machine M accepts with probability 1. That is, Pr[MC(x) =1] =
1 for every x ∈ {0, 1}k.

2. Rejection of noncodeword (i.e., soundness): Given oracle access to any w ∈
{0, 1}n that is δ-far from C, machine M accepts with probability at most s. That is,
Pr[Mw =1] ≤ s for every w ∈ {0, 1}n that is δ-far from C.

The parameter δ is called the proximity parameter and s is called the soundness
error. The query complexity q of M is the maximum number of queries it makes
(taken over all sequences of coin tosses).

Note that this definition requires nothing with respect to noncodewords that are
relatively close to the code (i.e., are δ-close to C). In addition to the usual goals
in constructing error-correcting codes (e.g., maximizing minimum distance and min-
imizing the blocklength n = n(k)), here we are also interested in simultaneously
minimizing the query complexity q, the proximity parameter δ, and the soundness
error s. More generally, we are interested in the trade-off between q, δ, and s. (As
usual, the soundness error can be reduced to sk by increasing the query complexity
to k · q.) A minimalistic goal is to have a family of codes with q, δ, and s all fixed
constants. However, note that this would be interesting only if δ were sufficiently
small with respect to the distance parameters of the code, e.g., smaller than half the
relative minimum distance. (For example, if δ is larger than the “covering radius” of
the code, then there does not exist any string that is δ-far from the code, and the
soundness condition becomes vacuous.) A stronger definition requires the tester to
work for any given proximity parameter δ > o(1), but allows its query complexity to
depend on δ as follows.

Definition 4.2 (LTCs). A family of codes {Ck : {0, 1}k → {0, 1}n}k∈N is locally
testable if it satisfies the following.

1. Linear distance: There is a constant ρ > 0, such that for every k, Ck has
minimum distance at least ρ · n.

2. Local testability: There is a randomized, nonadaptive oracle machine M such
that for every constant δ > 0, there is a constant q = q(δ) such that for all sufficiently
large k, Mw(1k, δ) is a (δ, 1/2)-codeword test for Ck with query complexity q.
The family is called explicit if both Ck and Mw(1k, δ) can be evaluated with compu-
tation time polynomial in k.

We comment that Definition 4.2 is somewhat weaker than the definitions used
in [GS02].14

14In the stronger of the definitions in [GS02], the tester is not given δ as input (and thus has query
complexity that is a fixed constant independent of δ) but is required to be a (δ, 1 − Ω(δ))-codeword
test for every constant δ > 0 and sufficiently large k. That is, strings that are δ-far from the code
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ROBUST PCPS OF PROXIMITY 917

Using an adequate PCPP, we can transform any code to a related code that has
a codeword tester. This is done by appending each codeword with a PCPP proving
the codeword is indeed the encoding of a message. One technical problem that arises
is that the PCPP constitutes most of the length of the new encoding. Furthermore,
we cannot assume much about the Hamming distance between different proofs of the
same statement, and thus the distance of the new code may deteriorate. But this is
easily fixed by repeating the codeword many times so that the PCPP constitutes only
a small fraction of the total length.15 Specifically, given a code C0 : {0, 1}k → {0, 1}m,
we consider the code C(x) � (C0(x)t, π(x)), where t = (d(k)− 1) · |π(x)|/|C0(x)| such
that (say) d(k) = log k, and π(x) is a PCPP that asserts that an m-bit string (given
as an input oracle) is a codeword (of C0).

Construction 4.3. Let d be a free parameter to be determined later, let C0 :
{0, 1}k → {0, 1}m be a code, and let V be a PCPP verifier for membership in S0 =
{C0(x) : x∈{0, 1}k}. Let π(x) be the proof oracle corresponding to the claim that the
input oracle equals C0(x); that is, π(x) is the canonical proof obtained by using x as an
NP witness for membership of C0(x) in S0. Consider the code C(x) � (C0(x)t, π(x)),
where t = (d− 1) · |π(x)|/|C0(x)|.

The codeword test emulates the PCP verifier in the natural way. Specifically,
given oracle access to w = (w1, . . . , wt, π) ∈ {0, 1}t·m+�, the codeword tester selects
uniformly i ∈ [t] and emulates the PCP verifier, providing it with oracle access to
the input oracle wi and to the proof oracle π. In addition, the tester checks that the
repetitions are valid (by inspecting randomly selected positions in some qrep randomly
selected pairs of m-bit long blocks, where qrep is a free parameter to be optimized
later). Let us denote this tester by T . That is, Tw

1. uniformly selects i ∈ [t] and invokes V wi,π.
2. repeats the following qrep times: Uniformly selects i1, i2 ∈ [t] and j ∈ [m] and

checks whether (wi1)j = (wi2)j .
Proposition 4.4. Let d and qrep be the free parameters in the above construction

of the code C and tester T . Suppose that the code C0 : {0, 1}k → {0, 1}m has a relative
minimum distance of ρ0, and that the PCPP has a proof length of � > m, soundness
error 1/4 for proximity parameter δpcpp, and query complexity qpcpp. Then, the code
C and tester T have the following properties:

1. The blocklength of C is n � d · � and its relative minimum distance is at least
ρ0 − 1/d.

2. The oracle machine T is a (δ, 1
2 )-codeword tester for the C, where δ = δpcpp+

4
qrep

+ 1
d .

3. The query complexity of T is q = qpcpp + 2qrep.
Proof. The parameters of the code C are obvious from the construction. In

particular, C has blocklength t · m + � = d · � = n, and the PCPP π(x) constitutes
only an �/n = 1/d fraction of the length of the codeword C(x). Since the remainder
consists of replicated versions of C0(x), it follows that the relative minimum distance
of C is at least (n− �)ρ0/n > ρ0 − 1/d.

The query complexity of T is obvious from its construction, and so we need
only show that it is a good codeword tester. Completeness follows immediately from

are rejected with probability Ω(δ). Such a tester implies a tester as in Definition 4.2, with query
complexity q(δ) = O(1/δ).

15Throughout this section we will use repetitions to adjust the “weights” of various parts of our
codes. An alternative method would be to work with weighted Hamming distance (i.e., where different
coordinates of a codeword receive different weights), and indeed these two methods (weighting and
repeating) are essentially equivalent. For the sake of explicitness we work only with repetitions.
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918 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

the completeness of the PCPP, and so we focus on the soundness condition. We
consider an arbitrary w = (w1, . . . , wt, π) ∈ {0, 1}t·m+� that is δ-far from C, and
observe that w′ = (w1, . . . , wt) must be δ′-far from C′ = {C0(x)t : x ∈ {0, 1}k},
where δ′ ≥ (δn − �)/n = δ − (1/d). Let u ∈ {0, 1}m be a string that minimizes
Δ(w′, ut) =

∑t
i=1 Δ(wi, u); that is, ut is the “repetition sequence” closest to w′. We

consider two cases:
Case 1. Δ(w′, ut) ≥ 1/qrep. In this case, a single execution of the basic repetition

test (comparing two locations) rejects with probability:

Er,s∈[t] [Δ(wr, ws)] ≥ Er∈[t] [Δ(wr, u)]

= Δ(w′, ut)

≥ 1/qrep,

where the last inequality is due to the case hypothesis. It follows that qrep executions of
the repetition test would accept with probability at most (1−1/qrep)qrep < 1/e < 1/2.

Case 2. Δ(w′, ut) ≤ 1/qrep. In this case

ΔC0
(u) = ΔC′(ut) ≥ ΔC′(w′) − Δ(w′, ut) ≥ δ′ − 1

qrep
,

where the last inequality is due to the case hypothesis. Also, recalling that on the
average (i.e., average i) wi is 1/qrep-close to u, it holds that at least two-thirds of
the wi’s are 3/qrep-close to u. Recalling that u is (δ′ − (1/qrep))-far from C0 and
using δpcpp = δ′ − (4/qrep), it follows that at least two-thirds of the wi’s are δpcpp-far
from C0. Thus, by the soundness condition of the PCP of proximity, these wi will be
accepted with probability at most 1/4. Thus, in the current case, the tester accepts
with probability at most 1

3 + 2
3 · 1

4 = 1
2 . The soundness condition follows.

To prove Theorem 1.4, we instantiate the above construction as follows. We let
C0 : {0, 1}k → {0, 1}m come from a family of codes with a constant relative minimum

distance of ρ0 > 0 and nearly linear blocklength m = Õ(k), where encoding can be

done by circuits of nearly linear size s0 = s0(k) = Õ(k). We take the PCPP from
Corollary 3.4, setting t1 = O(1/ε) (for an arbitrarily small constant ε > 0) and t2 =

2 log log s0/ log log log s0 = ω(1). Thus, we obtain proof length � = s0 · exp(logε/2 s0)
and query complexity qpcpp = O(max{1/δpcpp, t1}) = O(1/δpcpp) for any proximity
parameter δpcpp ≥ 1/t2 = o(1). We actually invoke the verifier twice to reduce its
soundness error to 1/4. Setting d = log k = ω(1), we obtain a final blocklength
of n = d · � < k · exp(logε k) and relative distance ρ0 − o(1). We further specify
the test T as follows. Given a proximity parameter δ ≥ 6/t2 = o(1), the tester T
invokes the aforementioned PCPP with δpcpp = δ/6 and performs the repetition test
qrep = 6/δ times. Observing that δpcpp + (4/qrep) + (1/d) < δ, we conclude that the
resulting test (i.e., T = T (1k, δpcpp)) is a (δ, 1/2)-codeword tester of query complexity
O(1/δpcpp) + 2qrep = O(1/δ). Thus we conclude as follows.

Conclusion (restating Theorem 1.4). For every constant ε > 0, there exists
a family of LTCs Ck : {0, 1}k → {0, 1}n, where n = exp(logε k) · k, with query
complexity q(δ) = O(1/δ) (i.e., for every δ > 0, the tester rejects words that are δ-far
from C with probability 1/2 by querying at most q(δ) = O(1/δ) queries).

4.2. Relaxed LDCs. We first recall the definition of LDCs, as formally stated
by Katz and Trevisan [KT00]. A code C : {0, 1}k → {0, 1}n is locally decodable if
for some constant δ > 0 (which is independent of k) there exists an efficient oracle
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ROBUST PCPS OF PROXIMITY 919

machine M that, on input, any index i ∈ [k] and access to any oracle w ∈ {0, 1}n
such that Δ(w,C(x)) ≤ δ, recovers the ith bit of x with probability at least 2/3 while
making a constant number of queries to w. That is, whenever relatively few locations
are corrupted, the decoder should be able to recover each information bit, with high
probability, based on a constant number of queries to the (corrupted) codeword.

Katz and Trevisan showed that if M makes q queries, then n = Ω(k1+1/(q−1))
must hold [KT00].16 This lower-bound is quite far from the best known upper-
bound, due to Beimal et al. [BIKR02], that asserts n = O(exp(kε(q))), where ε(q) =
O((log log q)/(q log q)) = o(1/q), which improves (already for q = 4) a previous upper-
bound where ε(q) = 1/(2q + 1). It has been conjectured that, for a constant number
of queries, n should be exponential in k; that is, for every constant q there exists a
constant ε > 0 such that n > exp(kε) must hold. In view of this state of affairs, it
is natural to relax the definition of LDCs, with the hope of obtaining more efficient
constructions (e.g., n = poly(k)).

We relax the definition of LDCs by requiring that, whenever few location are cor-
rupted, the decoder should be able to recover most (or almost all) of the individual
information bits (based on few queries), and for the remaining locations the decoder
outputs either the right message bit or a fail symbol (but not the wrong value). That
is, the decoder must still avoid errors (with high probability), but is allowed to say
“don’t know” on a few bit locations. The following definition is actually weaker, yet,
the (aforementioned) stronger formulation is obtained when considering ρ ≈ 1 (and
using amplification to reduce the error from 1/3 to any desired constant).17 Further-
more, it is desirable to recover all bits of the information whenever the codeword is
not corrupted.

Definition 4.5 (relaxed LDC). A code C : {0, 1}k → {0, 1}n is relaxed locally
decodable if for some constants δ, ρ > 0 there exists an efficient probabilistic oracle
machine M that makes a constant number of queries and satisfies the following three
conditions with respect to any w ∈ {0, 1}n and x ∈ {0, 1}k such that Δ(w,C(x)) ≤ δ:

1. If w = C(x) is a codeword, then the decoder correctly recovers every bit of x
with probability at least 2

3 . That is, for every x ∈ {0, 1}k and i ∈ [k], it holds that

Pr[MC(x)(i) = xi] ≥ 2
3 .

2. On input, any index i ∈ [k] and given access to the oracle w, with probability
at least 2

3 machine M outputs either the ith bit of x or a special failure symbol, denoted
⊥. That is, for every i, it holds that Pr[Mw(i) ∈ {xi,⊥}] ≥ 2

3 .
3. For at least a ρ fraction of the indices i ∈ [k], on input i and oracle access to

w ∈ {0, 1}n, with probability at least 2
3 , machine M outputs the ith bit of x. That is,

there exists a set Iw ⊆ [k] of size at least ρk such that for every i ∈ Iw it holds that
Pr[Mw(i) = xi] ≥ 2

3 .
We call δ the proximity parameter.
One may strengthen the definition by requiring that ρ be greater than 1/2 or any

other favorite constant smaller than 1 (but one should probably refrain from setting
ρ > 1 − δ, for example). A different strengthening is for condition 1 to hold with

16Their lower-bound refers to nonadaptive decoders and yields a lower-bound of n =
Ω(k1+1/(2q−1)) for adaptive decoders. A lower-bound of n = Ω(k1+1/O(q)) for adaptive decoders
was presented in [DJK+02], and a lower-bound of n = Ω(k1+1/(q/2−1)) for nonadaptive decoders
was presented in [KdW04]. (We note that we use a nonadaptive (relaxed) decoder.)

17Here error reduction may be performed by estimating the probability that the machine outputs
each of the possible bits, and outputting the more frequent bit only if it has sufficient statistical
support (e.g., 50% support, which the wrong bit cannot have). Otherwise, one outputs the don’t

know symbol.
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920 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

probability 1 (i.e., Pr[MC(x)(i) = xi] = 1). In fact, we achieve both the stronger
forms.

Remark 4.6. The above definition refers only to strings w that are δ-close to
the code. However, using Construction 4.3, any relaxed LDC can be augmented so
that strings that are δ-far from the code are rejected with high probability (i.e., for
every index i, the decoder outputs ⊥ with high probability). This can be achieved
with only a nearly linear increase in the length of the code (from length n to length
n · exp(logε n)).

Remark 4.7. We stress that condition 2 does not mean that, for every i, and
for every w that is δ-close to C(x), either Pr[Mw(i) = xi] ≥ 2

3 or Pr[Mw(i) = ⊥] ≥
2
3 holds. We refer to the latter condition as condition X and conjecture that the
seemingly minor difference between conditions 2 and X is actually substantial. This
conjecture is enforced by a recent work of Buhrman and de Wolf [BdW04] who showed
that codes that satisfy condition X are actually locally decodable in the standard,
nonrelaxed sense (i.e., according to the definition of [KT00]).

4.2.1. Definitional issues and transformations. Note that it is very easy
to come up with constructions that satisfy each one of the three conditions of Def-
inition 4.5. For example, condition 2 can be satisfied by (any code and) a trivial
decoder that always returns ⊥. On the other hand, the identity encoding (combined
with a trivial decoder) satisfies conditions 1 and 3.18 Our aim, however, is to obtain
a construction that satisfies all conditions and beats the performance of the known
LDCs.

It turns out that codes that satisfy conditions 1 and 2 can be converted into
“equally good” codes that satisfy all three conditions. Let us start with a key defini-
tion, which refers to the distribution of the decoder’s queries when asked to recover a
random bit position.

Definition 4.8 (average smoothness). Let M be a randomized nonadaptive
oracle machine having access to an oracle w ∈ {0, 1}n and getting input i ∈ [k].
Further suppose that M always makes q queries. Let M(i, j, r) denote the jth query
of M on input i and coin tosses r. We say that M satisfies the average smoothness
condition if, for every v ∈ [n],

1

2n
< Pri,j,r[M(i, j, r) = v] <

2

n
,

where the probability is taken uniformly over all possible choices of i ∈ [k], j ∈ [q],
and coin tosses r.

By having M randomly permute its queries, average smoothness implies that for
every j ∈ [q] and v ∈ [n], it holds that 1

2n < Pri,r[M(i, j, r) = v] < 2
n , where now the

probability is taken uniformly over all possible choices of i ∈ [k] and the coin tosses
r. We stress that average smoothness is different from the notion of smoothness as
defined by Katz and Trevisan [KT00]: They require that for every i ∈ [k] (and for
every j ∈ [q] and v ∈ [n]), it holds that 1

2n < Prr[M(i, j, r) = v] < 2
n . Indeed,

average smoothness is a weaker requirement, and (as we will shortly see) any code
and decoder pair can be easily modified to satisfy it, while preserving the decoding
properties (of Definition 4.5). (In contrast, Katz and Trevisan [KT00] present a

18In case one wishes the code to have a linear distance this can be achieved too, consider C(x) =
(x,C′(x)), where C′ is any code of linear length and linear distance, and a decoder that merely
retrieves the desired bit from the first part.
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ROBUST PCPS OF PROXIMITY 921

modification that achieves smoothness while preserving strict local decodability, but
their transformation does not preserve Definition 4.5.)

Lemma 4.9. Let C : {0, 1}k → {0, 1}n be a code and M a machine that satisfies
conditions 1 and 2 of Definition 4.5 with respect to proximity parameter δ. Then,
for some n′ ∈ [3n, 4n], there exists a code C′ : {0, 1}k → {0, 1}n′

and a machine M ′

that satisfies average smoothness as well as conditions 1 and 2 of Definition 4.5 with
respect to proximity parameter δ′ = δ/20. Furthermore, the query complexity of M ′

is twice the one of M , and if M satisfies also condition 3, with respect to a constant
ρ, then so does M ′.

Jumping ahead, we mention that, for a decoder that satisfies average smooth-
ness, conditions 1 and 2 essentially imply condition 3. Hence our interest in average
smoothness and in Lemma 4.9.

Proof. As noted above, we may assume without loss of generality that each of M ’s
queries is distributed identically. Throughout the analysis, we refer to the distribution
of queries for a uniformly distributed index i ∈ [k]. Let q denote the query complexity
of M .

We first modify M such that for a random i ∈ [k], each query probes each possible
location with probability Ω(1/n). This is done by adding q dummy queries, each being
uniformly distributed. Thus, each location gets probed by each query with probability
at least 1/2n.

Next we modify the code and the decoder such that each location is probed with
almost uniform distribution. The idea is to repeat heavily probed locations for an
adequate number of times and have the decoder probe a random copy. Specifically, let
pv be the probability that location v is probed (i.e., pv � Pri∈[k],r[M(i, 1, r) = v] or
equivalently pv =

∑
i∈[k],j∈[2q] Prr[M(i, j, r) = v]/2kq). By the above modification,

we have pv ≥ 1/2n. Now, we repeat location v rv = �4npv� times. Note that
rv ≤ 4npv and rv > 4npv − 1 ≥ 2 − 1 (and so rv ≥ 2). We obtain a new code C′

of length n′ =
∑

v rv ≤ 4n. (Note that n′ > 3n.) The relative distance of C′ is at
least one-fourth that of C, and the rate changes in the same way. The new decoder,
M ′, when seeking to probe location v, will select and probe at random one of the rv
copies of that location. (Interestingly, there is no need to augment this decoder by a
testing of the consistency of the copies of an original location.)

Each new location is probed with probability p′v � pv · 1
rv

(by each of these queries).
Recalling that pv

rv
= pv

	4npv
 , it follows that p′v ≥ 1/4n and p′v ≤ pv

4npv−1 ≤ 1/2n (using

pv ≥ 1/2n). Recalling that n′ ∈ [3n, 4n], each p′v is in [(3/4) · (1/n′), 2 · (1/n′)], i.e.,
within a factor of 2 from uniform.

Clearly, M ′ satisfies condition 1 (of Definition 4.5), and we show that it (essen-
tially) satisfies condition 2 as well. Let w = (w1, . . . , wn) ∈ {0, 1}n′

be δ′-close to
C′(x), where |wv| = rv. Let Yv be a 0-1 random variable that represents the value
of a random bit in wv; that is, Pr[Yv = 1] equals the fraction of 1’s in wv. Then,
Pr[Yv �= C(x)v] > 0 implies that Δ(wv, cv) ≥ 1, where C′(x) = (c1, . . . , cn) and
|cv| = rv. For Y = Y1 · · ·Yn, it follows that E(Δ(Y,C(x))) ≤ Δ(w,C′(x)), and so
E(Δ(Y,C(x))) ≤ δ′n′ ≤ (δ/5) · n (since δ′ = δ/20 and n′ ≤ 4n). Thus, with proba-
bility at least 4/5, the random string Y is δ-close to C(x), in which case the M must
succeed with probability at least 2/3. Noting that M ′w(i) merely invokes MY (i), we
conclude that

Pr[M ′w(i) ∈ {xi,⊥}] = Pr[MY (i) ∈ {xi,⊥}]
≥ Pr[Δ(Y,C(x)) ≤ δn] · Pr[MY (i) ∈ {xi,⊥} |Δ(Y,C(x)) ≤ δn]

≥ 4

5
· 2

3
=

8

15
.
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922 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

An analogous argument can be applied in the case M satisfies condition 3. In both
cases, additional error reduction is needed in order to satisfy the actual conditions,
which require success with probability at least 2/3. (For details see footnote 17.)

Lemma 4.10. Let C : {0, 1}k → {0, 1}n be a code and M be a machine that
satisfies conditions 1 and 2 of Definition 4.5 with respect to a constant δ. Suppose
that M satisfies the average smoothness condition and has query complexity q. Then,
invoking M for a constant number of times (and ruling as in footnote 17) yields a
decoder that satisfies all three conditions of Definition 4.5. Specifically, condition 3
holds with respect to a constant ρ = 1 − 18qδ. Furthermore, for any w and x, for a
1 − 18qΔ(w,C(x)) fraction of the i’s, it holds that Pr[Mw(i) = xi] ≥ 5/9.

Our usage of the average smoothness condition actually amounts to using the
hypothesis that, for a uniformly distributed i ∈ [k], each query hits any fixed position
with probability at most 2/n.

Proof. By condition 1, for any x ∈ {0, 1}k and every i ∈ [k], it holds that
Pr[MC(x)(i) = xi] ≥ 2/3. Considering any w that is δ-close to C(x), the probability
that on input a uniformly distributed i ∈ [k] machine M queries a location on which
w and C(x) disagree is at most q · (2/n) · δn = 2qδ. This is due to the fact that, for a
uniformly distributed i, the queries are almost uniformly distributed; specifically, no
position is queried with probability greater than 2/n (by a single query).

Let pwi denote the probability that on input i machine M queries a location on

which w and C(x) disagree. We have just established that (1/k) ·
∑k

i=1 p
w
i ≤ 2qδ.

For Iw � {i ∈ [k] : pwi ≤ 1/9}, it holds that |Iw| ≥ (1 − 18qδ) · k. Observe that
for any i ∈ Iw, it holds that Pr[Mw(i) = xi] ≥ (2/3) − (1/9) = 5/9. Note that, by
replacing δ with Δ(w,C(x))/n, the above argument actually establishes that for a
1 − 18q · Δ(w,C(x)) fraction of the i’s, it holds that Pr[Mw(i) = xi] ≥ 5/9.

Additional error reduction is needed in order to satisfy the actual definition (of
condition 3), which requires success with probability at least 2/3. The error reduction
should be done in a manner that preserves conditions 1 and 2 of Definition 4.5. For
details see footnote 17.

In view of the last sentence of Lemma 4.10, it makes sense to state a stronger
definition of relaxed LDCs.

Definition 4.11 (relaxed LDC, revisited). A code C : {0, 1}k → {0, 1}n is
relaxed locally decodable if for some constants δ > 0 there exists an efficient proba-
bilistic oracle machine M that makes a constant number of queries and satisfies the
following two conditions with respect to any w ∈ {0, 1}n and x ∈ {0, 1}k such that
Δ(w,C(x)) ≤ δn:

1. For every i ∈ [k] it holds that Pr[Mw(i) ∈ {xi,⊥}] ≥ 2
3 .

2. There exists a set Iw ⊆ [k] of density at least 1−O(Δ(w,C(x))/n) such that
for every i ∈ Iw it holds that Pr[Mw(i) = xi] ≥ 2

3 .
Note that the “everywhere good” decoding of codewords (i.e., condition 1 of

Definition 4.5) is implied by condition 2 of Definition 4.11. By combining Lemmas 4.9
and 4.10, we get the following theorem.

Theorem 4.12. Let C : {0, 1}k → {0, 1}n be a code and M be a machine that
makes a constant q number of queries and satisfies conditions 1 and 2 of Definition 4.5
with respect to a constant δ. Then, for some n′ ∈ [3n, 4n], there exists a code C′ :
{0, 1}k → {0, 1}n′

that is relaxed locally decodable with respect to proximity parameter
δ′ = δ/20. Furthermore, this code satisfies Definition 4.11.

4.2.2. Constructions. In view of Lemma 4.10, we focus on presenting codes
with decoders that satisfy conditions 1 and 2 of Definition 4.5 as well as the average
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ROBUST PCPS OF PROXIMITY 923

smoothness property. (The latter property will save us the need to invoke Lemma 4.9.)
We will start with a code that has nearly quadratic length (i.e., n = k2+o(1)), which
serves as a good warm-up towards our final construction in which n = k1+ε for any
desired constant ε > 0.

Motivation to our construction. We seek a code of linear distance that has some
weak “local decodability” properties. One idea is to separate the codeword into two
parts, the first allowing for “local decodability” (e.g., using the identity map) and
the second providing the distance property (e.g., using any code of linear distance).
It is obvious that a third part that guarantees the consistency of the first two parts
should be added, and it is natural to try to use a PCPP in the latter part. The
natural decoder will check consistency (via the PCPP), and in case it detects no error
will decode according to the first part. Indeed, the first part may not be “robust to
corruption” but the second part is “robust to corruption” and consistency means that
both parts encode the same information. Considering this vague idea, we encounter
two problems. First, a PCPP is unlikely to detect a small change in the first part.
Thus, if we use the identity map in the first part, then the decoder may output the
wrong value of some (although few) bits. In other words, the “proximity relaxation”
in PCPPs makes sense for the second part of the codewords but not for the first
part. Our solution is to provide, for each bit (position) in the first part, a proof of the
consistency of this bit (value) with the entire second part. The second problem is that
the PCPPs (let alone all of them combined) are much longer than the first two parts,
whereas the corruption rate is measured in terms of the entire codeword. This problem
is easy to fix by repeating the first two parts sufficiently many times. However, it is
important not to “overdo” this repetition because if the third part is too short, then
corrupting it may prevent meaningful decoding (as per condition 3 of Definition 4.5)
even at low corruption rates (measured in terms of the entire codeword). In other
words, if the third part is too short, then we have no chance to satisfy the average
smoothness condition.

The actual construction. Let C0 : {0, 1}k → {0, 1}m be a good code of relative
distance δ0; then we encode x ∈ {0, 1}k by C(x) � (xt,C0(x)t

′
, π1(x), . . . , πk(x)),

where t = |π1(x), . . . , πk(x)|/|x| (resp., t′ = |π1(x), . . . , πk(x)|/|C0(x)|), and πi(x)
is a PCPP to be further discussed. We first note that the replicated versions of x
(resp., C0(x)) take a third of the total length of C(x). As for πi(x), it is a PCPP
that refers to an input of the form (z1, z2) ∈ {0, 1}m+m and asserts that there exists
an x = x1 · · ·xk (indeed the one that is a parameter to πi) such that z1 = xm

i and
z2 = C0(x).19 We use our PCPP from Theorem 3.3, while setting its parameters such
that the proximity parameter is small enough but the query complexity is a constant.
Specifically, let δpcpp > 0 be the proximity parameter of the PCPP, which will be
set to be sufficiently small, and let q = O(1/δpcpp) denote the number of queries the
verifier makes in order to support a soundness error of 1/6 (rather than the standard
1/2). A key observation regarding this verifier is that its queries to its input-oracle are
uniformly distributed. The queries to the proof oracle can be made almost uniform
by a modification analogous to the one used in the proof of Lemma 4.9.

Observe that the code C maps k-bit long strings to codewords of length n � 3·k ·�,
where � = s0(m)1+o(1) denotes the length of the PCPP proof and s0(m) denotes the
size of the circuit for encoding relative to C0. Using a good code C0 : {0, 1}k → {0, 1}m
(i.e., of constant relative distance δ0, linear length m = O(k), and s0(m) = Õ(m)),
we obtain n = k2+o(1). The relative distance of C is at least δ0/3.

19Indeed, z1 is merely the bit xi repeated |C0(x)| times in order to give equal weight to each part
in measuring proximity.
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924 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

We now turn to the description of the decoder D. Recall that a valid codeword
has the form (xt,C0(x)t

′
, π1(x), . . . , πk(x)). The decoding of the ith information bit

(i.e., xi) will depend on a random (possibly wrong) copy of xi located in the first part
(which supposedly equals xt), a random (possibly corrupted) copy of C0(x) located in
the second part, and the relevant (i.e., ith) proof located in the third part (which is also
possibly corrupted). On input i ∈ [k] and oracle access to w = (w1, w2, w3) ∈ {0, 1}n,
where |w1| = |w2| = |w3|, the decoder invokes the PCPP verifier while providing
it with access to an input oracle (z1, z2) and a proof oracle π that are defined and
emulated as follows: The decoder selects uniformly r ∈ [t] and r′ ∈ [t′], and defines
each bit of z1 to equal the ((r − 1)k + i)th bit of w1, the string z2 is defined to equal
the r′th (m-bit long) block of w2, and π is defined to equal the ith block (�-bit long)
of w3. That is, when the verifier asks to access the jth bit of z1 (resp., z2, resp., π),
the decoder answers with the ((r − 1)k + i)th bit of w1 (resp., ((r′ − 1)m + j)th bit
of w2 (resp., the ((i − 1)� + j)th bit of w3). If the verifier rejects, then the decoder
outputs a special (failure) symbol. Otherwise, it outputs the ((r − 1)k + i)th bit of
w1.

The above construction can be performed for any sufficiently small constant prox-
imity parameter δ ∈ (0, δ0/18). All that this entails is setting the proximity parameter
of the PCPP to be sufficiently small but positive (e.g., δpcpp = (δ0 − 18δ)/2). We
actually need to augment the decoder such that it makes an equal number of queries
to each of the three (equal length) parts of the codeword, which is easy to do by
adding (a constant number of) dummy queries. Let us denote the resulting decoder
by D.

Proposition 4.13. The above code and decoder satisfy conditions 1 and 2 of
Definition 4.5 with respect to proximity parameter δ ∈ (0, δ0/18). Furthermore, this
decoder satisfies the average smoothness property.

Proof. Condition 1 (of Definition 4.5) is obvious from the construction (and the
completeness property of the PCPP). In fact, the perfect completeness of the PCPP
implies that bits of an uncorrupted codeword are recovered with probability 1 (rather
than with probability at least 2/3). The average smoothness property of the decoder
is obvious from the construction and the smoothness property of the PCPP. We thus
turn to establish condition 2 (of Definition 4.5).

Fixing any x ∈ {0, 1}k, we consider an arbitrary oracle w = (w1, w2, w3) that
is δ-close to C(x), where w1 (resp., w2) denotes the alleged replication of x (resp.,
C0(x)) and w3 = (u1, . . . , uk) denotes the part of the PCPPs. Note that w2 is 3δ-close
to C0(x)t

′
. To analyze the performance of Dw(i), we define random variables Z1 and

Z2 that correspond to the input oracles to which the PCP verifier is given access.
Specifically, Z1 = σm, where σ is set to equal the ((r − 1)k + i)th bit of w1, when r
is uniformly distributed in [t]. Likewise, Z2 is determined to be the r′th block of w2,
where r′ is uniformly distributed in [t′]. Finally, we set the proof oracle, π, to equal
the ith block of w3 (i.e., π = ui). We bound the probability that the decoder outputs
¬xi by considering three cases as follows.

Case 1. σ = xi. Recall that σ is the bit read by D from w1, and that by con-
struction D always outputs either σ or ⊥. Thus, in this case, Condition 2 is satisfied
(because, regardless of whether D outputs σ or ⊥, the output is always in {xi,⊥}).

Case 2. Z2 is 18δ-far from C0(x). Recall that w2 is 3δ-close to C0(x)t
′
, which

means that the expected relative distance of Z2 and C0(x) is at most 3δ. Thus, the
current case occurs with probability at most 1/6.

Case 3. Z2 is 18δ-close to C0(x) and σ �= xi. Then, on one hand, (Z1, Z2) is 1/2-
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ROBUST PCPS OF PROXIMITY 925

far from (xm
i ,C0(x)), because Z2 = σt. On the other hand, Z2 is (δ0 − 18δ)-far from

any other codeword of C0, because Z2 is 18δ-close to C0(x) and the codewords of C0

are δ0-far from one another. Thus, (Z1, Z2) is (δ0 − 18δ)/2-far from any string of the
form (ymi ,C0(y)). Using δpcpp ≤ (δ0 − 18δ)/2, we conclude that the PCPP verifier
accepts (Z1, Z2) with probability at most 1/6. It follows that, in the current case, the
decoder outputs ¬xi with probability at most 1/6.

Thus, in total, the decoder outputs ¬xi with probability at most 1/6 + 1/6 =
1/3.

Improving the rate. The reason that our code has quadratic length codewords
(i.e., n = Ω(k2)) is that we augmented a standard code with proofs regarding the
relation of the standard codeword to the value of each information bit. Thus, we had
k proofs, each relating to a statement of length Ω(k). Now, consider the following
improvement: Partition the message into

√
k blocks, each of length

√
k. Encode the

original message, as well as each of the smaller blocks, via a good error-correcting
code. Let w be the encoding of the entire message, and let wi (i = 1, . . . ,

√
k) be

the encodings of the blocks. For every i = 1, . . . ,
√
k, append a PCPP for the claim

“wi is the encoding of the ith block of a message encoded by w.” In addition, for
each message bit x(i−1)

√
k+j residing in block i, append a PCPP of the statement

“x(i−1)
√
k+j is the jth bit of the

√
kbit long string encoded in wi.” The total encoding

length has decreased, because we have
√
k proofs of statements of length O(k) and k

proofs of statements of length O(
√
k), leading to a total length that is almost linear

in k3/2.

In general, for any constant �, we consider � successively finer partitions of the
message into blocks, where the (i+1)st partition is obtained by breaking each block of
the previous partition into k1/� equally sized pieces. Thus, the ith partition uses ki/�

blocks, each of length k1−(i/�). Encoding is done by providing, for each i = 0, 1, . . . , �,
encodings of each of the blocks in the ith partition by a good error-correcting code.
Thus, for i = 0 we provide the encoding of the entire messages, whereas for i = �
we provide an “encoding” of individual bits. Each of these � + 1 levels of encodings
will be assigned equal weight (via repetitions) in the new codeword. In addition, the
new codeword will contain PCPPs that assert the consistency of “directly related”
blocks (i.e., blocks of consecutive levels that contain one another). That is, for every
i = 1, . . . , � and j ∈ [ki/�], we place a proof that the encoding of the jth block in the
ith level is consistent with the encoding of the �j/k1/�th block in the (i− 1)st level.
The ith such sequence of proofs contains ki/� proofs, where each such proof refers to
statements of length O(k1−(i/�) + k1−((i−1)/�)) = O(k1−((i−1)/�)), which yields a total
proof length that is upper-bounded by ki/� · (k1−((i−1)/�))1+o(1) = k1+(1/�)+o(1). Each
of these sequences will be assigned equal weight in the new codeword, and the total
weight of all the encodings will equal the total weight of all proofs. The new decoder
will just check the consistency of the � relevant proofs and act accordingly. We stress
that, as before, the proofs in use are PCPPs. In the current context these proofs refer
to two input oracles of vastly different lengths, and so the bit positions of the shorter
input oracle are given higher “weight” (by repetition) such that both input oracles
are assigned the same weight.20

Construction 4.14. Let C0 be a code of minimal relative distance δ0, con-
stant rate, and nearly linear-sized encoding circuits. For simplicity, assume that a
single bit is encoded by repetitions; that is, C0(σ) = σO(1) for σ ∈ {0, 1}. Let

20Indeed, this was also done in the simpler code analyzed in Proposition 4.13.
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926 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

V be a PCPP of membership in S0 = {C0(x) : x ∈ {0, 1}∗} having almost linear
proof length, query complexity O(1/δpcpp), and soundness error 1/9, for proximity
parameter δpcpp. Furthermore, V ’s queries to both its input oracle and proof ora-

cle are distributed almost uniformly.21 For a fixed parameter � ∈ N, let b � k1/�.
For x ∈ {0, 1}k, we consider � different partitions of x, such that the jth par-
tition denoted (xj,1, . . . , xj,bj ), where xj,j′ = x(j′−1)·b�−j+1 · · ·xj′·b�−j . We define

Cj(x) � (C0(xj,1),C0(xj,2), . . . ,C0(xj,bj )), and πj(x) = (πj,1(x), . . . , πj,bj (x)), where
pj,j′(x) is a PCPP proof oracle that asserts the consistency of j′th block of Cj(x)
and the �j′/bth block of Cj−1(x). That is, pj,j′(x) refers to an input oracle of the
form (z1, z2), where |z1| = |z2| = O(b�−j+1), and asserts the existence of x such that
z1 = C0(xj,j′)

b and z2 = C0(xj−1,�j′/b�). We consider the code

C(x) � (C0(x)t0 ,C1(x)t0 , . . . ,C�(x)t0 , πt1
1 , . . . , πt�

� ),

where the tj’s are selected such that each of the 2� + 1 parts of C(x) has the same
length. The decoder, denoted D, operates as follows on input i ∈ [k] and oracle access
to w = (w0, w1, . . . , w�, v1, . . . , v�), where |w0| = |wj | = |vj | for all j:

• D selects uniformly r0, r1, . . . , r� ∈ [t0], and (r′1, r
′
2, . . . , r

′
�) ∈ [t1]× [t2]×· · ·×

[t�].
• For j = 1, . . . , �, D invokes the PCPP verifier, providing it with access to an

input oracle (z1, z2) and a proof oracle π that are defined as follows:
– z1 = ub, where u is the ((rj − 1) · bj + �i/b�−j)th block of wj.
– z2 is the ((rj−1 − 1) · bj−1 + �i/b�−j+1)th block of wj−1.
– π is the ((r′j − 1) · bj + �i/b�−j)th block of vj.

The PCPP verifier is invoked with proximity parameter δpcpp = 13�δ > 0,
where δ ≤ δ0/81� is the proximity parameter sought for the decoder.

• If the PCPP verifier rejects, in any of the aforementioned � invocations, then
the decoder outputs a special (failure) symbol. Otherwise, the decoder outputs
a random value in the ((r� − 1) · k + i)th block of w� (which is supposedly a
repetition code of xi).

• D satisfies the average smoothness property when we issue some dummy
queries that are uniformly distributed in adequate parts of w that are queried
less by the above. (In other words, suppose that V makes q1 (resp., q2) queries
to the first (resp., second) part of its input oracle and q′ queries to its proof
oracle. Then, w0 is accessed q2 times, w� is accessed q1 times, each other wj

is accessed q1 + q2 times, and each vj is accessed q′ times. Thus, we may
add dummy queries to make each part accessed max(q1 + q2, q

′) times, which
means increasing the number of queries by a factor of at most (2�+1)/(�−1)
assuming � ≥ 2.)

Using an adequate PCPP, it holds that |C(x)| = � · (|x|1+(1/�))1+o(1) < |x|1+ε

for ε = 2/�. The query complexity of D is O(�) · O(1/δpcpp) = O(�2). The proof of
Proposition 4.13 can be extended, obtaining the following.

Proposition 4.15. The code and decoder of Construction 4.14 satisfy condi-
tions 1 and 2 of Definition 4.5 with respect to proximity parameter δ ≤ δ0/81�. Fur-
thermore, this decoder satisfies the average smoothness property.

Using Lemma 4.10, Theorem 1.5 follows.

21Recall that all these conditions hold for the PCPP of Theorem 3.3, where almost uniformly
distributed queries to the proof oracle are obtained by a modification analogous to the proof of
Lemma 4.9.
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ROBUST PCPS OF PROXIMITY 927

Proof. Again, condition 1 as well as the average smoothness property are obvious
from the construction, and thus we focus on establishing condition 2. Thus, we fix an
arbitrary i ∈ [k] and follow the outline of the proof of Proposition 4.13.

We consider an oracle (w0, w1, . . . , w�, π1, . . . , π�) that is δ-close to an encoding
of x ∈ {0, 1}k, where each wj is assumed to consist of encodings of the kj/� (nonover-
lapping) k1−(j/�)-bit long blocks of x, and πi consists of the corresponding proofs of
consistency. It follows that each wj is (2�+ 1) · δ-close to Cj(x)t0 . Let Zj denote the
block of wj that was selected and accessed by D. Thus, the expected relative distance
of Z0 from C0(x) is at most (2�+1) · δ, but we do not know the same about the other
Zj ’s because their choice depends on i (or rather on �i/b�−j). Assuming, without
loss of generality, that δ0 < 1/3 (and � ≥ 1), we consider three cases as follows.

Case 1. Z� is 1/9-close to C0(xi). In this case, D outputs either ⊥ or a uniformly
selected bit in Z�, and so D outputs ¬xi with probability at most 1/9.

Using δ ≤ δ0/81� and δ0 < 1/3, it follows that 27�δ < 1/9. Thus, if Case 1 does
not hold, then Z� is 27�δ-far from C0(xi).

Case 2. Z0 is 27�δ-far from C0(x). This case may occur with probability at most
1/9, because E[Δ(Z0,C0(x))] ≤ 3�δ · |C0(x)|.

Note that if both Cases 1 and 2 do not hold, then Z0 is 27�δ-close to C0(x) but
Z� is 27�δ-far from C0(xi). Also note that x = x0,1 and xi = x�,i.

Case 3. For some j ∈ [�], it holds that Zj−1 is 27�δ-close to Cj−1(xj−1,�i/b�−j+1�)

but Zj is 27�δ-far from Cj(xj,�i/b�−j�). In this case, the pair (Zb
j , Zj−1) is 27�δ/2-far

from the consistent pair (Cj(xj,�i/b�−j�),Cj−1(xj−1,�i/b�−j+1�)) and is (δ0 − 27�δ)/2-
far from any other consistent pair. Using δpcpp = 13�δ < min(27�δ/2, (δ0 − 27�δ)/2),
which holds because δ ≤ δ0/81�, it follows that in the current case the PCPP verifier
accepts (and the decoder does not output ⊥) with probability at most 1/9.

Thus, in total, the decoder outputs ¬xi with probability at most 1/3.
Conclusion (restatement of Theorem 1.5). For every constant ε > 0, there

exists a code C : {0, 1}k → {0, 1}n, where n = k1+ε, that is relaxed locally decodable
under Definition 4.11. The query complexity of the corresponding decoder is O(1/ε2)
and the proximity parameter is ε/O(1).

Open problem. We wonder whether one can obtain a relaxed LDC that can be
decoded using q queries while having length n = o(k1+/(q−1)). The existence of such
a relaxed LDC will imply that our relaxation (i.e., relaxed LDC) is actually strict,
because such codes will beat the lower-bound currently known for LDC (cf. [KT00]).
Alternatively, it may be possible to improve the lower-bound for the (q-query) LDC

to n > k1+
√

c/q for any constant c and every sufficiently large constant q (where, as
usual, k is a parameter, whereas q is a fixed constant). In fact, some conjecture that
n must be superpolynomial in k for any constant q.

4.3. Linearity of the codes. We note that the codes presented above (estab-
lishing both Theorems 1.4 and 1.5) are actually F2-linear codes whenever the base
code C0 is also F2-linear. Proving this assertion reduces to proving that the PCPPs
used (in the aforementioned constructions) have proof oracles in which each bit is
a linear function of the bits to which the proof refers. The main part of the latter
task is undertaken in section 8.4, where we show the main construct (i.e., the PCPPs
stated in Theorems 3.1 and 3.2) when applied to a linear circuit yields an F2-linear
transformation of assignments (satisfying the circuit) to proof oracles (accepted by
the verifier). In addition, we also need to show that the construction underlying the
proof of Theorem 3.3 satisfies this property. This is done next, and consequently we
get the following.
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928 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

Proposition 4.16. If C is a linear circuit (see Definition 8.13), then there is a
linear transformation T mapping satisfying assignments w of C to proof oracles T (w)
such that the PCPP verifier of Theorem 3.3 will, on input C, accept oracle (w, T (w))
with probability 1.

Proof sketch. In section 8.4, we establish a corresponding result for the main
construct (i.e., Proposition 8.14 refers to the linearity of the construction used in the
proof of Theorem 3.1, which in turn underlies Theorems 3.1 and 3.2). Here we show
that linearity is preserved in composition as well as by the most inner (i.e., bottom)
verifier.

In each composition step, we append the proof oracle with new (inner) PCPPs
per each test of the (outer) verifier. Since all these tests are linear, we can apply
Proposition 8.14 and infer that the new appended information is a linear transforma-
tion of the input oracle and the outer proof oracle (where, by induction, the latter is
a linear transformation of the input).

At the bottom level of composition we apply a Hadamard-based PCP (Appendix
A). The encoding defined there is not F2-linear (rather it is quadratic), but this was
necessary for dealing with nonlinear gates. It can be verified that for a linear circuit,
one can perform all necessary tests of Appendix A with the Hadamard encoding of
the input. Thus, we conclude that this final phase of the encoding is also linear, and
this completes the proof of Proposition 4.16.

Part II. The main construct: A short, robust PCPP.

5. Overview of our main construct. Throughout this section, n denotes the
length of the explicit input given to the PCPP verifier, which in the case of CktVal is
defined as the size of the circuit (given as explicit input). As stated in the introduction,
our main results rely on the following highly efficient robust PCPP.

Theorem 3.1 (main construct restated). There exists a universal constant c such
that for all n,m ∈ Z

+, 0 < δ, γ < 1/2 satisfying n1/m ≥ mcm/(γδ)3 and δ ≤ γ/c,
CktVal has a robust PCPP (for circuits of size n) with the following parameters:

• randomness
(
1 − 1

m

)
log n + O(m logm) + O(log log n) + O(log(1/δ));

• decision complexity n1/m ·poly(logn, 1/δ), which also upper-bounds the query
complexity;22

• perfect completeness; and
• for proximity parameter δ, the verifier has robust-soundness error Ω(γ) with

robustness parameter (1 − γ)δ.
A (simplified) variant of Theorem 3.1 also yields the ALMSS-type robust PCPP

(of Theorem 3.2). Following is an overview of the proof of Theorem 3.1; the actual
proof is given in the subsequent three sections.

Theorem 3.1 is proved by modifying a construction that establishes Theorem 1.1.
We follow [HS00] and modify their construction. (An alternative approach would
be to start from [PS94], but that construction does not seem amenable to achieving
robust soundness.) The construction of [HS00] may be abstracted as follows: To
verify the satisfiability of a circuit of size n, a verifier expects oracles Ai : F

m →
F, i ∈ {1. . . . , t = poly logn}, where F is a field and m is a parameter such that
|Fm| ≈ mm · n. The verifier then needs to test that (1) each of the Ai’s is close to an
m-variate polynomial of low degree and (2) the polynomials satisfy some consistency

22In fact, we will upper-bound the query complexity by q = n1/m ·poly(logn, 1/δ) and show that

the verifier’s decision can be implemented by a circuit of size Õ(q), which can also be bounded by
n1/m · poly(logn, 1/δ) with a slightly larger unspecified polynomial.
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ROBUST PCPS OF PROXIMITY 929

properties which verify that Ai is locally consistent with Ai−1.
23 (These consistency

checks include tests which depend on the input circuit and verify that Ai’s actually
encode a satisfying assignment to the circuit.)

We work within this framework—namely, our verifier will also try to access oracles
for the Ai’s and test low degreeness and consistency. Our key modification to this
construction is a randomness reduction in the low-degree test obtained by using the
small collection of (small-biased) lines of [BSVW03], while using only the “canonical”
representations of these lines (and avoiding any complication that was introduced
towards proof composition). In particular, unlike in [HS00, GS02, BSVW03], we
cannot afford to pack the polynomials A1, . . . ,At into a single polynomial (by using
an auxiliary variable that blows up the proof length by a factor of the size of the field
in use). Instead, we just maintain all these t polynomials separately and test them
separately to obtain Theorem 1.1. (In the traditional framework of parallelized PCPs,
this would give an unaffordable increase in the number of (non-Boolean) queries.
However, we will later ameliorate this loss by a bundling technique that will yield
robust soundness.)

The resulting PCP is converted into a PCPP by comparing the input oracle
(i.e., the supposed satisfying assignment to the circuit) to the proof oracle (which is
supposed to include an encoding of the said assignment). That is, we read a random
location of the input and the corresponding location of the proof oracle, and test
for equality. Actually, these locations of the proof oracle must be accessed via a
self-correction mechanism (rather than by merely probing at the desired points of
comparison), since they constitute only a small part of the proof oracle (and thus
corruptions there may not be detected). This technique was already suggested in
[BFLS91].

The most complex and subtle part of the proof of Theorem 3.1 is establishing
the robust-soundness property. We sketch how we do this below, first dealing with
the low-degree test and the consistency tests separately, and then showing how to
reconcile the two “different” fixes.

Low-degree tests of A1, . . . ,At. Selecting a random line � : F → F
m (from the

aforementioned sample space), we can check that (for each i) the restriction of Ai to
the line � (i.e., the function fi(j) � Ai(�(j))) is a low-degree (univariate) polynomial.
Each of these tests is individually robust; that is, if Ai is far from being a low-degree
polynomial, then with high probability the restriction of Ai to a random line � (in
the sample space) is far from being a low-degree polynomial. The problem is that
the conjunction of the t tests is not sufficiently robust; that is, if one of the Ai’s is
δ-far from being a low-degree polynomial, then it is guaranteed only that the sequence
of t restrictions (i.e., the sequence of the fi’s) is (δ/t)-far from being a sequence of
t low-degree (univariate) polynomials. Thus, robustness decreases by a factor of t,
which we cannot afford for nonconstant t.

Our solution is to observe that we can “bundle” the t functions together into
a function A : F

m → F
t such that if one of the Ai’s is far from being a low-degree

polynomial, then the restriction of A to a random line will be far from being a bundling
of t low-degree univariate polynomials. Specifically, for every x ∈ F

m, define A(x) �
(A1(x), . . . ,At(x)). To test that A is a bundling of low-degree polynomials, select a

23Strictly speaking, the consistency checks are a little more complicated, with the functions really
being indexed by two subscripts, and consistency tests being between Ai,j and Ai,j−1, as well as
between Ai,0 and Ai+1,0. However, these differences don’t alter our task significantly—we ignore
them in this section to simplify our notation.
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930 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

random line � (as above), and check that f �(j) = A(�(j)) is a bundling of low-degree
univariate polynomials. Thus, we establish robustness at the bundle level; that is, if
one of the Ai’s is far from being low degree then, with high probability, one must
modify f � on a constant fraction of values in order to make the test accept. The point
is that this robustness refers to the Hamming distance over the alphabet F

t, rather
than alphabet F as before. We can afford this increase in alphabet size, as we later
encode the values of A using an error-correcting code in order to derive robustness at
the bit level.

We wish to highlight a key point that makes the above approach work: when we
look at the values of A restricted to a random line, we get the values of the individual
Ai’s restricted to a random line, which is exactly what a low-degree test of each Ai

needs. This fact is not very surprising, given that we are subjecting all Ai’s to the
same test. But what happens when we need to make two different types of tests? This
question is not academic and does come up in the consistency tests.

Consistency tests. To bundle the t consistency tests between Ai and Ai+1 we
need to look into the structure of these tests. We note that for every i, a random
test essentially refers to the values of Ai and Ai+1 on (random) ith axis-parallel
lines. That is, for every i, and a random x′ = (x1, . . . , xi−1) ∈ F

i−1 and x′′ =
(xi+1, . . . , xm) ∈ F

m−i, we need to check some relation between Ai(x
′, ·, x′′) and

Ai+1(x
′, ·, x′′).24 Clearly, querying A as above on the ith axis-parallel line, we can

obtain the relevant values from A(x′, ·, x′′), but this works only for one specific value
of i, and other values of i will require us to make other queries. The end result is
that we gain nothing from the bundling (i.e., from A) over using the individual Ai’s,
which yields a factor of t loss in the robustness.25 Fortunately, a different bundling
works in this case.

Consider A
′
such that A

′
(x) � (A1(x),A2(S(x)), . . . ,At(S

t−1(x))), for every x ∈
F
m, where S denotes a (right) cyclic-shift (i.e., S(x1, . . . , xm) = (xm, x1, . . . , xm−1)

and Si(x1, . . . , xm) = (xm−(i−1), . . . , xm, x1, x2, . . . , xm−i)). Now, if we ask for the

value of A
′

on the first and last axis-parallel lines (i.e., on (·, x2, . . . , xm) and
(x2, . . . , xm, ·) = S−1(·, x2, . . . , xm)), then we get all we need for all the m tests.

Specifically, for every i, the ith component in the bundled function A
′
(·, x2, . . . , xm) is

Ai(S
i−1(·, x2, . . . , xm)) = Ai(xm−i+2, . . . , xm, ·, x2, . . . , xm−i+1), whereas the

(i + 1)st component in A
′
(S−1(·, x2, . . . , xm)) is Ai+1(S

i(S−1(·, x2 . . . , xm))) =
Ai+1(xm−i+2, . . . , xm, ·, x2, . . . , xm−i+1). Thus, we need only query two bundles (rather
than t), and robustness drops only by a constant factor.

Reconciling the two bundlings. But what happens with the low-degree tests that
we need to do (which were “served” nicely by the original bundling A)? Note that

we cannot use both A and A
′
, because this will requires testing consistency between

them, which will introduce new problems as well as a cost in randomness that we

cannot afford. Fortunately, the new bundling (i.e., A
′
), designed to serve the axis-

parallel line comparisons, can also serve the low-degree tests. Indeed, the various
Ai’s will not be inspected on the same lines, but this does not matter, because the
property of being a low-degree polynomial is preserved when “shifted” (under S).

24Again, this is an oversimplification but suffices to convey the main idea of our solution.
25It turns out that for constant m (e.g., m = 2) this does not pose a problem. However, a

constant m would suffice only for proving a slightly weaker version of Theorem 1.2 (where o(log logn)
is replaced by log log n) and not for proving Theorem 1.3, which requires setting and m = logε n for
constant ε > 0.
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ROBUST PCPS OF PROXIMITY 931

Tightening the gap between robustness and proximity. The above description suf-
fices for deriving a weaker version of Theorem 3.1 in which the robustness is only, say,
δ/3 rather than (1 − γ)δ for a parameter γ that may be set as low as 1/poly(logn).
Such a weaker result yields a weaker version of Theorem 3.3 in which the query com-
plexity is exponentially larger (e.g., for proof length exp(o(log log n)2) · n, we would

have obtained query complexity exp(o(log log n)) = logo(1) n rather than o(log log n));
see the comment at the end of section 3.1. To obtain the stronger bound on the ro-
bustness parameter, we take a closer look at the conjunction of the standard PCP test
and the proximity test. The PCP test can be shown to have constant robustness c > 0,
whereas the proximity test can be shown to have robustness δ′ � (1 − γ)δ. When
combining the two tests, we obtain robustness equal to min(αc, (1−α)δ′), where α is
the relative length of queries used in the PCP test (as a fraction of the total number
of queries). A natural choice, which yields the weaker result, is to weight the queries
(or replicate the smaller part) so that α = 1/2. (This yields robustness of approxi-
mately min(c, δ′)/2.) In order to obtain the stronger bound, we assign weights such
that α = γ, and obtain robustness min(γc, (1 − γ)δ′) > min(Ω(γ), (1 − 2γ)δ), which
simplifies to (1−2γ)δ for δ < γ/O(1). (The above description avoids the fact that the
PCP test has constant soundness error, but the soundness error can be decreased to
γ by using sequential repetitions while paying a minor cost in randomness and while
approximately preserving the robustness. We comment that the proximity test, as is,
has soundness error γ.)

6. A randomness-efficient PCP. In this section, we present a “vanilla” ver-
sion (Theorem 6.1) of Theorem 3.1. More specifically, we construct a regular PCP
for CktSAT (i.e., a robust PCPP without either the robustness or proximity prop-
erties). We favor this construction over earlier PCP constructions in the fact that it
is very efficient in randomness. As mentioned earlier, this theorem suffices to prove
Theorem 1.1.

Theorem 6.1. There exists a universal constant 0 < ε < 1 such that the following
holds. Suppose m ∈ Z

+ satisfies m ≤ log n/ log log n. Then there exists a PCP for
CktSAT (for circuits of size n) with the following parameters:

• randomness (1 − 1
m ) log n + O(m logm) + O(log log n),

• query complexity q = O(m2n1/m log2 n) and decision complexity Õ(q),
• perfect completeness,
• and soundness error 1 − ε.

The construction of the PCP for CktSAT proceeds in three steps. First, we
transform the input circuit ϕ into a well-structured circuit ϕ′ along the lines of Pol-
ishchuk and Spielman [PS94, Spi95] (section 6.1). ϕ′ is only slightly larger than ϕ,
but has an algebraic structure that will be crucial to our verification process. Any
legal assignment to the gates of ϕ (i.e., one that preserves the functionality of the
gates of ϕ) can be transformed into a legal assignment to ϕ′. The important property
of ϕ′ is the following: If we encode an assignment to the gates of ϕ′ using a specific
sequence of Reed–Muller codewords (i.e., low-degree polynomials), then the legality
of the assignment can be locally verified (by reading a small random portion of the
encoding). The encoding via low-degree polynomials (and resulting local tests) is as
in Harsha and Sudan [HS00] and is described in section 6.2. Thus, our PCP verifier
will essentially test (i) that the encoding of the purported satisfying assignment to
ϕ′ is formed of low-degree polynomials (this part will be done using the randomness-
efficient low-degree test of Ben Sasson et al. [BSVW03]); and (ii) that the assignment
is legal. Section 6.3 describes the construction of the PCP verifier and section 6.4
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932 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

analyzes its properties. Most of the above results are implicit in the literature, but
carefully abstracting the results and putting them together helps us in significantly
reducing the randomness of the PCP verifier.

6.1. Well-structured Boolean circuits. The main problem with designing a
randomness-efficient PCP verifier directly for CktSAT is that we need to encode the
assignment to all gates of the input circuit using certain Reed–Muller based codes, in
such a way that will allow us to locally verify the legality of all gates of the circuit,
using only the encoded assignment. In order to do this, we require the circuit to have a
well-behaved structure (amenable to our specific encoding and verification demands).
Of course, an arbitrary circuit does not necessarily have this structure, but we are
lucky to have the technology to overcome this. More to the point, we can restructure
any circuit into a well-behaved circuit that will suit our needs. The natural encoding
(used, e.g., in the Hadamard-based PCP, Appendix A) incurs a quadratic blow-up in
length. To get over this problem, Polishchuk and Spielman [PS94, Spi95] introduced a
different, more efficient restructuring process that embeds the input circuit into well-
structured graphs known as de Bruijn graphs. Indeed, the blow-up in circuit size using
these circuits is merely by a logarithmic multiplicative factor, and their usefulness for
the local verification of legal assignments will become evident later (in section 6.2). As
in Polishchuk and Spielman [PS94, Spi95], we embed the input circuit into wrapped
de Bruijn graphs (see Definition 6.2). We use a slightly different definition of de
Bruijn graphs, more convenient for our purposes, than that used in [PS94, Spi95].
However, it can be easily checked that these two definitions yield isomorphic graphs.
The main advantage with the de Bruijn graphs is that the neighborhood relations
can be expressed very easily using simple bit-operations like cyclic-shifts and bit-flips.
In [PS94, Spi95] the vertex set of these graphs is identified with a vector space. We
instead work with a strict embedding of these graphs in a vector space, where the
vertices are a strict subset of the vector space. The benefit of both approaches is that
the neighborhood functions can be expressed as an affine functions (see section 6.2
for more details). The reason for our approach will be explained at the end of section
6.2.

Definition 6.2. The wrapped de Bruijn graph GN,l is a directed graph with l
layers, each with 2N nodes which are represented by N -bit strings. The layers are
numbered 0, 1, . . . , l − 1. The node represented by v = (b0, . . . , bi∗ , . . . , bN−1) in layer
i has edges pointing to the nodes represented by Γi,0(v) = (b0, . . . , bi∗ , . . . , bN−1) and
Γi,1(v) = (b0, . . . , bi∗⊕1, . . . , bN−1) in layer (i + 1) modulo l, where i∗ is i modulo N
and a⊕b denotes the sum of a and b modulo 2. See Figure 1 for an example.

We now describe how to embed a circuit into a wrapped de Bruijn graph (see
Figure 2 for a simple example). Given a circuit C with n gates (including both
input and output gates), we associate with it a wrapped de Bruijn graph GN,l, where
N = log n and l = 5N = 5 log n. We then associate the nodes in layer 0 with the
gates of the circuit. Now, we wish to map each wire in the circuit to a path in GN,l

between the corresponding nodes of layer 0. Standard packet-routing techniques (see
[Lei92]) can be used to show that if the number of layers l is at least 5N , then such
a routing can be done with edge-disjoint paths. (Recall that we work with circuits
whose fan-in and fan-out are 2.)

Thus, we can find “switches” for each of the nodes in layers 1, . . . , l − 1 of the
graph such that the output of each gate (i.e., node in layer 0) is routed to the input of
the gates that require it. Each node has two inputs and two outputs, and thus there is
a constant number of switches routing incoming edges to outgoing ones (see Figure 3).
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ROBUST PCPS OF PROXIMITY 933

Labels

001

010

011

100

101

110

111

Layers

000
2 00 1

Fig. 1. The wrapped de Bruijn graph G3,3. Notice the first and last layers are the same.

For nodes in layer 0, instead of specifying a switch, we specify the functionality of
the Boolean gate associated to that node in the circuit (e.g., AND, OR, PARITY,
NOT, INPUT, OUTPUT). Actually unary gates (such as NOT and OUTPUT) have
two forms (NOT, NOT′, OUTPUT, OUTPUT′) in order to specify which of the two
incoming edges in the de Bruijn graph to use.

This specifies the embedding of the input circuit into a well-structured circuit
(based on a de Bruijn graph). More precisely, let C = {type of switching actions} ∪
{type of Boolean gates} be the set of allowable gates of the well-structured circuit
(see Figure 3). Given a circuit on n gates, we can construct, in polynomial time, a
wrapped de Bruijn graph GN,l (where N = log n and l = 5 logN) and l functions
T0, T1, . . . , Tl−1 : {0, 1}N → C, where each function Ti is a specification of the gates
of layer i (i.e., a specification of the switching action or Boolean functionality).

We now demonstrate how to translate a proof that a circuit is satisfiable into an
assignment that satisfies the embedded circuit. A proof that a circuit is satisfiable
consists of an assignment of 0’s and 1’s to the inputs and the gates of the circuit such
that each gate’s output is consistent with its inputs and the output gate evaluates to
1. The corresponding assignment to the embedded circuit consists of an assignment of
0’s and 1’s to the edges entering and leaving the nodes of the wrapped de Bruijn graph
that is consistent with the functionality of the gates (in layer 0) and the switching
actions of the nodes (in the other layers). Since we are assigning values to nodes of the
embedded graph (and not their edges), the assignment actually associates a 4-tuple
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934 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

x x x x

x

x

x

x x

x

x

x

1

1 1

2 3 4
2 2

3 3

4 4

Fig. 2. Embedding of a circuit into G3,3. In this example all paths between nodes at the 0 layer
are vertex disjoint. For general circuits we merely need edge disjoint paths.

In1 In1 In1

In2 In2 In2

Out1 Out1 Out1

Out2 Out2 Out2

Gate Gate Gate31 2

Fig. 3. Some gates of a well-structured circuit. Gates 1–2 are switching gates, and gate 3 sits
in layer 0 and computes the parity (xor) function.

of 0’s and 1’s to each of the nodes in the graph indicating the value carried by the
four edges incident at that node (two incoming and two outgoing). More formally,
the embedded assignment is given by a set of l functions A0, A1, . . . , Al−1, where each
function Ai : {0, 1}N → {0, 1}4 specifies the values carried by the four edges incident
at that vertex.

We now list the constraints on the embedded circuit that assure us that the
only legal assignments are the ones that correspond to legal satisfying assignments of
the original circuit, i.e., assignments that correctly propagate along the edges of the
circuit, correctly compute the value of every gate, and produce a 1 at the output gate.

Definition 6.3. The assignment constraints for each node of the well-structured
circuit require that

• the two outgoing values at the node are propagated correctly to the incoming
values of its neighbors at the next level;

• for nodes at layers �= 0, the two outgoing values have the unique values dic-
tated by the incoming values and the switching action;

• for non-OUTPUT nodes in layer 0, both outgoing values equal the unique
value dictated by the gate functionality and the incoming values (the INPUT
functionality merely requires that the two outgoing values are equal to each
other);

• for nodes in layer 0 with an OUTPUT functionality, the appropriate incoming
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Legal0

0
1

01

1

Illegal
0

1

1

0
1

1

Fig. 4. Example of legal and illegal assignments. The two vertices on the left are the inputs
(at layer i − 1) to a gate at layer i. Recall that assignments evaluate each incoming and outgoing
edge of a gate.

value equals 1.
Let ψ : C × ({0, 1}4)3 → {0, 1} be the Boolean function such that ψ(t, a, a0, a1) = 0 iff
a node whose T -gate is t, A-assignment is a, and whose neighbors in the next layer
have A-assignments a0 and a1, respectively, satisfies the aforementioned assignment
constraints. See Figure 4 for an example of legal and illegal assignments.

Observe that the definition of ψ is independent of N , the assignments Ai, and
gates Ti. By definition, the assignment A = (A0, . . . , Al−1) is legal for an embedded
circuit defined by T0, . . . , Tl−1 iff for every layer i and every node v in layer i,

ψ

(
Ti(v), Ai(v), Ai+1

(
Γi,0(v)

)
, Ai+1

(
Γi,1(v)

))
= 0.

We are now ready to formally define the well-structured circuit satisfiability prob-
lem (Structured-CktSAT).

Definition 6.4. The problem Structured-CktSAT has as its instances 〈GN,l,
{T0, T1, . . . , Tl−1}〉, where GN,l is a wrapped de Bruijn graph with l layers and Ti :
{0, 1}N → C is a specification of the node types of layer i of the graph (Ti’s are
specified by a table of values).

〈GN,l, {T0, . . . , Tl−1}〉 ∈ Structured-CktSAT if there exists a set of assign-
ments A0, A1, . . . , Al−1, where Ai : {0, 1}N → {0, 1}4 is an assignment to the nodes
of layer i of GN such that for all layers i and all nodes v in layer i,

ψ

(
Ti(v), Ai(v), Ai+1

(
Γi,0(v)

)
, Ai+1

(
Γi,1(v)

))
= 0.

The above discussion also demonstrates the existence of a reduction from CktSAT

to Structured-CktSAT, which does not blow up the length of the target instance
by more than a logarithmic multiplicative factor.

Proposition 6.5. There exists a polynomial-time reduction R from CktSAT

to Structured-CktSAT such that for any circuit C, it holds that C ∈ CktSAT iff
R(C) ∈ Structured-CktSAT. Moreover, if C is a circuit of size n, then R(C) =
〈GN,l, {T0, . . . , Tl−1}〉, where N = �log n and l = 5N .

Remark 6.6. The above reduction, though known to take polynomial time (via
routing techniques), is not known to be of almost linear time.

Remark 6.7. We observe that if C is a satisfiable circuit, then any set of assign-
ments A0, . . . , Al proving that the reduced instance R(C) = 〈GN,l, {T0, . . . , Tl−1}〉 is
a YES instance of Structured-CktSAT contains within it a satisfying assignment
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936 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

to the circuit C. Specifically, let I be the set of nodes in layer 0 that have gate
functionality INPUT associated with them. Then the assignment A0 restricted to
the set of nodes I (i.e., A0|I) contains a satisfying assignment. More precisely, the
satisfying assignment is obtained by concatenating the third bit (i.e., first outgoing
bit) of A0|i ∈ {0, 1}4 for all i ∈ I. Conversely, every satisfying assignment w to C can
be extended to A0, . . . , Al−1 such that A0|I contains w. This is done by computing
the values of all gates in the computation of C(w), setting the outgoing bits of A0 ac-
cording to these values, and routing them throughout GN,l according to the switching
actions to obtain A1, . . . , Al−1 and the incoming bits of A0. This observation will be
vital while constructing PCPPs (see section 7).

Remark 6.8. Suppose the input circuit C is a linear circuit, in the sense that
all gates are INPUT, OUTPUT, or PARITY gates, and the OUTPUT gates test
for 0 rather 1 (see Definition 8.13). Then it can be verified that the transformation
mapping satisfying assignments w of C to legal assignments A0, . . . , Al−1 of R(C) is
F2-linear. The reason is that each gate in the computation of C(w) is an F2-linear
function of w. These remarks will be used in the coding applications, to obtain linear
codes (see section 8.4 for more information).

6.2. Arithmetization. In this section, we construct an algebraic version of
Structured-CktSAT by arithmetizing it along the lines of Harsha and Sudan [HS00].
The broad overview of the arithmetization is as follows: We embed the nodes in each
layer of the wrapped de Bruijn graph GN,l into a vector space and extend the gate
specifications and assignments to low-degree polynomials over this space. Finally,
we express the assignment constraints (see Definition 6.3) as a pair of polynomial
identities satisfied by these polynomials.

First, we have some notation. Let m be a parameter. Set h such that h = N/m,
where 2N is the number of nodes in each layer of the de Bruijn graph. Choose a
finite extension field F of F2 of size roughly cFm

22h = cFm
22N/m, where cF is a

suitably large constant to be specified later. Specifically, take F = F
�
2 = F2� for

� = h+2 logm+log cF . Let {e0, e1, . . . , e�−1} be a basis of F over F2. Set H to be a
subspace of F

�
2 (and hence a subset of F) spanned by {e0, . . . , eh−1}. Note that Hm is

a subset of the space F
m. Furthermore, |Hm| = 2N . Hence, we can embed each layer

of the graph GN,l in F
m by identifying the node v = (b0, . . . , bN−1) ∈ {0, 1}N with the

element (b0e0+· · ·+bh−1eh−1, bhe0+· · ·+b2h−1eh−1, . . . , b(m−1)he0+· · ·+bmh−1eh−1)
of Hm. Henceforth, we use both representations (N -bit string and element of Hm)
interchangeably. The representation will be clear from the context.

Any assignment S : Hm → F can be interpolated to obtain a polynomial S̃ :
F
m → F of degree at most |H| in each variable (and hence a total degree of at most

m|H|) such that S̃|Hm = S (i.e., the restriction of S̃ to Hm coincides with the function
S). Conversely, any polynomial S̃ : F

m → F can be interpreted as an assignment from
Hm to F by considering the function restricted to the subdomain Hm.

Recall that C and {0, 1}4 are the set of allowable gates and assignments given by
the gate functions Ti and assignments Ai in the Structured-CktSAT problem. We
identify C with a fixed subset of F and identify {0, 1}4 with the set of elements spanned
by {e0, e1, e2, e3} over F2. With this identification, we can view the assignments Ai

and gates Ti as functions Ai : Hm → F and Ti : Hm → F, respectively. Furthermore,
we can interpolate these functions, as mentioned above, to obtain polynomials Ãi :
F
m → F and T̃i : F

m → F of degree at most m|H| over F.

We now express the neighborhood functions of the graph in terms of affine func-
tions over F

m. This is where the nice structure of the wrapped de Bruijn graph will be
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ROBUST PCPS OF PROXIMITY 937

useful. For any positive integer i, define affine transformations Γ̃i,0, Γ̃i,1 : F
m → F

m

as follows: Γ̃i,0 is the identity function. For Γ̃i,1, first let t = �i/h� mod m and

u = i mod h. Then Γ̃i,1(z0, . . . , zm−1) = (z0, . . . , zt−1, zt + eu, zt+1, . . . , zm−1).
26 It

can be checked from the above definition that for any layer i and node x in layer i
(which we view as a point in Hm), we have Γ̃i,j(x) = Γi,j(x) for j = 0, 1. In other

words, Γ̃ is an extension of the neighborhood relations of the graph GN,l over F
m.

Finally, we now express the assignment constraints (see Definition 6.3) as poly-
nomial identities. The first of these identities checks that the assignments given by
the assignment polynomial Ãi are actually elements of {0, 1}4 for points in Hm. For
this purpose, let ψ0 : F → F be the univariate polynomial of degree 24 given by

ψ0(z) =
∏

α∈{0,1}4

(z − α).(6.1)

This polynomial satisfies ψ0(z) = 0 iff z ∈ {0, 1}4 (recall we identified {0, 1}4 with a
subset of F spanned by e0, . . . , e3). We check that ψ0(Ãi(x)) = 0 for all x ∈ Hm and all
layers i. We then arithmetize the rule ψ (from Definition 6.3) to obtain a polynomial
ψ1 : F

4 → F. In other words, ψ1 : F
4 → F is a polynomial such that ψ1(t, a, a0, a1) =

ψ(t, a, a0, a1) for all (t, a, a0, a1) ∈ C × ({0, 1}4)3. The degree of ψ1 can be made con-
stant, because |C| and |{0, 1}4| are constant.27 The two polynomial identities we would
like to check are ψ0(Ãi(x)) = 0 and ψ1(T̃i(x), Ãi(x), Ãi+1(Γ̃i,0(x)), Ãi+1(Γ̃i,1(x))) = 0
for all x ∈ Hm. For notational convenience, we express these two conditions to-
gether as a pair of polynomials ψ′ = (ψ0, ψ1) : F

4 → F
2 such that ψ′(x1, x2, x2, x4) =

(ψ0(x2), ψ1(x1, x2, x3, x4)).
28 Let κ be the maximum of the degree of these two poly-

nomials. In order to make these polynomial identities sufficiently redundant, we set
cF to be a sufficiently large constant (say 100) such that κm22h/|F| is low.

We have thus reduced Structured-CktSAT to an algebraic consistency prob-
lem, which we shall call the AS-CktSAT(Algebraic-Structured-CktSAT) prob-
lem.29

Definition 6.9. The promise problem AS-CktSAT = (AS-CktSAT
YES, AS-

CktSAT
NO) has as its instances 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉, where F is a finite

extension field of F2 (i.e., F = F2� for some �), H an F2-linear subspace of F, and T̃i :
F
m → F for i = 0, . . . , l− 1 a sequence of polynomials of degree d, where |H| = n1/m,

26An alternate description of Γ̃i,1 is as follows: Since F = F�
2 , we can view Fm as

an m�-dimensional space over F2. Hence, any vector (z0, . . . , zm−1) can be written as
(b0,0, . . . , b0,�−1, b1,0, . . . , b1,�−1, . . . , bm−1,0, . . . , bm−1,�−1). Furthermore, we note that for any

vector (z0, . . . , zm−1) in Hm, br,s = 0 for all s ≥ h and all r. It can now be checked that Γ̃i,1 is the
affine transformation that flips the bit bt,u, where t = �i/h� mod m and u = i mod h.

27Notice that we do not specify ψ1 uniquely at this stage. Any choice of a constant-degree
polynomial will work in this section, but to enforce linearity, we will use a somewhat nonstandard
choice in section 8.4. Specifically, we argue that if C is a linear circuit, then ψ1 can be picked to
be an F2-linear transformation, and we point out that ψ0 is an F2-linear transformation. For more
details see section 8.4.

28An alternative approach (which we do not follow) to combine ψ0 and ψ1 into a single polynomial
ψ was suggested to us by Sergey Yekhanin and Jaikumar Radhakrishnan. Let p(x) be a monic,
quadratic, irreducible polynomial over the field F. Let Q(x, y) = y2 · p(x, y). Now Q satisfies the
property that Q(a, b) = 0 iff a = b = 0. (Proof: Q is homogeneous and so Q(0, 0) = 0; if b = 0,
Q(a, 0) = a2 (since p is monic) and so is zero only if a = 0. If b 	= 0, then Q(a, b) = 0 only if
p(a/b) = 0, but p has no roots in F.) Now define ψ(x) = Q(ψ0(x), ψ1(x)). For instance, over fields
of odd characteristic, ψ(x) = ψ2

0(x) − α · ψ2
1(x), where α is a nonsquare in F will work. ψ can be

thought of as an “algebraic AND” of ψ0 and ψ1, since ψ′ satisfies the property that ψ(x) = 0 iff
ψ0(x) = 0 and ψ1(x) = 0.

29
AS-CktSAT is actually a promise problem.
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938 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

d = m · |H|, and |F| = cF ·md. The field F is specified by an irreducible polynomial
p(x) of degree f over F2, H is taken to be spanned by the first h = log |H| canonical
basis elements, and each of the polynomials T̃i is specified by a list of coefficients as
follows:

• 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 ∈ AS-CktSAT
YES if there exists a sequence

of degree d polynomials Ãi : F
m → F, i = 0, . . . , l − 1, such that for all

i = 0, . . . , l − 1 and all x ∈ Hm,

ψ′
(
T̃i(x), Ãi(x), Ãi+1

(
Γ̃i,0(x)

)
, Ãi+1

(
Γ̃i,1(x)

))
= (0, 0).

• 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 ∈ AS-CktSAT
NO if for all functions Ãi : F

m →
F, i = 0, . . . , l − 1, there exists an i ∈ {0, . . . , l − 1} and x ∈ Hm such that

ψ′
(
T̃i(x), Ãi(x), Ãi+1

(
Γ̃i,0(x)

)
, Ãi+1

(
Γ̃i,1(x)

))
�= (0, 0),

where the Γ̃i,j’s and ψ′ are as defined earlier. (Recall that the Γ̃’s are linear functions
while ψ′ represents a pair of polynomials of degree at most κ.)

From the above discussion we have the following reduction from Structured-

CktSAT to AS-CktSAT.
Proposition 6.10. There exists a polynomial-time computable function R map-

ping any instance I = 〈GN,l, {T0, T1, . . . , Tl−1}〉 of Structured-CktSAT and pa-
rameter m ≤ log n/ log log n (where n = |I|) to an instance R(I, 1m) of AS-CktSAT

such that

I ∈ Structured-CktSAT =⇒ R(I, 1m) ∈ AS-CktSAT
YES,

I /∈ Structured-CktSAT =⇒ R(I, 1m) ∈ AS-CktSAT
NO.

Moreover, if R(I, 1m) = 〈1n′
, 1m

′
,F, H, {T̃0, . . . , T̃l′−1}〉, then n′ = 2N (the number

of nodes in each layer of the de Bruijn graph GN,l), m
′ = m, and l′ = l (the number

of layers in the de Bruijn graph).
Combining Propositions 6.5 and 6.10, we have the following.
Proposition 6.11. There exists a polynomial-time computable function R map-

ping any circuit C and parameter m ≤ log n/ log log n (where n = |C|) to an instance
R(C, 1m) of AS-CktSAT such that C ∈ CktSAT ⇐⇒ R(C, 1m) ∈ AS-CktSAT.

Moreover, if C is a circuit of size n, then R(C, 1m) = 〈1n′
, 1m

′
,F, H, {T̃0, . . . , T̃l′−1}〉

where n′ = Θ(n), m′ = m, and l′ ≤ 5 log n′. Thus, |R(C, 1m)| = O((cFm
2)m log n) ·

|C|.
Remark 6.12. Following Remark 6.7, if C is a satisfiable circuit, then any set of

polynomials Ã0, . . . , Ãl−1 proving that the reduced instance R(C, 1m) = 〈1n, 1m,F, H,
{T̃0, . . . , T̃l−1}〉 is a YES instance of AS-CktSAT contains within it a satisfying as-
signment to the circuit C. Specifically, the set I (of layer 0 nodes with INPUT
functionality in GN,l) from Remark 6.7 can now be viewed as a subset I ⊆ Hm. Then

the polynomial Ã0 : F
m → F restricted to the set I (i.e., Ã0|I) contains a satisfying

assignment (again as a concatenation of third-bits). Conversely, every satisfying as-
signment w to C can be extended to a set of polynomials Ã0, . . . , Ãl−1 such that Ã0|I
contains w. This is done by taking low-degree extensions of the functions A0, . . . , Al−1

from Remark 6.7.
Remark 6.13. Following Remark 6.8, if C is a linear circuit, then the mapping

of satisfying assignments w of C to polynomials Ã0, . . . , Ãl−1 satisfying R(C) is F2-
linear. This is due to Remark 6.8, the association of {0, 1}4 with the linear space
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ROBUST PCPS OF PROXIMITY 939

spanned by {e0, e1, e2, e3} in F, and from the fact that the interpolation from Ai to
Ãi is F-linear and hence F2-linear. For more information see section 8.4.

Comment. Recall that the arithmetization was obtained by considering low-
degree extensions over F

m of functions from Hm to H. If H were a subfield of the field
F, this step would have caused a quadratic blow-up, and we avoid this problem by not
insisting that H be a field. In [PS94, Spi95], H is a field and F = H2 is an extension
of it, but the PCP system refers only to an O(|H|)-sized subset of F. We cannot take
this approach because we will be using a total low-degree test, which needs to refer
to the entire vector space F

m. In contrast, in [PS94, Spi95] an individual low-degree
test is used, which can work with a subset of F

m.

6.3. The PCP verifier. We design a PCP verifier for CktSAT via the reduc-
tion to AS-CktSAT based on the randomness-efficient low-degree tests of Ben-Sasson
et al. [BSVW03]. Given a circuit C, the verifier reduces it to an instance of the prob-
lem AS-CktSAT (Proposition 6.11). The proof consists of a sequence of oracles
Ãi : F

m → F for i = 0, . . . , l − 1 and an auxiliary sequence of oracles Pi,j : F
m → F

2

for i = 0, . . . , l − 1 and j = 0, . . . ,m. For each i and j, we view the auxiliary ora-

cle Pi,j : F
m → F

2 as a pair of functions P
(0)
i,j : F

m → F and P
(1)
i,j : F

m → F (i.e.,

Pi,j(x) = (P
(0)
i,j (x), P

(1)
i,j (x))). This auxiliary sequence of oracles helps the verifier to

check that the functions Ãi satisfy condition ψ′ (see Definition 6.9).
The verifier expects the first subsequence of auxiliary oracles Pi,0(·) for i =

0, . . . , l − 1, to satisfy the following relation:

Pi,0(x) = ψ′
(
T̃i(x), Ãi(x), Ãi+1

(
Γ̃i,0(x)

)
, Ãi+1

(
Γ̃i,1(x)

))
∀x ∈ F

m.(6.2)

Furthermore, it expects Pi,0(x) = 0 for every x ∈ Hm. Indeed, by Definition 6.9, we
have the following.

Lemma 6.14.

1. If 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 is a YES instance of AS-CktSAT, satisfied
by polynomials Ã0, . . . , Ãl−1, and P0,0, . . . , Pl−1,0 are defined according to (6.2), then
Pi,0(x) = (0, 0) for all x ∈ Hm.

2. If 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 is a NO instance of AS-CktSAT, then for
any sequences of functions Ã0, . . . , Ãl−1, P0,0, . . . , Pl−1,0, either (6.2) fails to hold for
some i or Pi,0(x) �= (0, 0) for some i and some x ∈ Hm.

Recalling that the degree of the constraint ψ′ (see Definition 6.9) is at most κ
and that the Ãi’s are of degree at most d = m · |H|, we observe that the Pi,0’s can be
taken to be of degree at most κd in item 1 above.

As mentioned above, the verifier now needs to check that the functions Pi,0 vanish
on the set Hm. For this we use a “zero-propagation test” based on the sum-check
protocol of Lund et al. [LFKN92]. Specifically, the verifier expects the remaining set

of auxiliary oracles Pi,j = (P
(0)
i,j , P

(1)
i,j ) (i = 0, . . . , l − 1 and j = 1, . . . ,m) to satisfy

the following relations: Let H = {h0, . . . , h|H|−1} be some fixed enumeration of the
elements in H. For all b ∈ {0, 1},

P
(b)
i,j

(
x1, . . . , xj−1︸ ︷︷ ︸, xj , xj+1, . . . , xm︸ ︷︷ ︸

)
=

|H|−1∑
k=0

P
(b)
i,j−1

(
x1, . . . , xj−1︸ ︷︷ ︸, hk, xj+1, . . . , xm︸ ︷︷ ︸

)
xk
j

∀(x1, . . . , xm) ∈ F
m.

(6.3)
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940 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

These relations ensure that for all i and j ≥ 1, Pi,j(·) vanishes on F
j ×Hm−j iff the

function Pi,j−1(·) vanishes on F
j−1 ×Hm−j+1. For future reference, we (re)state this

fact as a lemma.
Lemma 6.15. P

(b)
i,j |Fj×Hm−j ≡ 0 ⇐⇒ P

(b)
i,j−1|Fj−1×Hm−j+1 ≡ 0.

Thus, for all i, Pi,m vanishes on the entire space F
m iff Pi,0 vanishes on Hm. Also,

as P
(b)
i,0 has degree at most κd in each variable, so does P

(b)
i,j for each i and j. Hence,

the degree of P
(b)
i,j is at most κd.

Thus, the verifier needs to make the following checks:
• Low-Degree Test.

For i = 0, . . . , l − 1 and j = 0, . . . ,m, the functions Ãi are polynomials of
degree at most d = m · |H| and the functions Pi,j are pairs of polynomials of
degree at most κd.

• Edge-Consistency Test.
For i = 0, . . . , l − 1, the functions Pi,0 obey (6.2).

• Zero-Propagation Test.
For i = 0, . . . , l − 1 and j = 1, . . . ,m, the functions Pi,j satisfy (6.3).

• Identity Test.
For i = 0, . . . , l − 1, the functions Pi,m are identically zero on the entire
domain F

m.
The low-degree test in most earlier construction of PCP verifiers is performed

using the “line-point” test. The “line-point” low degree test first chooses a random
line, a random point on this line, and checks if the restriction of the function to the line
(given by a univariate polynomial) agrees with the value of the function at the point. A
random line l is typically chosen by choosing two random points x, y ∈ F

m and setting
l = lx,y = {x+ ty|t ∈ F}. However, this requires 2m log |F| bits of randomness, which
is too expensive for our purposes. We save on randomness by using the low-degree
test of Ben-Sasson et al. [BSVW03] based on small-biased spaces (see Appendix B
for more details). The low-degree test of [BSVW03] uses pseudorandom lines instead
of totally random lines in the following sense: The pseudorandom line l = lx,y is
chosen by choosing the first point x at random from F

m, while the second point y is
chosen from a λ-biased subset Sλ of F

m. This needs only log |Sλ| + log |F|m bits of
randomness. We further save on randomness by the use of canonical lines.30 Consider
any pseudorandom line l = lx,y, where x ∈ F

m and y ∈ Sλ. We observe that for every
x′ ∈ l, we have lx′,y = lx,y. In other words, |F| different choices of random bits
lead to the same line lx,y. We prevent this redundancy by representing each line in
a canonical manner. A canonical line is chosen by first choosing a random point y
from the λ-biased set Sλ. We view this y as specifying the direction (i.e., slope) of
the line. This direction partitions the space F

m into |F|m−1 parallel lines (each with
direction y). We enumerate these lines arbitrarily and select one of them uniformly at
random. Thus, choosing a random canonical line costs only log |Sλ| + log |F|m−1 bits
of randomness. A further point to be noted is that we perform a “line” test instead
of the regular line-point test: The test queries the function for all points along the
canonical line lx,y and verifies that the restriction of the function to this line is a
low-degree polynomial.

Having performed the low-degree test (i.e., verified that the polynomials Ãi’s
and Pij ’s are close to low-degree polynomials), the verifier then performs the Node-

30It is to be noted that the canonical representation of lines has been used either implicitly or
explicitly in the soundness analysis of all earlier uses of the low-degree test. However, this is the first
time that the canonical representation is used to save on the number of random bits.
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ROBUST PCPS OF PROXIMITY 941

Consistency Test, Zero-Propagation Test, and Identity Test by choosing
a suitable small-sized sample in the entire space and checking if the corresponding
condition is satisfied on that sample. For the Zero-Propagation Test indeed
the natural sample is an axis-parallel line. For the Edge-Consistency Test and
Identity Test, the sample we use is any set of |F| points selected from a partition
of F

m into |F|m−1 equal sets.

We are now ready to formally describe the PCP verifier for CktSAT. We param-
eterize the PCP verifier in terms of m, the number of dimensions in our intermediate
problem AS-CktSAT, and λ, the parameter of the λ-biased sets of F

m required
for the low-degree tests of Ben-Sasson et al. [BSVW03]. We rely on the fact that
λ-biased subsets of F

m of size at most poly(log |F|m, 1/λ) can be constructed effi-
ciently [NN93, AGHP92].

PCP Verifier
Ãi,Pi,j ;i=0,...,l−1;j=0,...,m
m,λ (C).

1. Use Proposition 6.11 to reduce the instance C of CktSAT, using pa-
rameter m, to an instance 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 of AS-CktSAT,
and set d = m · |H|.
Notation. We let Sλ ⊂ F

m be a λ-biased set of size at most ( log |F|m
λ )2

[AGHP92]. Let F
m =

⊎|F|m−1

η=1 Uη and F
m =

⊎|F|m−1

η=1 Vη be two arbitrary
partitions of the space F

m into |F|-sized sets each.
2. Choose a random string R of length log(|Sλ| · |F|m−1). (Note: We reuse

R in all tests, but only the Low-Degree Test utilizes the full length
of R.)

3. Low-Degree Test.
Use random string R to determine a random canonical line L in F

m

using the λ-biased set Sλ.
For i = 0, . . . , l − 1,

query oracle Ãi on all points along the line L and reject if the re-
striction Ãi to L is not a (univariate) polynomial of degree at most
d.

For i = 0, . . . , l − 1, j = 0, . . . ,m, and b ∈ {0, 1},
query oracle P

(b)
i,j on all points along the line L and reject if the

restriction of P
(b)
i,j to L is not a (univariate) polynomial of degree at

most κd.
4. Edge-Consistency Test.

Use the random string R to determine a random set Uη of the partition

F
m =

⊎|F|m−1

η=1 Uη.
For i = 0, . . . , l − 1,

for all x ∈ Uη, query Pi,0(x), Ãi(x), Ãi+1(Γ̃i,0(x)), and Ãi+1(Γ̃i,1(x))
and reject if (6.2) is not satisfied.

5. Zero-Propagation Test.
For i = 0, . . . , l − 1, j = 1, . . . ,m, and b ∈ {0, 1},

use random string R to determine a random jth axis-parallel line
in F

m of the form L = {(a1, . . . , aj−1, X, aj+1, . . . , am) : X ∈ F}.
Query P

(b)
i,j−1 and P

(b)
i,j along all the points in L. Reject if either the

restriction of P
(b)
i,j−1 or P

(b)
i,j to L is not a univariate polynomial of

degree at most κd or if any of the points on the line L violate (6.3).
6. Identity Test.

Use the random string R to determine a random set Vη of the partition
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942 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

F
m =

⊎|F|m−1

η=1 Vη. For i = 0, . . . , l − 1,
for all x ∈ Vη, query Pi,m(x). Reject if any of these Pi,m(x) are not
(0, 0).

Accept if none of the above tests reject.

Remark 6.16.

1. The Low-Degree Test requires log(|Sλ| · |F|m−1) random bits to generate
a canonical line in F

m using the λ-biased set, while each of the other tests requires
at most log(|F|m−1) bits of randomness. Hence, the string R suffices for each of the
tests. For the settings of parameters we use, log(|Sλ| · |F|m−1) is typically significantly
smaller than log(|F|m), which we would not be able to afford.

2. The Edge-Consistency Test and Identity Test in the “standard” sense
are usually performed by selecting a random point in the space F

m and checking
whether the corresponding condition is satisfied. However, we state these tests in a
“nonstandard” manner using partitions of the space F

m into |F|-sized tests so that
these tests can be easily adapted when we construct the robust PCP verifier (see
section 8). The nonstandard tests are performed in the following manner: Choose a
random set in the partition and perform the standard test for each point in the set.
At present, we can work with any partition of F

m; however, we will later need specific
partitions to get “robustness.”

6.4. Analysis of the PCP Verifier. We now analyze the PCP Verifier

above. The analysis below assumes that the parameters satisfy m ≤ log n/ log log n
and λ ≤ 1/c log n for a sufficiently large constant c. Theorem 6.1 can be deduced by
setting λ = 1/c log n.

Complexity. The PCP Verifier makes O(lm|F|) = O(m3n1/m log n) queries,
each of which expects as an answer an element of F or F

2 (i.e., a string of length
O(log |F|)). Hence, the total (bit) query complexity is O(lm|F| log |F|) = O(lm ·
cFm

2n1/m log(cFm
2n1/m)). Recalling that l = 5 log n, this quantity is at most

O(m2n1/m log2 n) for m ≤ log n. For the decision complexity, we note that the main
computations required are (a) testing whether a function is a low-degree univari-
ate polynomial over F (for Low-Degree Test and Zero-Propagation Test),
(b) evaluating ψ′ on |F| quadruples of points (for Edge-Consistency Test), and
(c) univariate polynomial interpolation and evaluation (for testing (6.3) in Zero-

Propagation Test). We now argue that each of these can be done with a nearly

linear (Õ(|F|)) number of operations over F, yielding a nearly linear (Õ(q)) decision
complexity overall. Each evaluation of ψ′ can be done with a constant number of
F-operations because ψ′ is of constant degree. Polynomial interpolation and evalua-
tion can be done with a nearly linear number of F-operations by [SS71, Sch77], and
testing whether a function is of low degree reduces to polynomial interpolation (this
is achieved by interpolating the function to represent it as a polynomial of degree
|F| − 1 and checking that the high-degree coefficients are zero). Each F-operation can

be done with Õ(log |F|) bit operations, using the polynomial multiplication algorithm
of [SS71, Sch77] (over F2).

The number of random bits used by the verifier is exactly log(|Sλ| · |F|m−1). Let

n′ = |F|m. Then log(|Sλ|·|F|m−1) =
(
1 − 1

m

)
log n′+log(poly( log n′

λ )) =
(
1 − 1

m

)
log n′+

O(log log n′)+O
(
log
(

1
λ

))
. Now, n′ = (cFm

2)mn. Hence, log n′ = log n+2m logm+
O(m) and log logn′ = log logn + O(logm). Thus, the total randomness is at most(
1 − 1

m

)
log n + O(m logm) + O(log log n) + O

(
log
(

1
λ

))
.

We summarize the above observations in the following proposition for future ref-
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ROBUST PCPS OF PROXIMITY 943

erence.
Proposition 6.17. The randomness, query, and decision complexities of PCP

Verifier are r =
(
1 − 1

m

)
log n + O(m logm) + O(log log n) + O

(
log
(

1
λ

))
, q =

O(m2n1/m log2 n) and d = Õ(q), respectively.
Completeness. If C is satisfiable, then the reduction reduces it to a YES instance

of AS-CktSAT. Then by definition there exist polynomials Ãi that satisfy constraint
ψ′. Setting Pi,j according to (6.2) and (6.3), we notice that the verifier accepts with
probability one.

Soundness. To prove the soundness, we need to prove that if C is not satisfiable
then the verifier accepts with probability bounded away from 1. We will prove a
stronger statement. Recall from Remark 6.12 that the function Ã0 : F

m → F sup-
posedly has the satisfying assignment embedded within it. Let I ⊂ F

m be the set of
locations in F

m that contains the assignment (i.e., Ã0|I is supposedly the assignment).
Lemma 6.18. There exists a constant c and a constant 0 < ε0 < 1 such that for

all ε,m, λ satisfying ε ≤ ε0, m ≤ log n/ log log n, and λ ≤ 1/c log n, the following

holds. If Ã0 is 4ε-far from every polynomial Â0 of degree md such that C(Â0|I) = 1,
then for all proof oracles {Ãi} and {Pi,j}, the verifier accepts with probability at most
1 − ε.

Proof. Let α be the universal constant from Theorem B.4. Set ε0 = min{α, 1
22}.

Let d = m2h, and choose cF to be a large enough constant such that κmd/|F| =
κ/cF ≤ ε0. Suppose each of the functions Ãi are 4ε-close to some polynomial of

degree md and each of the functions P
(b)
i,j is 4ε-close to some polynomial of κmd.

If this were not the case, then by Theorem B.4, Low-Degree Test accepts with
probability at most 1− ε for the polynomial that is 4ε-far. It can be verified that the
parameters satisfy the requirements of Theorem B.4 for sufficiently large choices of
the constants cF and c and sufficiently small ε.

For each i = 0, . . . , l−1, let Âi : F
m → F be the polynomial of degree at most md

that is 4ε-close to Ãi. Similarly, for each i = 0, . . . , l − 1, j = 0, . . . ,m and b ∈ {0, 1},
let P̂

(b)
i,j be the polynomial of degree at most κmd that is 4ε-close to P

(b)
i,j . Such

polynomials are uniquely defined since every two polynomials of degree κmd disagree
in at least a 1− κmd

|F| ≥ 1− ε0 > 8ε fraction of points. As in the case of the Pi,j ’s, let

P̂i,j : F
m → F

2 be the function given by P̂i,j(x) = (P̂
(0)
i,j (x), P̂

(1)
i,j (x)).

By hypothesis, Â0|I does not satisfy C. Then, by Lemmas 6.14 and 6.15, at least
one of the following must hold.

(a) There exists i ∈ {0, . . . , l − 1} and b ∈ {0, 1} such that P̂
(b)
i,m �≡ 0.

Then for this i, Identity Test fails unless a random set Vη is chosen such

that for all x ∈ Vη, P
(b)
i,m(x) = 0. Hence, it must be the case that for all x ∈ Vη,

either P
(b)
i,m(x) �= P̂

(b)
i,m(x) or P̂

(b)
i,m(x) = 0. Since the V ′

ηs form a partition of
F
m, the probability of this occurring is upper-bounded by the probability

that a random x ∈ F
m satisfies either P

(b)
i,m(x) �= P̂

(b
i,m(x) or P̂

(b)
i,m(x) = 0.

This probability is at most 4ε+ κmd
|F| = 4ε+ κ

cF
≤ 5ε0, where we use the fact

that P̂
(b)
i,m is 4ε-close to P

(b)
i,m and that a nonzero polynomial of degree κmd

vanishes on at most a κmd/|F| fraction of points.

(b) There exists i ∈ {0, . . . , l− 1} such that P̂i,0, Âi, and Âi+1 do not obey (6.2).

In other words, P̂i,0(x) �≡ ψ′(T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))).
Then for this i, Edge-Consistency Test fails unless a random partition
Uη is chosen such that for all x ∈ Uη, Pi,0(x) = ψ′(T̃i(x), Ãi(x), Ãi+1(Γ̃i,0(x)),
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944 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

Ãi+1(Γ̃i,1(x))). Hence, it must be the case that for every x ∈ Uη, one of the
following (six) holds:

P
(0)
i,0 (x) �= P̂

(0)
i,0 (x); P

(1)
i,0 (x) �= P̂

(1)
i,0 (x); Ãi(x) �= Âi(x);

Ãi+1(Γ̃i,0(x)) �= Âi+1(Γ̃i,0(x)); Ãi+1(Γ̃i,1(x)) �= Âi+1(Γ̃i,1(x));

P̂i,0(x) = ψ′(T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))).

The probability of this happening is at most the probability that a random
x ∈ F

m satisfies these conditions, which is at most 5 · 4ε + κmd
|F| ≤ 21ε0.

(c) For some i = 0, . . . , l − 1, j = 1, . . . ,m, and b ∈ {0, 1}, P̂
(b)
i,j does not obey

(6.3).

In other words, P̂
(b)
i,j (. . . , xj , . . . ) �≡

∑|H|−1
k=0 P̂

(b)
i,j−1(. . . , hj , . . . )x

k
j . Then, for

this i, j, Zero-Propagation Test rejects unless a random axis-parallel line

L is chosen such that both P
(b)
i,j |L and P

(b)
i,j−1|L are polynomials of degree at

most κd and for every x ∈ L, P
(b)
i,j (. . . , x, . . . ) =

∑|H|−1
k=0 P

(b)
i,j−1(. . . , hk, . . . )x

k.

Suppose we have that for all x ∈ L, P
(b)
i,j (x) = P̂

(b)
i,j (x) and P

(b)
i,j−1(x) =

P̂
(b)
i,j−1(x). Then, it must be the case that for all x ∈ L, P̂

(b)
i,j (. . . , x, . . . ) =∑|H|−1

k=0 P̂
(b)
i,j−1(. . . , hk, . . . )x

k. Since the axis-parallel lines cover F
m uniformly,

the probability of this occurring is at most the probability of a random x ∈ F
m

satisfying this condition, which is at most κmd
cF

≤ ε. The probability that both

P
(b)
i,j |L and P

(b)
i,j−1|L are polynomials of degree κd and either P

(b)
i,j |L �= P̂

(b)
i,j |L

or P
(b)
i,j−1|L �= P

(b)
i,j−1|L is at most 2 · 4ε/(1 − ε0) ≤ 9ε0, since P

(b)
i,j and P

(b)
i,j−1

are 4ε-close to P̂
(b)
i,j and P̂

(b)
i,j−1, respectively, and any two distinct polynomials

of degree κmd disagree on at least a 1− κmd/|F| ≥ 1− ε0 fraction of points.
Hence, Zero-Propagation Test accepts with probability at most 10ε0.

We thus have that the verifier accepts with probability at most max {1 − ε, 5ε0,
21ε0, 10ε0} = 1 − ε.

Proof of Theorem 6.1. Theorem 6.1 is proved using PCP Verifier defined
in this section setting λ = 1/c log n. Step 1 of the verifier reduces the instance C
of CktSAT to an instance 〈1n′

, 1m,F, H, {T̃0, . . . , T̃l−1}〉 of AS-CktSAT. We have
from Proposition 6.11 that n′ = Θ(n) and l = O(log n), where n is the size of the
input circuit C. Setting n = n′ in Proposition 6.17, we have that the randomness,
query and decision complexity of the verifier are as claimed in Theorem 6.1. The
soundness of the verifier follows from Lemma 6.18.

7. A randomness-efficient PCPP. In this section, we modify the PCP for
CktSAT and construct a PCPP for CktVal while maintaining all the complexities.
(Recall that, by Proposition 2.4, the latter implies the former.) We do so by adding
a proximity test to PCP Verifier defined in section 6.3. This new proximity test,
as the name suggests, checks the closeness of the input to the satisfying assignment
that is assumed to be encoded in the proof oracle (see Remark 6.12). This check is
done by locally decoding a bit (or several bits) of the input from its encoding and
comparing it with the actual input oracle.

Theorem 7.1. There exists universal constants c and 0 < ε < 1 such that the
following holds for all n,m ∈ Z

+, and 0 < δ < 1 satisfying n1/m ≥ mcm/δ3. There
exists a PCPP for CktVal (for circuits of size n) with the following parameters:

• randomness
(
1 − 1

m

)
log n + O(m logm) + O(log log n) + O(log(1/δ)),
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ROBUST PCPS OF PROXIMITY 945

• query complexity q = O(m2n1/m log2 n) and decision complexity d = Õ(q),
• perfect completeness,
• soundness error 1 − ε for proximity parameter δ.

Note that the condition n1/m ≥ mcm/δ3 (made in Theorem 7.1) implies the con-
dition m ≤ log n/ log log n stated in Theorem 6.1. Thus, the PCPP of Theorem 7.1
works only when n, the size of the circuit, is not too small (more, precisely, when

n ≥ mcm2

/δ3m). As explained in section 3, when applying multiple proof composi-
tions, we need (at the last compositions) PCPPs that work for even smaller values of
n. For this purpose, we construct the following PCPP that works for small values of
n. This PCPP, however, performs relatively poorly with respect to randomness (i.e.,
it has randomness complexity O(log n) rather than (1 − o(1)) log2 n). This will not
be a concern for us since this verifier (or rather the robust version of this verifier) is
used only in the inner levels of composition.

Theorem 7.2. For all n ∈ Z
+ and δ ∈ (0, 1), CktVal has a PCPP (for circuits

of size n) with the following parameters:

• randomness O(log n);
• decision complexity poly logn, which also upper-bounds the query complexity;
• perfect completeness; and
• soundness error 1 − Ω(δ) for proximity parameter δ.

Preliminaries. Recall that a PCPP verifier is supposed to work as follows: The
verifier is given explicit access to a circuit C with n gates on k input bits and oracle
access to the input w in the form of an input oracle W : [k] → {0, 1}. The verifier
should accept W with probability 1 if it is a satisfying assignment and accept it with
probability at most 1 − ε if it δ-far from any satisfying assignment.

For starters, we assume that k ≥ n/5. In other words, the size of the input w
is linear in the size of the circuit C. The reason we need this assumption is that we
wish to verify the proximity of w to a satisfying assignment, but our proofs encode
the assignment to all n gates of the circuit, and thus it better be the case that w is
a nonnegligible fraction of the circuit. This assumption is not a major restriction,
because if this is not the case then we work with the modified circuit C ′ and input w′

that are defined as follows: For t = �n/k, the circuit C ′ has n′ = n + 3tk gates and
k′ = tk input bits such that C ′(w′) = 1 iff w′ = wt for some w such that C(w) = 1;
that is, C ′ checks if its input consists of t copies of some satisfying assignment of C.
(It can be verified that C ′ can indeed be implemented on a circuit of size n + 3tk.)
We choose t such that k′ ≥ n′/10. However, note that the input oracle W cannot
be altered. So the verifier emulates the input w′ using the original input oracle
W : [k] → {0, 1} in a straightforward manner; that is, it defines W ′ : [tk] → {0, 1}
such that W ′(i) � W (((i−1) mod k)+1). Indeed, in view of the way W ′ is emulated
based on W , testing that W ′ is a repetition of some k-bit string makes no sense. This
test is incorporated into C ′ in order to maintain the distance features of C; that is, if
w is δ-far from satisfying C, then w′ = wt is δ-far from satisfying C ′ (without having
C ′ explicitly run C on all t copies of w, because that would make its size larger than
nt and defeat our goal of increasing the length of the input relative to the circuit size).
We state this fact as a proposition for future reference.

Proposition 7.3. There exists a generic transformation from CktVal to CktVal

that maps the instance (C,w), where C is a circuit with n gates and k input bits, to
the instance (C ′, w′), where C ′ is a circuit on n′ = n+3tk gates and k′ = kt input bits
(where t = �n/k) defined as follows: C ′(w′) = 1 iff w′ = wt for some w such that
C(w) = 1 and w′ = wt. This transformation increases the length of the input oracle
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946 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

compared to the proof oracle (here, the values of all gates in C). The transformation
preserves the relative distance to the set of satisfying assignments; that is, if w is δ-far
from the set of satisfying assignments of C, then w′ = wt is δ-far from the satisfying
assignments of C ′.

We first describe PCPP Verifier which proves Theorem 7.1 and later describe
ALMSS PCPP Verifier which proves Theorem 7.2.

7.1. The construction of PCPP Verifier (Theorem 7.1). As in the case of
PCP Verifier described in section 6.3, PCPP Verifier is constructed by reducing
the input circuit C, an instance of CktSAT, using parameter m, to an instance
〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 of AS-CktSAT. The proof oracle for PCPP Verifier

is the same as that of the PCP Verifier (i.e., the proof oracle consists of a sequence
of functions Ãi : F

m → F, i = 0, . . . , l − 1, and Pi,j : F
m → F

2, i = 0, . . . , l − 1, j =
0, . . . ,m, where l = 5 log n).

Recall that the function Ã0 : F
m → F is assumed to contain within it an as-

signment (see Remarks 6.7 and 6.12). Let I ⊆ Hm ⊂ F
m be the set of locations in

F
m that contain the assignment. PCPP Verifier, in addition to the tests of PCP

Verifier, performs the following Proximity Test to check if the assignment given
by Ã0|I matches the input oracle W . Specifically, we have the following.

PCPP Verifier
W ; Ãi,Pi,j ;i=0,...,l−1;j=0,...,m
m,λ,δ (C).

1. Run PCP Verifier
W ; Ãi,Pi,j

m,λ (C) and reject if it rejects.
Let R be the random string generated during the execution of this step.

2. Proximity Test.
Use random string R to determine a random canonical line L in F

m

using the λ-biased set Sλ. Query oracle Ã0 on all points along the line L
and reject if the restriction Ã0 to L is not a polynomial of degree at most
d = m · |H|. Query the input oracle W on all locations corresponding to
those in I ∩L and reject if W disagrees with Ã0 on any of the locations
in I ∩ L.

By inspection, the proximity test increases the query and decision complexities by
(even less than) a constant factor. For the randomness complexity, the randomness
is used only to generate a random canonical line (as in PCP Verifier), so the
randomness complexity is log(|F|m−1 · |Sλ|) as before. However, in order to prove
soundness, we need to assume not only that λ ≤ 1/c log n for some constant c (as
before), but also that λ ≤ δ3/mcm.31 Thus, setting λ = min{1/c log n, δ3/mcm}, the
randomness complexity increases by at most O(m logm)+O(log(1/δ)), as claimed in
Theorem 7.1. Summarizing the above observations for future reference, we have the
following proposition.

Proposition 7.4. The randomness, query, and decision complexities of PCPP

Verifier are r =
(
1 − 1

m

)
log n + O(m logm) + O(log log n) + O (log (1/δ)), q =

O(m2n1/m log2 n), and d = Õ(q), respectively.
It is straightforward to check perfect completeness of this verifier. To prove sound-

ness, we observe that if the input W is δ-far from satisfying the circuit, then one of the
following must happen: (1) The verifier detects an inconsistency in the proof oracle
or (2) the input oracle does not match the encoding of the input in the proof ora-
cle. In the case of the former, we prove soundness by invoking Lemma 6.18, while in
the latter case, we prove soundness by analyzing the proximity test. These ideas are

31Actually, for the proximity test we need only λ ≤ δ/mcm; however, to prove robustness of the
proximity test (see section 8.1) we require λ ≤ δ3/mcm.
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ROBUST PCPS OF PROXIMITY 947

explained in detail in the following lemma which proves the soundness of the verifier.
Lemma 7.5. There exists a constant c and a constant ε > 0 such that for all

m,λ, δ satisfying n ≥ 8000|F|m−1/δ3, λ ≤ 1/c log n, and λ ≤ δ/mcm, the following
holds. If the input w given by the input oracle W : [k] → {0, 1} is δ-far from satisfying
the circuit, then for any proof oracle the verifier rejects W with probability at least ε.

Proof. Set ε to be the constant ε0 in Lemma 6.18.
Case (i). Ã0 is not 4ε-close to any polynomial Â0 of degree md such that

C(Â0|I) = 1. Then by Lemma 6.18, we conclude that the verifier rejects with proba-
bility at least ε.

Case (ii). Ã0 is 4ε-close to some polynomial Â0 of degree md such that C(Â0|I) =

1. Since w is δ-far from any satisfying assignment, the assignment given by Â0|I must
be at least δ-far from w. Let B ⊂ F

m denote the set of locations in I where the assign-
ment given by Â0 disagrees with w (i.e., B = {x ∈ I|Â0(x) disagrees with w at x}).
Hence, |B|/|I| ≥ δ. Since |I| = k ≥ n/5, we have |B| ≥ δn/5. Consider the following
two events.

Event I. Ã0|L is 5ε-far from Â0|L.
By the sampling lemma (Lemma B.3) with μ = 4ε and ζ = ε, this event
occurs with probability at most

(
1
|F| + λ

)
· 4ε
ε2 ≤ 1

4 since |F|, 1
λ ≥ 32/ε.

Event II. B ∩ L = ∅.
Again by the sampling lemma (Lemma B.3) with μ = ζ = |B|

|Fm| , this

event occurs with probability at most
(

1
|F| + λ

)
· |Fm|

|B| =
(

1
|F| + λ

)
·

5|Fm|
δn ≤ 1

4 , where the last inequality follows because n ≥ 8000|F|m−1/δ3

≥ 40|F|m−1/δ and λ ≤ δ/(40(cFm
2)m).

Suppose Event I does not occur. Then, if Â0|L �= Ã0|L, Proximity Test rejects
since then Ã0|L cannot be a polynomial of degree at most d, as it is 5ε-close to

the polynomial Â0 and hence cannot be closer to any other polynomial (as 5ε ≤
1
2 (1 − d

|F| ) = 1
2 (1 − 1

cF
)). Now if Â0|L = Ã0|L and Event II does not occur, then

Proximity Test detects a mismatch between the input oracle W and Ã0|L. Hence,
if both Event I and Event II do not occur, then the test rejects.

Thus, the probability of the test accepting in this case is at most the probability
of either Event I or Event II occurring, which is at most 1/2. Thus, the probability
that the verifier accepts is at most max

{
1 − ε, 1

2

}
= 1 − ε. This completes the proof

of the lemma.
Proof of Theorem 7.1. Theorem 7.1 is proved using PCPP Verifier defined

in this section, setting λ = min{1/c log n, δ3/mcm}. The randomness and decision
(resp., query) complexities follow from Proposition 7.4. The only fact to be verified is
the soundness of the verifier. By the hypothesis of Theorem 7.1, n1/m ≥ mcm/δ3 for
a suitably large constant c. This implies that n1/m ≥ 8000(cFm

2)m−1/δ3 or, equiva-
lently, n ≥ 8000|F|m−1/δ3. Hence, Lemma 7.5 applies and we have that the verifier
has soundness error 1− ε for proximity parameter δ. This proves Theorem 7.1.

7.2. The ALMSS-type PCPP (Theorem 7.2). We now turn to designing
a PCPP that proves Theorem 7.2. We call this ALMSS PCPP Verifier as it
has parameters similar to the “parallelized” PCPs of [ALM+98]. ALMSS PCPP

Verifier is identical to PCPP Verifier of Theorem 7.1 except for the fact that it
has a slightly different proximity test. All other details remain the same.

ALMSS PCPP Verifier
W ; Ãi,Pi,j ;i=0,...,l−1;j=0,...,m
δ (C).

1. Set m = log n/ log log n and λ = 1/c log n.
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948 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

2. Run PCP Verifier
W ; Ãi,Pi,j

m,λ (C) and reject if it rejects.
3. ALMSS Proximity Test.

Choose a random position i
R← {1, . . . , k} in the input and a random

direction y ∈ F
m. Let x ∈ I be the point corresponding to i in Hm. Let

L be the line through x in the direction y. Query oracle Ã0 on all points
along the line L and reject if the restriction Ã0 to L is not a polynomial
of degree at most d = m · |H|. Query the input oracle W at location i
and reject if W [i] �= Ã0(x).

Unlike PCPP Verifier, we will not calculate the randomness used by this verifier
exactly. An upper bound within a constant factor suffices for our purposes. The
extra randomness used by ALMSS Proximity Test is log k + m log |F| (i.e., the
randomness required to choose a random index in {1, . . . , k} and a random direction
in F

m). For our choice of m and δ, the randomness of PCP Verifier is at most
O(log n) (see the analysis preceding Proposition 6.17). Hence, the total randomness
of ALMSS PCPP Verifier is at most O(log n). The query and decision complexities
are at most a constant times that of PCP Verifier which is turn is upper-bounded
by poly logn. Summarizing the above observations for future reference, we have the
following proposition.

Proposition 7.6. The randomness and decision complexities of ALMSS PCPP

Verifier are O(log n) and poly logn, respectively.
The soundness of the verifier is given by the following lemma.
Lemma 7.7. For all δ ∈ (0, 1), the following holds. If the input w given by the

input oracle W : [k] → {0, 1} is δ-far from satisfying the circuit, then for any proof
oracle the verifier rejects W with probability Ω(δ).

Proof. Let ε0 be the constant that appears in Lemma 6.18.
Case (i). Ã0 is not 4ε0-close to any polynomial Â0 of degree md such that

C(Â0|I) = 1. Then by Lemma 6.18, we conclude that the verifier rejects with proba-
bility at least ε0.

Case (ii). Ã0 is 4ε0-close to some polynomial Â0 of degree md such that C(Â0|I) =

1. Since w is δ-far from any satisfying assignment, the assignment given by Â0|I must
be δ-far from w. With probability greater than δ over the choice of i ∈ {1, . . . , k}
(and the corresponding point x ∈ I in Hm), we have W [i] �= Â0(x). If this occurs,
the only way the verifier can accept is if Ã0|L is a degree md polynomial other than

Â0|L. We will show that for any fixed point x in F
m, with probability at least 1−16ε0

over the choice of random line L through x, Ã0|L cannot be a degree md polynomial

different from Â0|L. We can then conclude that the verifier rejects with probability
at least δ · (1 − 16ε0) = Ω(δ). Since L is a random line through x, every point on L
other than x is a uniformly random point in F

m. Recall that Ã0 and Â0 are 4ε0-close.
By a Markov argument it follows that for every fixed value of x and a random line
L through x, with probability at least 1 − 16ε0, Ã|L\{x} and Â|L\{x} are at least

1/4-close. This implies that Ã|L cannot be a polynomial of degree md other than Â|L
(since two distinct polynomials agree in at most md points, and (md− 1)/|F| < 1/4).

In either case, ALMSS PCPP Verifier rejects with probability at least
min{ε0,Ω(δ)} = Ω(δ).

Conclusion. Theorem 7.2 follows from Proposition 7.6 and Lemma 7.7.

8. A randomness-efficient robust PCPP. In this section, we modify the
PCPP for CktVal constructed in section 7 to design a robust PCPP, while essentially
maintaining all complexities. Recall the definition of robustness: If the input oracle

D
ow

nl
oa

de
d 

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ROBUST PCPS OF PROXIMITY 949

W is δ-far from a satisfying assignment, then a “regular” PCPP verifier rejects the
input for most choices of its random coins; that is, it observes an inconsistency in the
(input and) proof. In contrast, for most choices of its random coins, a robust PCPP
verifier not only notices an inconsistency in the (input and) proof but also observes
that a considerable portion of the (input and) proof read by it has to be modified to
remove this inconsistency.

We construct two robust PCPPs which are robust analogues of the two PCPPs
presented in section 7. The first robust PCPP is the main construct (claimed in
Theorem 3.1), which is the robust analogue of PCPP Verifier. The second robust
PCPP is an ALMSS-type robust PCPP (claimed in Theorem 3.2), which is the robust
analogue of ALMSS PCPP Verifier. Thus, we prove Theorems 3.1 and 3.2.

Overview of the proofs of Theorem 3.1 and 3.2. We “robustify” the PCPP ver-
ifier in three steps. Recall that a single execution of the verifier actually involves
several tests (in fact lm+2l Low-Degree Tests, l Edge-Consistency Tests, lm
Zero-Propagation Tests, l Identity Tests, and a single proximity test (either
Proximity Test or ALMSS Proximity Test, as the case may be)). In the first
step (section 8.1), we observe that each of these tests is robust individually. In the
second step (section 8.2), we perform a “bundling” of the queries so that a certain
set of queries can always be asked together. Indeed, bundling is analogous to “paral-
lelization” except that it does not involve any increase in the randomness complexity
(unlike parallelization, which introduces such an increase, which although small is
too big for our purposes). We stress that bundling is tailored to the specific tests,
in contrast to parallelization which is generic. The aforementioned bundling achieves
robustness, albeit over a much a larger alphabet. In the final step (section 8.3), we
use a good error-correcting code to transform the “bundles” into regular bit-queries
such that robustness over the binary alphabet is achieved.

8.1. Robustness of individual tests. For each possible random string R,
PCPP Verifier (resp., ALMSS PCPP Verifier) performs several tests. More
precisely, it performs l(m + 2) Low-Degree Tests, l Edge-Consistency Tests,
lm Zero-Propagation Tests, l Identity Tests, and a single Proximity Test

(resp., ALMSS Proximity Test). In this section, we prove that each of these tests
is robust individually. In other words, we show that when one of these tests fails, it
fails in a “robust” manner; that is, a considerable portion of the input read by the
test has to be modified for the test to pass.

First, we introduce some notation. We view functions g, g′ : F
m → F as strings of

length |F|m over the alphabet F, so their relative Hamming distance Δ(g, g′) is simply
Prx[g(x) �= g′(x)]. As before, let I ⊆ Hm ⊂ F

m be the set of locations in F
m that

contains the assignment.

Let 0 < ε < 1 be a small constant to be specified later. As before, for i =

0, . . . , l−1, j = 0, . . . ,m and b ∈ {0, 1}, let Âi (resp., P̂
(b)
i,j ) be the closest polynomials

of degree md (resp., κmd) to Ãi and Pi,j , respectively. (If there is more than one
polynomial, choose one arbitrarily.) The proof of the soundness of the PCPP verifiers,
PCPP Verifier and ALMSS PCPP Verifier (see section 6 and 7), was along the
following lines: If the input oracle W : [k] → {0, 1} is δ-far from satisfying the circuit,
then one of the following must happen (changing ε by a factor of 2):

1. There exists i ∈ {0, . . . , l − 1} such that Ãi is 8ε-far from every degree md
polynomial or there exists i ∈ {0, . . . , l − 1}, j ∈ {0, . . . ,m}, and b ∈ {0, 1}
such that P

(b)
i,j is 8ε-far from every degree κmd polynomial. In this case,
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950 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

Low-Degree Test detects the error with probability at least 2ε.

2. There exists i ∈ {0, . . . , l − 1} and b ∈ {0, 1}, such that Δ(P
(b)
i,m, P̂

(b)
i,m) ≤ 8ε

and P̂i,m �≡ 0. In this case, Identity Test detects the error with probability
at least 1 − 10ε.

3. There exists i ∈ {0, . . . , l − 1}, j ∈ {1, . . . ,m}, and b ∈ {0, 1} such that

Δ(P
(b)
i,j , P̂

(b)
i,j ) ≤ 8ε,Δ(P

(b)
i,j−1, P̂

(b)
i,j−1) ≤ 8ε,

and P̂
(b)
i,j (. . . , xj , . . . ) �≡

|H|−1∑
k=0

P̂
(b)
i,j−1(. . . , hk, . . . )x

k
j .

In this case, Zero-Propagation Test detects the error with probability at
least 1 − 20ε.

4. There exists i ∈ {0, . . . , l − 1} such that

Δ(P
(0)
i,0 , P̂

(0)
i,0 ) ≤ 8ε,Δ(P

(1)
i,0 , P̂

(1)
i,0 ) ≤ 8ε,Δ(Ãi, Âi) ≤ 8ε,Δ(Ãi+1, Âi+1) ≤ 8ε,

and P̂i,0(x) �≡ ψ′(T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))).

In this case, Edge-Consistency Test detects the error with probability at
least 1 − 42ε.

5. Δ(Ã0, Â0) ≤ 8ε, but W and Â0|I disagree on at least δ fraction of the points.
In this case, Proximity Test (or ALMSS Proximity Test, as the case
may be) detects the error with probability at least 2ε (or Ω(δ) in the case of
ALMSS Proximity Test).

Claims 8.1–8.6 below strengthen the above analysis and show that one of the tests
not only detects the error, but a significant portion of the input read by that test needs
to be modified in order to make the test accept. More formally, recall that each of our
tests T (randomly) generates a pair (I,D), where I is a set of queries to make to its
oracle and D is the predicate to apply to the answers. For such a pair (I,D) ← T and
an oracle π, we define the distance of π|I to T to be the relative Hamming distance
between π|I and the nearest satisfying assignment of D. Similarly, we say that π has
expected distance ρ from satisfying T if the expectation of the distance of π|I to T

over (I,D)
R← T equals ρ.

We then have the following claims about the robustness of the individual tests.
The robustness of Low-Degree Test can be easily inferred from the analysis

of the λ-biased low-degree test due to Ben-Sasson et al. [BSVW03] as shown below.
Claim 8.1. The following holds for all sufficiently small ε > 0. If A : F

m → F

(resp., P : F
m → F) is 8ε-far from every polynomial of degree md (resp., degree κmd),

then the expected distance of A (resp., P ) from satisfying Low-Degree Test with
degree parameter d (resp., κd) is at least 2ε.

Proof. Recall that Low-Degree Test chooses a random canonical line L and
checks if A|L is a univariate polynomial of degree d. For each canonical line L, define
Alines(L) to be the degree d univariate polynomial mapping L → F having maximum
agreement with A on L, breaking ties arbitrarily. The distance of A|L to satisfying
Low-Degree Test is precisely Δ(A|L, Alines(L)).

The low-degree test LDT of Ben-Sasson et al. [BSVW03] works as follows (see
Appendix B for more details): The test LDT has oracle access to a points-oracle
f : F

m → F and a lines-oracle g. It chooses a random canonical line L using the
λ-biased set, queries the lines-oracle g on the line L, and queries the points-oracle f
on a random point x on L. It accepts iff g(L) agrees with f at x.
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ROBUST PCPS OF PROXIMITY 951

By inspection, the probability that LDTA,Alines rejects the points-oracle A and
lines-oracle Alines as defined above equals EL[Δ(A|L, Alines(L))]. By Theorem B.4, if
A is 8ε-far from every degree md polynomial, then LDTA,Alines rejects with probability
at least 2ε (for sufficiently small ε). (Recall that our parameters satisfy the conditions
of Theorem B.4 for sufficiently large choices of the constants c and cF .) Thus, A has
expected distance 2ε from satisfying our Low-Degree Test, as desired.

The intuition behind the proofs of robustness of Identity Test, Zero-
Propagation Test, and Edge-Consistency Test is as follows. The key point to
be noted is that the checks made by each of these tests are in the form of polyno-
mial identities. Hence, if the functions read by these tests are close to being poly-
nomials, then it follows from the Schwartz–Zippel lemma that the inputs read by
these tests either satisfy these polynomial identities or are in fact far from satisfy-
ing them. We formalize this intuition and prove the robustness of Identity Test,
Edge-Consistency Test, and Zero-Propagation Test in Claims 8.2, 8.3, and
8.4, respectively.

Claim 8.2. The following holds for all sufficiently small ε > 0. If for some

i = 0, . . . , l − 1 and b ∈ {0, 1}, Δ(P
(b)
i,m, P̂

(b)
i,m) ≤ 8ε and P̂

(b)
i,m(·) �≡ 0, then Pi,m has

expected distance at least 1 − 9ε from satisfying Identity Test.
Proof. The expected distance of Pi,m from satisfying Identity Test equals

EVη [Δ(Pi,m|Vη
, 0)] = Δ(Pi,m, 0) [since {Vη} is a partition]

≥ Δ(P̂i,m, 0) − Δ(Pi,m, P̂i,m)

≥
(
1 − κmd

|F|

)
− 8ε [by the Schwartz–Zippel lemma

and hypothesis]
≥ 1 − 9ε.

Claim 8.3. The following holds for all sufficiently small ε > 0. Suppose for some

i = 0, . . . , l − 1, we have Δ(P
(0)
i,0 , P̂

(0)
i,0 ) ≤ 8ε, Δ(P

(1)
i,0 , P̂

(1)
i,0 ) ≤ 8ε, Δ(Ãi, Âi) ≤ 8ε,

Δ(Ãi+1, Âi+1) ≤ 8ε, and P̂i,0(·) �≡ ψ′(T̃i(·), Âi(·), Âi+1(Γ̃i,0(·)), Âi+1(Γ̃i,1(·))). Then{
Pi,0(·), Ai(·), Ai+1(Γ̃i,0(·))Ai+1(Γ̃i,1(·))

}
has expected distance at least (1 − 41ε)/5

from satisfying Edge-Consistency Test.
Proof. Note that the distance of

{
Pi,0(·), Ai(·), Ai+1(Γ̃i,0(·))Ai+1(Γ̃i,1(·))

}
|Uη

from satisfying Edge-Consistency Test is at least 1/5 times the distance of Pi,0(·)|Uη

to the function ψ′(T̃i(·), Ai(·), Ai+1(Γ̃i,0(·)), Ai+1(Γ̃i,1(·)))|Uη (since for each point
x ∈ Uη, where the latter two functions disagree, at least one of Pi,0, Ai, Ai+1 ◦
Γ̃i,0, Ai+1 ◦ Γ̃i,1 needs to be changed at x to make the test accept). As in the proof of
Claim 8.2, we have

EUη [Δ(Pi,0(·)|Uη , ψ
′(T̃i(·), Ai(·), Ai+1(Γ̃i,0(·)), Ai+1(Γ̃i,1(·)))|Uη )]

≥
(

1 − κmd

|F|

)
− 5 · 8ε ≥ 1 − 41ε,

where the (1−κmd/|F|) term corresponds to the distance if we replace all five functions

with their corrected polynomials (e.g., P̂i,0, Âi, Âi+1 ◦ Γ̃i,0, Âi+1 ◦ Γ̃i,1) and the
−5 ·8ε accounts for the distance between each of the five functions and their corrected
polynomials. Thus, the overall expected distance to satisfying Edge-Consistency

Test is at least (1 − 41ε)/5.
Claim 8.4. The following holds for all sufficiently small ε > 0. Suppose for

some i = 0, . . . , l − 1, j = 1, . . . ,m, and b ∈ {0, 1}, we have Δ(P
(b)
i,j , P̂

(b)
i,j ) ≤
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952 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

8ε, Δ(P
(b)
i,j−1, P̂

(b)
i,j−1) ≤ 8ε, and P̂

(b)
i,j (. . . , xj , . . . ) �≡

∑|H|−1
k=0 P̂

(b)
i,j−1(. . . , hk, . . . )x

k
j .

Then (P
(b)
i,j , P

(b)
i,j−1) has expected distance at least (1 − 19ε)/2 from satisfying Zero-

Propagation Test.
Proof. Suppose that L is a jth axis-parallel line such that

P̂
(b)
i,j (. . . , xj , . . . )|L �≡

|H|−1∑
k=0

P̂
(b)
i,j−1(. . . , hk, . . . )x

k
j |L.

Then in order for Zero-Propagation Test to accept, either P
(b)
i,j |L must be modi-

fied to equal a degree κd polynomial other than P̂
(b)
i,j−1(. . . , xj , . . . )|L, or P

(b)
i,j−1|L must

be modified to equal a degree κd polynomial other than P̂
(b)
i,j−1(. . . , xj , . . . )|L. (Recall

that Zero-Propagation Test checks that the said restrictions are in fact polyno-

mials of degree κd.) This would require modifying P
(b)
i,j |L (resp., P

(b)
i,j−1|L) in at least

a 1 − κd/|F| − Δ(P
(b)
i,j |L, P̂

(b)
i,j |L) fraction (resp., a 1 − κd/|F| − Δ(P

(b)
i,j−1|L, P̂

(b)
i,j−1|L)

fraction) of points. This implies that the pair (P
(b)
i,j |L, P

(b)
i,j−1|L) would have to be

modified in at least a

1

2
·
(

1 − κd

|F| − Δ(P
(b)
i,j |L, P̂

(b)
i,j |L) − Δ(P

(b)
i,j−1|L, P̂

(b)
i,j−1|L)

)
fraction of points.

Thus the expected distance of (P
(b)
i,j , P

(b)
i,j−1) from satisfying Zero-Propagation

Test is at least

1

2
· EL

[
1 − κd

|F| − Δ(P
(b)
i,j |L, P̂

(b)
i,j |L) − Δ(P

(b)
i,j−1|L, P̂

(b)
i,j−1|L)

]

−Pr
L

⎡⎣P̂ (b)
i,j (. . . , xj , . . . )|L ≡

|H|−1∑
k=0

P̂
(b)
i,j−1(. . . , hk, . . . )x

k
j |L

⎤⎦
≥ 1

2
(1 − ε− 8ε− 8ε) − κd

|F|

≥ 1

2
(1 − 19ε) .

We are now left with analyzing the robustness of the proximity tests (Proximity

Test and ALMSS Proximity Test). Note that the input for either of these proxim-
ity tests comes in two parts: (a) the restriction of A0 to the line L and (b) the input W
restricted to the line L (or to a point on L). Thus, the robustness of these tests refers
to both parts (i.e., parts of each of the two oracles), and it is beneficial to decouple
the corresponding robustness properties. We note that the robustness of Proximity

Test is proved by repeated applications of the sampling lemma (Lemma B.3), while
the robustness of ALMSS Proximity Test follows by a simple Markov argument.

Let B ⊂ F
m denote the set of locations in I, where the assignment given by

Â0 disagrees with W (i.e., B = {x ∈ I|Â0(x) disagrees with W at x}). Recall that
|I| = k ≥ n/5.

Claim 8.5. There exists a constant c and a constant ε > 0 such that for all
m,λ, δ, δ′ satisfying n ≥ 8000|F|m−1/δ3, λ ≤ 1/c log n, λ ≤ δ3/mcm, δ′ > δ, the

following holds. Suppose Δ(Ã0, Â0) ≤ 1/4 and the input oracle W is δ′-far from
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ROBUST PCPS OF PROXIMITY 953

Â0|I (i.e., |B|/|L| ≥ δ′); then with probability at least 1 − δ/4 (over the choice of the
canonical line L) either at least an ε-fraction of A0|L or at least a (δ′ − δ/4)-fraction
of W |L needs to be changed to make Proximity Test accept.

This claim is the robust analogue of Lemma 7.5. Observe that the robustness of
the verifier is expressed separately for the proof and input oracles. As expected, the
robustness of the input oracle depends on the proximity parameter δ′, while that of
the proof oracle is independent of δ′.

Proof. Consider the following three events.
Event 1. Δ(Ã0|L, Â0|L) ≥ 1/3.

By the sampling lemma (Lemma B.3) with μ = 1/4 and ζ = 1/12, this event oc-
curs with probability at most ((1/|F|) + λ) · (1/4)/(1/12)2 ≤ (δ/12) since |F| ≥
(8000|F|m)/(δ3n) > (123/2)/δ and λ < 2δ/123.

Event 2. |I∩L|
|L| >

(
1 + δ

8

)
· |I|
|Fm| .

Again by the sampling lemma (Lemma B.3) with μ = |I|/|Fm| ≥ n
5|F|m and ζ = δμ

8 ,

this event occurs with probability at most(
1

|F| + λ

)
· 82

δ2μ
=

(
1

|F| + λ

)
· 320|F|m

δ2n
≤ δ

12
,

where the last inequality follows from the fact that n ≥ 24 · 320 · |F|m−1/δ3 and
λ ≤ δ3/(24 · 320(cFm

2)m).

Event 3. |B∩L|
|L| < |B|

|Fm| −
δ
8 · |I|

|Fm| .

Again by the sampling lemma (Lemma B.3) with μ = |B|/|Fm| = δ′n
5|F|m and ζ =

δn
40|F|m , this event occurs with probability at most(

1

|F| + λ

)
· μ

ζ2
≤
(

1

|F| + λ

)
· 320|F|m

δ2n
≤ δ

12
.

Hence, the probability that at least one of the three events occurs is at most δ/4.
Now, suppose none of the three events occur. We then get that

|B ∩ L|
|I ∩ L| ≥ |B| − δ|I|/8

(1 + δ/8)|I| =
δ′ − δ/8

1 + δ/8
≥ δ′ − δ

4
.

Now for Proximity Test to accept the pair (Ã0|L,W ∩ L), either we must change

Ã0|L to a polynomial other than Â0|L or correct the input for all x ∈ B ∩ L. The
former requires us to change at least a (1− (d/|F|)−1/3) ≥ 1/2-fraction of the points
of A0|L while the latter requires us to change at least a δ′ − δ/4-fraction of the input
read (i.e., the input oracle W restricted to the line L). This proves the claim.

We now analyze the robustness of ALMSS Proximity Test.
Claim 8.6. There exists a constant ε0 > 0 such that for all δ ∈ (0, 1), the

following holds. Suppose Δ(Ã0, Â0) ≤ 4ε0 and the input oracle W is δ-far from Â0|I
(i.e., |B|/|L| ≥ δ); then with probability at least Ω(δ) (over the choice of index i and
direction y), either at least a 1/2-fraction of A0|L or W [i] (i.e., the single symbol of
the input oracle read by the verifier) needs to be changed to make ALMSS Proximity

Test accept.
This claim is the robust analogue of Lemma 7.7. As before, the robustness of the

verifier is expressed separately for the proof and input oracles.
Proof. Since w is δ-far from any satisfying assignment, the assignment given by

Â0|I must be δ-far from w. Thus, with probability greater than δ over the choice of
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954 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

i ∈ {1, . . . , k} (and the corresponding point x ∈ I), we have W [i] �= Â0(x). If this
occurs, the only way to make the verifier accept is to either change W [i] or change

Ã0|L to a degree md polynomial other than Â0|L. As in the proof of Lemma 7.7,
for any fixed x, with probability at least 1 − 16ε0 (over the choice of the random

direction y), Ã0|L\{x} and Â0|L\{x} have distance at most 1/4, and hence Ã0|L would
have to be changed in at least 1 − ((md − 1)/|F|) − 1/4 ≥ 1/2 points to be a degree

md polynomial other than Â0|L. Thus, with probability at least δ(1 − 16ε0) = Ω(δ),
either W [i] would have to change or at least half of Ã0|L would have to change to
make the verifier accept.

8.2. Bundling. In section 8.1, we showed that each of the tests performed by the
PCPP verifier is individually robust. However, we need to show that the conjunction
of all these tests is also robust. This is not true for the PCPP verifier in its present
form for the following reason: Suppose the input oracle W is δ-far from satisfying
the circuit. We then know that one of the tests detects this fact with nonnegligible
probability. Moreover, as seen in section 8.1, this test is robust. However, since
this test is only one of the O(lm) tests being performed by the verifier, the oracle
bits read by this test comprise a small fraction of the total query complexity of the
verifier. For instance, the number of bits read by a single Low-Degree Test is
about 1/lm times the query complexity. This causes the robustness of the verifier
to drop by a factor of at least lm. Note that the issue here is not the fact that the
verifier performs different types of tests (i.e., Low-Degree Test, Identity Test,
Zero-Propagation Test, etc.) but rather that it performs many instances of each
test and that the soundness analysis guarantees only that one of these test instances
rejects (robustly). This is not sufficient to make the verifier robust.

For this purpose, we bundle the various functions in the proof oracle so that the
inputs required for the several test instances can be read together. This maintains the
robustness of the individual tests, albeit over a larger alphabet. To understand this
bundling, let us assume for the present that the only type of tests that the verifier
performs is Low-Degree Test. There exists a natural bundling in this case. Instead
of l(m + 2) different oracles {Ãi} and {Pi,j}, we have one oracle Π which bundles
together the data of all these oracles. The oracle Π : F

m → F
l·(2m+3) is assumed to

satisfy Π(x) = (Ã0(x), . . . , Ãl−1(x), P0,0(x), . . . , Pl−1,m(x)) for all x ∈ F
m. It can now

be easily checked that over this proof oracle, the conjunction of all Low-Degree

Tests is robust (over alphabet F
l·(2m+3)) with the same soundness and robustness

parameters as a single Low-Degree Test (over alphabet F). However, this natural
bundling does not lend itself to the other tests performed by the PCPP verifier—
namely, Zero-Propagation Test, and Edge-Consistency Test—because the l
executions of these tests each have different query patterns (i.e., we cannot execute all
of these tests by querying the same set of points of Π). Next, we provide an alternate
bundling and massage our verifier slightly to work with this bundling.

To find a suitable bundling, we examine the query patterns of Zero-Propagation

Test and Edge-Consistency Test more closely. The (i, j)th Zero-Propagation

Test queries Pi,j−1 and Pi,j on a random jth axis-parallel line. Also the ith Edge-

Consistency Test queries Pi,0, Ãi for all points x ∈ Uη, and Ãi+1 for all points

x ∈ Γ̃i,0(Uη)∪ Γ̃i,1(Uη) for Uη being a random subset of an arbitrary partition of Fm.

The key observation is that the neighborhood functions Γ̃i,0 and Γ̃i,1 take any ith
axis-parallel line to itself. Thus, if we choose the partition Uη to consist of ith axis-
parallel lines, then the ith Edge-Consistency Test is also making queries entirely
along axis-parallel lines. However, for the bundling to work, we need all the tests to
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ROBUST PCPS OF PROXIMITY 955

be making queries along the same axis-parallel line. We accomplish this by shifting
our functions according to appropriate cyclic permutations of the coordinates so that
the query patterns of the tests “line up” (at least into a constant number of groups).

To implement this idea, we first need some notation. As mentioned earlier, we
will be able to prove robustness of the verifier via bundling; however, over a larger
alphabet. This large alphabet will be Σ = F

l+2l·(m+1). Unlike before, the proof oracle
for the robust PCPP verifier will consist of only one function Π : F

m → Σ. The robust
PCPP verifier simulates the PCPP verifier as follows: To answer the queries of the
PCPP verifier, the robust verifier bundles several queries together, queries the new
proof oracle Π, and then unbundles the answer to obtain the answers to the queries of
the original PCPP verifier. For convenience, we index the l + 2l · (m+ 1) coordinates
of Σ = F

l+2l·(m+1) as follows: The first l coordinates are indexed by a single index i
ranging from 0 to l − 1, while the remaining 2l · (m + 1) are indexed by a triplet of
indices (i, j, b), where i ranges over 0, . . . , l− 1, j ranges over 0, . . . ,m, and b ∈ {0, 1}.
Let S : F

m → F
m denote the (linear) transformation that performs one cyclic-shift

to the right; that is, S(x0, . . . , xm−1) = (xm−1, x0, . . . , xm−2). The bundling of the
proof oracles Ãi and Pi,j by the modified proof oracle Π is as follows:

(8.1)

∀x ∈ F
m,

⎧⎨⎩Π(x)i = Ãi

(
S	 i

h 
(x)
)

i = 0, . . . , l − 1,

Π(x)(i,j,b) = P
(b)
i,j

(
Sj+	 i

h 
(x)
)

i = 0, . . . , l − 1; j = 0, . . . ,m; b ∈ {0, 1},

where h = log |H| = log n/m. Note that the size of the new proof oracle Π is exactly
equal to the sum of the size of the oracles Ãi and Pi,j .

We now state how the robust verifier performs the unbundling and the individual
tests. We consider each step of the PCPP verifier and present its robust counterpart.

The first steps of PCPP Verifier (and ALMSS PCPP Verifier) are indepen-
dent of the proof oracle and are performed as before. That is, the robust verifier, as
before, reduces the CktSAT instance to an instance 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉
of AS-CktSAT, sets d = m · |H|, and generates a random string R of length
log(|Sλ| · |F|m−1). The remaining steps are proof oracle dependent and we will discuss
each of them in detail.

Proximity test. For the proximity test, the only portion of the proof oracle that we
require is the portion containing Ã0. For this, we observe that Π(x)0 is Ã0◦S	 0

h 
(x) =
Ã0(x). The two different proximity tests (Robust Proximity Test and Robust

ALMSS Proximity Test) can easily be describes as follows:
Robust Proximity Test

W ; Π(R).
Use random string R to determine a random canonical line L in F

m

using the λ-biased set Sλ. Query oracle Π on all points along the line
L. Unbundle Π(L) to obtain the values of Ã0 on all points along the
line L and reject if the restriction Ã0 to L is not a polynomial of degree
at most d. Query the input oracle W on all locations corresponding to
those in I ∩L and reject if W disagrees with Ã0 on any of the locations
in I ∩ L.

Robust ALMSS Proximity Test
W ; Π.

Choose a random position i
R← {1, . . . , k} in the input and a direction

y ← F
m. Let x ∈ I be the point corresponding to i in Hm, and let L be

the line through x in direction y. Query oracle Π on all points along the
line L. Unbundle Π(L) to obtain the values of Ã0 on all points along
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956 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

the line L and reject if the restriction Ã0 to L is not a polynomial of
degree at most d. Query the input oracle W at location i and reject if
W [i] �= Ã0(x).

Low-degree test. We note that the distance of the polynomial Ãi : F
m → F to

being degree k (for any k ∈ Z
+) is exactly the same as that of Ãi ◦ S	 i

h 
 : F
m → F

since S	 i
h 
 is an invertible linear transformation. Hence, it is sufficient if we check

that Ãi ◦ S	 i
h 
 is low degree. The case with the P

(b)
i,j ’s is similar. Thus, the new

Robust Low-Degree Test can be described as follows:

Robust Low-Degree Test
Π(R).

Use random string R to determine a random canonical line L in F
m

using the λ-biased set Sλ.
Query the oracle Π on all points along the line L.
For i = 0, . . . , l − 1,

unbundle Π(L) to obtain the values of Ãi ◦S	 i
h 
 on all points along

the line L and reject if the restriction Ãi ◦ S	 i
h 
 to L is not a poly-

nomial of degree at most d.
For i = 0, . . . , l − 1, j = 0, . . . ,m and b ∈ {0, 1},

unbundle Π(L) to obtain the values of P
(b)
i,j ◦ Sj+	 i

h 
 on all points

along the line L and reject if the restriction of P
(b)
i,j ◦ Sj+	 i

h 
 to L is
not a polynomial of degree at most κd.

Thus, effectively we are testing Ãi (respectively, Pi,j) using the line space S	 i
h 
◦Sλ

(respectively, Sj+	 i
h 
 ◦ Sλ).

Identity test. In the case of Identity Test, we observe that P
(b)
i,m vanishes on

F
m iff P

(b)
i,m ◦ Sm+	 i

h 
 vanishes on F
m. Recall that we were allowed to use arbitrary

partitions of the space F
m. The set of random 1st axis-parallel lines is one such

partition and we use this partition.

• Robust Identity Test
Π(R).

– Use random string R to determine a random 1st axis-parallel line in F
m

of the form L = (X, a1, . . . , am−1). Query the oracle Π on all points
along the line L.
For i = 0, . . . , l − 1 and b ∈ {0, 1},
∗ unbundle Π(L) to obtain the values of P

(b)
i,m ◦ Sm+	 i

h 
 on all points
along the line L and reject if any of these are nonzero.

Edge-consistency test. For any x ∈ F
m, we say that Pi,0 is well formed at x if

(6.2) is satisfied for this x. Edge-Consistency Test verifies that Pi,0 is well formed
for all x ∈ Uη and i = 0, . . . , l − 1. This was done earlier by reading the values of

Pi,0, Ãi, Ãi+1 ◦ Γ̃i,0 = Ãi+1 and Ãi+1 ◦ Γ̃i,1 for all x ∈ Uη.

Let L be a random 1st axis-parallel line. The robust version of this test checks that
Pi,0 is well formed for all points on S	 i

h 
(L). Consider any x = (x0, . . . , xm−1) ∈ L. To

verify that Pi,0 is well formed at S	 i
h 
(x), the verifier needs the values Pi,0(S

	 i
h 
(x)),

Ãi(S
	 i
h 
(x)), Ãi+1(S

	 i
h 
(x)), and Ãi+1 ◦ Γ̃i,1(S

	 i
h 
(x)). We will show that all these

values can be obtained from unbundling the value of Π on L and S−1(L). Clearly, the

values Pi,0(S
	 i
h 
(x)) and Ãi(S

	 i
h 
(x)) can be obtained from unbundling the value of Π

at x. The other two values that we require are Ãi+1(S
	 i
h 
(x)) and Ãi+1◦Γ̃i,1(S

	 i
h 
(x)).

We first show that Γ̃i,1(S
	 i
h 
(x)) = S	 i

h 
(x′) for x′ = (x0+e(imodh), x1, . . . , xm−1) ∈ L
(recall that {e0, . . . , ef−1} are a basis for F over F2 and {e0, . . . , eh−1} span H ⊂
F). For this purpose, we first recall the definition of Γ̃i,1: Γ̃i,1(z0, . . . , zm−1) =
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ROBUST PCPS OF PROXIMITY 957

(z0, . . . , zt−1, zt + eu, zt+1, . . . , zm−1), where t = �i/h� mod m and u = i mod h. Fur-

thermore, since Sm is the identity map, we have that S	 i
h 
modm = S	 i

h 
. With these
observations, we have the following:

Γ̃i,1

(
S	 i

h 
(x)
)

= Γ̃i,1

(
S	i/h
modm(x)

)
= Γ̃i,1

(
S	i/h
modm(x0, . . . , xm−1)

)
= S	i/h
modm

(
x0 + e(imodh), x1, . . . , xm−1

)
= S	 i

h 
(x′).

Now, S	 i+1
h 
 is either S	 i

h 
 or S	 i
h 
+1 depending on the value of i. Suppose S	 i+1

h 
 =
S	 i

h 
. We then have that Ãi+1(S
	 i
h 
(x)) = Ai+1(S

	 i+1
h 
(x)) and Ãi+1◦Γ̃i,1(S

	 i
h 
(x)) =

Ãi+1(S
	 i
h 
(x′)) = Ãi+1(S

	 i+1
h 
(x′)). Both these values can be obtained by unbundling

the value of Π on L (since both x and x′ lie on L). In the other case, where S	 i+1
h 
 =

S	 i
h 
+1, we have Ai+1(S

	 i
h 
(x)) = Ai+1(S

	 i+1
h 
(S−1x)) and Ai+1 ◦ Γ̃i,1(S

	 i
h 
(x)) =

Ai+1(S
	 i
h 
(x′)) = Ai+1(S

	 i+1
h 
(S−1x′)). These values can be obtained by unbundling

the value of Π on S−1(L). Thus, to check that Pi,0 is well formed for all points on

S	 i
h 
(L), it suffices if the verifier queries Π on all points on L and S−1(L).

Robust Edge-Consistency Test
Π(R).

Use the random string R to determine a random 1st axis-parallel line in
F
m of the form L = (X, a2, . . . , am). Query the oracle Π along all points

in the lines L and S−1(L).
For i = 0, . . . , l − 1,

for all x ∈ S	 i
h 
(L), reject if Pi,0 is not well formed at x. (Note

that all the values required for this verification can be obtained by
unbundling Π(L) and Π(S−1(L)).)

Zero-propagation test. For each i = 0, . . . , l−1 and b ∈ {0, 1}, Zero-Propagation

Test checks that P
(b)
i,0 vanishes on Hm by verifying that (6.3) is satisfied for all

j = 1, . . . ,m − 1 (we also need to check that P
(b)
i,m ≡ 0; however, this is taken care

of by Identity Test). Since S(Hm) = Hm, checking if P
(b)
i,0 vanishes on Hm is

equivalent to checking if P
(b)
i,0 ◦S	 i

h 
 vanishes on Hm. Hence, we can perform the zero

propagation on the polynomials P
(b)
i,0 ◦ S	 i

h 
; i = 0, . . . , l− 1, b ∈ {0, 1}, instead of the

polynomials P
(b)
i,0 ; i = 0, . . . , l − 1, b ∈ {0, 1}. In other words, we need to verify the

following equation instead (6.3):

P
(b)
i,j ◦ S	 i

h 

(
x1, . . . , xj−1︸ ︷︷ ︸, xj , xj+1, . . . , xm︸ ︷︷ ︸

)

=

|H|−1∑
k=0

P
(b)
i,j−1 ◦ S	 i

h 

(
x1, . . . , xj−1︸ ︷︷ ︸, hk, xj+1, . . . , xm︸ ︷︷ ︸

)
xk
j ∀(x1, . . . , xm) ∈ F

m.

(8.2)
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958 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

This equation can be further rewritten in terms of the cyclic-shift S as follows:

P
(b)
i,j

(
S	 i

h 
+j−1(x1, x2, . . . , xm)
)

=

|H|−1∑
k=0

P
(b)
i,j−1

(
S	 i

h 
+j−1(hk, x2, . . . , xm)
)
xk

1

∀(x1, . . . , xm) ∈ F
m.

(8.3)

This helps us to rewrite Zero-Propagation Test with bundling as follows:
Robust Zero-Propagation Test

Π(R).
Use random string R to determine a random 1st axis-parallel line in F

m

of the form L = (X, a2, . . . , am). Query the oracle Π along all points in
the lines L and S−1(L).
For i = 0, . . . , l − 1, j = 1, . . . ,m, and b ∈ {0, 1},

unbundle Π(L) to obtain the value of P
(b)
i,j−1 ◦S	 i

h 
+j−1 on all points

along the line L. Similarly, unbundle Π(S−1(L)) to obtain the value

of P
(b)
i,j ◦ S	 i

h 
+j on all points along the line S−1(L) (equivalently,

this is the value of P
(b)
i,j ◦ S	 i

h 
+j−1 on all points along the line L).

Reject either if the restriction of P
(b)
i,j−1◦S	 i

h 
+j−1 or P
(b)
i,j ◦S	 i

h 
+j−1

to L is not a polynomial of degree at most κd or if any of the points
on the line L violate (8.3).

The integrated robust verifiers. Having presented the robust version of each of
the tests, the integrated robust verifiers are as follows: Robust PCPP Verifier is
the robust analogue of PCPP Verifier, while ALMSS Robust PCPP Verifier

is that of ALMSS PCPP Verifier. Following are full descriptions of these verifiers
as well as their analyses.

8.2.1. Robust PCPP Verifier. Using the robust tests presented above, we
present a robust analogue of the PCPP of section 7.1.

Robust PCPP Verifier
W ; Π
m,λ,δ(C).

1. Using Proposition 6.11, reduce the instance C of CktSAT, using pa-
rameter m, to an instance 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 of AS-CktSAT,
and set d = m · |H|.
We let Sλ ⊂ F

m be a λ-biased set of size at most ( log |F|m
λ )2 [AGHP92].

2. Choose a random string R of length log(|Sλ| · |F|m−1). (Note: We reuse
R in all tests, but only Low-Degree Test utilizes the full length of
R.)

3. Run Robust Low-Degree Test
Π(R).

4. Run Robust Edge-Consistency Test
Π(R).

5. Run Robust Zero-Propagation Test
Π(R).

6. Run Robust Identity Test
Π(R).

7. Run Robust Proximity Test
W ;Π(R).

Reject if any of the above tests reject.
The randomness of Robust PCPP Verifier is exactly the same as before, whereas
the query complexity and decision complexity increase by a constant factor.32

32Though the new proof oracle returns elements of Σ and not bits, we express the query complexity
as the number of bits read by the verifier rather than as the number of symbols (i.e., elements of
|Σ|) to maintain consistency throughout calculation of the query complexity into the proof and input
oracles.
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ROBUST PCPS OF PROXIMITY 959

Proposition 8.7. The randomness, query, and decision complexities of Robust

PCPP Verifier are r =
(
1 − 1

m

)
log n + O(m logm) + O(log log n)+

O
(
log
(

1
δ

))
, q = O(m2n1/m log2 n) and d = Õ(q), respectively.

It is straightforward to check perfect completeness of this verifier.

Robustness analysis of the integrated verifier. For future use, it is beneficial (but,
alas, more cumbersome) to state the robustness of the integrated verifier in a way that
decouples the robustness with respect to the input oracle from the robustness with
respect to the proof oracle. Let W : [k] → {0, 1} be the input oracle and Π the proof
oracle. For every sequence of coin tosses R (and a given setting of parameters), let

ΔW,Π
inp (R) (resp., ΔW,Π

pf (R)) denote the fraction of the bits read from W (resp., Π) that
would need to be changed to make Robust PCPP Verifier accept on coin tosses
R. The following lemma states the (expected) robustness property of our verifier.

Lemma 8.8. There are constants c ∈ Z
+ and ρ > 0 such the following holds

for every n,m ∈ Z
+, δ′, δ > 0 satisfying m ≤ log n/ log log n, n1/m ≥ mcm/δ′

3
,

λ ≤ min{1/c log n, δ′
3
/mcm}, δ > δ′. If W is δ-far from satisfying the circuit, then

for any proof oracle Π : F
m → Σ, either ER[ΔW,Π

pf (R)] ≥ ρ or ER[ΔW,Π
inp (R)] ≥ δ−δ′/2.

That is, the expected robustness with respect to the input is δ−δ′/2 (which should
be compared against the proximity parameter δ), whereas the expected robustness
with respect to the proof is a universal constant. Note that combining the two bounds
into a single expected robustness parameter depends on the relative number of queries
made to the input and proof oracles. To obtain Theorem 3.1, we will later modify
Robust PCPP Verifier such that the relative number of queries is optimized to
yield the best result.

Proof. Unbundle the proof oracle Π to obtain the functions Ãi and Pi,j using
(8.2). Consider the action of PCPP Verifier (i.e., the nonrobust verifier) on the
proof oracles Ãi, Pi,j and input oracle W .

Let ε be a sufficiently small constant such that the Claims 8.1–8.5 hold. Suppose
W is δ-far from satisfying the circuit. We then know that one of the following holds
and that the corresponding test instance of PCPP Verifier rejects its input robustly
(see Claims 8.1–8.5).

1. There exists a i ∈ {0, . . . , l − 1} such that Ãi is 8ε-far from every degree md
polynomial or there exists i ∈ {0, . . . , l − 1}, j ∈ {0, . . . ,m}, and b ∈ {0, 1}
such that P

(b)
i,j is 8ε-far from every degree κmd polynomial. In this case,the

expected distance of Ãi (or resp., P
(b)
i,j ) from satisfying Low-Degree Test

with degree parameter d (resp., κd) is at least 2ε (Claim 8.1).

2. There exists i ∈ {0, . . . , l − 1} and b ∈ {0, 1}, such that Δ(P
(b)
i,m, P̂

(b)
i,m) ≤ 8ε

and P̂i,m �≡ 0. In this case, Pi,m has expected distance at least 1 − 9ε from
satisfying Identity Test (Claim 8.2).

3. There exists i ∈ {0, . . . , l − 1} such that

Δ(P
(0)
i,0 , P̂

(0)
i,0 ) ≤ 8ε,Δ(P

(1)
i,0 , P̂

(1)
i,0 ) ≤ 8ε,Δ(Ãi, Âi) ≤ 8ε,Δ(Ãi+1, Âi+1) ≤ 8ε,

and P̂i,0(x) �≡ ψ′(T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))).

In this case,
{
Pi,0(·), Ai(·), Ai+1(Γ̃i,0(·))Ai+1(Γ̃i,1(·))

}
has expected distance

at least (1 − 41ε)/5 from satisfying Edge-Consistency Test (Claim 8.3).
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960 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

4. There exists i ∈ {0, . . . , l − 1}, j ∈ {1, . . . ,m} and b ∈ {0, 1} such that

Δ(Pi,j , P̂i,j) ≤ 8ε,Δ(Pi,j−1, P̂i,j−1) ≤ 8ε,

and P̂i,j(. . . , xj , . . . ) �≡
|H|−1∑
k=0

P̂i,j−1(. . . , hk, . . . )x
k
j .

In this case, (P
(b)
i,j , P

(b)
i,j−1) has expected distance at least (1 − 19ε)/2 from

satisfying Zero-Propagation Test (Claim 8.4).

5. Δ(Ã0, Â0) ≤ 8ε, but W and Â0|I disagree on at least δ′ fraction of the points.
In this case, with probability at least 1−δ′/4 (over the choice of the canonical
line L) either at least an ε-fraction of A0|L or at least a (δ− δ′/4)-fraction of
W |L needs to be changed to make Proximity Test accept (Claim 8.5).
This implies that either A0 has expected distance (1− δ′/4)ε ≥ ε/2 or W has
expected distance (1−δ′/4)(δ−δ′/4) ≥ (δ−δ′/2) from satisfying Proximity

Test.
For instance, lets us assume Ã0 is 8ε-far from being low degree so Low-Degree

Test rejects it robustly; that is, for a random canonical line L, the expected distance
of Ã0|L from satisfying Low-Degree Test is at least 2ε. Recall from (8.2) that Ã0(x)
is one of the coordinates in the bundled Π(x). Hence, if Ã0|L is ρ-far from satisfying
Low-Degree Test, so is ΠL from satisfying Robust Low-Degree Test. Thus,
Π has expected distance at least 2ε from satisfying Robust Low-Degree Test.
Now, the oracle positions read by Robust Low-Degree Test constitute a constant
fraction of the oracle positions read by Robust PCPP Verifier, so Π has expected
distance Ω(ε) from satisfying Robust PCPP Verifier. Thus, the robustness of
the individual test instance is transferred to the combined Robust Low-Degree

Test by bundling. The case with the other test types is similar. We thus have that
ER[ΔW,Π

pf (R)] ≥ Ω(ε) or ER[ΔW,Π
inp (R)] ≥ δ− δ′/2. The lemma then follows by setting

ρ = Ω(ε).

8.2.2. ALMSS Robust PCPP Verifier. We now describe ALMSS Robust

PCPP Verifier(which is a robust analogue of the PCPP of section 7.2) and analyze
its complexity. ALMSS Robust PCPP Verifier verifier is identical to Robust

PCPP Verifier except that Robust Proximity Test is replaced by Robust

ALMSS Proximity Test.
ALMSS Robust PCPP Verifier

W ; Π
δ (C).

1. Set parameters m = log n/ log log n and λ = 1/c log n.
Using Proposition 6.11, reduce the instance C of CktSAT, using pa-
rameter m, to an instance 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 of AS-CktSAT,
and set d = m · |H|.
We let Sλ ⊂ F

m be a λ-biased set of size at most ( log |F|m
λ )2 [AGHP92].

2. Choose a random string R of length log(|Sλ| · |F|m−1).
3. Run Robust Low-Degree Test

Π(R).
4. Run Robust Edge-Consistency Test

Π(R).
5. Run Robust Zero-Propagation Test

Π(R).
6. Run Robust Identity Test

Π(R).
7. Run Robust ALMSS Proximity Test

W ;Π.
Reject if any of the above tests reject.

The randomness of the ALMSS Robust PCPP Verifier is exactly the same as
before, whereas the query complexity and decision complexity increase by a constant
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ROBUST PCPS OF PROXIMITY 961

factor. Furthermore, it can easily be verified that ALMSS Robust PCPP Verifier

has perfect completeness.

Proposition 8.9. The randomness, and decision complexities of ALMSS

Robust PCPP Verifier are O(log n) and poly logn, respectively.

Robustness analysis of the integrated verifier. As in the case of Robust PCPP

Verifier, it is beneficial to state the robustness of ALMSS Robust PCPP
Verifier by decoupling the robustness with respect to the input oracle from the
robustness with respect to the proof oracle. Here, however, we refer to the robustness
and soundness parameters (rather than to expected robustness).

Lemma 8.10. If W is δ-far from satisfying the circuit, then for any proof oracle
Π : F

m → Σ, with probability at least Ω(δ), either a constant fraction of the portion of
the proof oracle Π read by the verifier or the single symbol of the input oracle W read
by the verifier (i.e., W [i]) needs to be changed in order to make ALMSS Robust

PCPP Verifier accept.

Proof. This proof proceeds in the same way as the proof of Lemma 8.8. For the
sake of completeness, we present the entire proof.

Let ε be a sufficiently small constant such that Claims 8.1–8.4 hold and ε ≤ ε0/8,
where ε0 is the constant that appears in Claim 8.6. Suppose W is δ′-far from satisfying
the circuit. We then know that one of the following holds and that the corresponding
test instance of ALMSS PCPP Verifier rejects its input robustly (see Claims 8.1–
8.6).

1. There exists i ∈ {0, . . . , l − 1} such that Ãi is 8ε-far from every degree md
polynomial or there exists i ∈ {0, . . . , l − 1}, j ∈ {0, . . . ,m}, and b ∈ {0, 1}
such that P

(b)
i,j is 8ε-far from every degree κmd polynomial. In this case,

the expected distance of Ãi (resp., P
(b)
i,j ) from satisfying Low-Degree Test

with degree parameter d (resp., κd) is at least 2ε (Claim 8.1).
Translating to the bundled alphabet, we have that the expected distance of
Π from satisfying Robust Low-Degree Test is at least 2ε. Since the
number of oracle positions read by ALMSS Robust PCPP Verifier is at
least a constant fraction of the number of oracle positions read by ALMSS

Robust PCPP Verifier, the expected distance of Π from satisfying ALMSS

Robust PCPP Verifier in this case is at least Ω(ε). Hence, with probabil-
ity at least Ω(ε) (= constant), at least Ω(ε) (= constant)-fraction of the proof
oracle Π needs to be modified to make ALMSS Robust PCPP Verifier

accept.

2. There exists i ∈ {0, . . . , l − 1} and b ∈ {0, 1} such that Δ(P
(b)
i,m, P̂

(b)
i,m) ≤ 8ε

and P̂i,m �≡ 0. In this case, Pi,m has expected distance at least 1 − 9ε from
satisfying Identity Test (Claim 8.2).
Arguing as in the earlier case, we have that with probability at least Ω(1−9ε),
at least Ω(1 − 9ε)-fraction of the proof oracle Π needs to be modified in this
case to make ALMSS Robust PCPP Verifier accept.

3. There exists i ∈ {0, . . . , l − 1} such that

Δ(P
(0)
i,0 , P̂

(0)
i,0 ) ≤ 8ε,Δ(P

(1)
i,0 , P̂

(1)
i,0 ) ≤ 8ε,Δ(Ãi, Âi) ≤ 8ε,Δ(Ãi+1, Âi+1) ≤ 8ε,

and P̂i,0(x) �≡ ψ′(T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))).

In this case,
{
Pi,0(·), Ai(·), Ai+1(Γ̃i,0(·))Ai+1(Γ̃i,1(·))

}
has expected distance

at least (1 − 41ε)/5 from satisfying Edge-Consistency Test (Claim 8.3).
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962 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

Again, we have that with probability at least Ω(1− 41ε), at least Ω(1− 41ε)-
fraction of the proof oracle Π needs to be modified in this case to make
ALMSS Robust PCPP Verifier accept.

4. There exists i ∈ {0, . . . , l − 1}, j ∈ {1, . . . ,m}, and b ∈ {0, 1} such that

Δ(Pi,j , P̂i,j) ≤ 8ε,Δ(Pi,j−1, P̂i,j−1) ≤ 8ε,

and P̂i,j(. . . , xj , . . . ) �≡
|H|−1∑
k=0

P̂i,j−1(. . . , hk, . . . )x
k
j .

In this case, (P
(b)
i,j , P

(b)
i,j−1) has expected distance at least (1 − 19ε)/2 from

satisfying Zero-Propagation Test (Claim 8.4).
We have that with probability at least Ω(1−19ε), at least Ω(1−19ε)-fraction
of the proof oracle Π needs to be modified in this case to make ALMSS

Robust PCPP Verifier accept.
5. Δ(Ã0, Â0) ≤ 8ε ≤ ε0, but W and Â0|I disagree on at least δ-fraction of the

points. In this case, with probability at least Ω(δ) (over the choice of index i
and direction y), either at least a 1/2-fraction of A0|L or W [i] (i.e., the entire
portion of the input oracle read by the verifier) needs to be changed to make
ALMSS Proximity Test accept.
This implies that with probability at least δ, either a constant fraction of the
proof oracle Π or W [i] (i.e., the entire portion of the input oracle read by the
verifier) needs to be modified to make the verifier accept.

Since we do not know which of the five cases occur, we can guarantee only the
weakest of the five claims. Hence, with probability at least Ω(δ), either a constant
fraction of the portion of the proof oracle Π read by the verifier or W [i] (i.e., the
entire portion of the input oracle W read by the verifier) needs to be changed in order
to make ALMSS Robust PCPP Verifier accept.

8.3. Robustness over the binary alphabet. The transformation from a ro-
bust verifier over the alphabet Σ to one over the binary alphabet is analogous to
converting non-Boolean error-correcting codes to Boolean ones via “code concatena-
tion.” This transformation is exactly the same transformation as the one in the proof
of Lemma 2.13. However, we cannot directly use Lemma 2.13 because we may apply
the code concatenation process only to the proof oracle Π and not to the input or-
acle W . However, this is not a problem because the input oracle is already binary.
Recall that applying the aforementioned transformation maintains the robustness of
the proof oracle up to a constant factor, whereas the robustness of the input oracle
remains unchanged (like the input oracle itself). Actually, in order to avoid decoding
(by the modified decision circuit), we maintain the original proof oracle along with
its encoded form. Thus, the complexity of this circuit will depend on the minimum
between the complexity of encoding and decoding (rather than on the complexity of
decoding). Details follow.

Let ECC : {0, 1}log |Σ| → {0, 1}b for b = O(log |Σ|) be a binary error-correcting
code of constant relative minimum distance, which can be computed by an explicit
circuit of size O(log |Σ|) [Spi96]. We augment the original proof oracle Π, viewed
now as having log |Σ|-bit long entries (i.e., elements of Σ) with an additional oracle
Υ having b-bit long entries, where Υ(x) is assumed to be ECC(Π(x)).

The actual transformation. We describe the transformation to the binary alpha-
bet in the case of Robust PCPP Verifier. ALMSS Robust PCPP Verifier
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ROBUST PCPS OF PROXIMITY 963

can be transformed similarly. Our new verifier V , on oracle access to the input W
and proof Π ◦ Υ, will simulate Robust PCPP Verifier. The queries to the in-
put oracle are performed just as before. However, for each query x ∈ F

m in the
proof oracle Π made by Robust PCPP Verifier, V will query the correspond-
ing log |Σ| bits in Π(x) and the b bits in Υ(x). Thus, the query complexity of
V is at most log |Σ| + b times the number of queries issued by the earlier verifier.
Since b = O(log |Σ|), the query complexity of the new verifier V is a constant times
that of the previous one,33 and the decision complexity will increase by at most the
encoding time (which can even be linear). The randomness is exactly the same.
The action of the new verifier V is as follows: Suppose Robust PCPP Verifier

issues queries x1, . . . , xq1 to the proof oracle Π, and queries i1, . . . , iq2 to the in-
put oracle; then V issues queries x1, . . . , xq1 to the proof oracle Π, a similar set
of queries x1, . . . , xq1 to the proof oracle Υ, and i1, . . . , iq2 to the input oracle. V
accepts (Π(x1), . . . ,Π(xq1),Υ(x1), . . . ,Υ(xq1),W (i1), . . . ,W (iq2)) iff Robust PCPP

Verifier accepts (Π(x1), . . . ,Π(xq1),W (i1), . . . ,W (iq2)) and Υ(xi) = ECC(Π(xi))
for all i = 1, . . . , q1. It is straightforward to check that V has perfect completeness
if Robust PCPP Verifier has perfect completeness. For the robust soundness,
we define ΔW,Π◦Υ

inp (R) and ΔW,Π◦Υ
pf (R) with respect to V analogously as in the state-

ment immediately preceding Lemma 8.8, but referring to distance over {0, 1} (rather
than Σ) for the proof oracle. The proof of the following claim regarding the robust
soundness of V mimics the proof of Lemma 2.13.

Lemma 8.11. There are constants c ∈ Z
+ and ρ′ > 0 such that the following

holds for every n,m ∈ Z
+, δ, δ′ > 0 satisfying m ≤ log n/ log log n, n1/m ≥ mcm/δ′

3
,

λ ≤ min{1/c log n, δ′
3
/mcm}, δ > δ′. If W is δ-far from satisfying the circuit, then for

any proof oracles Π : F
m → {0, 1}log |Σ|,Υ : F

m → {0, 1}b, either ER[ΔW,Π◦Υ
pf (R)] ≥ ρ′

or ER[ΔW,Π◦Υ
inp (R)] ≥ δ − δ′/2.

A similar transformation for ALMSS Robust PCPP Verifier yields a verifier,
the robustness of which is stated in Lemma 8.12 following. It is to be noted that the
robustness of the proof oracle (i.e., ρ′ in Lemma 8.11 and Ω(1) in Lemma 8.12) is a
constant factor smaller than the corresponding parameter in the nonbinary verifier
(i.e., the constant ρ in Lemma 8.8 and a different Ω(1) in Lemma 8.10). (Indeed, this
constant factor appears also in Lemma 2.13.)

Lemma 8.12. If W is δ-far from satisfying the circuit, then for any proof oracles
Π : F

m → {0, 1}log |Σ|,Υ : F
m → {0, 1}b, with probability at least Ω(δ), either a

constant (i.e., Ω(1)) fraction of the portion of the proof oracle Π◦Υ read by the verifier
or W [i] (i.e., the entire portion of the input oracle W read by the verifier) needs to be
changed in order to make the transformed ALMSS Robust PCPP Verifier accept.

We finally turn to deriving Theorem 3.1 (and Theorem 3.2).
Proof of Theorem 3.1. Theorem 3.1 is proved using Robust PCPP Verifier

defined in this section, setting λ = min{1/c log n, δ3/mcm}. The randomness, query,
and decision complexity of Robust PCPP Verifier (i.e., before the transformation
to the binary alphabet) are as mentioned in Proposition 8.7. As mentioned earlier in
this section, the transformation from the alphabet Σ to the binary alphabet maintains
the randomness complexity, while the query (and decision) complexity increases by
at most a constant factor.

The manner in which the robustness of the verifier is expressed in Lemma 8.11

33Recall that the query complexity of the old verifier was measured in terms of “bits of informa-
tion” rather than in terms of queries. That is, each query, answered by an element of Σ, contributes
log2 |Σ| to the query complexity.
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964 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

differs from that in Theorem 3.1 in two aspects. First, Lemma 8.11 expresses the ro-
bustness for the proof and input oracles separately, while Theorem 3.1 expresses them
together. Second, Lemma 8.11 expresses robustness in terms of expected robustness,
while Theorem 3.1 does it in terms of standard robustness. We obtain robustness as
claimed in Theorem 3.1 in two steps, first by combining the proof and input oracles
and then by moving from expected robustness to standard robustness.

First, we combine the robustness of the proof and input oracles, which were
expressed separately in Lemma 8.11. This is done by giving adequate weights to the
two oracle portions in the decision circuits (i.e., repeating queries; see Proposition 7.3).
Let n,m, δ, and γ be as specified in Theorem 3.1. We give weight (1−γ/3) to the input
oracle and γ/3 to the proof oracle. Recall that these weights mean that each query to
the input oracle is repeated several times such that the relative length of the input-
part in the decision circuit is 1− γ/3. These repeated queries may increase the query
(and decision) complexity by a factor of at most O(1/γ). Note that weighting does
not affect the randomness complexity (or any other parameter, such as the proximity
parameter δ).

Since n1/m ≥ mcm/δ3, we have n1/m ≥ 8000(cFm
2)m−1/δ3, or equivalently

n ≥ 8000|F|m−1/δ3. Hence, Lemma 8.11 can be applied. Setting δ′ = 2δγ/3 in

Lemma 8.11, we have that either ER[ΔW,Π◦Υ
pf (R)] ≥ ρ′ or ER[ΔW,Π◦Υ

inp (R)] ≥ δ−δ′/2 =
δ(1 − γ/3). Note that the first expression refers to the “expected robustness” of the
proof-part, whereas the second expression refers to the input-part. The overall ex-
pected robustness is obtained by a weighted average of these two expressions, where
the weights are with respect to the aforementioned weighting (which assigns weight
γ/3 to the input-part). Hence, the expected robustness with respect to the said
weighting is

γ

3
· ER[ΔW,Π◦Υ

pf (R)] +
(
1 − γ

3

)
· ER[ΔW,Π◦Υ

inp (R)] ≥ min

{
γ

3
· ρ′,
(
1 − γ

3

)2

· δ
}

.

This quantity is lower-bounded by ρ � (1 − γ/3)2δ since δ ≤ γ/c for a suitably large
c (and ρ′ > 0 is a constant). We have thus obtained a robust PCPP for CktVal

with randomness and decision complexities as claimed in Proposition 8.7, perfect
completeness, and ρ = (1 − γ/3)2δ expected robustness for proximity parameter δ.

We now move from expected robustness to standard robustness, by using Lemma
2.11. Applying Lemma 2.11 with a slackness parameter of γ′ � γρ/3 and s = γ/3
yields a robust-soundness error of γ/3 ≤ γ with robustness parameter of ρ − γ′ =
(1−γ/3)3 · δ ≥ (1−γ)δ for proximity parameter δ. Using γ ≤ 1/2, note that the ran-
domness increases by an additive term of O(log(1/γ′)) + O(log(1/γ)) = O(log(1/δ)),
and the decision complexity increases by a multiplicative factor of O

(
1/(γ · (γρ)2)

)
=

poly(1/δ). Hence, the randomness, query, and decision complexities of the verifier are
as claimed in Theorem 3.1

Proof of Theorem 3.2. For this purpose we use ALMSS Robust PCPP
Verifier described in this section. This verifier is then transformed to one over
the binary alphabet as indicated earlier in this section. We combine the robustness
of the proof and input oracles by giving equal weights to both oracles. This weight-
ing may increase the query (and decision) complexity by at most a factor of 2 and
has no affect on any other parameter. Proposition 8.9 and Lemma 8.12 then imply
Theorem 3.2.

8.4. Linearity of encoding. In this section we point out that, for linear circuits
(to be defined below), the mapping from an assignment to the corresponding PCPP
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ROBUST PCPS OF PROXIMITY 965

is linear. Throughout this section, “linear” means F2-linear (yet, we will sometimes
refer to F-linearity, for an extension field F of F2). The main motivation of the current
study is to derive linear codes satisfying local-testability and relaxed local-decodability
(i.e., Theorems 1.4 and 1.5, respectively). Specifically, the constructions presented in
section 4 yield linear codes provided that the corresponding PCPP is linear in the
aforementioned sense.

We call a circuit linear if it is a conjunction of linear constraints. However, instead
of representing this conjunction via AND gates, it is more convenient for us to work
with circuits that have multiple output gates, i.e., one for each linear constraint. See
the following definition.

Definition 8.13. A multi-output circuit is linear if all its internal gates are
parity gates and an input is accepted by it iff all output gates evaluate to zero.

Proposition 8.14. If C is a linear circuit, then there is a linear transformation
T mapping satisfying assignments w of C to proof oracles T (w) such that the PCPP
verifier of Theorem 3.1 will, on input C, accept oracle (w, T (w)) with probability 1.
Moreover, all the decision circuits produced by the verifier, on input C, can be made
linear (while maintaining the claimed decision complexity). A similar result is true
for the PCPP verifier of Theorem 3.2.

In the rest of this section, we provide a proof of Proposition 8.14, starting with
an assignment w that satisfies the linear circuit. We prove that the mapping from w
to a proof oracle is linear by reviewing our construction of this mapping and ensuring
that all steps in this construction are linear transformations.

Phase I: Structured-CktSAT. In this phase (described in section 6.1) we
write down the values to all gates of the circuit and route them along the wrapped
de Bruijn graph. Actually, we make a few minor and straightforward modifications
to Definition 6.3: we allow multiple output gates (rather than a single output gate)
and require that each such gate evaluates to zero (rather than to 1).34 Also, here we
deal with gate types that are linear (e.g., XOR) rather than arbitrary (e.g., AND and
OR).

Since all the circuit gates are linear functions of the input, the values on the wires
leaving the zeroth layer of the well-structured circuit (i.e., the last two bits of the
mapping A0 : {0, 1}N → {0, 1}4 in section 6.1) are linear in the input (i.e., in w). As
to Ai, i > 0, (and the first two bits of A0) notice that it is obtained by permuting
the values of the previous layer Ai−1 and setting some wires to zero (if they are not
needed in the routing (e.g., gates 3 and 4 in Figure 3)). These operations are linear,
and so all assignment functions are linear in the input.

Phase II: Arithmetization. In this phase (described in section 6.2) we extend the
values given by Ai to an evaluation of a low-degree multivariate polynomial over a
finite field F that is an extension field of F2 of degree �. Each value of Ai is four
bits long (say, b0, b1, b2, b3) and identified with the element b0e0 + b1e1 + b2e2 + b3e3,
where e0, . . . , e�−1 is a basis for F viewed as a vector space over F2. We view Ai as
a function Ai : Hm → F and construct a low-degree extension Ãi : F

m → F of Ai by
interpolation on all inputs in Hm and use these values to interpolate and evaluate Ãi

on all points in F
m. Notice that interpolation is F-linear, and hence also F2-linear.

We conclude that the values of Ãi on all points in F
m are a linear transformation of

the values of Ai. Since Ai is linear in the input assignment, so is Ãi.
Clarification. Many parts of our encoding (starting with Ãi) consist of evaluations

of multivariate polynomials P (x) over F
m. The linearity we claim is not linearity in

34Recall that an input is accepted by the linear circuit iff all output gates evaluate to zero.
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966 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

x (the free variables of the polynomial). Rather, we claim that the table of values
{P (a) : a ∈ F

m} is linear in the initial assignment w, which may be viewed as the
information encoded in this table. In contrast, throughout this section, x is merely an
index to this table. For example, in Phase II we showed that the table {Ãi(a) : a ∈
F
m} is obtained by a linear transformation applied to the table {Ai(a

′) : a′ ∈ Hm}
(but we certainly do not claim that Ãi(a) is linear in a). That is, each Ãi(a) is a
linear combination of the Ai(a

′)’s.

Phase III: The constraint polynomials. We now discuss the polynomials P
(0)
i,0 and

P
(1)
i,1 defined in (6.2) and show that their values are a linear transformation of the

values of Ãi. The first polynomial (i.e., P
(0)
i,0 ) is obtained by applying the univariate

polynomial ψ0 defined in (6.1) to each value of Ãi (i.e., P
(0)
i,0 (x) = ψ0(Ãi(x))). By

definition, ψ0 evaluates to zero iff its input, when represented as a vector in F
�
2 ,

belongs to the linear space spanned by {e0, e1, e2, e3}. This polynomial defines a
linear transformation, as claimed by the following lemma.

Lemma 8.15. Let L be an F2-linear subspace of F = F
�
2 and ψL(t) =

∏
α∈L(t−α).

Then the mapping ψL : F → F is linear.
Proof. We use the fact that for any integer i, the transformation t  → t2

i

is linear;

that is, (t + t′)2
i

= t2
i

+ t′
2i

. Our main claim is that the polynomial ψL(t) can be

written as
∑

i cit
2i

and hence is linear (being a sum of linear transformations). We
prove this claim by induction on the dimension of L ⊆ F

�
2 . Indeed, for dim(L) = 0

(i.e., L = {0�}), it holds that ψL(t) = t, and our claim follows. In the induction
step, write L as L = L′ ∪ {α+L′}, where L′ is a linear space of dimension k − 1 and
α ∈ L \L′. Clearly, ψL(t) = ψL′(t) ·ψL′(t+α). Using the inductive hypothesis for L′

(and the linearity of t  → t2
j

), we get

ψL(t) =

(∑
i

ci · t2
i

)
·

⎛⎝∑
j

cj · (t + α)2
j

⎞⎠
=

(∑
i

ci · t2
i

)
·

⎛⎝∑
j

cj ·
(
t2

j

+ α2j
)⎞⎠

=
∑
i,j

cicjt
2i

t2
j

+
∑
i,j

cicjt
2i

α2j

=
∑
i

c2i t
2i+1

+
∑
i

c′it
2i

,

where c′i =
∑

j cicjα
2j

and
∑

i �=j cicjt
2i

t2
j

= 2
∑

i<j cicjt
2i

t2
j

= 0 (because F has
characteristic 2). This completes the proof of the inductive claim.

We now turn to the second polynomial, P
(1)
i,0 . Recall that P

(1)
i,0 (x) = ψ1(s, a, a0, a1),

where s = T̃i(x), a = Ãi(x), and aj = Ãi+1(Γ̃i,j(x)). It can be verified that T̃i(x)
(which represents the gate type) is independent of the input w to the circuit, and by
our previous discussion a, a0, a1 are linear in the input w (to the circuit). Thus, it will
suffice to show that ψ′ is linear in its last three inputs. When discussing (6.2) we did
not go into the specific construction of the polynomial ψ′ because only its function-
ality mattered, and we showed that there exists a constant-degree polynomial that
does the job. But for our current purposes (of showing linearity) we need to present
a specific polynomial ψ′ that is linear (as an operator over F

�
2 ) and has the desired
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ROBUST PCPS OF PROXIMITY 967

properties needed by the verification process. To do this, we recall that C is the set of
allowable gates in the well-structured circuit, define δs0(z) to be the (minimal degree)
univariate polynomial of degree |C| that is 1 if z = s0 and 0 if z ∈ C \ {s0}, and write
ψ′ as

ψ′(s, a, a0, a1) =
∑
s0∈C

δs0(s) · ψ′
s0(a, a0, a1).(8.4)

Claim 8.16. For any s0 ∈ C that can occur as a gate in a well-structured circuit
constructed from a linear circuit C, the polynomial ψ′

s0(a, a0, a1) of (8.4) can be written
as a linear transformation (of (a, a0, a1)).

Proof. Recall that the value of ψ′
s0(a, a0, a1) is assumed to represent whether or

not the four least significant bits of the three inputs (denoted a′, a′0, and a′1) satisfy
some specified condition. By inspecting Definition 6.3, it can be verified that (in our
case) this condition is linear. That is, ψ′

s0(a, a0, a1) = 0 iff the triplet (a′, a′0, a
′
1),

viewed as a 12-bit vector over F2, belongs to a specific linear space Ls0 ⊆ F
12
2 .

Recall that we may assume that a = 0f−4a′ (and similarly for a0 and a1) because

this condition is imposed by the constraint polynomial P
(0)
i,0 . Thus, we seek a polyno-

mial (over F
3) such that if each of its three inputs belongs to Span(e0, . . . , e3), then

it will output 0 iff the inputs reside in the linear space that is analogous to Ls0 ; that
is, the input (a, a0, a1) should evaluate to 0 iff a′ ◦ a′0 ◦ a′1 ∈ Ls0 . To obtain this, we
assume the existence of α ∈ F such that multiplying an element by α corresponds to a
left cyclic-shift by four positions (e.g., α · σ0 · · ·σf−1 = σ4 · · ·σf−1σ0 · · ·σ3). Such an
element exists for the standard representation of F. Using this element we can write
ψ′
s0 : F

3 → F as

ψ′
s0(a, a0, a1) = ψLs0

(α2a + αa0 + a1),

where ψLs0
is the univariate polynomial that is zero iff its input is in Ls0 . Note that,

for inputs in Span(e0, . . . , e3), indeed ψ′
s0(a, a0, a1) = 0 iff a′ ◦ a′0 ◦ a′1 ∈ Ls0 . By

Lemma 8.15, ψLs0
is linear. It follows that ψ′

s0 is linear because multiplication by a
fixed element of F (i.e., α) is a linear operation.

Recall δs0(s) depends only on the circuit and not on its input (i.e., w). Thus,
each summand of (8.4) is linear in w, and hence the sum is itself linear in w. We
conclude that the table of evaluations of the polynomials given by (6.2) is obtained
by linear transformations applied to the input to the circuit.

Phase IV: The sum-check polynomials. In this phase (described by (6.3)) we apply

a sequence of interpolations to previously constructed polynomials P
(b)
i,j . Each such

interpolation is an F-linear transformation and hence also an F2-linear one. Thus, the

sequence of polynomials P
(b)
i,j is obtained by a linear transformation applied to the

input.
Phase V: Bundling and encoding. In this phase (described in sections 8.2 and 8.3)

we apply some cyclic-shifts to the (values of the) sequence of l+2l(m+1) polynomials
obtained in the previous phases. Then we bundle the polynomials together, obtaining
an alphabet of size |F|l+2l(m+1). This bundling does not change the encoding (only
the partitioning of the proof into symbols) and hence is also a linear transformation.
Finally, we apply an error-correcting code to each symbol in order to reduce the
alphabet size (from |F|l+2l(m+1)) to binary, and this is also a linear transformation as
long as the error-correcting code is itself linear.

The result of this shifting, bundling, and encoding is the actual proof given to
the (outer) verifier of Theorem 3.1 (the verifier of Theorem 3.2 is dealt with in a
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968 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

similar fashion). Notice that this transformation from l+2l(m+1) polynomials (each
evaluated in F) to one proof (over the binary alphabet) is linear because all three
parts of it are linear.

Now we argue that all tests performed by the verifier are linear and the decision
complexity claimed in Theorems 3.1 and 3.2 can be achieved by using small linear
circuits. This can be seen by inspecting the various tests described in section 6.3,
noticing that they all check either linear or F-linear conditions, and applying the
general result of Strassen [Str73], showing that any algebraic circuit that computes a
linear function (as a formal polynomial) can be converted into a linear circuit with
only a constant-factor increase in size. This completes the proof of Proposition 8.14.

Part III. Appendices.

Appendix A. Hadamard code–based PCPP. In this section we note that the
Hadamard code–based inner verifier from Arora et al. [ALM+98] can be converted
into a PCPP. Recall that the inner verifier of [ALM+98] accesses O(1) input oracles,
where the ith oracle is assumed to provide the Hadamard encoding of some string wi,
and verifies that their concatenation satisfies some given circuit C.

Here we simplify this verifier to work with a single string w, and the verifier
accesses a single input oracle that represents this string itself (not some encoding of
it) and verifies that w is close to an assignment acceptable by the circuit C given as
explicit input.

Theorem A.1. There exists a constant δ0 > 0 such that there exists a PCPP for
CktVal (for circuits of size n) with randomness complexity O(n2), query complexity
O(1), perfect completeness, soundness error 1 − δ, and proximity parameter 5δ for
any δ ≤ δ0. That is, inputs that are δ-far from satisfying the circuit are rejected with
probability at least min(δ, δ0)/5.

Notice that we do not claim robustness of this PCPP. This is because we don’t
intend to use this verifier (or any verifier derived from it) as the outer verifier during
composition. However, this verifier is robust (in a trivial sense). Indeed, any PCPP
with O(1) query complexity is trivially ρ-robust for some constant ρ > 0 (since the rel-
ative distance between two query patterns is lower-bounded by the inverse of number
of bits queried).

Proof. Let V denote the claimed verifier. We first list the oracles used by V , then
we describe the tests that V performs, and finally we verify that V ’s complexities are
as claimed and analyze its performance (most notably its soundness and proximity).

Oracles. Let C be a circuit with n gates on m input bits. The verifier accesses an
input oracle W : [m] → {0, 1} (representing a string w ∈ {0, 1}m) and a proof oracle
Π = (A,B), with A : {0, 1}n → {0, 1} and B : {0, 1}n×n → {0, 1}.

To motivate the verifier’s tests, we describe what is expected from the oracles in
the “completeness” case, i.e., when C(w) = 1. The input oracle, by definition, gives
the string w, i.e., W [i] = wi. Now let z ∈ {0, 1}n be the string of values of all the
gates of the circuit C (including the input, the internal gates, and the output gate(s)).
Without loss of generality, assume z = w ◦ y, where y represents the values assumed
for internal gates. The oracle A is expected to give the values of all linear functions at
z (over F2), and the oracle B is supposed to give the value of all quadratic functions
at z. More precisely, A = A[x]x∈{0,1}n is expected to be A[x] =

∑n
i=1 xizi = xT z

(where x and z are thought of as column vectors). Similarly, B = B[M ]M∈{0,1}n×n

is expected to be B[M ] =
∑

i,j Mijzizj = zTMz (where M is an n × n matrix). In
order to verify that w satisfies C, the verifier will verify that A and B have indeed
been constructed according to some string z as above, that z represents an accepting
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ROBUST PCPS OF PROXIMITY 969

computation of the circuit, and finally that A is the encoding of some string w′ ◦ y,
where w′ is close to the string w given by the input oracle W .

Tests. Given the circuit C, the verifier first constructs polynomials P1(z), . . . ,
Pn(z) as follows. Viewing the variables {zi} as representing the values at the indi-
vidual gates of the circuit C (with z1, . . . , zm being the input gates), the polynomial
Pi(z) is the quadratic polynomial (over F2) expressing the constraint imposed by the
ith gate of the circuit on an accepting computation. For example,

Pi(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi − zjzk if the ith gate is an AND gate with inputs from

gates j and k.

zi − zj − zk + zjzk if the ith gate is an OR gate with inputs from

gates j and k.

zi − (1 − zj) if the ith gate is a NOT gate with input from

gate j.

zi − (zj + zk) if the ith gate is a PARITY gate with inputs from

gates j and k.

1 − zj if the ith gate is an output gate with input from

gate j.

0 if the ith gate is an input gate (i.e., i ≤ m).

Note that z = w ◦ y reflects the computation of C on an acceptable input w iff
Pi(z) = 0 for every i ∈ [n]. The verifier conducts the following tests.

Codeword tests. These tests refer to (A,B) being a valid encoding of some string
z ∈ {0, 1}n. That is, these tests check that both A and B are linear functions, and
that B is consistent with A. In the latter check, the verifier employs a self-correction
procedure (cf. [BLR93]) to the oracle B. (There is no need to employ self-correction
to A because it is queried at random locations.)

Linearity of A. Pick x1, x2 uniformly at random from {0, 1}n and verify that
A[x1 + x2] = A[x1] + A[x2].
Linearity of B. Pick M1, M2 uniformly at random from {0, 1}n×n and verify
that B[M1 + M2] = B[M1] + B[M2].
Consistency of A and B. Pick x1, x2 uniformly at random from {0, 1}n and M
uniformly from {0, 1}n×n and verify that B[M +x1x

T
2 ]−B[M ] = A[x1]A[x2].

Circuit test. This test checks that the string z encoded in (A,B) represents an
accepting computation of C; that is, that Pi(z) = 0 for every i ∈ [n]. The test
checks that a random linear combination of the Pi’s evaluates to 0, while employing
self-correction to A and B.

Pick α1, . . . , αn ∈ {0, 1} uniformly and independently and let
∑n

k=1 αkPk(z) =
c0+
∑

i �izi+
∑

i,j Qi,jzizj . Pick x ∈ {0, 1}n and M ∈ {0, 1}n×n uniformly at random.
Verify that c0 + (A[x + �] −A[x]) + (B[M + Q] −B[M ]) = 0.

Proximity test. This test checks that the m-bit long prefix of the string z, encoded
in A, matches (or is close to) the input oracle W , while employing self-correction to
A.

Pick j ∈ [m] and x ∈ {0, 1}n uniformly. Let ej ∈ {0, 1}n denote the vector that
is 1 in the jth coordinate and 0 everywhere else. Verify that W [j] = A[x+ ej ]−A[x].

The verifier accepts if all the tests above accept; otherwise it rejects.

Resources. The verifier uses O(n2) random bits and makes O(1) binary queries.
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970 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

Completeness. It is straightforward to see that if w, the string given by W , satis-
fies C, then letting z be the set of values of the gates of C and letting A[x] = xT z and
B[M ] = zTMz will satisfy all tests above. Thus the verifier has perfect completeness.

Soundness (with proximity). It follows directly from the analysis of [ALM+98]
that there exists a δ0 > 0 such that for every δ ≤ δ0, if Codeword tests and Circuit
test above accept with probability at least 1 − δ, then the oracle A is 2δ-close to
the Hadamard encoding of some string z = w′ ◦ y such that C(w′) accepts. Now we
augment this soundness with a proximity condition. Suppose the verifier also accepts
Proximity test with probability at least 1−δ. Then we have that wj �= A[x+ej ]−A[x]
with probability at most δ. Furthermore, the events A[x + ej ] �= (x + ej)

T z and
A[x] �= xT z happen with probability at most 2δ each. Thus, with probability at
least 1 − 5δ (over the possible choices of j and x), both wj = A[x + ej ] − A[x] and
A[x + ej ] −A[x] = (x + ej)

T z − xT z hold. Since (x + ej)
T z − xT z = eTj z = zj = w′

j ,
it follows that, with probability at least 1 − 5δ (over the choices of j), wj = w′

j . In
other words, the string w represented by the oracle W is at distance at most 5δ away
from some string w′ that is accepted by the circuit C.

Appendix B. Randomness-efficient low-degree tests and the sampling
lemma. Following [BSVW03], our construction makes heavy use of small-biased
spaces [NN93] to save on randomness when choosing random lines. For a field F and
parameters m ∈ Z

+ and λ > 0, we require a set S ⊆ F
m that is λ-biased (with respect

to the additive group of F
m). Rather than define small-biased spaces here, we simply

state the properties we need. (See, e.g., [BSVW03] for definitions and background on
small-biased spaces.)

Lemma B.1. For every F of characteristic 2, m ∈ Z
+, and λ > 0, there is an ex-

plicit construction of a λ-biased set S ⊆ F
m of size at most (log |Fm|)/λ2 [AGHP92].

We now discuss the properties of such sets that we will use.

Expanding Cayley graphs. λ-biased sets are very useful pseudorandom sets in
algebraic applications, and this is due in part to the expansion properties of the
Cayley graphs they generate. See the following lemma.

Lemma B.2. If S ⊆ F
m is λ-biased and we let GS be the graph with vertex set

F
m and edge set {(x, x + s) : x ∈ F

m, s ∈ S}, then all the nontrivial eigenvalues of
GS have absolute value at most λ|S|.

Randomness-efficient line samplers. In [BSVW03], Lemma B.2 was used to prove
the following sampling lemma. This lemma says that if one wants to estimate the
density of a set B ⊆ F

m using lines in F
m as the sample sets, one does not need to

pick a random line in F
m which costs 2 log |Fm| random bits. A pseudorandom line

whose slope comes from a λ-biased set will do nearly as well, and the randomness is
only (1 + o(1)) · log |Fm|. In what follows, lx,y is the line passing through point x in
direction y, formally; lx,y = {x + ty : t ∈ F}

Lemma B.3 ([BSVW03, Sampling Lemma 4.3]). Suppose S ⊆ F
m is λ-biased.

Then, for any B ⊆ F
m of density μ = |B|/|Fm|, and any ζ > 0,

Prx∈Fm,y∈S

[∣∣∣∣ |lx,y ∩B|
|lx,y|

− μ

∣∣∣∣ > ζ

]
≤
(

1

|F| + λ

)
· μ

ζ2
.

Randomness-efficient low-degree tests. Ben-Sasson et al. [BSVW03] use the ran-
domness-efficient sampling lemma, Lemma B.3, to obtain randomness-efficient low-
degree tests by performing a “line versus point” test only for pseudorandom lines with
a direction y coming from a small λ-biased set. That is, for a set S ⊆ F

m, we consider
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ROBUST PCPS OF PROXIMITY 971

lines of the form lx,y(t) = x + ty for x ∈ F
m and y ∈ S, and let L be the set of all

such lines, where each line is parameterized in a canonical way.
Then for functions f : F

m → F and g : L → Pd, where Pd is the set of univariate
polynomials of degree at most d over F, we let LDTf,g

S,d be the test that uniformly

selects l
R←L � {lx,y : x ∈ F

m, y ∈ S} and t ∈ F and accepts iff g(l)(t) = f(l(t)). That
is, the value of the degree d univariate polynomial g(l) at point t equals the value of f
at l(t). We quote the main theorem of [BSVW03] and will use it in our constructions.

Theorem B.4 ([BSVW03, Theorem 4.1]). There exists a universal constant
α > 0 such that the following holds. Let d ≤ |F|/3,m ≤ α|F|/ log |F|, S ⊆ F

m be a
λ-biased set for λ ≤ α/(m log |F|), and δ ≤ α. Then, for every f : F

m → F and
g : L → Pd such that f is at least 4δ-far from any polynomial of degree at most md,
we have the following:

Pr[LDTf,g
S,d = rej] > δ.
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