
SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. 1160–1214

AN UNCONDITIONAL STUDY OF
COMPUTATIONAL ZERO KNOWLEDGE∗

SALIL P. VADHAN†

Abstract. We prove a number of general theorems about ZK, the class of problems possessing
(computational) zero-knowledge proofs. Our results are unconditional, in contrast to most previous
works on ZK, which rely on the assumption that one-way functions exist. We establish several new
characterizations of ZK and use these characterizations to prove results such as the following:

1. Honest-verifier ZK equals general ZK.
2. Public-coin ZK equals private-coin ZK.
3. ZK is closed under union.
4. ZK with imperfect completeness equals ZK with perfect completeness.
5. Any problem in ZK ∩ NP can be proven in computational zero knowledge by a BPPNP

prover.
6. ZK with black-box simulators equals ZK with general, non–black-box simulators.

The above equalities refer to the resulting class of problems (and do not necessarily preserve other
efficiency measures such as round complexity). Our approach is to combine the conditional techniques
previously used in the study of ZK with the unconditional techniques developed in the study of SZK,
the class of problems possessing statistical zero-knowledge proofs. To enable this combination, we
prove that every problem in ZK can be decomposed into a problem in SZK together with a set of
instances from which a one-way function can be constructed.

Key words. cryptography, computational complexity, zero-knowledge proofs, pseudoentropy,
language-dependent commitment schemes, auxiliary-input one-way functions

AMS subject classifications. 94A60, 68Q15

DOI. 10.1137/S0097539705447207

1. Introduction. Since their introduction by Goldwasser, Micali, and Rack-
off [35], zero-knowledge interactive proofs have become a central tool in cryptographic
protocol design, and have also provided fertile grounds for complexity-theoretic inves-
tigations into the interplay between fundamental notions such as proofs, randomness,
interaction, and secrecy.

The notion of zero-knowledge proofs raised a number of intriguing basic questions,
such as the following:

• Can we characterize the class ZK of problems possessing zero-knowledge
proofs?1

• Can we transform proof systems that are zero knowledge for the “honest
verifier” (i.e., the verifier that follows the specified protocol) into ones that
are zero knowledge in general (i.e., for all polynomial-time verifier strategies)?

∗Received by the editors March 18, 2005; accepted for publication (in revised form) April 4, 2006;
published electronically December 15, 2006. This work was done while the author was a Fellow
at the Radcliffe Institute for Advanced Study. This research was also supported by NSF grants
CNS-0430336, CCR-0205423, and CCR-0133096, and by ONR grant N00014-04-1-0478 and a Sloan
Research Fellowship. Preliminary versions of this paper have appeared in Proceedings of the IEEE
Symposium on Foundations of Computer Science [58] and Electronic Colloquium on Computational
Complexity [59].

http://www.siam.org/journals/sicomp/36-4/44720.html
†Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (salil@

eecs.harvard.edu).
1In this paper, we focus on the original notion of computational zero-knowledge proof systems, as

introduced in [35]. That is, the zero-knowledge condition is defined with respect to computationally
bounded verifiers (and distinguishers), and the soundness is defined with respect to computationally
unbounded prover strategies. In particular, we do not consider argument systems [10], which are
only computationally sound. 1160

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1161

That is, does HVZK = ZK, where HVZK denotes the class of problems
possessing honest-verifier zero-knowledge proofs?

• Is it always possible to modify zero-knowledge proofs to have additional useful
properties—such as having a small number of rounds, perfect completeness,
or public coins? Or do the latter properties restrict the class of problems
possessing zero-knowledge proofs?

• What closure properties does ZK have? Is it closed under complement?
Under union?

Almost all of these questions were seemingly resolved by a series of exciting works that
appeared within a few years after zero-knowledge proofs were defined. Specifically,
under the assumption that one-way functions (OWF) exist, it was shown that ZK
“hits the roof,” namely, ZK = IP, where IP is the class of problems possessing
interactive proofs [29, 39, 7, 45, 37]. Thus, ZK is completely characterized and,
moreover, has natural complete problems (namely, any complete problem for IP =
PSPACE [42, 54]). This also implies that HVZK equals ZK, since ZK ⊆ HVZK ⊆
IP is immediate from the definitions. In addition, the equality ZK = IP is proven by
a generic transformation from interactive proofs into zero-knowledge proofs, and this
transformation preserves many properties, such as those mentioned above, i.e., the
round complexity,2 public coins, and perfect completeness. Since we already know
how to transform interactive proofs into interactive proofs with public coins [36] and
perfect completeness [19], it follows that we can also transform zero-knowledge proofs
into zero-knowledge proofs with the same properties. ZK also inherits all the closure
properties of IP = PSPACE, in particular closure under complement and union.
However, all of these results are based on the assumption that one-way functions exist,
and without this assumption, all the questions listed above are open.

In this paper, we answer most of these questions unconditionally (i.e., without
any unproven complexity assumption). In particular, we do the following:

• Give several characterizations of ZK that make no reference to interaction or
zero knowledge. (These characterizations are not quite complete problems,
but turn out to have similar utility.)

• Prove that HVZK = ZK.
• Show how to transform any computational zero-knowledge proof into one

with public coins and perfect completeness.
• Establish closure properties of ZK, such as closure under union.

This paper is inspired by the work of Ostrovsky and Wigderson [50], who gave
the first hint that it might be possible to prove unconditional results about zero
knowledge. They showed that if computational zero knowledge is nontrivial (i.e.,
ZK �= BPP), then “some form of one-way functions” exists. Then they made
the appealing suggestion that one might prove unconditional results about compu-
tational zero knowledge by a case analysis as follows: If ZK = BPP, then many
results about ZK hold trivially (because every problem in BPP has a trivial zero-
knowledge proof, where the prover sends nothing and the verifier decides membership
on its own, using the BPP algorithm). On the other hand, if ZK �= BPP, then
we can try to use their “one-way functions” in the known conditional results about
ZK. Unfortunately, as they point out, this approach does not work because the
form of one-way functions they construct (in this case, ZK �= BPP) is too weak

2The round complexity is preserved up to an additive constant for achieving a polynomially small
soundness error. For a negligible error, any superconstant multiplicative factor suffices (by sequential
repetition).

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1162 SALIL P. VADHAN

for the conditional constructions mentioned above.3 (See section 7.1 for more de-
tails.)

Our approach is to replace BPP with SZK, the class of problems possessing sta-
tistical zero-knowledge proofs (to be described in more detail shortly). In particular,
in the case when ZK �= SZK, we are able to construct a form of one-way functions
that is much closer to the standard notion than that in the Ostrovsky–Wigderson
result. However, now the case that ZK = SZK is not as trivial as before; instead
we rely on a large body of previous work giving unconditional results about SZK (as
described below). To make this approach work, we actually carry out the case analysis
on an input-by-input basis. That is, we show that for every problem in ZK, we can
partition its instances into “SZK instances” and “one-way function instances.” This
characterization is described in more detail below.

1.1. The SZK/OWF characterization.
Statistical zero knowledge. The distinction between general (computational) zero

knowledge and statistical zero knowledge involves the formulation of the “zero-knowl-
edge” property, i.e., the requirement that the verifier “learns nothing” from the in-
teraction other than the fact that the assertion being proven is true. The original
(and most general) notion discussed above, called computational zero knowledge, in-
formally says that a polynomial-time verifier learns nothing. Statistical zero knowledge
guarantees that even a computationally unbounded verifier learns nothing from the
interaction.4 Naturally, the stronger security guarantee of statistical zero knowledge
is preferable, but unfortunately it seems to severely constrain the class of statements
that can be proven in zero knowledge. Specifically, it is known that the class SZK of
problems possessing statistical zero-knowledge proofs is contained in AM ∩ co-AM
[18, 1], and thus NP-complete problems are unlikely to have statistical zero-knowledge
proofs. Thus statistical zero-knowledge proofs do not seem to have the wide appli-
cability of computational zero-knowledge proofs (which stems from the existence of
computational zero-knowledge proofs for all of NP [29]).

Nevertheless, the class SZK of problems possessing statistical zero-knowledge
proofs has turned out to be a rich object of study, and in recent years, there have been
a number of results substantially improving our understanding of it. These results in-
clude the identification of natural complete problems for class SZK [52, 34], showing
that SZK is closed under complement [48]; that honest-verifier SZK equals general
SZK [32]; and that private-coin SZK equals public-coin SZK [48]. (See [57] for a
unified presentation of all these results.) In contrast to what was known for computa-
tional zero knowledge, all these results are unconditional. That is, they do not rely on
any unproven complexity assumptions (such as the existence of one-way functions).

It was suggested in [34, 57] that the study of SZK could provide a useful testbed
for understanding zero knowledge before moving on to more complex models that

3A similar approach was used in an attempt to prove HVSZK = SZK [15], but subsequently a
more direct approach that avoids these difficulties was found [32].

4Recall that the zero-knowledge property is formalized by requiring that there be a probabilis-
tic polynomial-time algorithm S that “simulates” the verifier’s view of the interaction (when the
assertion being proven is true). In computational zero knowledge, the output distribution of the
simulator is required only to be computationally indistinguishable from the verifier’s view of the in-
teraction, whereas in statistical zero knowledge, it must be statistically close. We note that there is a
similar choice in the soundness condition. We, like the authors of [35], focus on interactive proof sys-
tems, where even a computationally unbounded prover cannot convince the verifier to accept a false
statement, except with negligible probability. In interactive argument systems [10], this soundness
condition is required only for polynomial-time provers.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1163

incorporate computational intractability (such as ZK). In this paper, we make ex-
tensive use of that methodology—not just proving results about ZK by analogy to
SZK, but actually making direct use of known results about SZK (e.g., in establishing
and using the characterization below).

The characterization. In this paper, we provide a new characterization of ZK in
terms of SZK and one-way functions as follows.

Definition 1.1. A promise problem5 Π = (ΠY ,ΠN) satisfies the SZK/OWF

Condition if there exists a set I ⊆ ΠY of yes instances, a polynomial-time com-
putable function f , and a polynomial p(n) such that the following hold:

• Ignoring the inputs in I, the problem Π has a statistical zero-knowledge proof.
Formally, we have Π′ ∈ SZK, where Π′ = (ΠY \ I,ΠN).

• When x ∈ I, the function fx(·) def
= f(x, ·) is hard to invert. That is, for every

nonuniform polynomial-time algorithm A, there exists a negligible function ε
such that for every x ∈ I,

Pr
[
A(fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]
≤ ε(|x|).

Intuitively, this characterization says that for every yes instance x, either one
can prove the membership of x in ΠY in statistical zero knowledge (“x is an SZK
instance”) or one can use x to construct a one-way function that is given x as an
auxiliary input (“x is an OWF instance”). Note that if one-way functions exist (in
the standard sense, i.e., without auxiliary input), then all promise problems satisfy
the SZK/OWF Condition (by setting I = ΠY , and fx(y) = g(y) where g is the
one-way function assumed to exist).

On the other hand, the above condition (regarding Π) alone cannot characterize
ZK, since if one-way functions do exist, Π will satisfy Definition 1.1 even if Π /∈ IP.
We prove that if we simply add the condition Π ∈ IP, then we do indeed obtain an
exact characterization.

Theorem 1.2 (SZK/OWF characterization of ZK). Π ∈ ZK if and only if
Π ∈ IP and Π satisfies the SZK/OWF Condition.

As noted above, the usefulness of this characterization is that it essentially re-
duces the unconditional study of ZK to its conditional study plus the study of SZK.
Theorem 1.2 is in some sense the central theorem of this paper; all other results are de-
duced as consequences of it or its proof. When proving each direction of Theorem 1.2,
we actually prove stronger statements than required. In the forward (“only if”) di-
rection, we actually show that every problem in HVZK, not just ZK, satisfies the
SZK/OWF Condition. In the reverse (“if”) direction, we show that every problem
in IP satisfying the SZK/OWF Condition is not only in ZK, but has a computa-
tional zero-knowledge proof with many nice properties, such as public coins, perfect
completeness, universal black-box simulation, etc. Combining the two directions, we
deduce that HVZK = ZK, and that every problem in ZK has a computational
zero-knowledge proof with the aforementioned properties.

1.2. Proof outline. Figure 1 illustrates our main steps in establishing both
directions of Theorem 1.2. In proving the forward direction, we first prove that
every problem in HVZK satisfies a “Conditional Pseudoentropy Condition”
and an “Indistinguishability Condition.” These are computational analogues

5A promise problem Π consists of a pair (ΠY ,ΠN) of disjoint sets of strings, corresponding to
the yes instances and no instances of Π, respectively [17]. All complexity classes we consider in this
paper, e.g., ZK, SZK, and IP, are taken to be classes of promise problems. See section 2.3.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1164 SALIL P. VADHAN

Lemma 3.7

Conditional Pseudoentropy Cond.

HVZK

Indistinguishability Cond.

Lemmas 3.13, 3.14

Lemma 3.10

Lemma 4.4

SZK/OWF Condition

+ Pi IPLemma 4.8

[32]

public-coin HVZK

ZK
(public coins, perfect completeness, ...)

Instance-dependent Commitment

Fig. 1. Steps of our proof.

of the known complete problems for SZK [52, 34] and are described in more detail
below. The reductions from HVZK to these characterizations are natural adaptations
of the reductions from HVSZK = SZK to the SZK-complete problems (which in
turn are based on the simulator analyses of [18, 1, 51]). We then show that every
problem satisfying the Conditional Pseudoentropy Condition also satisfies the
SZK/OWF Condition. This step utilizes the techniques of H̊astad et al. [37] to
construct the needed one-way functions fx.

In proving the reverse direction of Theorem 1.2, we first show that every problem
satisfying the SZK/OWF Condition has a certain kind of “instance-dependent com-
mitment scheme” [40] as discussed in more detail below. We then use the techniques of
[29, 39, 7, 40] to show that every problem in IP with such a commitment scheme has a
public-coin honest-verifier zero-knowledge proof. The honest-verifier zero-knowledge
proof is then converted into one that is zero knowledge even for cheating verifiers
using the compiler of [32]. The resulting proof system remains public coin, and also
has additional nice properties such as perfect completeness and black-box simulation.

Putting these steps together, we deduce that membership in HVZK, member-
ship in ZK (even with additional nice properties), the SZK/OWF Condition,
the Conditional Pseudoentropy Condition, the Indistinguishability Con-

dition, and having an instance-dependent commitment scheme are all equivalent (for
problems in IP). The latter three characterizations of ZK are of interest beyond their
role in establishing Theorem 1.2, so we describe them in more detail below.

1.3. Additional characterizations of ZK.
Computational analogues of the SZK-complete problems. Recall that in [52, 34],

it was demonstrated that SZK has two natural complete problems, Statistical

Difference and Entropy Difference. These problems proved to be very useful
tools in the study of SZK (cf. [52, 57]) because they reduced the study of the entire
class to the study of these specific problems.

In this work, we provide characterizations of ZK that are natural computational
analogues of these two problems. For example, recall that instances of the Statis-

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1165

tical Difference problem consist of pairs (X,Y) of probability distributions on
strings, specified by circuits that sample from them. The yes instances are pairs that
are statistically close and the no instances are pairs that are statistically far apart.
We show that if “statistically close” is replaced with “computationally indistinguish-
able,” the resulting condition characterizes ZK. This condition, which we refer to
as the Indistinguishability Condition, cannot be cast as a complete problem
because there can be distributions that are both computationally indistinguishable
and statistically far apart. Rather, we say that a promise problem satisfies the In-

distinguishability Condition if its instances can be efficiently mapped to pairs
(X,Y) that are computationally indistinguishable or statistically far apart, according
to whether the instance is a yes or no instance. We show that this characterizes ZK
in the sense that a promise problem is in ZK if and only if it is in IP and satisfies
the Indistinguishability Condition.

The computational analogue of Entropy Difference is less immediate, and
in fact a crucial step towards our establishment of the SZK/OWF characterization
theorem was the realization that the “right” problem to generalize is a variant of
Entropy Difference, which we call Conditional Entropy Approximation

rather than Entropy Difference itself. (See section 3 for more details.)
Instance-dependent commitments. A fundamental tool in the construction of

many zero-knowledge proofs is that of a commitment scheme. This is a protocol
whereby a sender can “commit” to a bit b in such a way that the receiver learns
nothing about b (the scheme is hiding), but nevertheless the sender cannot “open” the
commitment to a value other than b (the scheme is binding). Commitment schemes,
which can be constructed from any one-way function [45, 37], play an essential role
in the construction of zero-knowledge proofs for all of NP and IP [29, 39, 7]. Some
evidence that commitments are necessary for zero knowledge came from the work of
Damg̊ard [12, 13], who focused on 3-round public-coin zero-knowledge proofs, and
Ostrovsky [49] and Ostrovsky and Wigderson [50], who showed that zero-knowledge
proofs for hard-on-average languages imply one-way functions (and hence standard
commitment schemes [45, 37]).

In this work, we show an equivalence between zero-knowledge proofs and certain
types of commitment schemes, which we now describe. In an instance-dependent
commitment scheme [6, 40, 44] for a promise problem Π, both the sender and receiver
get a common auxiliary input x, which is an instance of Π. It is required that if x is
a yes instance of Π, then the scheme is hiding, and if x is a no instance, then the
scheme is binding. Thus, instance-dependent commitment schemes are a relaxation of
commitment schemes because the hiding and binding properties are not required to
hold at the same time. Nevertheless, this relaxation is still useful in constructing zero-
knowledge proofs. The reason is that zero-knowledge proofs based on commitments
(see, e.g., [29, 39, 7]) typically use only the hiding property in proving zero knowledge
(which is required only when x is a yes instance) and use only the binding property
in proving soundness (which is required only when x is a no instance).

We show that a promise problem is in ZK (resp., SZK) if and only if it has an
instance-dependent commitment scheme that is computationally (resp., statistically)
hiding on yes instances (and statistically binding on no instances). Indeed, the most
technical part of this paper is the construction of instance-dependent commitment
schemes for all of SZK, which utilizes much of the machinery previously developed in
the study of SZK [48, 52, 34]. The construction of instance-dependent commitments
for ZK then follows using the SZK/OWF characterization theorem and the known
construction of commitment schemes from one-way functions [45, 37].

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1166 SALIL P. VADHAN

Two deficiencies in our instance-dependent commitments are that the hiding prop-
erty holds only against an honest receiver (i.e., one that follows the specified protocol)
and that the sender of the commitment scheme is not polynomial time, but rather
BPPNP. The effect of these are that the direct constructions of zero-knowledge proofs
that we obtain using the commitments are only honest-verifier zero knowledge and
have provers that require an NP oracle (rather than just an NP witness, as would
be preferable for problems in NP). The honest-verifier constraint is removed using
the compiler of [32], which converts public-coin honest-verifier zero-knowledge proofs
into general zero-knowledge proofs. The NP oracle has been removed in subsequent
work [46] by using a new, more relaxed, type of instance-dependent commitment
scheme; see section 8.

1.4. Organization. We begin in section 2 with the definitions, notation, and
basic results that we will use throughout the paper, in particular covering probability
and information theory, promise problems, and zero-knowledge proofs. Section 3
contains the proof of the forward direction of Theorem 1.2, including establishing
the computational analogues of the SZK-complete problems. Section 4 contains the
proof of the reverse direction of Theorem 1.2, except for the construction of instance-
dependent commitments for all of SZK, which is deferred to section 5. Section 6 ties
together the results of sections 3–5, in particular establishing Theorem 1.2. Section 7
contains several applications and extensions of our results, including monotone closure
properties of ZK, new proofs of the Ostrovsky–Wigderson theorems [50], and an
equivalence between strict and expected polynomial-time simulators. In section 8, we
conclude with some open problems and directions for further work.

2. Preliminaries.

2.1. Basic notation. If X is a random variable taking values in a finite set U ,
then we write x ← X to indicate that x is selected according to X. If S is a subset of
U , then x ← S means that x is selected according to the uniform distribution on S.
We adopt the convention that when the same random variable occurs several times
in an expression, all occurrences refer to a single sample. For example, Pr[f(X) = X]
is defined to be the probability that when x ← X, we have f(x) = x. We write Un

to denote the random variable distributed uniformly over {0, 1}n. The support of a
random variable X is Supp(X) = {x : Pr [X = x] > 0}. A random variable is flat if
it is uniform over its support. If X and Y are random variables, then X ⊗ Y denotes
the random variable obtained by taking independent random samples x ← X and
y ← Y and outputting the pair (x, y). We write ⊗kX to denote the random variable
consisting of k independent copies of X. For an event E, X|E denotes the random
variable X conditioned on E.

A function μ : N → [0, 1] is called negligible if μ(n) = n−ω(1). We let neg(n)
denote an arbitrary negligible function (i.e., when we say that f(n) < neg(n) we
mean that there exists a negligible function μ(n) such that for every n, f(n) < μ(n)).
Likewise, poly(n) denotes an arbitrary function f(n) = nO(1).

For a probabilistic algorithm A, we write A(x; r) to denote the output of A on
input x and coin tosses r. In this case, A(x) is a random variable representing the
output of A for uniformly selected coin tosses. PPT refers to probabilistic algorithms
(i.e., Turing machines) that run in strict polynomial time. A nonuniform PPT algo-
rithm is a pair (A, z̄), where z̄ = z1, z2, . . . is an infinite sequence of strings in which
|zn| = poly(n), and A is a PPT algorithm that receives pairs of inputs of the form
(x, z|x|). (The string zn is called the advice string for A for inputs of length n.) Non-

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1167

uniform PPT algorithms are equivalent to (nonuniform) families of polynomial-sized
Boolean circuits.

A Boolean circuit C : {0, 1}m → {0, 1}n defines a probability distribution on
{0, 1}n by evaluating C on a uniformly chosen input in {0, 1}m. That is, we view C
as specifying a sampling algorithm for the distribution, with C’s input gates being the
coin tosses; thus we will often refer to distributions specified by circuits as samplable
distributions. This is a “nonuniform” notion of samplability, because the sampling
algorithm C can be tailored to a particular output length n. Later, in Definition 2.11,
we will consider a uniform notion of samplability, which refers to ensembles (i.e., se-
quences) of probability distributions that are generated by a uniform PPT algorithm.
Samplable distributions will play a central role in the paper.

2.2. Statistical measures.
Statistical difference. The statistical difference (also known as the variation dis-

tance) between random variables X and Y taking values in U is defined to be

Δ(X,Y)
def
= max

S⊂U
|Pr [X ∈ S] − Pr [Y ∈ S]|

=
1

2

∑
x∈U

|Pr [X = x] − Pr [Y = x]|

= 1 −
∑
x∈U

min{Pr [X = x] ,Pr [Y = x]}.

We say that X and Y are ε-close if Δ(X,Y) ≤ ε. For basic facts about this metric,
see [52, sect. 2.3].

Entropy. The entropy of a random variable X is H(X) = Ex←X [log(1/Pr[X =
x])], where here and throughout the paper all logarithms are to base 2. Intuitively,
H(X) measures the amount of randomness in X on average (in bits). The min-
entropy of X is H∞(X) = minx[log(1/Pr[X = x])]; this is a “worst-case” measure of
randomness. In general H∞(X) ≤ H(X), but if X is flat, then H(X) = H∞(X) =
log |Supp(X)|. For p ∈ [0, 1], we define the binary entropy function H2(p) to be the
entropy of a binary random variable that is 1 with probability p and 0 with probability
1−p, i.e., H2(p) = p · log(1/p)+(1−p) · log(1/(1−p)). For jointly distributed random
variables X and Y , we define the conditional entropy of X given Y to be

H(X|Y)
def
= E

y←Y
[H(X|Y =y)] = E

(x,y)←(X,Y)

[
log

1

Pr[X = x|Y = y]

]
= H(X,Y) − H(Y).

A useful fact is that if two random variables are statistically close, then their
entropies must also be close, as follows.

Lemma 2.1 (cf. [34, Fact B.1]). For any two random variables, X and Y , ranging
over a universe U , if δ = Δ(X,Y), then

|H(X) − H(Y)| ≤ log(|U| − 1) · δ + H2(δ).

Another useful fact is that random variables taking values in a universe U can
be modified so that they do not assign any elements in their support of a probability
mass much smaller than 1/|U| without incurring a significant statistical difference or
change in entropy.

Lemma 2.2. Let (X,Y) be a random variable taking values in U × V. Then for
any δ > 0, there is a random variable (X ′, Y ′) that is δ-close to (X,Y) and satisfies

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1168 SALIL P. VADHAN

Pr [X ′ = x|Y ′ = y] ≥ δ/|U| for all (x, y) ∈ Supp(X ′, Y ′). Moreover,

|H(X ′|Y ′) − H(X|Y)| ≤ log(|U| − 1) · δ + H2(δ).

Proof. For each y ∈ Supp(Y), the set

Sy = {x ∈ U : Pr [X = x|Y = y] < δ/|U|}

has total probability mass less than δ under the conditional distribution X|Y =y. Thus
shifting the probability mass of the points in Sy to other points in U yields a random
variable Zy that is δ-close to X|Y =y. By Lemma 2.1, for every y, the entropy of Zy

differs from that of X|Y =y by at most δ′ = log(|U| − 1) · δ + H2(δ). Thus taking
(X ′, Y ′) = (ZY , Y) satisfies the conclusion of the lemma.

For more background on entropy, see [11].
Direct products. We will often refer to the behavior of the above measures under

direct products, i.e., when we take k independent copies of a random variable. For
statistical difference, we have the following bounds.

Lemma 2.3 (cf. [52, Lemma 3.4]). For random variables X and Y , if δ =
Δ(X,Y), then for every k ∈ N, we have

1 − 2 exp(−kδ2/2) ≤ Δ(⊗kX,⊗kY) ≤ kδ.

For entropy, it holds that for every X,Y, H(X ⊗ Y) = H(X) + H(Y), and thus
H(⊗kX) = k · H(X). Similarly, for conditional entropy, if we write ⊗k(X,Y) =
((X1, Y1), . . . , (Xk, Yk)), then H((X1, . . . , Xk)|(Y1, . . . , Yk)) = k · H(X|Y).

Another well-known and useful feature of taking direct products is that it “flat-
tens” random variables so that probability masses become concentrated around 2−H(X).
(This is known as the asymptotic equipartition property in information theory;
see [11].) Our formalization of it follows [34], with an extension to conditional distri-
butions.

Definition 2.4 (heavy, light, and typical elements). Let X be a random variable
taking values in a universe U , and let x be an element of U . For a positive real
number Φ, we say that x is Φ-heavy (resp., Φ-light) if Pr [X = x] ≥ 2Φ · 2−H(X)

(resp., Pr [X = x] ≤ 2−Φ · 2−H(X)). Otherwise, we say that x is Φ-typical.
If Y is a random variable jointly distributed with X, and y ∈ Supp(Y), we say

that x is Φ-heavy given y (resp., Φ-light given y) if Pr [X = x|Y = y] ≥ 2Φ ·2−H(X|Y)

(resp., if Pr [X = x|Y = y] ≤ 2−Φ · 2−H(X|Y)). Otherwise, we say that x is Φ-typical
given y.

A natural relaxed definition of flatness follows. The definition links the amount
of slackness allowed in “typical” elements with the probability mass assigned to non-
typical elements.

Definition 2.5 (nearly flat distributions).6 A distribution X is called Φ-flat if
for every t ≥ 1 the probability that an element chosen from X is t ·Φ-typical is at least
1 − 2−t2 .

If Y is jointly distributed with X, then we say that X is Φ-flat given Y if for
every t ≥ 1, when (x, y) ← (X,Y), the probability that x is t · Φ-typical given y is at

least 1 − 2−t2 .

6The definition in [34] allows any t > 0, but requires only that the probability of being t·Φ-typical

be 1 − 2−t2+1. We find it more convenient to restrict to t ≥ 1, a setting that is satisfied in all our
applications.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1169

A consequence of this definition is that if X is Φ-flat, then for every t ≥ 1, the
random variable X is (2−t2)-close to a random variable X ′ with min-entropy at least
H(X) − tΦ.

Lemma 2.6 (flattening lemma). Let X be a distribution, k be a positive integer,
and ⊗kX denote the distribution composed of k independent copies of X. Suppose that
for all x in the support of X it holds that Pr [X = x] ≥ 2−m. Then ⊗kX is

√
k·m-flat.

Suppose Y is jointly distributed with X, and for all (x, y) in the support of
(X,Y) it holds that Pr [X = x|Y = y] ≥ 2−m. Then, defining the random variable
((X1, Y1), . . . , (Xk, Yk)) = ⊗k(X,Y), the random variable (X1, . . . , Xk) is

√
k ·m-flat

given (Y1, . . . , Yk).
The key point is that deviation from flatness grows sublinearly with k, while the

entropy grows linearly with k. We prove the flattening lemma in Appendix A for
completeness.

Hashing. The topic of randomness extraction is concerned with efficiently ex-
tracting as many almost-uniform random bits as possible from random variables that
are not uniformly distributed. The entropy of a random variable does not provide a
good measure of how many almost-uniform bits can be extracted, but its min-entropy
does, as long as we are willing to let the extraction procedure itself be probabilistic.
Surveys of the large body of work on this topic can be found in [47, 53]. Much of
that work focuses on minimizing the number of extra random bits used by the extrac-
tor; this is not a major concern for us, so we can use relatively simple randomness
extractors. In particular, the leftover hash lemma of [8, 37] shows that universal (or
pairwise-independent) hash functions can be used for this purpose.

Lemma 2.7 (leftover hash lemma). Let H be randomly selected from a family
of universal hash functions mapping {0, 1}n to {0, 1}m. Then, for every ε > 0 and
every distribution X on {0, 1}n of min-entropy at least m + 2 log(1/ε), the random
variable (H,H(X)) is ε-close to (H,Um).

Recall that for every n,m, there is an explicit family of universal hash functions
mapping {0, 1}n to {0, 1}m, where a random hash function in the family can be
described by O(n+m) random bits and can be evaluated in time poly(n,m) (cf. [22,
sect. 3.6.1]).

2.3. Promise problems. Roughly speaking, a promise problem [17] is a decision
problem in which some inputs are excluded. Formally, a promise problem is specified
by two disjoint sets of strings Π = (ΠY ,ΠN), where we call ΠY the set of yes instances
and ΠN the set of no instances. Such a promise problem is associated with the
following computational problem: Given an input that is “promised” to lie in ΠY ∪
ΠN , decide whether it is in ΠY or in ΠN . Note that languages are special cases
of promise problems (namely, a language L over an alphabet Σ corresponds to the
promise problem (L,Σ∗\L)). Thus, working with promise problems makes our results
more general. Moreover, even for proving our results just for languages, it turns out
to be extremely useful to work with promise problems along the way.

The complement of a promise problem Π = (ΠY ,ΠN) is the promise problem
Π = (ΠN ,ΠY). The union of two promise problems Π and Γ is the promise problem
Π ∪ Γ = (ΠY ∪ ΓY , ΠN ∩ ΓN). The intersection of two promise problems Π and Γ is
the promise problem Π ∩ Γ = (ΠY ∩ ΓY , ΠN ∪ ΓN).

Most complexity classes, typically defined as classes of languages, can be ex-
tended to promise problems in a natural way by translating conditions on inputs in
the language into conditions on yes instances, and conditions on inputs not in the
language into conditions on no instances. For example, a promise problem Π is in

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1170 SALIL P. VADHAN

BPP if there is a PPT algorithm A such that x ∈ ΠY ⇒ Pr [A(x) = 1] ≥ 2/3 and
x ∈ ΠN ⇒ Pr [A(x) = 0] ≤ 1/3. All complexity classes in this paper denote classes of
promise problems.

A promise problem Π reduces to promise problem Γ if there is a polynomial-time
computable function f such that

x ∈ ΠY ⇒ f(x) ∈ ΓY ,

x ∈ ΠN ⇒ f(x) ∈ ΓN .

That is, we work with polynomial-time mapping reductions (i.e., Karp reductions)
unless otherwise specified. If C is a class of promise problems, then Π is complete for
C (or C-complete) if Π ∈ C and every promise problem in C reduces to Π. Sometimes
we will restrict our attention to reductions f that are nonshrinking, in the sense that
there is a constant δ > 0 such that |f(x)| ≥ |x|δ for all strings x.

We refer the reader to the recent survey of Goldreich [24] for more on the utility
and subtleties of promise problems.

2.4. Auxiliary-input cryptographic primitives. It will be very useful for
us to work with cryptographic primitives that are parameterized by an additional
“auxiliary” input x, and where the security condition will hold only if x is in some
particular set I. Indeed, recall that the SZK/OWF Condition refers to such a
variant of the notion of one-way functions (as captured in the definitions below).
Auxiliary-input primitives have been considered in the past, such as in the instance-
dependent commitments of [40] (which we consider in section 4.1) and the auxiliary-
input one-way functions of [50] (which are weaker than our formulation below). In this
section, we provide a general framework for discussing and relating such primitives.

Definition 2.8. An auxiliary-input function ensemble is a collection of functions
F = {fx : {0, 1}p(|x|) → {0, 1}q(|x|)}x∈{0,1}∗ , where p and q are polynomials. We
call F polynomial-time computable (or just poly-time) if there is a (deterministic)
polynomial-time algorithm F such that for every x ∈ {0, 1}∗ and y ∈ {0, 1}p(|x|), we
have F (x, y) = fx(y).

Definition 2.9. An auxiliary-input one-way function on I is a poly-time auxil-
iary-input function ensemble F = {fx : {0, 1}p(|x|) → {0, 1}q(|x|)} such that for every
nonuniform PPT A, there exists a negligible function μ such that for all x ∈ I,

Pr
[
A(x, fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]
≤ μ(|x|).

(We note that since A is nonuniform, it is not essential that we give it the input
x, because x can be hardwired in as advice, but the definition seems more natural,
as above.) The standard definition of a one-way function is obtained by considering
I = {1n : n ≥ 0} and p(n) = n. The above is a stronger notion of an auxiliary-input
one-way function than the notion considered by Ostrovsky and Wigderson [50]. In
their formulation (which they denote by ∃1WF), the set I is not fixed for all A, but
rather can depend on A. That is, they require that for every PPT A, there must exist
an infinite set IA such that A has small probability of inverting fx for all x ∈ IA. (See
our Theorem 7.1 for a precise formulation of this notion and the result of [50].)

Given the above definition, we can restate the SZK/OWF Condition as follows.
Definition 2.10. A promise problem Π = (ΠY ,ΠN) satisfies the SZK/OWF

Condition if there is I ⊆ ΠY such that
• the promise problem Π′ = (ΠY \ I,ΠN) is in SZK.
• there exists an auxiliary-input one-way function on I.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1171

Similarly, the notion of computational indistinguishability has an auxiliary-input
analogue (which is widely used in the definition of zero knowledge; see section 2.5).

Definition 2.11. An auxiliary-input probability ensemble is a collection of ran-
dom variables {Xx}x∈{0,1}∗ , where Xx takes values in {0, 1}p(|x|) for some polynomial
p. We call such an ensemble samplable if there is a PPT algorithm M such that for
every x, the output M(x) is distributed according to Xx.

Definition 2.12. Two auxiliary-input probability ensembles {Xx} and {Yx} are
computationally indistinguishable on I ⊆ {0, 1}∗ if for every nonuniform PPT D,
there exists a negligible function μ such that for all x ∈ I,

|Pr [D(x,Xx) = 1] − Pr [D(x, Yx) = 1]| ≤ μ(|x|).

Similarly, we say that {Xx} and {Yx} are statistically indistinguishable on I ⊆
{0, 1}∗ if the above is required for all functions D (instead of only nonuniform PPT
D’s). Equivalently, {Xx} and {Yx} are statistically indistinguishable on I if and only
if Xx and Yx are μ(|x|)-close for some negligible function μ and all x ∈ I. If Xx are
Yx are identically distributed for all x ∈ I (i.e., μ = 0), we say that they are perfectly
indistinguishable.

Often, we will informally say “Xx and Yx are computationally indistinguishable
when x ∈ I” to mean that the ensembles {Xx} and {Yx} are computationally indis-
tinguishable on I. It is well known that indistinguishability is preserved when we take
polynomially many direct products. See the following lemma.

Lemma 2.13 (cf. [23, Chap. 3, Ex. 9]). If {Xx} and {Yx} are computationally
indistinguishable on I, then for every polynomial p, {⊗p(|x|)Xx} and {⊗p(|x|)Yx} are
computationally indistinguishable on I.

Now we can naturally define auxiliary-input pseudorandom generators.
Definition 2.14. An auxiliary-input pseudorandom generator on I is a poly-

time auxiliary-input function ensemble G = {Gx : {0, 1}p(|x|) → {0, 1}q(|x|)} such
that q(n) > p(n), and the probability ensembles {Gx(Up(|x|))}x and {Uq(|x|)}x are
computationally indistinguishable on I.

Almost all reductions between cryptographic primitives immediately extend to
their auxiliary-input analogues (using the same proof). One example is the equiva-
lence between the existence of pseudorandom generators and the existence of one-way
functions.

Theorem 2.15 (see [37]). For every set I ⊆ {0, 1}∗, there exists a pseudorandom
generator on I if and only if there exists a one-way function on I.

2.5. Zero-knowledge proofs. An interactive protocol (A,B) consists of two
algorithms that compute the next-message function of the (honest) parties in the
protocol. Specifically, A(x, a, α1, . . . , αk; r) denotes the next message αk+1 sent by
party A when the common input is x, A’s auxiliary input is a, A’s coin tosses are r,
and the messages exchanged so far are α1, . . . , αk. There are two special messages,
accept and reject, which immediately halt the interaction. We say that party A
(resp., B) is probabilistic polynomial time (PPT) if its next-message function can be
computed in polynomial time (in |x| + |a| + |α1| + · · · + |αk|). Sometimes (though
not in this section) we will refer to protocols with a joint output; such an output
is specified by a deterministic, polynomial-time computable function of the messages
exchanged.

For an interactive protocol (A,B), we write (A(a), B(b))(x) to denote the random
process obtained by having A and B interact on common input x, with (private)
auxiliary inputs a and b to A and B, respectively (if any), and with independent

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1172 SALIL P. VADHAN

random coin tosses for A and B. We call (A,B) polynomially bounded if there is a
polynomial p such that for all x, a, b, the total length of all messages exchanged in
(A(a), B(b))(x) is at most p(|x|) with probability 1. Moreover, if B∗ is any interactive
algorithm, then A will immediately halt and reject in (A(a), B∗(b))(x) if the total
length of the messages ever exceeds p(|x|); we have the analogous requirement for B
interacting with any A∗.

The number of rounds in an execution of the protocol is the total number of mes-
sages exchanged between A and B, not including the final accept/reject message.
We call the protocol (A,B) public coin if all the messages sent by B are simply the out-
put of its coin tosses (independent of the history), except for the final accept/reject
message, which is computed as a deterministic function of the transcript. (Such pro-
tocols are also sometimes known as Arthur–Merlin games [2].)

Definition 2.16. An interactive protocol (P, V) is an interactive proof system
for a promise problem Π if there are functions c, s : N → [0, 1] such that 1 − c(n) >
s(n) + 1/poly(n) and the following hold:

• (Efficiency) (P, V) is polynomially bounded, and V is computable in PPT.
• (Completeness) If x ∈ ΠY , then V accepts in (P, V)(x) with probability at

least 1 − c(|x|).
• (Soundness) If x ∈ ΠN , then for every P ∗, V accepts in (P ∗, V)(x) with

probability at most s(|x|).
We call c(·) the completeness error and s(·) the soundness error. We say that (P, V)
has negligible error if both c and s are negligible. We say that it has perfect complete-
ness if c = 0. We denote by IP the class of promise problems possessing interactive
proof systems. We denote by AM the class of promise problems possessing two-round,
public-coin interactive proof systems.

AM is known to equal the class of promise problems possessing constant-round
(possibly private-coin) interactive proof systems [36, 2].

We write 〈A(a), B(b)〉(x) to denote B’s view of the interaction, i.e., a transcript
(γ1, γ2, . . . , γt; r), where the γi’s are all the messages exchanged and r is B’s coin
tosses.

There are various notions of zero knowledge arising from different choices for
the class of verifiers to be considered. The weakest is to consider only the “honest
verifier,” the one that follows the specified protocol.7

Definition 2.17 (honest-verifier zero knowledge). An interactive proof sys-
tem (P, V) for a promise problem Π is (perfect/statistical/computational) honest-
verifier zero knowledge if there exists a PPT simulator S such that the ensembles
{〈P, V 〉(x)} and {S(x)} are (perfectly/statistically/computationally) indistinguishable
on ΠY .8 We will often omit the word “computational” in reference to computational
zero knowledge.

HVPZK, HVSZK, and HVZK denote the classes of promise problems that
have honest-verifier perfect, statistical, and computational zero-knowledge proofs, re-
spectively.

While honest-verifier zero knowledge is already a nontrivial and interesting no-
tion, cryptographic applications usually require that the zero-knowledge condition

7This is an instantiation of what is called an “honest-but-curious adversary” or “passive adver-
sary” in the literature on cryptographic protocols.

8Actually, in the case of perfect zero knowledge, it is common to allow the simulator to output a
failure symbol ⊥ with some small probability (say, at most 1/2) and require that the output of S(x)
conditioned on nonfailure be identical to 〈P, V 〉(x) (cf. [23, Def. 4.3.1]). However, we define perfect
zero knowledge only for the sake of context and will not use it anywhere else in the paper.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1173

hold even if the verifier deviates arbitrarily from the specified protocol. This idea is
captured by the following definition.

Definition 2.18 (auxiliary-input zero knowledge).9 An interactive proof system
(P, V) for a promise problem Π is (perfect/statistical/computational) (auxiliary-input)
zero knowledge if for every PPT V ∗ and polynomial p, there exists a PPT S such that
the ensembles

{〈P, V ∗(z)〉(x)} and {S(x, z)}(1)

are (perfectly/statistically/computationally) indistinguishable on the set

{(x, z) : x ∈ ΠY , |z| = p(|x|)}.

PZK, SZK, and ZK are the classes of promise problems possessing perfect,
statistical, and computational (auxiliary-input) zero-knowledge proofs, respectively.

The auxiliary input z in the above definition allows one to model a priori informa-
tion that the verifier may possess before the interaction begins, such as from earlier
steps in a larger protocol in which the zero-knowledge proof is being used or from
prior executions of the same zero-knowledge proof. As a result, auxiliary-input zero
knowledge is closed under sequential composition. That is, if an auxiliary-input zero-
knowledge proof is repeated sequentially polynomially many times, then it remains
auxiliary-input zero knowledge [30]. Plain zero knowledge (i.e., without auxiliary in-
puts) is not closed under sequential composition [27], and thus auxiliary-input zero
knowledge is the definition typically used in the literature.

Typically, a protocol is proven to be zero knowledge by actually exhibiting a
single, universal simulator that simulates an arbitrary verifier strategy V ∗ by using
V ∗ as a subroutine. That is, the simulator does not depend on or use the code of V ∗

(or its auxiliary input) and instead requires only black-box access to V ∗. This type
of simulation is formalized as follows.

Definition 2.19 (black-box zero knowledge). An interactive proof system (P, V)
for a promise problem Π is (perfect/statistical/computational) black-box zero knowl-
edge if there exists an oracle PPT S such that for every nonuniform PPT V ∗, the
ensembles

{〈P, V ∗〉(x)}x∈ΠY
and {SV ∗(x,·;·)(x)}x∈ΠY

are (perfectly/statistically/computationally) indistinguishable.
Even though the above definition does not explicitly refer to an auxiliary input,

the definition encompasses auxiliary-input zero knowledge because we allow V ∗ to be
nonuniform (and thus the auxiliary input can be hardwired in V ∗ as advice). The
recent work of Barak [3] demonstrated that non–black-box zero-knowledge proofs
can achieve properties (such as simultaneously being public coin, having a constant
number of rounds, and having negligible error) that were known to be impossible for
black-box zero knowledge [27]. Nevertheless, our results will show that, when ignoring

9Our formulation of auxiliary-input zero knowledge is slightly different than, but equivalent to,
the definition in the textbook [23]. We allow V ∗ to run in polynomial time in the lengths of both its
input x and its auxiliary input z, but put a polynomial bound on the length of the auxiliary input.
In [23, sect. 4.3.3], V ∗ is restricted to run in time that is polynomial in just the length of the input
x, and no bound is imposed on the length of the auxiliary input z (so V ∗ may only be able to read
a prefix of z). The purpose of allowing the auxiliary input to be longer than the running time of z
is to provide additional nonuniformity to the distinguisher (beyond that which the verifier has); we
do this directly by allowing the distinguisher to be nonuniform in Definition 2.12.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1174 SALIL P. VADHAN

efficiency considerations, black-box zero knowledge is as rich as standard, auxiliary-
input zero knowledge; that is, every problem in ZK has a black-box zero-knowledge
proof system.

Remarks on the definitions. Our definitions mostly follow the now standard def-
initions of zero-knowledge proofs as presented in [23], but we highlight the following
points:

1. (Promise problems) As has been done numerous times before (see, e.g., [28,
52]), we extended all of the definitions to promise problems Π = (ΠY ,ΠN)
in the natural way; i.e., conditions previously required for inputs in the lan-
guage (e.g., completeness and zero knowledge) are now required for all yes

instances, and conditions previously required for inputs not in the language
(e.g., soundness) are now required for all no instances. Similarly, all our
complexity classes (e.g., ZK, SZK, HVZK, HVSZK, BPP) are classes of
promise problems. These extensions to promise problems are essential for
formalizing our arguments, but all the final characterizations and results we
derive about ZK automatically hold for the corresponding class of languages,
simply because languages are special cases of promise problems.

2. (Nonuniform formulation) As has become standard, we have adopted a non-
uniform formulation of zero knowledge, where the computational indistin-
guishability has to hold even with respect to nonuniform distinguishers and
is universally quantified over all yes instances. Uniform treatments of zero
knowledge are possible (see [21] and [4, Apdx. A]), but the definitions are
much more cumbersome. We do not know whether analogues of our results
hold for uniform zero knowledge, and thus we leave that as a problem for
future work.

3. (Strict polynomial-time simulators) Following [23], we initially restrict our
attention to zero knowledge with respect to simulators that run in strict
polynomial time. The original definition of zero knowledge [35] allows for
simulators that run in expected polynomial time. In section 7.3, we extend
our techniques to zero knowledge with respect to expected polynomial-time
simulators (in fact, an even weaker notion) and ultimately prove that the
class of problems having zero-knowledge proofs with expected polynomial-
time simulators and the class of problems having zero-knowledge proofs with
strict polynomial-time simulators are equal.

4. (Proof systems versus arguments) We restrict our attention to the original
notion of interactive proof systems [35, 2], where the soundness condition
holds even for computationally unbounded prover strategies. A direction for
future work is to consider the more relaxed notion of interactive argument
systems [10], where the soundness condition is required only for polynomial-
time prover strategies.

5. (Security parameterization) In the definition of computational indistinguisha-
bility (Definition 2.12), and consequently in the formulation of zero knowl-
edge, computational indistinguishability is measured in terms of the input
length, |x|. That is, only “long” statements can be proven with “high” secu-
rity. An alternative, and perhaps more natural, formulation of zero knowl-
edge (see [57, sect. 2.3]) measures indistinguishability in terms of a sepa-
rate security parameter k, given to the prover, verifier, and simulator, and
such that the protocol is allowed running time poly(|x|, k). We stick with
the formulation in terms of the input length |x| because it is the original
and more commonly used definition. However, all of our results can be

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1175

extended to the security-parameterized definition via the observation that
a security-parameterized zero-knowledge proof for a promise problem Π is
equivalent to a (standard, non–security-parameterized) zero-knowledge proof
for its “padded” version Π′ defined by Π′

Y = {(x, 1k) : x ∈ ΠY , k ∈ N} and
Π′

N = {(x, 1k) : x ∈ ΠN , k ∈ N}. For example, our result that HVZK = ZK
implies that the security-parameterized versions of these classes are also equal:
for any promise problem Π having a security-parameterized honest-verifier
zero-knowledge proof, we have Π′ ∈ HVZK = ZK, which implies that Π has
a security-parameterized (cheating-verifier) zero-knowledge proof. Note that
we are not claiming that every problem in ZK has a security-parameterized
zero-knowledge proof. (In contrast, it was shown in [52] that every problem
in SZK has a security-parameterized statistical zero-knowledge proof.)

6. (Closure under reductions) All of the zero-knowledge classes defined above, in
particular HVZK and ZK, are easily seen to be closed under nonshrinking
reductions f (i.e., ones where |f(x)| ≥ |x|Ω(1)): If f reduces Π to Γ ∈ ZK, we
can obtain a zero-knowledge proof for Π by having the prover and verifier on
input x execute the zero-knowledge proof for Γ on f(x). The nonshrinking
condition is needed because the security of the zero-knowledge proof for Γ
is measured as a function of |f(x)|, and we need to relate it to security in
terms of |x|. The nonshrinking condition is unnecessary if one works with a
security-parameterized definition of zero-knowledge proofs, as in item 5 above
(cf. [57, Prop. 2.4.1]).

3. From HVZK to the SZK/OWF CONDITION. In this section, we prove
that every problem in HVZK satisfies the SZK/OWF Condition.

A first attempt. To show that every Π ∈ HVZK satisfies the SZK/OWF Con-

dition, it is tempting to take the following approach. Consider the (honest-verifier)
simulator for Π’s computational zero-knowledge proof system. Let I be the set of
inputs x ∈ ΠY for which the simulator’s output is statistically far from the verifier’s
view. When we ignore the inputs in I, we have an (honest-verifier) statistical zero-
knowledge proof system. On inputs in I, the output of the simulator and the verifier’s
view are statistically far apart but computationally indistinguishable. Goldreich [20]
has shown that from any two samplable distributions that are statistically far apart
but computationally indistinguishable, we can construct a one-way function.

This approach has two difficulties:
• What threshold of statistical difference should we use to partition the inputs

in ΠY ? The result of Goldreich requires a statistical difference of at least
1/p(n) for any fixed polynomial p(n), but the definition of statistical zero
knowledge requires negligible statistical difference 1/nω(1).

• The result of Goldreich [20] requires that both distributions be (polynomial-
time) samplable, but the verifier’s view of the real interaction with the prover
will typically not be samplable. Moreover, if we require only one of the two
distributions in Goldreich’s hypothesis to be samplable, then it is unlikely
to imply one-way functions. Indeed, it has been proven unconditionally that
the uniform distribution on {0, 1}n (which is trivially samplable) is compu-
tationally indistinguishable from some (nonsamplable) distributions that are
statistically very far from uniform (indeed have entropy polylog(n)) [26].

The first difficulty can be overcome using known results about SZK. Specifically,
in [34] it is shown that if a problem Π has an interactive proof system that can be
simulated to within a statistical difference of 1/p(n) for a sufficiently large (but fixed)

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1176 SALIL P. VADHAN

polynomial p (e.g., the cube of the communication complexity), then Π ∈ SZK.
For the second difficulty, we use the fact that a samplable distribution that is com-

putationally indistinguishable from an arbitrary (possibly nonsamplable) distribution
of noticeably higher entropy does imply one-way functions [37]. This leads us to look
for “high-entropy” distributions in the real prover-verifier interaction. We find such
distributions using the techniques of [1, 51, 34]. This approach leads us to establish
two other characterizations of ZK en route to the SZK/OWF Condition. These
characterizations are computational analogues of the complete problems for SZK,
and may be of independent interest.

3.1. Analogues of the SZK-complete problems. We establish two charac-
terizations of ZK that are related to the complete problems for SZK, so we begin by
recalling those.

The complete problems for SZK. The first problem is Statistical Difference,
the promise problem SD = (SDY ,SDN) defined by

SDY = {(X,Y) : Δ(X,Y) ≤ 1/3},
SDN = {(X,Y) : Δ(X,Y) ≥ 2/3},

where X and Y are samplable distributions specified by circuits that sample from
them, and Δ(X,Y) denotes statistical difference. (See sections 2.1 and 2.2.)

The second problem is Entropy Difference, the promise problem ED =
(EDY ,EDN) defined by

EDY = {(X,Y) : H(X) ≥ H(Y) + 1},
EDN = {(X,Y) : H(X) ≤ H(Y) − 1},

where H(·) denotes the entropy function (see section 2.2).
The completeness theorems of [52, 34] can be stated as follows.
Theorem 3.1 (see [52, 34]). Statistical Difference and Entropy Differ-

ence are complete for SZK. That is, they are both in SZK, and for every problem
Π ∈ SZK, there is a polynomial-time computable function mapping strings x to pairs
of samplable distributions (X,Y) such that

• if x ∈ ΠY , then Δ(X,Y) ≤ 1/3;
• if x ∈ ΠN , then Δ(X,Y) ≥ 2/3,

Analogous points hold for Entropy Difference.
Note that the result that SZK is closed under complement [48] follows from

the fact that Entropy Difference trivially reduces to its complement (via the
reduction (X,Y) �→ (Y,X)).

It turns out that, for obtaining ZK analogues of this completeness theorem, it
is crucial that we do not work with Entropy Difference, but with a variant,
Conditional Entropy Approximation (CEA), defined as follows:

CEAY = {((X,Y), r) : H(X|Y) ≥ r},
CEAN = {((X,Y), r) : H(X|Y) ≤ r − 1}.

Here (X,Y) is a samplable joint distribution specified by two circuits that use the
same coin tosses.

Proposition 3.2. Conditional Entropy Approximation is complete for
SZK.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1177

Proof. To show that Conditional Entropy Approximation is in SZK, we
reduce it to Entropy Difference. Given an instance ((X,Y), r) of CEA, we define
X ′ = ⊗2(X,Y), Y ′ = (⊗2Y) ⊗ U2r−1. Then

H(X ′) − H(Y ′) = 2 · H(X,Y) − (2 · H(Y) + (2r − 1)) = 2 · (H(X|Y) − r) + 1.

It follows that ((X,Y), r) ∈ CEAY ⇒ (X ′, Y ′) ∈ EDY and ((X,Y), r) ∈ CEAN ⇒
(X ′, Y ′) ∈ EDN .

To show that CEA is SZK-hard, we provide a reduction from SD to CEA, based
on the reduction from SD to ED given in [57, sect. 4.4]. Given an instance (X0, X1)
of SD, we construct the following samplable joint distribution:

(B, Y): Select b ← {0, 1}. Sample x ← Xb. Output (b, x).

Intuitively, both H(B|Y) and Δ(X0, X1) measure how well B can be predicted from
Y = XB . Indeed, it is shown in [57, Claim 4.4.2] that 1−δ ≤ H(B|Y) ≤ H2((1−δ)/2),
where δ = Δ(X0, X1). Plugging in δ = 1/3 and δ = 2/3, we see that

(X0, X1) ∈ SDY ⇒ H(B|Y) ≥ 1 − 1/3 = 2/3,

(X0, X1) ∈ SDN ⇒ H(B|Y) ≤ H2((1 − 2/3)/2) < .651.

Now we amplify the gap to more than one bit by taking direct products. Specifi-
cally, let (B′, Y ′) = ((B1, . . . , B66), (Y1, . . . , Y66)), where the (Bi, Yi)’s are independent
copies of (B, Y). Then

(X0, X1) ∈ SDY ⇒ H(B′|Y ′) ≥ 66 · (2/3) = 44,

(X0, X1) ∈ SDN ⇒ H(B′|Y ′) < 66 · .651 < 43.

So (X0, X1) �→ ((B′, Y ′), 44) is a valid reduction from SD to CEA.
We note that the unconditional version of CEA (where Y is not present and we

consider only H(X)), called Entropy Approximation, is known to be complete for
noninteractive statistical zero knowledge [33].

Analogous characterizations of ZK. We present analogous characterizations of
ZK, albeit not in terms of complete problems.

Definition 3.3. A promise problem Π satisfies the Indistinguishability Con-

dition if there is a polynomial-time computable function mapping strings x to pairs
of samplable distributions (X,Y) such that

• if x ∈ ΠY , then X and Y are computationally indistinguishable (in the sense
of Definition 2.12);

• if x ∈ ΠN , then Δ(X,Y) ≥ 2/3.
We note that the constant 2/3 in the second bullet is arbitrary. By taking di-

rect products and applying Lemmas 2.3 and 2.13, we can boost a threshold as low
as 1/poly(n) to as high as 1− 2−poly(n), while preserving the computational indistin-
guishability in the first bullet.

Like the SZK/OWF Condition, if one-way functions exist, then every promise
problem satisfies the Indistinguishability Condition: On an input x of length n,
we can define X = G(Un) and Y = U2n, where G is a length-doubling pseudorandom
generator, and then X and Y are both computationally indistinguishable and have
large statistical difference. Thus, as before, to obtain a characterization of ZK, we
need to add the condition Π ∈ IP.

Theorem 3.4 (indistinguishability characterization of ZK). Π ∈ ZK if and only
if Π ∈ IP and Π satisfies the Indistinguishability Condition.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1178 SALIL P. VADHAN

The preceding example, showing that every promise problem satisfies the In-

distinguishability Condition if one-way functions exist, also illustrates why Π
satisfying the Indistinguishability Condition cannot be cast as a reduction from
Π to some promise problem—the conditions for yes instances and no instances may
hold at the same time. Nevertheless, we expect that the indistinguishability charac-
terization of ZK will have much the same utility as a complete problem (such as
Statistical Difference). Indeed, several of the results about ZK presented in
section 7 can be established simply by taking the corresponding proof for SZK and
replacing Statistical Difference with the Indistinguishability Condition.
However, we instead choose to use the results for SZK as a “black box,” and reduce
the ZK case to the SZK case via the SZK/OWF characterization.

In [52], it was already proven that every problem that has a public-coin computa-
tional zero-knowledge proof satisfies the Indistinguishability Condition. Thus,
what is new here is showing that the characterization holds even for private-coin
proofs and establishing a converse (for Π ∈ IP).

A characterization analogous to Conditional Entropy Approximation fol-
lows.

Definition 3.5. A promise problem Π satisfies the Conditional Pseudoen-

tropy Condition if there is a polynomial-time computable function mapping strings
x to a samplable joint distribution (X,Y) (i.e., two circuits that use the same coin
tosses) and a parameter r such that

• if x ∈ ΠY , then there exists a (not necessarily samplable) joint distribution
(X ′, Y ′) such that (X ′, Y ′) is computationally indistinguishable from (X,Y)
and H(X ′|Y ′) ≥ r, and

• if x ∈ ΠN , then H(X|Y) ≤ r − 1,
where H(·|·) denotes conditional entropy. (See section 2.2.)

As before, this definition is satisfied by all promise problems if one-way functions
exist. It is crucial that we generalize Conditional Entropy Approximation in-
stead of Entropy Difference. Indeed, in [57] we pointed out that the condition
analogous to Entropy Difference, using H(X) − H(Y) instead of H(X|Y), is sat-
isfied by all promise problems (regardless of whether or not one-way functions exist)
and thus is useless.10 (At the time, we saw this as an obstacle to finding ZK analogues
of the complete problems for SZK.) Our use of conditional entropy was inspired in
part by its role in the conjectures of [4, sect. 9].

Theorem 3.6 (conditional pseudoentropy characterization of ZK). Π ∈ ZK if
and only if Π ∈ IP and Π satisfies the Conditional Pseudoentropy Condition.

Note that, in contrast to the SZK-completeness of Entropy Difference, this
theorem does not seem to imply that ZK is closed under complement. The reason is
that the Conditional Pseudoentropy Condition is not symmetric with respect
to yes and no instances.

Overview of the proofs of Theorems 1.2, 3.6, and 3.4. In the remainder of this sec-
tion, we show that every promise problem in HVZK satisfies the Conditional Pseu-

doentropy Condition, that the Conditional Pseudoentropy Condition is
equivalent to the Indistinguishability Condition, and that every promise problem

10The reason comes from the fact that we do not require X′ and Y ′ above to be samplable.
It is known (via the probabilistic method) that there exists a (nonsamplable) distribution D of
low entropy (e.g., n/2) that is indistinguishable from the uniform distribution Un [26]. Thus, if
the above characterization referred to H(X) − H(Y), then it would hold for all promise problems
by setting X = Y = X′ = Un, Y ′ = D, and r = 1 so that H(X′) − H(Y ′) ≥ n/2 ≥ r and
H(X) − H(Y) = 0 = r − 1.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1179

satisfying the Conditional Pseudoentropy Condition satisfies the SZK/OWF

Condition. This establishes the forward (“only if”) directions of Theorems 1.2,
3.6, and 3.4. The reverse directions, showing that problems in IP satisfying the
characterizations are in ZK, follow from our results in sections 4 and 5. Section 6
puts everything together and formally deduces the theorems.

3.2. The CONDITIONAL PSEUDOENTROPY CONDITION.
Lemma 3.7. If a promise problem Π is in HVZK, then Π satisfies the Condi-

tional Pseudoentropy Condition.
Proof. The proof is an adaptation of the reduction from HVZK to Entropy

Difference in [34]. Let (P, V) be an honest-verifier computational zero-knowledge
proof for Π, with simulator S. We modify the proof system to satisfy the following
(standard) additional properties:

• The completeness error c(|x|) and soundness error s(|x|) are both negligible.
This can be achieved by standard error reduction via (sequential) repetition.

• On every input x, the two parties exchange 2�(|x|) messages for some poly-
nomial �, with the verifier sending even-numbered messages and sending all
its r(|x|) ≥ |x| random coin tosses in the last message. Having the verifier
send its coin tosses at the end does not affect soundness because it is after
the prover’s last message and does not affect honest-verifier zero knowledge
because the simulator is required to simulate the verifier’s coin tosses.

• On every input x, the simulator always outputs accepting transcripts, where
we call a sequence γ of 2� messages an accepting transcript on x if all the
verifier’s messages are consistent with its coin tosses (as specified in the last
message) and the verifier accepts in such an interaction. To achieve this, we
first modify the proof system so that the verifier always accepts if its coin
tosses are 0r(|x|); this increases the soundness error only negligibly. Then we
modify the simulator so that any time it is about to output a nonaccepting
transcript, it instead outputs the accepting transcript where all of the prover
messages are the empty string and the verifier’s coin tosses are 0r(|x|). This
has a negligible effect on the quality of the simulation because when x ∈
ΠY , the original simulator can only output nonaccepting transcripts with
negligible probability (otherwise its output could easily be distinguished from
the real interaction, which has nonaccepting transcripts with probability at
most c(|x|) = neg(|x|)).

For a transcript γ, we denote by γi the prefix of γ consisting of the first i messages.
For readability, we often drop the input x from the notation, e.g., using � = �(|x|),
〈P, V 〉 = 〈P, V 〉(x), etc. Thus, in what follows, 〈P, V 〉i and Si are random variables
representing prefixes of transcripts generated by the real interaction and simulator,
respectively, on a specified input x.

The following two claims are shown in [1, 51, 34].
Claim 3.8. For every x,

�∑
i=1

[H(〈P, V 〉2i) − H(〈P, V 〉2i−1)] = r.

Since 〈P, V 〉2i−1 is a prefix of 〈P, V 〉2i, the term H(〈P, V 〉2i)−H(〈P, V 〉2i−1) in the
sum equals the conditional entropy H(〈P, V 〉2i|〈P, V 〉2i−1). Thus, the sum measures
the total entropy contributed by the verifier’s messages, and it is natural that this
should equal the number of coin tosses of the verifier. (Recall that the verifier reveals
its coin tosses at the end.)

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1180 SALIL P. VADHAN

What is less obvious is that the sum should be significantly smaller when we
consider the simulated transcripts for x ∈ ΠN (rather than for x ∈ ΠY).

Claim 3.9. For every x ∈ ΠN ,

�∑
i=1

[H(S2i) − H(S2i−1)] ≤ r − log
1

s(|x|) < r − 1.

It may seem strange to consider the simulator’s output distribution on no in-
stances, since the zero-knowledge condition does not provide any guarantees about
the quality of simulation on no instances. Indeed, Claim 3.9 is not derived from the
zero-knowledge property of the proof system. Rather, it is based on the soundness
of the proof system and the fact that the simulator always produces accepting tran-
scripts (by our modification above). Intuitively, it says that the simulation captures
at most an s(|x|) fraction of the probability space of the verifier’s messages. Indeed, it
is shown in [1, 51, 34] that if this were not the case, then the simulator could be used
to construct a prover strategy that convinces the verifier to accept with probability
greater than s(|x|), contradicting the soundness of the proof system. Now, given input
x, we construct circuits that sample from the following (joint) random variables:

(X,Y): Select i ← {1, . . . , �(|x|)}, choose random coin tosses R for the simulator, and

output (S2i(x;R), S2i−1(x;R)).

When x ∈ ΠY , then S is computationally indistinguishable from 〈P, V 〉. So
(X,Y) is indistinguishable from (X ′, Y ′) = (〈P, V 〉2I , 〈P, V 〉2I−1), where I denotes a
uniform random element of {1, . . . , �}. By Claim 3.8, we have

H(X ′|Y ′) =
1

�

�∑
i=1

H(〈P, V 〉2i|〈P, V 〉2i−1) =
r

�
.

When x ∈ ΠN , then by Claim 3.9, we have

H(X|Y) =
1

�

�∑
i=1

H(S2i|S2i−1) ≤
r − 1

�
.

This is what we need to prove, except the entropy gap is only 1/�. This can be
increased to 1 by taking � independent samples from the joint distribution. That is,
we define (X,Y) = ((X1, . . . , X�), (Y1, . . . , Y�)), where the (Xi, Yi)’s are independent
copies of (X,Y). When x ∈ ΠY , then (X,Y) is computationally indistinguishable
from the analogously defined (X ′, Y ′), and H(X ′|Y ′) = � · H(X ′|Y ′) = r. Also, when
x ∈ ΠN , then H(X|Y) = � · H(X|Y) ≤ r − 1.

Therefore the mapping x �→ ((X,Y), r) satisfies Definition 3.5.

3.3. The SZK/OWF CONDITION. In this section, we show that the Condi-

tional Pseudoentropy Condition implies the SZK/OWF Condition.
Lemma 3.10. If a promise problem satisfies the Conditional Pseudoentropy

Condition, then it also satisfies the SZK/OWF Condition.
The idea behind the proof is the following. If Π satisfies the Conditional Pseu-

doentropy Condition, then on every yes instance, we obtain a samplable distribu-
tion (X,Y) that is computationally indistinguishable from (X ′, Y ′), where H(X ′|Y ′)
is large. We consider two cases. If, for the original distributions X and Y , we have

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1181

that H(X|Y) is large, then the instance is information-theoretically distinguishable
from a no instance (where H(X|Y) is small), and such instances can be reduced to
Conditional Entropy Approximation, which is complete for SZK by Proposi-
tion 3.2. If instead H(X|Y) is small, then (X,Y) is computationally indistinguishable
from a joint distribution with higher conditional entropy (namely, (X ′, Y ′)). From
such a pair, we can construct a one-way function using the techniques of H̊astad
et al. [37]. This case analysis provides the partition of yes instances into SZK in-
stances and OWF instances.

Before proceeding with the actual proof, we state the result we need from [37],
adapted to our auxiliary-input setting.

Definition 3.11. An auxiliary-input false entropy generator on I is a samplable
auxiliary-input probability ensemble D = {Dx} for which there exists a samplable
auxiliary-input probability ensemble F = {Fx} that is computationally indistinguish-
able from D on I and satisfies H(Fx) ≥ H(Dx) + 1 for all x ∈ I.

Note that the above definition refers to entropy, rather than conditional entropy
as in the intuition above. We will need to cope with this in the proof. Also note that
the definition requires that F = {Fx} is also samplable. This is actually not necessary
(i.e., Lemma 3.12 below holds regardless), but we will achieve samplability of F in
passing from conditional entropy to entropy, so we include the samplability condition
for consistency with [37].11

Lemma 3.12 (see [37]; cf. our Appendix B). If there exists an auxiliary-input
false entropy generator on I, then there exists an auxiliary-input one-way function
on I.

H̊astad et al. [37] actually show how to construct pseudorandom generators, rather
than just one-way functions, but we need only a one-way function to establish the
SZK/OWF Condition. This allows some steps in the construction to be omitted;
see Appendix B for a proof of Lemma 3.12 (and a generalization, which we use to
handle expected polynomial-time simulators in section 7.3).

Proof of Lemma 3.10. Given an instance x of the promise problem Π, we can
efficiently construct two samplable distributions (X,Y) and parameter r such that if
x ∈ ΠY , then H(X ′|Y ′) ≥ r + 1 for some (X ′, Y ′) indistinguishable from (X,Y), and
if x ∈ ΠN , then H(X|Y) ≤ r− 1. (We may assume a gap of 2 rather than 1 by taking
multiple independent samples from the joint distribution.)

Let I be the set of instances x ∈ ΠY such that H(X|Y) < r. First, we show
that Π′ = (ΠY \ I,ΠN) is in SZK. We prove this by reducing Π′ to Conditional

Entropy Approximation. Indeed, the reduction is simply x �→ ((X,Y), r + 1).
Then H(X|Y) ≥ r when x ∈ ΠY \ I, and H(X|Y) ≤ r − 1 when x ∈ ΠN , as needed.

Now we show that we can construct a one-way function from instances x ∈ I.
Intuitively, the facts that H(X ′|Y ′) ≥ r + 1 and that (X ′, Y ′) is indistinguishable
from (X,Y) mean we should be able to extract r+1 pseudorandom bits from X given
Y . That is, if we let H be a random hash function mapping to r + 1 bits, then the
distribution (H,Y,H(X)) is computationally indistinguishable from (H,Y ′, H(X ′)),
which we might hope to be statistically close to (H,Y ′, Ur+1) (because H(X ′|Y ′) ≥
r+1), which in turn is computationally indistinguishable from (H,Y, Ur+1). However,
the entropy of (H,Y,H(X)) equals H(H)+H(Y)+H(X|Y) < H(H)+H(Y)+r, which
is one bit less than the entropy of (H,Y, Ur+1). So, if this argument worked, then

11The samplability of F is needed only in [37] for proving results with respect to uniform adver-
saries. Indeed, the condition was not included in the conference version [38], which dealt only with
nonuniform adversaries.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1182 SALIL P. VADHAN

(H,Y,H(X)) would be a false entropy generator.
However, there are two (standard) difficulties in implementing this intuition.

First, entropy (much less conditional entropy) is not a strong enough measure of ran-
domness to allow extracting almost-uniform bits. (That is, it is not guaranteed that
(H,Y ′, H(X ′)) is statistically close to (H,Y ′, Ur+1).) Instead, we need a lower bound
on (conditional) min-entropy, as required in the leftover hash lemma (Lemma 2.7).
Second, randomness extraction (e.g., as provided by the leftover hash lemma) does
not extract all the bits of min-entropy, but rather suffers an entropy loss related to
the distance ε desired from uniform in the extracted bits. So we need a larger gap
than one bit of entropy to tolerate this loss and still obtain a false entropy generator.
Both of these difficulties are solved by taking direct products, i.e., many independent
samples of (X,Y). Taking a direct product has the effect of both (linearly) growing
the entropy gap and converting entropy to min-entropy (with a sublinearly loss in
entropy, as shown by the flattening lemma, Lemma 2.6).

We now proceed with the formal details. Let n = |x|, let m be the number of bits
output by X, set k = 4n · (m+ n)2, and let H be an explicit family of universal hash
functions mapping {0, 1}km to {0, 1}kr+1. Let s = O(km) be the number of random
bits to choose a random hash function from H. Consider the samplable distribution

D = (H,Y1, . . . , Yk, H(X1, . . . , Xk)),

where H is a random hash function from H, and the (Xi, Yi)’s are independent copies
of (X,Y). When x ∈ I, we have H(D) ≤ s + k · H(Y) + k · r. On the other hand,
we will show below that D is computationally indistinguishable from the samplable
distribution

F = (H,Y1, . . . , Yk, Ukr+1),

which has entropy s + k · H(Y) + (kr + 1), which in turn is one bit larger than the
entropy of D. Thus, we have constructed an auxiliary-input false entropy generator
on I, and thus by Lemma 3.12 there exists a one-way function on I, as desired.

We now proceed to show that when x ∈ ΠY , D is computationally indistinguish-
able from F . We know that there exist (X ′, Y ′) indistinguishable from (X,Y) such
that H(X ′|Y ′) ≥ r + 1. By Lemma 2.2, we can modify (X ′, Y ′) to obtain (X∗, Y ∗)
indistinguishable from (X,Y) such that H(X∗|Y ∗) ≥ r+1 and Pr [X∗ = x|Y ∗ = y] ≥
2−n · 2−m for all (x, y) ∈ Supp(X∗, Y ∗).

By a hybrid argument (Lemma 2.13), D and F are computationally indistinguish-
able from

D∗ = (H,Y ∗
1 , . . . , Y

∗
k , H(X∗

1 , . . . , X
∗
k))

and

F ∗ = (H,Y ∗
1 , . . . , Y

∗
k , Ukr+1),

respectively, where the (X∗
i , Y

∗
i)’s are independent copies of (X∗, Y ∗).

Now we proceed to show that D∗ is statistically indistinguishable from F ∗, which
will complete the proof. By Lemma 2.6, X∗ = (X∗

1 , . . . , X
∗
k) is Φ-flat given Y ∗ =

(Y ∗
1 , . . . , Y

∗
k) for Φ =

√
k · (m+ n). This implies that (X∗, Y ∗) is (2−n)-close to some

(W,Y ∗) such that for every y ∈ Supp(Y ∗), the min-entropy of W conditioned on
Y ∗ = y is at least

k · H(X∗|Y ∗) −
√
n · Φ ≥ k · (r + 1) −

√
n · Φ

> kr + 2n + 1,

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1183

where in the last inequality we use
√
nΦ ≤ k/2 and 2n + 1 ≤ k/2.

Thus, D∗ is statistically close to the distribution (H,Y ∗, H(W)), which is (2−n)-
close to (H,Y ∗, Ukr+1) = F ∗ by the leftover hash lemma (Lemma 2.7). This completes
the proof.

3.4. The INDISTINGUISHABILITY CONDITION. In this section, we show
that the Indistinguishability Condition is equivalent to the Conditional Pseu-

doentropy Condition, and is thus satisfied by every problem in HVZK. This
equivalence is proven using computational analogues of the reductions given in [57,
sects. 3.4 and 4.4] between the complete problems for SZK. We note that the results
of this section are not used later in the paper, except of course to establish the indis-
tinguishability characterization of ZK (Theorem 3.4); they are included because this
characterization may be of independent interest and may be of use in further studies
of ZK.

Lemma 3.13. If a promise problem satisfies the Conditional Pseudoentropy

Condition, then it satisfies the Indistinguishability Condition.
Proof. The reduction is identical to the one used in the proof of Lemma 3.10

to construct a pseudoentropy generator on the instances in I. Let Π be a promise
problem satisfying the Conditional Pseudoentropy Condition. As in the proof
of Lemma 3.10, given an instance x of the promise problem Π, we can efficiently
construct two samplable distributions (X,Y) and parameter r such that if x ∈ ΠY ,
then H(X ′|Y ′) ≥ r+1 for some (X ′, Y ′) indistinguishable from (X,Y), and if x ∈ ΠN ,
then H(X|Y) ≤ r − 1. From X and Y, we can construct the samplable distributions
D and F as in the proof of Lemma 3.10. In that proof, it is shown that when x ∈ ΠY ,
then D and F are computationally indistinguishable. It is also shown that when
H(X|Y) < r (in particular if x ∈ ΠN), then H(F) ≥ H(D) + 1. By Lemma 2.1, this
implies that Δ(D,F) ≥ 1/2�, where � = poly(n) is the number of bits output by D and
F . Applying Lemmas 2.3 and 2.13, we can increase the statistical difference to 2/3 on
no instances while maintaining computationally indistinguishability on yes instances.
Thus, we conclude that Π satisfies the Indistinguishability Condition.

Lemma 3.14. If a promise problem satisfies the Indistinguishability Condi-

tion, then it satisfies the Conditional Pseudoentropy Condition.
Proof. This is proved in the same way that we reduced Statistical Difference

to Conditional Entropy Approximation in the proof of Proposition 3.2. Let
Π be a promise problem satisfying the Indistinguishability Condition. This
means that given an instance x of Π, we can efficiently construct two samplable
distributions (X0, X1) such that X0 and X1 are computationally indistinguishable if
x ∈ ΠY and such that Δ(X0, X1) ≥ 2/3 if x ∈ ΠN . Consider the following pair of
jointly distributed random variables:

(B, Y) : Select b ← {0, 1}. Sample x ← Xb. Output (b, x).

When x ∈ ΠY , the distributions X0 and X1 are computationally indistinguishable.
This implies that (B, Y) is computationally indistinguishable from (B′, Y), where B′

is a random bit independent of Y . Note that H(B′|Y) = 1.
When x ∈ ΠN , it holds that Δ(X0, X1) ≥ 2/3. Then, as in the proof of Proposi-

tion 3.2, we have H(B|Y) < .651 < 2/3.
Thus, the mapping x �→ (B, Y), r = 1 meets the requirements of the Condi-

tional Pseudoentropy Condition, except that the gap in conditional entropies
between the two cases is only 1 − 2/3 = 1/3 bits. The gap can be amplified to one
bit by taking direct products in the usual manner.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1184 SALIL P. VADHAN

4. From the SZK/OWF CONDITION to ZK. In this section, we construct
a computational zero-knowledge proof system for every problem Π in IP that satisfies
the SZK/OWF Condition. A first approach is for the prover to use the SZK proof
system, when the input is in ΠY \ I, and to use the proof system obtained by the
generic, one-way-function-based compiler from IP to ZK [39, 7] when the input is in
I. The difficulty with this is that the set I may not be efficiently recognizable, so
this approach leaks information to the verifier (namely, whether or not the input is
in I). Because of this difficulty, we take a more indirect approach. Instead of trying
to construct separate zero-knowledge proofs for the “SZK instances” and the “OWF
instances” and then combining them, we construct a certain type of bit-commitment
scheme in each of the two cases. The advantage is that the commitment schemes are
easy to combine (via simple secret sharing). We then use the combined commitment
scheme in the generic compiler from IP to ZK [39, 7].

4.1. Instance-dependent commitments. Recall that a commitment scheme
is a two-phase protocol between a sender and a receiver. In the first phase, called
the commit phase, the sender “commits” to a private bit b. In the second phase,
called the reveal phase, the sender reveals b and “proves” that it was the bit to
which she committed in the first phase. We require two properties of commitment
schemes. The hiding property says that the receiver learns nothing about m in the first
phase. The binding property says that after the commit phase, the sender is bound
to a particular value of m; that is, she cannot successfully open the commitment
to two different messages in the reveal phase. It is impossible to have commitment
schemes that are both statistically hiding and statistically binding, but it is known how
to construct commitment schemes that are computationally hiding and statistically
binding, assuming one-way functions exist [45, 37]. In fact, this is the only way
that one-way functions are used in the construction of computational zero-knowledge
proofs for all of IP [29, 39, 7] and all the resulting theorems about ZK that rely on
the assumption that one-way functions exist.

In this section, we will show how to use the fact that a promise problem Π
satisfies the SZK/OWF Condition to construct a relaxed form of commitment
scheme, tailored to Π, that still suffices for obtaining a zero-knowledge proof for Π.
Specifically, we will construct an instance-dependent commitment scheme for Π. This
is an auxiliary-input version of a commitment protocol, where the auxiliary input
x (given to both the sender and receiver) is viewed as an instance of the promise
problem Π. It is required that the scheme is hiding when x ∈ ΠY and is binding when
x ∈ ΠN . Thus, they are a relaxation of standard commitment schemes, since we do
not require that the hiding and binding properties hold at the same time. Nevertheless,
this relaxation is still useful in constructing zero-knowledge proofs. The reason is that
zero-knowledge proofs based on commitments (in, e.g., [29, 39, 7]) typically use only
the hiding property in proving zero knowledge (which is required only when x is a yes

instance) and use only the binding property in proving soundness (which is required
only when x is a no instance).

An example, used in Bellare, Micali, and Ostrovsky [6], is based on the Graph

Isomorphism problem: Given graphs (G0, G1), a commitment to bit b ∈ {0, 1} is a
random isomorphic copy of Gb. When G0

∼= G1, the commitment is perfectly hid-
ing, and when G0 � G1, then the commitment is perfectly binding. This idea was
abstracted by Itoh, Ohta, and Shizuya [40], who studied the general utility of instance-
dependent commitment schemes for constructing zero-knowledge proofs. Specifically,
they showed that every language possessing a noninteractive instance-dependent

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1185

commitment scheme that is perfectly binding and perfectly hiding is in PZK, as is
the complement of every such language. Recently, in [44], the notion was further gen-
eralized to allow interactive commitments, statistical security, and promise problems,
and was suggested as a possible tool for proving that every problem in SZK ∩ NP
has a statistical zero-knowledge proof system with an efficient prover.

Here we consider further relaxations of the definition. First, we allow the hid-
ing property to be computational, since we will use them to construct computational
zero-knowledge proofs. Second, we require security only for an honest receiver (i.e.,
one that follows the specified protocol); this means that the zero-knowledge proofs we
construct with them will only be honest-verifier zero knowledge. However, since our
honest-verifier zero-knowledge proofs will also be public coin (due to the instance-
dependent commitments being public coin), we will be able to make them robust
against cheating verifiers using the compiler of [32]. Third, and most significantly, we
allow the sender’s algorithm to be computationally unbounded. This is okay when we
use the instance-dependent commitments to construct zero-knowledge proofs, because
the sender’s role is played by the prover, who is allowed to be computationally un-
bounded. (Though this naturally renders the commitments useless for the application
in [44], which focused on prover efficiency.)

The fact that the sender is not polynomial time, however, complicates the defini-
tion substantially, because many commonly used properties of commitment schemes
implicitly use the fact that the sender algorithm is polynomial time. For example,
with a standard commitment scheme, one can assume without loss of generality that
we have a “canonical reveal phase,” whereby the sender gives the message m and her
coin tosses r to the receiver and the receiver checks that the transcript of the commit
phase is consistent with m and r. (See [23, sect. 4.4.1].) This is not possible when the
sender is computationally unbounded, because the receiver cannot run the sender’s
algorithm to check the transcript. Another example is the fact that commitments are
automatically “zero knowledge” in the sense that the receiver learns nothing (from
both phases) other than the bit b to which the sender commits; this is the case be-
cause the receiver can simulate a commitment to bit b by simply running the sender’s
algorithm. Instead, we will need to explicitly include such properties in the following
definition.

Definition 4.1. An (unbounded-sender, honest-receiver) instance-dependent
commitment scheme for a promise problem Π consists of two interactive protocols
(S1, R1) (the commitment phase) and (S2, R2) (the reveal phase) and a promise
problem Val = (ValY ,ValN) (capturing the “valid” commitments). In the com-
mitment phase, both S1 and R1 receive a common input x ∈ {0, 1}∗, S1 receives a
private input b ∈ {0, 1}, and the protocol produces as output a commitment z. In the
reveal phase, both S2 and R2 receive the common input x ∈ {0, 1}∗, a commitment
z, and a bit b ∈ {0, 1}, and at the end of the protocol, R2 accepts or rejects. We
allow S1 and S2 (resp., R1 and R2) to share the same coin tosses (as a way to main-
tain private state beyond the public commitment value z). We write (S1(b), R1)(x),
(S2, R2)(x, z, b), and (S,R)(x, b) to denote the interaction between S and R in the
commit phase, reveal phase, and the two phases combined, respectively.

We require the following conditions:
1. (Efficiency) R = (R1, R2) is computable in PPT (in the length of the common

input x). (In contrast, S is allowed to be computationally unbounded.)
2. (Completeness) For all x ∈ {0, 1}n and all b ∈ {0, 1}, if we let z be the output

of (S1(b), R1)(x), then (x, z, b) ∈ ValY with probability 1 − neg(n).

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1186 SALIL P. VADHAN

3. (Validity tests) (S2, R2) is an interactive proof system (with negligible error
probabilities) for Val. Moreover, the promise problem Val is in AM.

4. (Statistical zero knowledge) There is a PPT algorithm M such that for every
x ∈ {0, 1}∗ and b ∈ {0, 1}, the distribution M(x, b) has statistical difference
neg(n) from R’s view of (S,R)(x, b).

5. (Computationally hiding on yes instances) If x ∈ ΠY , then R’s views in
(S1(0), R1)(x) and (S1(1), R1)(x) are computationally indistinguishable. In
case these views are statistically indistinguishable, we will refer to the scheme
as statistically hiding.

6. (Statistically binding on no instances) If x ∈ ΠN , then for every S∗, if we
let z be the output of (S∗

1 , R1)(x), then with probability at least 1 − neg(n),
either (x, z, 0) or (x, z, 1) is in ValN .

The commitment scheme is called public coin if it is public coin for the receiver R.
We make a few remarks on the above conditions, as follows:
• As mentioned earlier, the fact that we allow S to be computationally un-

bounded results in several differences between the above definition and stan-
dard definitions of commitment schemes. When S is restricted to be polyno-
mial time, the zero-knowledge condition is trivial to satisfy (because M(x, b)
could carry out an execution of (S,R)(x, b)) and thus is typically omitted,
and the reveal phase can, without loss of generality, consist of S just sending
its coin tosses to R.

• The completeness and zero-knowledge conditions (and the validity tests) are
required for all inputs x ∈ {0, 1}∗, not just those that satisfy the promise
of Π. This will be useful in combining two instance-dependent commitment
schemes to obtain one for the union of the corresponding promise problems.

• The definition provides for two different kinds of validity tests. One is the
specified protocol (S2, R2) (which may have many rounds, but is “zero knowl-
edge” according to item 4). The other is the (unspecified) AM protocol for
Val (which has only two rounds). Both will be useful for us.

• Both the zero-knowledge and hiding conditions are required only for honest
receivers. The result is that the proof systems we construct using such com-
mitments will be only honest-verifier zero knowledge. We will then obtain
zero knowledge against cheating-verifier strategies using the compiler of [32]
and the fact that our commitment schemes are public coin.

As shown in section 6, our results yield characterizations of ZK and SZK in
terms of instance-dependent commitment schemes, as follows.

Theorem 4.2 (commitment characterization of ZK). Π ∈ ZK if and only if Π ∈
IP and Π has a public-coin, computationally hiding instance-dependent commitment
scheme in the sense of Definition 4.1.

Theorem 4.3 (commitment characterization of SZK). Π ∈ SZK if and only if
Π ∈ IP and Π has a statistically hiding instance-dependent commitment scheme in
the sense of Definition 4.1.

These theorems demonstrate that commitment schemes are at the heart of all
zero-knowledge proofs. This intuition has been held by researchers for a number
of years, based first on the construction of zero-knowledge proofs for all of NP and
IP from commitment schemes [29, 39, 7]. Partial converses were given by Damg̊ard
[12, 13], who showed that every problem having a 3-round, public-coin zero-knowledge
proof has an instance-dependent commitment scheme12 (as above, the commitment is

12Damg̊ard’s result is not stated in the language of instance-dependent commitments, but this
formulation seems to follow from his technique.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1187

statistically hiding if the proof system is statistical zero knowledge), and by Ostrovsky
[49] and Ostrovsky and Wigderson [50], who showed that zero-knowledge proofs for
hard-on-average languages imply one-way functions (and hence standard commitment
schemes [45, 37]). As far as we know, the above theorems are the first to establish
a genuine equivalence between zero-knowledge proofs and some form of commitment
schemes.

In this section, we focus on proving the forward direction of Theorem 4.2.
Lemma 4.4. If a promise problem Π satisfies the SZK/OWF Condition, then

Π has an instance-dependent commitment scheme (in the sense of Definition 4.1).
Moreover, the scheme is public coin and the sender is PPT given an NP oracle.

We will prove this lemma by dealing separately with the SZK instances and OWF
instances. This is done by combining two instance-dependent commitment schemes,
one that is hiding on the “OWF instances” and the other that is hiding on the “SZK
(yes) instances.” For the OWF instances, we use a straightforward application of the
known construction of commitment schemes from one-way functions [45, 37].

Lemma 4.5. If there exists an auxiliary-input one-way function on set I, then
there is an instance-dependent commitment scheme for the promise problem Π =
(I, I). Moreover, this commitment scheme is public coin and the sender is PPT.

Proof. By Theorem 2.15, we can construct an auxiliary-input pseudorandom
generator {Gx : {0, 1}p(|x|) → {0, 1}3p(|x|)} on I. Now we adapt Naor’s commitment
scheme from pseudorandom generators [45] as follows:

Commit phase. (S1(b), R1)(x), where |x| = n.
1. R1 chooses v ← {0, 1}3p(n) and sends v to S1. Both parties set v1 = v and

v0 = 03p(n).
2. S1 chooses r ← {0, 1}p(n) and sends w = Gx(r) ⊕ vb to R1.
3. The commitment z is defined to be the pair (v, w).

We define the promise problem Val = (ValY ,ValN) by

ValY = {(x, (v, w), b) : ∃r ∈ {0, 1}p(|x|) w = Gx(r) ⊕ vb},
ValN = ValY ,

where again we define v1 = v and v0 = 03p(|x|). Clearly Val ∈ NP, and in fact the
reveal phase (S2, R2) simply consists of the sender S2 providing the standard NP
proof that (x, (v, w), b) ∈ ValY (namely, r such that w = Gx(r) ⊕ vb). Thus we have
the required validity tests.

The completeness and public coin properties hold by inspection. The zero-
knowledge condition holds because the sender is polynomial time. Following [45],
the (computational) hiding property on x ∈ I follows from the pseudorandomness
of Gx on such instances. Specifically, we know that Gx(Up(n)) is indistinguishable
from U3p(n). Thus, if we let the random variable V denote the message of R1, we see
that R1’s view of a commitment to 1, (V,Gx(Up(n)) ⊕ V), is indistinguishable from
(V,U3p(n) ⊕ V) ≡ (V,U3p(n)), which in turn is indistinguishable from R1’s view of a
commitment to 0, (V,Gx(Up(n))). Following [45], the (statistical) binding property
on x /∈ I (in fact on all x ∈ {0, 1}∗) follows from the fact that Gx is length-tripling.
Specifically, with probability at least 1− 2−p(n) over v ← {0, 1}3p(n), the image of Gx

will be disjoint from the image of Gx ⊕ v, in which case there is no w such that (v, w)
is a valid commitment of both 0 and 1.

For the SZK instances, we prove the following (which is the forward direction of
Theorem 4.3) in section 5.

Lemma 4.6. Every problem Π in SZK has an instance-dependent commitment

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1188 SALIL P. VADHAN

scheme. Moreover, the scheme is public coin and statistically hiding, and the sender
is PPT given an NP oracle.

We now show how to combine these two commitment schemes to prove Lemma
4.4.

Lemma 4.7. If promise problems Π = (ΠY ,ΠN) and Γ = (ΓY ,ΓN) each have

instance-dependent commitment schemes, then the promise problem Π∪Γ
def
= (ΠY ∪ΓY ,

ΠN∩ΓN) has an instance-dependent commitment scheme. If the commitment schemes
for Π and Γ are both public coin, then so is the commitment scheme for Π ∪ Γ.
Moreover, the strategy of the sender in the commitment scheme for Π∪Γ on auxiliary
input x is PPT given oracle access to the strategies of the senders in the commitment
schemes for Π and Γ on auxiliary input x.

Proof. Let (S′, R′) be the instance-dependent commitment scheme for Π, and
(S′′, R′′) the one for Γ, with valid commitments defined by promise problems Val

′

and Val
′′. Intuitively, on an input x, we would like to use (S′, R′) if x ∈ ΠY and

use (S′′, R′′) if x ∈ ΓY . Unfortunately, we do not know which is the case. So we will
use both, and do so in such a way that the resulting scheme is hiding even when only
one of the two is hiding. The natural thing to do is for the sender to commit to two
“shares” of its bit b, one with each scheme, and this is indeed what we do.

Specifically the new scheme (S,R) = ((S1, S2), (R1, R2)) is constructed as follows:
Commit phase (S1(b), R1)(x): 1. S1 chooses random b′, b′′ ← {0, 1} such that

b′ ⊕ b′′ = b.
2. S1 and R1 execute (S′

1(b
′), R′

1)(x) and (S′′
1 (b′′), R′′

1)(x) to obtain com-
mitments z′ and z′′, respectively.

3. The output commitment is z = (z′, z′′).
Valid commitments: The promise problem of valid commitments is defined to be

Val = (ValY ,ValN), where

ValY = {(x, (z′, z′′), b) : ∃ b′, b′′ ∈ {0, 1}

[b′ ⊕ b′′ = b] ∧ [(x, z′, b′) ∈ Val
′
Y] ∧ [(x, z′′, b′′) ∈ Val

′′
Y]},

ValN = {(x, (z′, z′′), b) : ∀ b′, b′′ ∈ {0, 1}

[b′ ⊕ b′′ �= b] ∨ [(x, z′, b′) ∈ Val
′
N] ∨ [(x, z′′, b′′) ∈ Val

′′
N]}.

Reveal phase (S2, R2)(x, (z
′, z′′), b): 1. S2 sends b′, b′′.

2. R2 checks that b′ ⊕ b′′ = b and rejects immediately if not.
3. S2 and R2 execute (S′

2, R
′
2)(x, z

′, b′) and (S′′
2 , R

′′
2)(x, z′′, b′′), and R2 ac-

cepts if both R′ and R′′ accept.
The completeness property of (S,R) on all x follows from the completeness prop-

erties of (S′, R′) and (S′′, R′′), which guarantee that with high probability (x, z′, b′) ∈
Val

′
Y and (x, z′′, b′′) ∈ Val

′′
Y , and hence (x, (z′, z′′), b) ∈ ValY . (Here it is impor-

tant that we require completeness to hold on all instances, rather than just on yes

instances, since ΠY and ΓY need not be the same.) The fact that (S2, R2) is an
interactive proof for Val follows by inspection, and the fact that Val ∈ AM follows
from the fact that both Val

′ and Val
′′ are in AM (combining the AM proof systems

in the same way that we combined (S′
2, R

′
2) and (S′′

2 , R
′′
2) to get (S2, R2)). For the

zero-knowledge property, we have the new simulator M(x, b) choose b′, b′′ ← {0, 1}
such that b′⊕b′′ = b, run the original simulators M ′(x, b′) and M ′′(x, b′′), and combine
their outputs to simulate the view of R.

For the hiding property on ΠY ∪ΓY , suppose w.l.o.g. that x ∈ ΓY . Note that the
view of R1 in (S1(b), R1)(x) consists of the view of R′

1 in (S′
1(b

′), R′
1)(x) concatenated

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1189

with the view of R′′
1 in (S′′

1 (b′′), R′′
1)(x), where b′ and b′′ are chosen randomly such that

b′⊕b′′ = b. The first part of the view (namely, the R′
1-view) has the same distribution

regardless of the value b, because b′ is a random bit. Thus, it suffices to show that
for every fixed value of b′ and the R′

1-view, the R′′
1 -view in case b′′ = b′ (i.e., b = 0) is

indistinguishable from the R′′
1 -view in case b′′ �= b′ (i.e., b = 1). But this follows from

the hiding property of (S′′, R′′) on x ∈ ΓY .
The binding property on x ∈ ΠN ∩ ΓN follows from the binding properties of the

two commitment schemes: For every strategy S∗, we know that with high probability,
the output (z′, z′′) of (S∗, R) satisfies the following. There is at most one b′ ∈ {0, 1}
such that (x, z′, b′) /∈ Val

′
N , and there exists at most one b′′ ∈ {0, 1} such that

(x, z′′, b′′) /∈ Val
′′
N . Thus there is at most one b (namely, b = b′ ⊕ b′′) such that

(x, (z′, z′′), b) /∈ ValN , as desired.
By inspection, the above transformation maintains public coins and the sender’s

complexity.
Putting the above together, we can prove Lemma 4.4, stating that every lan-

guage satisfying the SZK/OWF Condition has an instance-dependent commitment
scheme.

Proof of Lemma 4.4. Let Π be any promise problem satisfying the SZK/OWF

Condition, and let I ⊆ ΠY be the set of “OWF instances.” Since Π′ = (ΠY \I,ΠN) is
in SZK, Lemma 4.6 gives us an instance-dependent commitment scheme for Π′, with
public coins and a sender that is PPT given an NP oracle. Since we have an auxiliary-
input one-way function on I, Lemma 4.5 gives us an instance-dependent commitment
scheme for Γ = (I, I), with public coins and a PPT sender. Combining these via
Lemma 4.7, we get an instance-dependent commitment scheme for Π′ ∪ Γ = Π, with
public coins and a sender that is PPT given an NP oracle.

4.2. The zero-knowledge proof. We now show that to obtain a zero-knowl-
edge proof for a problem Π ∈ IP, it suffices for Π to have an instance-dependent
commitment scheme in the sense of the previous section. This is done by simply using
the instance-dependent commitment scheme to implement the IP-to-ZK compiler of
[29, 39, 7].

Lemma 4.8. If a promise problem Π is in IP and has a computationally hid-
ing (resp., statistically hiding) instance-dependent commitment scheme (in the sense
of Definition 4.1), then Π ∈ HVZK (resp., Π ∈ HVSZK). Moreover, if the
instance-dependent commitment scheme is public coin, then so is the honest-verifier
zero-knowledge proof for Π. Also, the prover’s strategy P ′

x in the honest-verifier zero-
knowledge proof is PPT given with oracles for Sx and Px, where S is the sender
algorithm in the instance-dependent commitment scheme and P is a prover in any
public-coin interactive proof system for Π.

Proof. We begin with the special case that Π ∈ NP, where we follow the approach
of Itoh, Ohta, and Shizuya [40] using our more general notion of instance-dependent
commitments. The idea is to use the zero-knowledge proofs of Goldreich, Micali,
and Wigderson [29] for all of NP, replacing the commitment scheme used there with
the instance-dependent commitment for Π. An outline of the steps of the resulting
protocol follows.

Zero-knowledge proof (P, V)(x):
1. Both parties reduce x to an instance G of 3-coloring.
2. P selects an arbitrary 3-coloring C0 of G and lets C be the coloring obtained

by permuting the three colors in C0 uniformly at random.
3. P commits to the color of each vertex under C by engaging with V in (poly-

nomially many executions of) the commitment phase of instance-dependent

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1190 SALIL P. VADHAN

commitment scheme for Π on common input x.
4. V selects a random edge e in G and sends e to P .
5. P reveals the colors of the endpoints of e and proves their validity to V via

the reveal phase of the instance-dependent commitment scheme.
6. V accepts if the colors of the endpoints are different and accepts in both

executions of the reveal phase.
Completeness follows from completeness of the instance-dependent commitment

scheme. Soundness follows from the binding property of the instance-dependent com-
mitment scheme when x ∈ ΠN . (Honest-verifier) zero knowledge follows from the
hiding and zero-knowledge properties of the commitment scheme when x ∈ ΠY .
Specifically, the simulator chooses a random edge e in the graph (to be the veri-
fier’s challenge), chooses two random distinct colors for its endpoints, and assigns
arbitrary colors for the rest of the graph. It uses the simulator for the commitment
scheme to simulate all the commitments, using the simulated commitment phase for
all the commitments, but the simulated reveal phase only for the edge e. (Note that
here, unlike in [29], we deal with an honest verifier, and thus the verifier’s challenge
e is equivalent to its coin tosses and is indeed chosen uniformly at random.) The
computational (resp., statistical) hiding property of the commitment scheme implies
that this simulation is computationally (resp., statistically) indistinguishable from the
(honest) verifier’s view.

For the general case that Π ∈ IP, we follow [39, 7] and transform an interactive
proof (P, V) for Π into a zero-knowledge proof. By [36], we may assume that (P, V)
is public coin. An outline of the zero-knowledge proof follows.

Zero-knowledge proof (P ′, V ′)(x):
1. (P ′, V ′) simulate the public-coin interactive proof (P, V)(x), but instead of

sending P ’s messages explicitly, P ′ commits to P ’s messages using the com-
mit phase of the instance-dependent commitment scheme on common input
x. (The public-coin nature of (P, V) ensures that V can compute its mes-
sages without seeing P ’s messages explicitly.) Let (z1, . . . , zm) be all the
commitments obtained in this way.

2. V chooses and sends a random strings r1, . . . , rm for the AM proof system
for Val.

3. Now P proves the following NP statement to V using the zero knowledge pro-
tocol described above (i.e., that of Goldreich, Micali, and Wigderson imple-
mented with instance-dependent commitments): There exist values b1, . . . , bm
such that (a) V would have accepted in the interactive proof if the prover re-
sponses were given by b1, . . . , bm, and (b) there are prover responses s1, . . . , sm
such that the AM verifier for Val would accept on transcript ((x, zi, bi), ri, si)
for i = 1, . . . ,m.

The analysis of this proof system is similar to the previous one. The claim about
the prover complexity follows by inspection.

The above gives honest-verifier zero-knowledge proofs. These can be converted
into zero-knowledge proofs that tolerate cheating verifiers using the following compiler
of Goldreich, Sahai, and Vadhan [32].

Theorem 4.9 (see [32]). Any honest-verifier public-coin zero-knowledge proof
system can be transformed into a (cheating-verifier) public-coin zero-knowledge proof
system. Furthermore,

1. the resulting proof system has twice as many rounds as the original one.
2. the resulting prover strategy on any input x is PPT given oracle access to the

original prover strategy on the same input x.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1191

3. the resulting proof system has completeness error 2−Ω(n) and soundness er-
ror 1/n on input length n. In case the original proof system has perfect
completeness, so does the resulting one.

4. if the original proof system is statistical zero knowledge, then so is the resulting
proof system.

5. the resulting proof system has a black-box simulator.
Note that the above theorem provides a zero-knowledge proof with a nonnegligible

soundness error (namely 1/n). This can be reduced to a negligible error by performing
ω(1) sequential repetitions.

5. Instance-dependent commitments for SZK. In this section, we construct
our instance-dependent commitment schemes for SZK, thereby proving Lemma 4.6.
This is technically the most involved part of our work.

5.1. Overview. We will construct an instance-dependent commitment scheme
for the SZK-complete problem Statistical Difference [52]. This means that
we will design a commitment protocol in which both the sender and receiver get as
auxiliary input a pair (X0, X1) of samplable distributions. The commitment scheme
should be statistically hiding when X0 and X1 are statistically close and should be
statistically binding when X0 and X1 are statistically far apart. By the polarization
lemma of [52], we may assume, w.l.o.g., that the statistical difference between X0 and
X1 is either exponentially small (for yes instances) or exponentially close to 1 (for
no instances).

A natural idea, suggested in [44], is the following. To commit to a bit b, the
sender sends a random sample x ← Xb. To decommit, the sender reveals b and the
coin tosses r used to generate x, and the receiver verifies that x = Xb(r).

When X0 and X1 are statistically close, this scheme is indeed hiding. On the other
hand, when Δ(X0, X1) = 1 (i.e., X0 and X1 have disjoint supports), then the scheme
is perfectly binding. But we are guaranteed only that Δ(X0, X1) is exponentially
close to 1, and this does not suffice for any sort of binding. Indeed, two distributions
can have statistical difference exponentially close to 1 and yet have identical supports
(which means that every commitment can be opened in two ways).

To get around this difficulty, we notice that the intersection of the supports can
consist of two kinds of elements. First, there can be samples that are atypically
light for at least one of the distributions (i.e., have probability mass much smaller
than 2−h, if we assume (w.l.o.g.) that H(X0) = H(X1) = h). Note that there can
be many (� 2h) such elements. Second, there can be samples that are not atypically
light for either distribution. However, it can be shown that there can be only a
relatively few (� 2h) elements of this second type, provided the distributions have
statistical difference exponentially close to 1. Still, we need to cope with both kinds of
samples.

To deal with these problems, we replace both the commit phase and reveal phase
with interactive protocols. The commit phase protocol constrains the sender’s choice
of the sample/commitment x. Even if the sender deviates from the protocol, with
high probability the commit phase will produce a sample that is atypically light for
at least one of the two distributions, in which case we will regard it as a commitment
to the bit corresponding to the other distribution. The fact that this is feasible relies
on the fact that there are relatively few samples that are not atypically light for both
distributions. The reveal phase protocol, then, is simply an interactive proof that the
sample is not atypically light for Xb.

Needless to say, the challenge is to design both of these protocols so that the

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1192 SALIL P. VADHAN

hiding property is maintained in the case of yes instances. Fortunately, there are
two protocols due to Okamoto [48] (see also [34, 57]) that turn out to be well-suited
for these tasks. Specifically, we use an adaptation of Okamoto’s “sample generation
protocol” for the commitment phase, and his “sample test protocol” for the reveal
phase. The price we pay for using these protocols is that the sender is no longer PPT
(but rather in BPPNP), and also that the round complexity becomes polynomial
rather than being a constant.

5.2. Preprocessing the distributions. We will not apply Okamoto’s proto-
cols directly to instances of Statistical Difference itself, but rather do some
preprocessing on the distributions. The first drives the thresholds from 1/3 and 2/3
to be exponentially close to 0 and 1, respectively.

Lemma 5.1 (polarization lemma [52]). There is a polynomial-time computable
function mapping pairs of distributions (X0, X1) (specified by circuits which sample
from them) and a unary parameter 1k to pairs of distributions (Y0, Y1) such that

Δ(X0, X1) ≤ 1/3 ⇒ Δ(Y0, Y1) ≤ 2−k,

Δ(X0, X1) ≥ 2/3 ⇒ Δ(Y0, Y1) ≥ 1 − 2−k.

The second transformation we will use is simply taking direct products, as ana-
lyzed in section 2.2. Combining these two transformations, we prove the following.

Lemma 5.2. For every promise problem Π ∈ SZK, there is a polynomial-time
computable function mapping instances x of length n and unary parameters 1k, 1� to
pairs of distributions (Z0, Z1) such that

• if x ∈ ΠY , then Δ(Z0, Z1) ≤ � · 2−k.
• if x ∈ ΠN , then Δ(Z0, Z1) ≥ 1 − 2−�.
• for all x, H(Z0) = H(Z1) and both Z0 and Z1 are

√
� · poly(n, k)-flat.

The key point for us is that the statistical difference in the case of no instances
goes to 1 exponentially fast with �, whereas the deviation from flatness grows sub-
linearly with �. Specifically, we can take k to be linear in n and take � to be a large
polynomial in n and have the deviation from flatness

√
� · poly(n, k) remain sublinear

in �. We will show (in Lemma 5.3 below) that this implies that the intersection of
the supports of the two distributions is due only to (a) atypically light elements and
(b) a small number of other elements (i.e., much fewer than 2H(Zb)).

Proof. Let an instance x of Π ∈ SZK and the parameters 1k and 1� be given. By
the completeness of Statistical Difference and the polarization lemma (Lemma
5.1), we can produce in polynomial time distributions (Y0, Y1) such that

x ∈ ΠY ⇒ Δ(Y0, Y1) ≤ 2−2k,

x ∈ ΠN ⇒ Δ(Y0, Y1) ≥ 1 − 2−2k ≥ 1/2.

Now, let W0 = Y0 ⊗Y1 (i.e., a sample of Y0 followed by an independent sample of Y1)
and W1 = Y1 ⊗ Y0. This ensures H(W0) = H(W1), and we have

x ∈ ΠY ⇒ Δ(W0,W1) ≤ 2 · 2−2k,

x ∈ ΠN ⇒ Δ(W0,W1) ≥ 1/2.

Now we let Z0 = ⊗c·�W0 and Z1 = ⊗c·�W1, for a sufficiently large constant c. Then,
by Lemma 2.3,

x ∈ ΠY ⇒ Δ(Z0, Z1) ≤ c� · 2 · 2−2k ≤ � · 2−k,

x ∈ ΠN ⇒ Δ(Z0, Z1) ≥ 1 − exp(−Ω(c�)) ≥ 1 − 2−�,

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1193

for an appropriate constant c and sufficiently large k. Also, H(Z0) = c� · H(W0) =
H(Z1). Finally, if m = poly(n, k) is the number of input gates to W0 and W1, then
Pr[Wb = w] ≥ 2−m for all b ∈ {0, 1} and all w in the support of Wb, so the flattening
lemma (Lemma 2.6) tells us that Z0 and Z1 are both

√
� ·m-flat.

The following lemma shows that for two nearly flat distributions with statistical
difference very close to 1, there can be only a relatively small number of strings that
are nonlight for both distributions.

Lemma 5.3. Suppose Z0 and Z1 are random variables such that H(Z0) = H(Z1)
and Δ(H(Z0),H(Z1)) ≥ 1 − 2−�. Then for any Φ > 0,

{z : z is not Φ-light for Z0 and z is not Φ-light for Z1} ≤ 2H(Z0)

2�−Φ
.

Proof. Let S be the set of z that are neither Φ-light for Z0 nor for Z1. Then

2−� ≥ 1 − Δ(Z0, Z1)

=
∑
z

min{Pr [Z0 = z] ,Pr [Z1 = z]}

>
∑
z∈S

min
{

2−Φ · 2−H(Z0), 2−Φ · 2−H(Z1)
}

= |S| · 2−Φ · 2−H(Z0).

Thus, |S| < 2H(Z0)/2�−Φ, as desired.
Note that the above lemma gives us a useful bound (� 2H(Zb)) when the slackness

parameter of Φ is smaller than �. Fortunately, Lemma 5.2 allows us to obtain Φ = o(�)
while still having a statistical difference of 1 − 2−� on no instances.

5.3. Okamoto’s protocols. We now describe the two protocols of Okamoto [48]
that we will use in our commitment scheme. The first is used for generating a random
sample from a nearly flat distribution so that even if one party cheats, the output
will be unlikely to fall in any sufficiently small set. The second is used to test that
a sample from a nearly flat distribution is not too light. Our presentation of these
protocols follows [34, 57].

Below, all distributions are given in the form of circuits that generate them. The
input to these protocols will include a distribution, denoted X. We will denote by
m (resp., n) the length of the input to (resp., output of) the circuit generating the
distribution X.

Definition 5.4 (sample generation protocol). A protocol (S,R) is called a sam-
ple generation protocol if on common input a distribution X, specified by a circuit
with m input gates and n output gates, and parameters Φ and t, such that X is Φ-flat
and 1 ≤ t ≤ Φ, the protocol yields a common output in {0, 1}n such that the following
holds:

1. (Efficiency) R is PPT.
2. (“Completeness”) If both parties are honest, then the output of the protocol

has a statistical difference of at most m · 2−Ω(t2) from X.
3. (“Soundness I”) If R is honest, then no matter how S plays, the output will

be 2
√
tΦ · Φ-heavy with probability at most m · 2−Ω(t2).

4. (“Soundness II”) If R is honest, then for every set T ⊆ {0, 1}n of size at

most 2−6
√
tΦ·Φ · 2H(X), no matter how S plays, the output will be in T with

probability at most m · 2−Ω(t2).

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1194 SALIL P. VADHAN

5. (Strong “zero knowledge”) There exists a PPT simulator M so that for every
(X,Φ, t) as above, the following two distributions have statistical difference at

most m · 2−Ω(t2):
(A) Execute (S,R) on common input (X,Φ, t) and output the view of R,

appended by the output.
(B) Choose x ← X and output (M(X,Φ, t, x), x).

A sample generation protocol is said to be public coin if it is public coin for R.
In [48, 34, 57], only the first soundness condition is given, but we will actually

use the second. (Our proof that the protocol satisfies the second soundness condition
will make use of the first.) The above zero-knowledge property is referred to as strong
since the simulator cannot produce a view-output pair by first generating the view
and then computing the corresponding output. Instead, the simulator is forced (by
the explicit inclusion of x in distribution (B)) to generate a random view consistent
with a given random output (of the protocol). We comment that the trivial protocol
in which R uniformly selects an input r to the circuit X and reveals both r and the
output x = X(r) cannot be used since the simulator is given only x, and it may
be difficult to find an r yielding x in general. Still, a sample generation protocol is
implicit in Okamoto’s work [48] (where it is called a “pretest”). Note also that the
zero-knowledge condition implies the completeness condition; still, conceptually it is
convenient to state them separately.

Theorem 5.5 (implicit in [48]; explicit in [34]). There exists a sample generation
protocol. Furthermore, the protocol is public coin, the sender strategy is PPT given
an NP oracle, and the number of messages exchanged in the protocol is linear in m,
the input length of the sampling circuit for the input distribution X.

Actually, in [48, 34], the sample generation protocol is not shown to satisfy ei-
ther the Soundness II condition of Definition 5.4 or the bound on sender complexity
specified in Theorem 5.5. Thus we repeat the description of the protocol here.

Sample generation protocol (S,R):
Input: (X,Φ, t), where X has m input gates and n output gates and t ≤ Φ.

1. S: Select x0 ∈ {0, 1}n according to X and send x0 to R.
2. S,R: Repeat for i from 1 to m:

(a) R: Choose hi uniformly from a family of pairwise independent hash
functions mapping {0, 1}m+n to {0, 1}m−3tΦ and send hi to S.

(b) S: Choose (ri−1, xi) from the distribution {r : X(r) = xi−1} ⊗ X,
conditioned on h(ri−1, xi) = 0, and send (ri−1, xi) to R. (If there is no
such pair (r, x′), then S sends fail to R.)

(c) R: Check that X(ri−1) = xi−1 and h(ri−1, xi) = 0. If either condition
fails, reject.

Output: xm, unless R rejects in some iteration of the above loop, in which case output
any canonical string outside {0, 1}n, e.g., 0n+1.

The sender complexity claimed in Theorem 5.5 follows from the observation that
the sender need only sample strings uniformly from efficiently decidable sets (i.e.,
satisfying assignments to a known, polynomial-sized circuit), and it is known how to
do such sampling given an NP oracle [41, 5].

Lemma 5.6. The above protocol satisfies the Soundness II condition of Defini-
tion 5.4.

Proof. Fix a set T of size at most 2−6
√
tΦ·Φ · 2H(X). We need to show that the

output xm is in T with probability at most m ·2−Ω(t2), even under a cheating strategy
for S. The Soundness I condition says that xm is 2

√
tΦ · Φ-heavy with probability

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1195

at most m · 2−Ω(t2). In fact, the proof of this condition in [34] also shows that xm−1

is 2
√
tΦ · Φ-heavy with probability at most m · 2−Ω(t2). (Indeed, the protocol could

have been terminated after m− 1 or even slightly fewer stages, but m was chosen as
a clean upper bound on the number of stages needed.) We will show that if xm−1 is
not 2

√
tΦ · Φ-heavy, then the probability (over hm) that S can select xm to be in T

(without R rejecting) is at most 2−Ω(t2).
The number N of strings rm−1 such that X(rm−1) = xm−1 is

N = 2m · Pr [X = xm−1] < 2m · 22
√
tΦ·Φ · 2−H(X),

where the inequality is due to xm−1 not being 2
√
tΦ · Φ-heavy. Thus, the number of

pairs (rm−1, xm) such that X(rm−1) = xm−1 and xm ∈ T equals

N · |T | =
(
2m · 22

√
tΦ·Φ · 2−H(X)

)
·
(
2−6

√
tΦ·Φ · 2H(X)

)
≤ 2−t2 · 2m−3tΦ,

where the last inequality uses t ≤ Φ. Since hm(z) is uniformly distributed in its range
{0, 1}m−3tΦ for every z, the probability that there exists a pair (rm−1, xm−1) such

that hm(rm−1, xm−1) = 0 is at most 2−t2 .
The second protocol tests whether a sample is too light; here we do not need any

modifications from the definition in [34].
Definition 5.7 (sample test protocol). A protocol (S,R) is called a sample test

protocol if on common input a distribution X, specified by a circuit with m input
gates and n output gates, a string x ∈ {0, 1}n, and parameters Φ, t, such that X is
Φ-flat and t ≤ Φ, the following hold:

1. (Efficiency) R is PPT.
2. (“Completeness”) If both parties are honest and x is t · Φ-typical, then R

accepts with probability at least 1 −m · 2−Ω(t2).
3. (“Soundness”) If x is 6

√
tΦ · Φ-light and R is honest, then no matter how S

plays, R accepts with probability at most m · 2−Ω(t2).
4. (Weak “zero knowledge”) There exists a PPT simulator M so that for every

(X,Φ, t) as above and for every t ·Φ-typical x, the following two distributions

have statistical difference at most m · 2−Ω(t2):
(A) Execute (S,R) on common input (X,x,Φ, t), and output the view of R.
(B) Choose r uniformly in {r′ : X(r′) = x}, and output M(X,x,Φ, t, r).

A sample test protocol is said to be public coin if it is public coin for R.
The above zero-knowledge property is referred to as weak since the simulator gets

a random r giving rise to x (i.e., x = X(r)) as an auxiliary input (whereas R is given
only x). A sample test protocol is implicit in Okamoto’s work [48] (where it is called
a “posttest”).

Theorem 5.8 (implicit in [48]; explicit in [34]). There exists a public-coin sam-
ple test protocol. Furthermore, the protocol is public coin, the sender strategy is com-
putable in PPT with an NP oracle, and the number of messages exchanged in the
protocol is linear in m.

5.4. The commitment scheme. Now we use the above protocols to design
instance-dependent commitments for all of SZK, and thereby prove Lemma 4.6. Let
Π be a promise problem in SZK, let x be any string of length n, and let k = 2n,
and � = n7c for a sufficiently large constant c to be determined later. Applying the
reduction of Lemma 5.2 to x, we obtain distributions (Z0, Z1) such that

• if x ∈ ΠY , then Δ(Z0, Z1) ≤ � · 2−k < 2−n.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1196 SALIL P. VADHAN

• if x ∈ ΠN , then Δ(Z0, Z1) ≥ 1 − 2−�.
• for all x, it holds that H(Z0) = H(Z1) and both Z0 and Z1 are Φ-flat for

Φ =
√
� · poly(n, k) < n4c, when c is sufficiently large.

Now we also define a new distribution Z as follows Z(b, r) = Zb(r). That is, Z
outputs a random sample of Z0 with probability 1/2 and a random sample of Z1 with
probability 1/2. Since H(Z0) = H(Z1), we have H(Z0) ≤ H(Z) ≤ H(Z0) + 1. We also
claim that Z inherits the flatness of Z0 and Z1.

Claim 5.9. Z is 3Φ-flat.
The tedious proof of this claim is deferred to Appendix A. Now we construct the

instance-dependent commitment scheme (S,R) as follows, setting t = n:
Commit phase (S1(b), R1)(x):

1. S1 and R1 execute the sample generation protocol of Theorem 5.5 on
input (Z, 3Φ, t) to obtain output z, where Z, Φ, and t are as defined
above.

2. S1 chooses (c, r) uniformly s.t. Z(c, r) = z and sends d = b⊕ c to R.
3. The commitment is defined as the pair (z, d).

(Intuitively, if Z0 and Z1 are statistically close, then a random sample z of
Z is nearly equally likely to have come from Z0 or Z1, so the bit c is random
and hides b.)

Valid commitments: The promise problem of valid commitments is defined to be
Val = (ValY ,ValN), where

ValY = {(x, (z, d), b) : z is tΦ-typical for Zd⊕b},
ValN = {(x, (z, d), b) : z is 6

√
tΦ · Φ-light for Zd⊕b}.

Reveal phase (S2, R2)(x, (z, d), b): S2 and R2 execute the sample test protocol of
Theorem 5.8 on the input (Zd⊕b, z,Φ, t), and R2 accepts or rejects according
to its outcome.

Claim 5.10. The above protocol is a statistically hiding instance-dependent com-
mitment scheme in the sense of Definition 4.1.

Proof.
1. (Receiver’s efficiency) This follows from the efficiency of the sample generation

and sample test protocols.
2. (Completeness) By the completeness of the sample generation protocol, the

string z generated in the (S1(b), R1)(x) has statistical difference at most m ·
2−t2 < 2−n from Z, where m = poly(n) is the number of input gates of the
circuit generating Z. Thus, (c, r) has statistical difference at most 2−n from
uniform. If (c, r) were uniformly distributed, then by the Φ-flatness of Zc⊕d,
the probability (over r) that z = Zc(r) is tΦ-typical for Zc = Zd⊕b is at least

1 − 2−t2 > 1 − 2−n. Therefore, (x, (z, d), b) ∈ ValY with probability at least
1 − 2 · 2−n.

3. (Validity tests) The completeness and soundness of the sample test protocol
show that (S2, R2) is an interactive proof system for Val. To show that
Val is in AM, we design an AM proof system for it as follows. On input
(x, (z, d), b), the prover sends an approximation k to H(Zd⊕b), and then proves
that (a) H(Zd⊕b) � k, and (b) |{r : Zd⊕b(r) = z}| � 2m ·2−k−tΦ, where again
m is the number of input gates of the circuit generating Z. Step (a) can be
done because approximating entropy to within an additive constant (say ±1)

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1197

is in AM ∩ co-AM [51].13 Step (b) can be done using an AM protocol for
proving approximate lower bounds on the sizes of efficiently recognizable sets
[55, 56, 2]. Proving (a) and (b) suffices because on yes instances of Val, we
have

|{r : Zd⊕b(r) = z}| ≥ 2m · 2−H(Zd⊕b)−tΦ,

and on no instances, we have

|{r : Zd⊕b(r) = z}| ≤ 2m · 2−H(Zd⊕b)−6
√
tΦ·Φ < 2m · 2−H(Zd⊕b)−tΦ−5.

4. (Zero knowledge) This follows from the zero-knowledge conditions of the sam-
ple generation and sample test protocols. Specifically, the simulator M(x, b)
chooses a uniformly random (c, r), sets z = Z(c, r) and d = b ⊕ c, runs
the simulator for the sample generation protocol on input (Z, 3Φ, t, z) to
obtain a transcript γ1, runs the simulator for the sample test protocol on
(Zc, z,Φ, t, (c, r)) to obtain a transcript γ2, and outputs (γ1, d, γ2).

5. (Statistically hiding on yes instances) The only dependence of R1’s view on
the bit b is in the value d = b ⊕ c, where c is selected according to the con-
ditional distribution C|ZC=z, where C is uniform in {0, 1}. We have seen
above that the sample generation protocol generates z according to a distri-
bution that has a statistical difference of at most 2−n from a random sample
of Z ≡ ZC . Thus, the pair (z, c) is generated according to a distribution
having a statistical difference of at most 2−n from (ZC , C). In the case of a
yes instance, where Z0 and Z1 have a statistical difference of at most 2−n,
(ZC , C) has a statistical difference of at most 2−n from (ZC , C

′), where C ′ is
a random bit independent of C. Thus, R1’s view in case b = 0 is statistically
indistinguishable from R1’s view in case b = 1.

6. (Statistically binding on no instances) Let

T = {z : z is not 6
√
tΦ · Φ-light for Z0 or for Z1}.

By Lemma 5.3,

|T | ≤ 2H(Z0)

2�−6
√
tΦ·Φ

≤ 2−6
√
tΦ·Φ · 2H(Z),

where the last inequality holds because � = n7c > 12n6c+.5 > 12
√
tΦ · Φ.

By the second soundness condition of the sample generation protocol, the
probability that the output z is in T is at most 2−Ω(t2) < 2−n. If the output
is not in T , then for any d, there is at most one value of b such that z is not
6
√
tΦ · Φ-light for Zd⊕b. That is, there is at most one value of b such that

(x, (z, d), b) /∈ ValN , as desired.
Proof of Lemma 4.6. Using Claim 5.10, all that is left to verify is that the protocol

is public coin, and the sender is PPT given an NP oracle. Both of these follow from
the analogous properties of the sample generation and sample test protocols given in
Theorems 5.5 and 5.8.

13Indeed, the promise problem Entropy Approximation (EA), where EAY = {(X, k) : H(X) ≥
k + 1}, EAN = {(X, k) : H(X) ≤ k}, is complete for noninteractive statistical zero knowledge
(NISZK) [33], and NISZK ⊆ SZK ⊆ AM ∩ co-AM [18, 1].

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1198 SALIL P. VADHAN

6. Putting it together. Now we can put together the results proved in the
previous three sections and establish Theorems 1.2, 3.4, 3.6, and 4.2.

Theorem 6.1 (ZK characterization theorem). For a promise problem Π, the
following conditions are equivalent:

1. Π ∈ HVZK.
2. Π ∈ IP, and Π satisfies the Conditional Pseudoentropy Condition.
3. Π ∈ IP, and Π satisfies the SZK/OWF Condition.
4. Π ∈ IP, and Π satisfies the Indistinguishability Condition.
5. Π ∈ IP, and Π has a public-coin computationally hiding instance-dependent

commitment scheme in the sense of Definition 4.1. Moreover, the sender is
PPT given an NP oracle.

6. Π ∈ ZK.
7. Π has a public-coin computational zero-knowledge proof with a black-box sim-

ulator and perfect completeness.
8. Π has a public-coin computational zero-knowledge proof with a black-box sim-

ulator, where on any input x, the prover strategy Px is PPT given an NP
oracle and an oracle for P̂x, where P̂ is the prover in any interactive proof
system for Π. In particular, if Π ∈ NP (or even Π ∈ AM), then Px is PPT
given an NP oracle.

Proof.
1 ⇒ 2 This follows from Lemma 3.7, together with the trivial inclusion HVZK ⊆

IP.
2 ⇒ 3 This is Lemma 3.10.
3 ⇒ 5 This is Lemma 4.4.
5 ⇒ 7 Suppose Π ∈ IP, and that Π has a public-coin instance-dependent com-

mitment scheme. By Lemma 4.8, Π has a public-coin honest-verifier zero-knowledge
proof. We can convert this into a public-coin proof system with perfect complete-
ness using the transformation of Fürer et al. [19], which preserves honest-verifier
zero knowledge. Finally, by Theorem 4.9, this can be converted into a public-coin
(cheating-verifier) zero-knowledge proof with a black-box simulator and perfect com-
pleteness.

5 ⇒ 8 This is proved the same way as in the previous item, except we omit the
transformation of Fürer et al. [19] (which seems to increase the prover complexity
beyond BPPNP). For bounding the prover complexity, we first note that if Π ∈ IP,
then a (variant of) the Goldwasser–Sipser [36] transformation converts any interactive
proof (P̂ , V̂) for Π into a public-coin interactive proof, where the prover on input x
is PPT given an NP oracle and oracle access to P̂x. Then Lemma 4.8 preserves this
prover complexity because the sender in the instance-dependent commitment is PPT
given with an NP oracle. The same holds for Theorem 4.9.

7/8 ⇒ 6 ⇒ 1 These are immediate from the definitions.
2 ⇔ 4 This is by Lemmas 3.13 and 3.14.
We also prove Theorem 4.3, which we restate here.
Theorem 6.2 (Theorem 4.3, restated). Π ∈ SZK if and only if Π ∈ IP and

Π has a statistically hiding instance-dependent commitment scheme in the sense of
Definition 4.1.

Proof.
⇒ This follows from Lemma 4.6, together with the trivial inclusion SZK ⊆ IP.
⇐ This follows from Lemma 4.8, together with the fact that HVSZK = SZK

[48, 32].

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1199

7. Applications and extensions.

7.1. The Ostrovsky–Wigderson theorems. As described in the introduc-
tion, the approach of this paper, and in particular the SZK/OWF characterization
theorem, are inspired by the work of Ostrovsky and Wigderson [50], who showed that
“nontriviality” of ZK implies “some form of one-way functions.” In this section, we
show how our results can be used to give new, more modular proofs of the Ostrovsky–
Wigderson theorems. Specifically, we use the SZK/OWF characterization theorem
to deduce the Ostrovsky–Wigderson theorems about ZK from the earlier (and much
simpler) work of Ostrovsky [49] on SZK. In fact, we need only our results from sec-
tion 3, showing that every problem in HVZK satisfies the SZK/OWF Condition.
Our results in the converse direction, from sections 4, 5, and 6, are not needed.

The two Ostrovsky–Wigderson theorems are obtained by two different interpreta-
tions of “nontriviality” and “some form of one-way functions.” In their first theorem
(mentioned in the introduction), both are interpreted in a weak sense as follows.

Theorem 7.1 (see [50, Thm. 1]). If HVZK �= BPP, then there exists a poly-
time auxiliary-input family of functions {fx : {0, 1}p(|x|) → {0, 1}q(|x|)} that is not
“easy to invert.” That is, for every PPT A and every polynomial r(n), there exists
an infinite set I ⊆ {0, 1}∗ such that

Pr
[
A(x, fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]
≤ 1/r(|x|)

for all x ∈ I.
We point out that the theorem above refers to uniform PPT inverters A; to obtain

functions that are not easy to invert by nonuniform algorithms, the hypothesis should
be replaced with HVZK �⊂ P/poly.

In their second theorem, both conditions are interpreted in a strong sense as
follows.

Definition 7.2. A promise problem Π is hard on average if there exists a PPT
sampling algorithm S, a polynomial r, and a constant δ > 0 such that for every
nonuniform PPT A, the following holds for all but finitely many n:

Pr
x←S(1n)

[
(x ∈ ΠY ∪ ΠN) ∧ (A(x) �= χΠ(x)) ∧ |x| ≥ nδ

]
≥ 1

r(n)
,

where χΠ is the characteristic function of Π, i.e., χΠ(x) = 1 if x ∈ ΠY , χΠ(x) = 0 if
x ∈ ΠN , and χΠ(x) =
 otherwise.

Theorem 7.3 (see [50, Thm. 2]). If HVZK contains a hard-on-average promise
problem, then (standard) one-way functions exist.

We begin by observing that the SZK/OWF characterization (Theorem 1.2) im-
mediately implies a stronger form of one-way functions than given by Theorem 7.1
under the stronger (but still worst-case) hypothesis that HVZK �= HVSZK.

Theorem 7.4. If HVZK �= HVSZK, then there exists an auxiliary-input one-
way function on some infinite set I. That is, there is a poly-time auxiliary-input
family of functions {fx : {0, 1}p(|x|) → {0, 1}q(|x|)} and an infinite set I such that for
every nonuniform PPT A and every polynomial r(n), we have

Pr
[
A(x, fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]
≤ 1/r(|x|)

for all sufficiently long x ∈ I.
The key difference between the conclusions of Theorems 7.1 and 7.4 is that the

order of quantifiers between the adversary A and the infinite set I is reversed. In

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1200 SALIL P. VADHAN

the former, the infinite set of indices x for which the adversary fails to invert fx can
depend on the adversary A, whereas in the latter, there is a fixed infinite set of indices
such that fx is hard for all polynomial-time adversaries A.

Recall that HVSZK ⊆ AM∩ co-AM [18, 1], and thus it is unlikely that NP ⊆
HVSZK. Thus Theorem 7.4 can be interpreted as further evidence, incomparable
to what is given by the Ostrovsky–Wigderson theorems (Theorems 7.1 and 7.3), that
one-way functions are necessary to construct zero-knowledge proofs for all of NP (not
to mention all of IP). (Recall that it is known that one-way functions are sufficient
to establish that IP = ZK [29, 39, 7, 45, 37].)

Proof of Theorem 7.4. Suppose HVZK �= HVSZK, and let Π be any promise
problem in HVZK \ HVSZK. By Theorem 6.1, Π satisfies the SZK/OWF Con-

dition. That is, there is a set I such that Π′ = (ΠY \ I,ΠN) is in SZK and there
exists an auxiliary-input one-way function on I. We claim that I is infinite (which
suffices to complete the proof). Suppose for the sake of contradiction that I is finite.
Since Π′ ∈ SZK and Π and Π′ differ on only a finite set of inputs, we conclude that
Π ∈ SZK ⊆ HVSZK. (The statistical zero-knowledge proof for Π is the same as the
statistical zero-knowledge proof for Π′, except we hardwire the set I into the verifier
and simulator, have the verifier immediately accept inputs x ∈ I, and have the prover
send nothing on such inputs.) This contradicts the choice of Π.

We now give alternate proofs of the Ostrovsky–Wigderson theorems themselves
based on the work of Ostrovsky on SZK, as captured in the following theorem.

Theorem 7.5 (implicit in Ostrovsky [49]). For every problem Π ∈ HVSZK,
there exists a poly-time auxiliary-input function ensemble F = {fx : {0, 1}p(|x|) →
{0, 1}q(|x|)}x∈{0,1}∗ , a probabilistic polynomial-time oracle machine M , and a negli-
gible function ε such that for every x ∈ ΠY ∪ ΠN , every t ∈ N, and every function
A : {0, 1}q(|x| → {0, 1}p(|x|), we have

Pr
[
A(fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]
> ε(|x|) +

1

t

⇒ Pr
[
MA(x, 1t) = χΠ(x)

]
≥ 1 − 2−|x|,

where χΠ is again the characteristic function of Π.
Note that t, which specifies A’s success probability in inverting fx (up to a negli-

gible term), is given as an input (in unary) to the oracle machine M . Intuitively, for
M to take advantage of the fact that A inverts fx with probability ≈ 1/t, M must be
allowed running time polynomially related to t.

Proof of Theorem 7.1. Suppose that HVZK �= BPP. Then either HVZK �=
HVSZK or HVSZK �= BPP. In the first case, we are done by Theorem 7.4. Thus,
we need only show that HVSZK �= BPP implies the existence of an auxiliary-input
family of functions that is not easy to invert. This follows readily from Theorem 7.5.
Let Π be any promise problem in HVSZK \ BPP, and let {fx} be the family of
functions provided by Theorem 7.5. If there is a uniform PPT A inverting fx with
probability at least 1/r(|x|), for some polynomial r and all but finitely many x, then
by Theorem 7.5, MA(x,·)(x, 12r(|x|)) is a PPT algorithm that decides Π correctly for
all but finitely many x.14 This contradicts the assumption that Π /∈ BPP.

14A minor technicality is that Theorem 7.5 is stated for deterministic oracles A, whereas here
A may be probabilistic. However, after a standard error reduction obtained by O(r(|x|)) repeated
trials, we can ensure that with probability .99 over A’s coin tosses w, the deterministic algorithm
A(x, ·;w) inverts fx(Up(|x|)) with probability (.75) · (1/r(|x|)). So we obtain a BPP algorithm for

Π by randomly choosing w and running MA(x,·,w)(x, 12r(|x|)).

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1201

The above proof illustrates why Theorem 7.1 yields only a family of functions
that is not easy to invert, rather than the stronger notion of auxiliary-input one-way
functions achieved in Theorem 7.4. The reason is that the supposed inverter A for
the family of functions is used to construct a BPP algorithm for the promise problem
Π ∈ SZK. The hypothesis that SZK �= BPP seems to guarantee only that for every
inverter A there exists an infinite set IA of instances on which this procedure fails,
not that there exists a fixed infinite set I of “hard” instances on which the procedure
fails for any A. For example, an inverter A running in time n2 may be able to succeed
on a larger set of instances than an inverter running in time n, and one running in
time n3 may succeed on an even larger set of instances, and so on. Ultimately, the
set of instances which are hard for all polynomial-time A may be empty.

How is this difficulty avoided in Theorem 7.4, which relies on the SZK/OWF

Condition as established in section 3? Intuitively, the reason is that the hardness
of inverting the function fx of the SZK/OWF Condition when x is an “OWF
instance” is not derived from the intractability of the promise problem Π, which does
not make sense for fixed instances x (for the reasons discussed above), but rather is
based on the intractability of distinguishing the output of the simulator from the real
interaction in an HVZK proof system (which makes sense for fixed instances x and
indeed is required to hold for every x ∈ ΠY).

Theorem 7.3 gets around this difficulty in a different way by requiring a stronger
form of intractability for the problem Π, namely, that it is hard on average. Let us first
consider the case that we have a hard-on-average problem Π ∈ HVSZK, following
Ostrovsky [49]. Instead of hoping that x’s membership in Π will be hard to decide,
and thus that fx from Theorem 7.5 will be hard to invert for particular values of x,
we simply can sample a random instance x and be guaranteed, by the definition of
“hard on average,” that for any polynomial-time algorithm A, the instance x will be
“hard” for A with at least a fixed nonnegligible probability. Thus f(x, y) = (x, fx(y))
will be hard to invert with a fixed nonnegligible probability for any polynomial-time
inverter. Now to handle the more general case of Π ∈ HVZK, we use the SZK/OWF

Condition, combining Ostrovsky’s one-way functions just described, which are hard
to invert in the case that x is an “SZK instance,” with the one-way functions of the
SZK/OWF Condition, which are hard to invert in the case that x is an “OWF
instance.” This yields the following new proof of Theorem 7.3.

Proof of Theorem 7.3. Suppose Π ∈ HVZK is hard-on-average with respect to the
sampling algorithm S. Theorem 6.1 tells us that Π satisfies the SZK/OWF Condi-

tion, so there is a set I ⊆ ΠY and a poly-time auxiliary-input function ensemble F =
{fx : {0, 1}p(|x|) → {0, 1}q(|x|)} such that Π′ = (ΠY \ I,ΠN) is in SZK = HVSZK
and F is one-way on I. We now apply Theorem 7.5 to Π′ to get another poly-time
auxiliary-input function ensemble F ′ = {f ′

x : {0, 1}p′(|x|) → {0, 1}q′(|x|)} such that
any inverter for f ′

x can be used to decide whether x is a yes or no instance of Π′.
Now we construct a one-way function gn, where n is the security parameter, as

follows: The input to gn is a triple (r, w,w′). To compute gn(r, w,w′), we interpret r
as coin tosses for the sampling algorithm S, obtaining an instance x = S(1n; r) of Π,
and output (x, fx(w), f ′

x(w′)).
We will now argue that gn is a weak one-way function, namely, that no nonuniform

PPT algorithm can invert gn with probability higher than 1−1/(4r(n)), where r is the
polynomial in the definition of hard on average. Suppose that there is a nonuniform
PPT inverter A such that

Pr
[
A(gn(R,W,W ′)) ∈ g−1

n (gn(R,W,W ′))
]
≥ 1 − 1/(4r(n))

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1202 SALIL P. VADHAN

for infinitely many n, when R, W , and W ′ are chosen uniformly at random from the
bit-strings of appropriate length. (Since A is nonuniform, we may assume that it is
deterministic w.l.o.g.)

First, we note that when X = S(1n;R) ∈ I, then A has only a negligible proba-
bility of inverting over the choice of W , by the one-wayness of fX . Thus, we have

Pr
[
A(gn(R,W,W ′)) ∈ g−1

n (gn(R,W,W ′)) ∧ S(1n;R) /∈ I
]
≥ 1 − 1/(3r(n)).(2)

Now we use Theorem 7.5 to convert A into an algorithm B that decides Π′, and
hence Π, well on average (with respect to the distribution S(1n)). Specifically, on
input x, B chooses w uniformly at random and runs MA(x,fx(w),·)3(x, 1|x|), where δ is
the constant in the definition of hard on average and A(x, fx(w), ·)3 denotes the third
component of the output of A.

From (2), it follows that with probability at least 1 − 2/(3r(n)) over the choices
of r ← R and w ← W , we have x = S(1n; r) /∈ I and

Pr
[
A(x, fx(w), f ′

x(W ′))3 ∈ (f ′
x)−1(f ′

x(W ′))
]

≥ Pr
[
A(gn(r, w,W ′)) ∈ g−1

n (gn(r, w,W ′))
]
≥ 1/2,(3)

where the probabilities are taken only over W ′. Whenever inequality (3) holds and we
have x ∈ Π′

Y ∪Π′
N = (ΠY ∪ΠN) \ I, Theorem 7.5 ensures that MA(x,fx(w),·)3(x, 1|x|)

correctly decides whether x is a yes or no instance of Π′ with probability at least
1 − 2−|x|. Thus, setting X = S(1n;R), we have

Pr
[
(X ∈ ΠY ∪ ΠN) ∧ (B(X) �= χΠ(X)) ∧ (|X| ≥ nδ

]
≤ 2/(3r(n)) + 2−nδ

< 1/r(n).

This contradicts the fact that Π is hard on average with respect to the distribution
S(1n).

We note that an alternative way to prove a version of Theorem 7.3 is to combine
our results with [52, Thm. 5.12], which shows that if a hard-on-average problem satis-
fies the Indistinguishability Condition, then one-way functions exist. However,
[52, Thm. 5.12] uses a stronger definition of hard on average than Definition 7.2, re-
quiring that any PPT algorithm has error probability negligibly close to 1/2, rather
than just 1/poly(n). In addition, we feel that it is informative to see how the result
for ZK follows from combining Ostrovsky’s work on SZK (i.e., Theorem 7.5) with the
SZK/OWF

Condition.

7.2. Monotone closure. In this section, we use our results to prove closure
properties of ZK. We begin by noting that the fact that ZK is closed under inter-
section is immediate: To prove that x ∈ ΠY ∩ ΓY for promise problems Π,Γ ∈ ZK,
the prover can prove that x ∈ ΠY using the zero-knowledge proof for Π and then
prove that x ∈ ΓY using the zero-knowledge proof for Γ, and the verifier accepts only
if both proofs are convincing. The analogous approach for union, however, does not
work. In particular, proving that x ∈ ΠY ∪ ΓY seems to require the prover to reveal
whether x ∈ ΠY or x ∈ ΓY , and thus the proof system may not be zero knowledge.

In this section, we show ZK is indeed closed under union. More generally, for ev-
ery Π ∈ ZK, we give zero-knowledge proofs for arbitrary monotone Boolean formulae
over statements about membership in Π, where the formula can even be specified as
part of the common input. Such closure properties were previously known for SZK

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1203

[14, 48, 52].15 Indeed we prove our results by reduction to the SZK case via the
SZK/OWF characterization theorem. (An alternative way of proving the results is to
mimic the proofs for SZK, replacing the Statistical Difference in the construc-
tion of [52] with the Indistinguishability Condition.)

Theorem 7.6. ZK is closed under union.
Proof. By Theorem 1.2, a promise problem is in ZK if and only if it is in IP and

it satisfies the SZK/OWF Condition. Since IP is closed under union, it suffices
to show that the class of problems satisfying the SZK/OWF Condition is closed
under union.

Suppose that Π and Γ satisfy the SZK/OWF Condition. Then there are sets
I and J and poly-time auxiliary-input families of functions {fx}, {gx} such that Π′ =
(ΠY \ I,ΠN) and Γ′ = (ΓY \ J,ΓN) are both in SZK, fx is one-way when x ∈
I, and gx is one-way when x ∈ J . We claim that the set K = I ∪ J of “OWF
instances” and the family of functions {hx}, where hx(y, z) = (fx(y), gx(z)), meet the
requirements for showing that Π ∪ Γ satisfies the SZK/OWF Condition. Indeed,
when x ∈ K, then hx is one-way because either fx or gx is one-way. The promise
problem ((ΠY ∪ΓY)\K, ΠN ∩ΓN) is in SZK because it is a restriction of the promise
problem Π′ ∪Γ′ = (Π′

Y ∪Γ′
Y , Π′

N ∩Γ′
N) (i.e., the yes instances of the former problem

are a subset of those of the latter, and the no instances of both problems are the
same), and Π′ ∪ Γ′ in SZK because SZK is closed under union [48].

We now present some definitions (closely following [52]) to formalize the more
general monotone closure properties we will obtain. Specifically, in order to deal with
instances of promise problems that violate the promise, we will work with an extension
of Boolean algebra that includes an additional “ambiguous” value
.

Definition 7.7. A partial assignment to variables v1, . . . , vk is a k-tuple a =
(a1, . . . , ak) ∈ {0, 1,
}k. For a propositional formula (or circuit) φ on variables
v1, . . . , vk, the evaluation φ(a) is recursively defined as follows:

vi(a) = ai, (φ ∧ ψ)(a) =

⎧⎪⎨
⎪⎩

1 if φ(a) = 1 and ψ(a) = 1,

0 if φ(a) = 0 or ψ(a) = 0,

 otherwise,

(¬φ)(a) =

⎧⎪⎨
⎪⎩

1 if φ(a) = 0,

0 if φ(a) = 1,

 if φ(a) =
,

(φ ∨ ψ)(a) =

⎧⎪⎨
⎪⎩

1 if φ(a) = 1 or ψ(a) = 1,

0 if φ(a) = 0 and ψ(a) = 0,

 otherwise.

Note that φ(a) equals 1 (resp., 0) for some partial assignment a; then φ(a′) also
equals 1 (resp., 0) for every Boolean a′ obtained by replacing every
 in a with either
a 0 or 1. The converse, however, is not true: The formula φ = v ∨ ¬v evaluates to 1
on every Boolean assignment, yet is not 1 when evaluated at
. Thus, the “law of
excluded middle” φ∨¬φ ≡ 1 no longer holds in this setting. However, other identities
in Boolean algebra, such as De Morgan’s laws (e.g., ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ), do remain
true.

Definition 7.8. For a promise problem Π, the characteristic function of Π is

15In fact, since SZK is closed under complement [48], its closure properties extend even to non-
monotone formulae.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1204 SALIL P. VADHAN

the map χΠ : {0, 1}∗ → {0, 1,
} given by

χΠ(x) =

⎧⎪⎨
⎪⎩

1 if x ∈ ΠY ,

0 if x ∈ ΠN ,

 otherwise.

Definition 7.9. For any promise problem Π and constant δ > 0, we define a
new promise problem Monδ(Π) as follows:

Monδ(Π)Y = {(φ, x1, . . . , xk) : φ(χΠ(x1), . . . , χΠ(xk)) = 1 and ∀i |xi| ≥ nδ},
Monδ(Π)N = {(φ, x1, . . . , xk) : φ(χΠ(x1), . . . , χΠ(xk)) = 0 and ∀i |xi| ≥ nδ},

where φ is a monotone k-ary propositional formula, and n = |(φ, x1, . . . , xk)|.
The condition |xi| ≥ nδ is a technicality due to the fact that the security of

zero-knowledge proofs is defined with respect to the input length. Intuitively, we
will be constructing zero-knowledge proofs for instances of Monδ(Π) of length n =
|(φ, x1, . . . , xk)|, but these will be built by using zero-knowledge proofs (or the re-
sulting SZK/OWF Condition) for the individual xi’s. Hence to achieve security in
terms of n, we will need the xi’s to be of length polynomially related to n. Naturally,
this entire issue disappears if one works with a security-parameterized definition of
zero knowledge (cf. remark 5 at the end of section 2.5).

Theorem 7.10. For any promise problem Π ∈ SZK and any constant δ > 0,
Monδ(Π) ∈ SZK.

Proof. First, we note that IP is closed under Monδ(·). To prove that (φ, x1, . . . , xk)
is in Monδ(Π)Y , it suffices to prove that a subset of the xi’s is in ΠY , due to the
monotonicity of φ. Thus, by Theorem 1.2 we need only show that if Π satisfies the
SZK/OWF Condition, then Monδ(Π) satisfies the SZK/OWF Condition.

Let Π be any promise problem satisfying the SZK/OWF Condition, with a
corresponding set I ⊆ ΠY and poly-time auxiliary-input functions {fx} such that
Π′ = (ΠY \I,ΠN) is in SZK and fx is hard to invert when x ∈ I. Since SZK is closed
under Monδ(·) (even for δ = 0) [14, 52], we have that Monδ(Π

′) ∈ SZK. Note that
Monδ(Π

′) is identical to Monδ(Π) except on instances (φ, x1, . . . , xk), where at least
one xi is in I, because then χΠ(xi) = 1 but χΠ′(xi) =
. Specifically, since changing
a variable’s assignment from 1 to
 can change the value of a monotone formula only
from 1 to
, we have Monδ(Π

′)N = Monδ(Π)N and Monδ(Π
′)Y = Monδ(Π)Y \ J ,

where

J = {(φ, x1, . . . , xk) ∈ Monδ(Π)Y : ∃i xi ∈ I}.

Thus, to show that Monδ(Π) satisfies the SZK/OWF Condition, it suffices to show
that we can construct a one-way function from any instance in J . To do this, we
simply define

g(φ,x1,...,xk)(y1, . . . , yk) = (fx1(y1), . . . , fxk
(yk)).

Then when x = (φ, x1, . . . , xk) ∈ J , there is at least one fxi that is hard to invert (by
nonuniform PPT algorithms running in time poly(|xi|) = poly(|x|), since |x| ≥ |xi| ≥
|x|δ), implying that g is hard to invert.

Following [52], Theorem 7.10 implies that ZK is closed under “NC1 truth-table
reductions” (nonadaptive Cook reductions, where the postcomputation is done by a
polynomial-sized formula) and implies that the hierarchy of “computational knowledge
complexity in the hint sense” [31] collapses by logarithmic additive terms. Details can
be found in our technical report [59].

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1205

7.3. Expected polynomial-time simulators and weak-ZK. Recall that, fol-
lowing Goldreich [23], our definitions of zero knowledge (in section 2.5) refer to simu-
lators that run in strict polynomial time. In this section, we extend our results to the
original Goldwasser–Micali–Rackoff [35] definition, which allows the simulator to run
in expected polynomial time. Indeed, we will prove that the two definitions yield ex-
actly the same class ZK; that is, every problem having a zero-knowledge proof with
an expected polynomial-time simulator also has one with a strict polynomial-time
simulator. In fact, we will consider a further relaxation, captured by the following
definitions.

Definition 7.11. For a function ε : N → [0, 1], we say that two auxiliary-input
probability ensembles {Xx} and {Yx} are ε-indistinguishable on I ⊆ {0, 1}∗ if for
every nonuniform PPT D, there exists a negligible function μ such that for all x ∈ I,

|Pr [D(x,Xx) = 1] − Pr [D(x, Yx) = 1]| ≤ ε(|x|) + μ(|x|).
Definition 7.12 (weak zero knowledge [15]). An interactive proof system (P, V)

for a promise problem Π is weak honest-verifier zero knowledge if for every polyno-
mial p there exists a probabilistic (strict) polynomial-time simulator S such that the
ensembles {〈P, V 〉(x)}x∈ΠY

and {S(x)}x∈ΠY
are (1/p(n)) indistinguishable.

weak-HVZK denotes the class of promise problems having weak honest-verifier
zero-knowledge proofs.

The above definition is more relaxed than allowing expected polynomial-time
simulators, because if a simulator S has expected running time t(n), then running it
for p(n)·t(n) steps yields a strict polynomial-time simulator whose output distribution
is (1/p(n))-close to that of S. In particular, if the verifier’s view is computationally
indistinguishable from the output of S, then it is (1/p(n))-indistinguishable from the
truncated version of S. (An intermediate notion is that of ε-knowledge [16], where
the simulator’s running time is required to be bounded by a fixed polynomial in p(n)
and t(n).)

We remark that in the past, expected polynomial-time simulators and weak sim-
ulators have arisen mainly when considering cheating verifiers (e.g., in [35, 29, 25,
15, 16]); that is, strict polynomial-time simulators have always seemed to suffice
for simulating the honest verifier’s view. For such cases, an equivalence between
zero knowledge with weak simulators (for cheating verifiers) and zero knowledge with
strict polynomial-time simulators has already been established by our result that
HVZK = ZK (Theorem 6.1). However, this does leave open the possibility that
weak simulation makes a difference for honest-verifier zero knowledge. We rule out
this possibility in the following theorem.

Theorem 7.13. weak-HVZK = ZK.
Analogous results were previously known for statistical zero knowledge [34] and

noninteractive statistical zero knowledge [33].
By the definitions, ZK ⊆ weak-HVZK, so we need only show weak-HVZK ⊆

ZK. We will do this by showing that every problem in weak-HVZK satisfies the
SZK/OWF Condition, and by applying Theorem 6.1. (By definition, weak-HVZK
⊆ IP.) We will do the former by extending our proof that every problem in HVZK
satisfies the SZK/OWF Condition (from section 3). Intuitively, the “weak” com-
putational indistinguishability in the definition of weak-HVZK will translate into
obtaining a “weak” one-way function (in the sense that the inversion probability is
bounded by, say, 1/2 rather than being negligible), and then we will apply Yao’s con-
version from weak one-way functions to standard one-way functions (see Goldreich
[23, Thm. 2.3.2]).

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1206 SALIL P. VADHAN

We begin with an extension of Lemma 3.7.
Lemma 7.14. If a promise problem Π is in weak-HVZK, then Π satisfies the

following Weak Conditional Pseudoentropy Condition: There exists a fixed
polynomial m such that for every polynomial p, there is a polynomial-time computable
function mapping strings x to a samplable joint distribution (X,Y) on {0, 1}m(|x|) ×
{0, 1}m(|x|) and a parameter r such that

• if x ∈ ΠY , then there exists a (not necessarily samplable) joint distribu-
tion (X ′, Y ′) such that (X ′, Y ′) is (1/p(n))-indistinguishable from (X,Y)
and H(X ′|Y ′) ≥ r, and

• if x ∈ ΠN , then H(X|Y) ≤ r − 1.
A crucial point is that the output length m of the circuits X and Y does not grow

with the level of indistinguishability required (as specified by p).16 Note, however,
that we allow the sizes of the circuits and their input length (i.e., number of coin
tosses) to indeed depend on p.

Proof sketch. Recall that the proof of Lemma 3.7 first constructed distributions
X and Y as follows:

(X,Y) : Select i ← {1, . . . , �(|x|)}, choose random coin tosses R for the simulator, and

output (S2i(x;R), S2i−1(x;R)),

where � = �(|x|) is the number of rounds in the proof system. Here we do the
same, but for any given polynomial p, we take S to be the simulator achieving ε-
indistinguishability, where ε(|x|) = 1/(�(|x|) · p(|x|)).

As in the proof of Lemma 3.7, when x ∈ ΠY , then (X,Y) is ε-indistinguishable
from (X ′, Y ′) = (〈P, V 〉2I , 〈P, V 〉2I−1), where I denotes a uniform random element of
{1, . . . , �}, and H(X ′|Y ′) = r/�. On the other hand, when x ∈ ΠN , then H(X|Y) ≤
(r − 1)/�, exactly as in Lemma 3.7.

The final distributions are taken to be (X1, . . . , X�) and (Y1, . . . , Y�), where each
(Xi, Yi) is an independent copy of (X,Y). This increases the entropy gap to 1 bit as
before, and the level of indistinguishability deteriorates to � · ε < 1/p. Notice that the
output lengths of these distributions depend only on the communication complexity
of the proof system (but the circuit sizes and number of random bits required depend
on the simulator, which in turn depends on the choice of p).

Given this lemma, we proceed to reduce the Weak Conditional Pseudoen-

tropy Condition to the SZK/OWF Condition, analogously to Lemma 3.10. In
the proof, we will need a weak analogue of the notion of a false entropy generator, as
follows.

Definition 7.15. We say that there is an auxiliary-input weak false entropy
generator on I if there exists a fixed polynomial m such that for every polynomial
p, we have samplable auxiliary-input probability ensembles D = {Dx} and F = {Fx}
such that Dx and Fx take values in {0, 1}m(|x|) and when x ∈ I, Dx, and Fx are
1/p(|x|)-indistinguishable and satisfy H(Fx) ≥ H(Dx) + 1.

The following generalization of Lemma 3.12, proved in Appendix B, states that
such weak false entropy generators also imply one-way functions.

16Indeed, otherwise every promise problem would trivially satisfy the Weak Conditional Pseu-

doentropy Condition. Let p = p(n) be an arbitrary polynomial, and let m = p. Given an
input x of length n, let (X,Y) be the distribution that always outputs (0m, 0m), let r = 1, and let
(X′, Y ′) equal (0m, 0m) with probability 1 − 1/p and equal (Um, 0m) with probability 1/p. Then
H(X|Y) = 0 ≤ r − 1, (X′, Y ′) is 1/p-close to (X,Y), and H(X′|Y ′) ≥ (1/p) ·m = r.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1207

Lemma 7.16. If there is an auxiliary-input weak false entropy generator on I,
then there exists an auxiliary-input one-way function on I.

We now use this to establish the SZK/OWF Condition.
Lemma 7.17. If a promise problem satisfies the Weak Conditional Pseu-

doentropy Condition, then it satisfies the SZK/OWF Condition.
Proof. Let Π be a promise problem satisfying the Weak Conditional Pseu-

doentropy Condition, with m being the associated fixed polynomial. Then for any
given ε = ε(n) = 1/poly(n) and any instance x ∈ {0, 1}n, we can efficiently construct
two samplable distributions (X,Y) on {0, 1}m ×{0, 1}m and a parameter r such that
if x ∈ ΠY , then H(X ′|Y ′) ≥ r + 1 for some (X ′, Y ′) that is ε-indistinguishable from
(X,Y), and if x ∈ ΠN , then H(X|Y) ≤ r − 1.

Let I be the set of instances x ∈ ΠY such that H(X|Y) < r. The argument that
Π′ = (ΠY \ I,ΠN) is in SZK is identical to the argument in the proof of Lemma 3.10.

Thus, we focus on constructing one-way functions on I. The first step of the
construction (given in the proof of Lemma 3.10) does not change. We set k = 4n ·
(m + n)2 and consider the samplable distributions

D = (H,Y1, . . . , Yk, H(X1, . . . , Xk)),

F = (H,Y1, . . . , Yk, Ukr+1).

As in the proof of Lemma 3.10, H(F) ≥ H(D) + 1. The only change is that instead
of arguing that D and F are computationally indistinguishable, we claim that they
are ε′-indistinguishable from Z for ε′ = 2k · ε. The deterioration by a factor of k
comes from applying the hybrid argument to k samples of (Xi, Yi); this occurs both
when relating D to D∗ and when relating F to F ∗ in the proof of Lemma 3.10; hence
the additional factor of 2. Recalling that k = 4n · (m + n)2 depends only on n and
the output length m, we see that we can still make the level ε′ of indistinguishability
arbitrarily small (by a suitable choice of ε). Moreover, the output length m′ of D
and F remains independent of the choice of ε′ = 1/poly(n). Thus, we have a weak
auxiliary-input false entropy generator on I. By Lemma 7.16, we have an auxiliary-
input one-way function on I, as needed.

8. Open problems. The following are some results that are known about ZK
under the assumption that one-way functions exist, but for which we have not given
unconditional proofs:

1. ZK is closed under complement. (If one-way functions exist, then ZK =
IP = PSPACE = co-PSPACE [29, 39, 7, 45, 37, 42, 54].)

2. If Π ∈ ZK ∩ NP, then Π has a constant-round zero-knowledge proof with
soundness error 1/poly(n) [29, 9]. (Constant-round protocols with negligible
soundness error are known under stronger assumptions [25].)

3. If Π ∈ ZK ∩ NP, then Π has a computational zero-knowledge proof, where
the prover runs in PPT given an NP witness for membership [29]. (In our
Theorem 6.1, the prover needs an NP oracle.)

The only bottleneck for proving the latter two results unconditionally is our instance-
dependent commitment scheme for SZK (Theorem 4.3), which has polynomially many
rounds and a BPPNP sender, so any improvement to that commitment scheme in
these respects would have an analogous impact on ZK. In fact, at the time of this
work, the last two items (round complexity and prover efficiency) were open problems
for SZK as well, and in [44] instance-dependent commitments were proposed as an
approach to the question of prover efficiency for SZK. Subsequent to this work,
in joint work with Nguyen [46], we resolve the prover efficiency question, proving

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1208 SALIL P. VADHAN

item 3 unconditionally, as well as its SZK analogue. That work does not, however,
construct standard instance-dependent commitment schemes with an efficient sender
for all of SZK and ZK (but rather some new variant of such commitment schemes),
and this remains an interesting open problem having additional consequences, e.g., for
unconditional results on concurrent zero knowledge [43].

Given that we have been able to prove unconditional results about ZK, which al-
lows for computational security in the zero-knowledge condition, a natural subsequent
project is to try and handle computational security in the soundness condition, that
is, undertake a similar unconditional study of zero-knowledge arguments, as defined
in [10, 23].

Appendix A. Lemmas about flat distributions.
Lemma A.1 (flattening lemma restated). Let X be a distribution, k be a positive

integer, and ⊗kX denote the distribution composed of k independent copies of X.
Suppose that for all x in the support of X it holds that Pr [X = x] ≥ 2−m. Then
⊗kX is

√
k ·m-flat.

Suppose Y is jointly distributed with X, and for all (x, y) in the support of (X,Y)
it holds that Pr [X = x|Y = y] ≥ 2−m. Then, defining ((X1, Y1), . . . , (Xk, Yk)) =
⊗k(X,Y), the random variable (X1, . . . , Xk) is

√
k ·m-flat given (Y1, . . . , Yk).

Proof. For every (x, y) in the support of (X,Y), we define the weight of x given
y to be wt(x|y) = log(1/Pr [X = x|Y = y]). Then wt(·) maps the support of (X,Y)
to [0,m]. For every x1, . . . , xk and y1, . . . , yk, we have

log
1

Pr [(X1, . . . , Xk) = (x1, . . . , xk)|(Y1, . . . , Yk) = (y1, . . . , yk)]
=

k∑
i=1

wt(xi|yi).

Thus, if we let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk), we have

Pr
[
X is not tΦ-typical given Y

]
= Pr

[∣∣∣∣∣
k∑

i=1

wt(Xi|Yi) − H(X|Y)

∣∣∣∣∣ ≥ tΦ

]
.

For every i, E[wt(Xi|Yi)] = H(X|Y) and H(X|Y) = k · H(X|Y), so we are bounding
the probability that the average of k independent, identically distributed random vari-
ables taking values in [0,m] deviates from its expectation by tΦ/k. By the Hoeffding
inequality, this probability is at most

2 · exp

(
−2 · k · (tΦ/k)2

m2

)
.

For Φ =
√
k ·m and t ≥ 1, this bound becomes 2 exp(−2t2) ≤ 2−t2 , establishing the

lemma.
Lemma A.2 (Claim 5.9 restated). Let Z0 and Z1 be Φ-flat distributions, for

Φ ≥ 1. Let Z = ZC , where C is a uniformly chosen random bit. Then Z is 3Φ-flat.
Proof. We need to show that, for every t ≥ 1, a random sample z ← Z is not

t · 3Φ-typical for Z with probability at most 2−t2 . For this, it suffices to separately
bound the probabilities that z is not t·3Φ-light and that z is not t·3Φ-heavy. Note that
t·3Φ ≥ 2t·Φ+1, so we can bound the probabilities with respect to a lightness/heaviness
threshold of 2t · Φ + 1 instead.

Bounding the lightness probability is relatively straightforward because z being
light for Z implies that it is light for both Z0 and Z1. Specifically, for any z that is

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1209

(2t · Φ + 1)-light for Z, we have

Pr [Z0 = z] ≤ 2 · Pr [Z = z] ≤ 2 · 2−(2tΦ+1) · 2−H(Z) ≤ 2−2tΦ · 2−H(Z0).

The analogous bound holds for Z1. Therefore any such z is also 2tΦ-light for Z0 and
Z1. Hence, if z ← Z, then z is (2t ·Φ+1)-light for Z with probability at most 2−(2t)2 .

The heaviness probability is a bit more subtle because z being heavy for Z implies
only that it is heavy for either Z0 or Z1; specifically, if z is (2t · Φ + 1)-heavy for Z,
then

max{Pr [Z0 = z] ,Pr [Z1 = z]} ≥ Pr [Z = z] ≥ 22tΦ+1 · 2−H(Z) ≥ 22tΦ+1 · 2−(H(Z0)+1).

Thus, any such z is 2tΦ-heavy for either Z0 or Z1. W.l.o.g. say that z is heavy for Z0.

The probability that Z0 outputs a string that is 2tΦ-heavy (for Z0) is at most 2−(2t)2 ,
by Φ-flatness. However we also need to bound the probability that Z1 outputs such a
string. Let H0 be the set of strings that are 2tΦ-heavy for Z0. The total probability
mass of H0 under Z0 is at least |H0| · 2−H(Z0)+2tΦ and at most 2−(2t)2 by Φ-flatness.

Thus, |H0| ≤ 2−(2t)2 · 2H(Z0)−2tΦ. Then

Pr [Z1 ∈ H0] ≤ Pr [Z1 is 2tΦ-heavy] + |H0| · 2−H(Z1)+2tΦ ≤ 2−(2t)2 + 2−(2t)2 .

We can perform an identical analysis for the strings H1 that are 2tΦ-heavy for Z1.
Then

Pr [Z ∈ H0 ∪H1] =
1

2
(Pr [Z0 ∈ H0] + Pr [Z1 ∈ H0] + Pr [Z0 ∈ H1] + Pr [Z1 ∈ H1])

≤ 1

2

(
2−(2t)2 + 2 · 2−(2t)2 + 2 · 2−(2t)2 + 2−(2t)2

)
= 3 · 2−(2t)2 .

In total, we see that the probability that a random sample of Z is not (2tΦ+1)-typical

for Z is at most 2−(2t)2 + 3 · 2−(2t)2 ≤ 2−t2 , for t ≥ 1.

Appendix B. Weak false entropy generators imply one-way functions.
We recall the definition of a weak false entropy generator.

Definition B.1 (Definition 7.15 restated). We say that there is an auxiliary-
input weak false entropy generator on I if there exists a fixed polynomial m such
that for every polynomial p, we have samplable auxiliary-input probability ensembles
D = {Dx} and F = {Fx} such that Dx and Fx take values in {0, 1}m(|x|) and when
x ∈ I, Dx, and Fx are 1/p(|x|)-indistinguishable and satisfy H(Fx) ≥ H(Dx) + 1.

The following generalizes Lemma 3.12 (due to [37]). Intuitively, the weakness
of the false entropy generator translates to constructing only a weak one-way func-
tion (where the inversion probability is at most, say, 1/2), which is known to imply
standard one-way functions [60] (cf. [23]).

Lemma B.2 (Lemma 7.16 restated). If there is an auxiliary-input weak false
entropy generator on I, then there exists an auxiliary-input one-way function on I.

Proof. Let x ∈ I, n = |x|, and let D = Dx and F = Fx be the samplable
auxiliary-input probability ensembles on {0, 1}m that are ε-indistinguishable. Recall
that the definition of auxiliary-input weak false entropy generators gives us a fixed
polynomial m = m(n) such that we can take ε = 1/p(n) for any desired polynomial
p (which we will choose later in the proof). To construct an auxiliary-input one-way

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1210 SALIL P. VADHAN

function, we will essentially follow the construction of H̊astad et al. [37] which converts
a “false entropy generator” to a “pseudoentropy generator”—where the output is
indistinguishable from a distribution whose min-entropy is higher than the seed-length
of the generator. However, since we are starting from only a weak false entropy
generator D, we need to ensure that the level of indistinguishability deteriorates only
as a function of the output length m of D and the security parameter (but not with
the number of random bits used to generate D).

This part of the construction depends on “guess” e for (an approximation to) the
entropy of D. (At the end we will enumerate over all choices for e.) Specifically, set
k = 256n · (m+n)2, let q be the number of random bits used to generate D, let G be
a random universal hash function mapping {0, 1}kq to {0, 1}kq−ke−k/8, and consider
the following samplable distributions:

We = (D(R1), . . . , D(Rk), G,G(R1, . . . , Rk)),

W ′
e = (F1, . . . , Fk, G, Ukq−ke−k/8),

where R1, . . . , Rk are independent copies of Uq, and F1, . . . , Fk are independent copies
of F .

Claim B.3. For H(D) ≤ e ≤ H(D) + 1/2, we have that
1. We and W ′

e are kε-indistinguishable.
2. Pr [W ′

e ∈ Supp(We)] ≤ (k + 2) · 2−n.
Before proving the claim, we describe how it completes the proof of the lemma.

Specifically, we argue that the circuit generating We defines a (weak) one-way function.
Any algorithm that inverts We with probability at least δ can be used to distinguish
between We and W ′

e with an advantage of at least δ − (k + 2) · 2−n (because by
item 2 it is information-theoretically impossible to find a We-preimage of a random
sample of W ′

e, except with probability (k + 2) · 2−n). By item 1, we conclude that
We can be inverted with probability at most δ = (k + 2) · 2−n + kε ≤ 1/2, for a
sufficiently large choice of the polynomial p (recalling that ε = 1/p), and is thus a
weak one-way function. Since we do not know the value of H(D), we consider the
function fx(y1, . . . , y2m) = (W1/2(y1),W1(y2), . . . ,Wm−1/2(y2m−1),Wm(y2m)), which
is a weak one-way function because one of its components is a weak one-way function
(and the others are independent). Applying the standard reduction from weak one-
way functions to standard one-way functions [60] (cf. [23]) completes the proof. Thus,
all that remains is to establish Claim B.3.

Proof of Claim B.3. It will first be useful to remove low-probability samples from
both D and F , analogously to Lemma 2.2. Let

L = {z : Pr [D = z] ≤ 2−n · 2−m}.

By a union bound, Pr [D ∈ L] ≤ 2−n. Then D̂ = D|D/∈L is 2−n-close to D and,
moreover, for every z ∈ Supp(D̂),

Pr
[
D̂ = z

]
≥ Pr [D = z] ≥ 1/2m+n.

By Lemma 2.1, we have |H(D̂) − H(D)| ≤ 2−n · m + H2(2
−n), which is negligible.

By the flattening lemma, ⊗kD̂ is Φ-flat for Φ =
√
k · (m + n). Analogously, us-

ing F we can define a set L′ of light samples and obtain an F̂ satisfying the same
conclusions.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1211

The Φ-flatness of ⊗kD̂ implies that with probability at least 1 − 2−n over z =
(z1, . . . , zk) ← ⊗kD̂, we have

Pr[⊗kD̂ = z] ≥ 2−
√
n·Φ · 2−k·H(D̂).

Since ⊗kD and ⊗kD̂ are k ·2−n-close (by Lemma 2.3), the same holds with probability
at least 1 − (k + 1) · 2−n over z ← ⊗kD. For any such z, we have

#{(r1, . . . , rk) : ∀i D(ri) = zi}
= 2kq · Pr[⊗kD = z]

≥ 2kq · Pr[⊗kD = z| ⊗k D ∈ (Lc)k] · Pr
[
⊗kD ∈ (Lc)k

]
(where Lc = {z : z /∈ L})

≥ 2kq · Pr[⊗kD̂ = z] · (1 − k · 2−n)

≥ 2kq · 2−
√
n·Φ−k·H(D̂) · (1 − k · 2−n)

≥ 2kq−ke−k/8+2n,

where Lc denotes the complement of L and in the last inequality we use the facts
that H(D̂) ≤ H(D) + neg(n) ≤ e + neg(n) and

√
n · Φ = k/16, 2n + 1 ≤ k/16 for

sufficiently large n. This implies that conditioned on (D(R1), . . . , D(Rk)) = z, the
min-entropy of (R1, . . . , Rk) is at least kq − ke − k/8 + 2n. Thus, by the leftover
hash lemma (Lemma 2.7), (G,G(R1, . . . , Rk)) is (2−n)-close to (G,Ukq−ke−k/8). We
conclude that We is statistically indistinguishable from

V = (D1, . . . , Dk, G, Ukq−ke−k/8),

where D1, . . . , Dk are independent copies of D. Since D is ε-indistinguishable from
F , it follows that V is (kε)-indistinguishable from W ′

e. Therefore, We and W ′
e are

(kε)-indistinguishable, as desired.
Now we proceed to item 2. First, we bound |Supp(We)|. Let g be the number of

random bits to generate G. Then the number of random bits used to generate We is
at most kq + g. Hence |Supp(We)| ≤ 2kq+g. Next, we show that W ′

e is statistically
indistinguishable from a distribution with min-entropy significantly higher than kq+g.
This amounts to lower bounding the min-entropy of (F1, . . . , Fk) = ⊗kF , since the
remaining components of the W ′

e are independent and have min-entropy g+kq−ke−
k/8. As above, instead of F , we consider F̂ . Recall that ⊗kF̂ is (k2−n)-close to ⊗kF
and is Φ-flat. By Φ-flatness, ⊗kF̂ is (2−n)-close to a distribution with min-entropy
k · H(F̂) −

√
nΦ ≥ k · (e + 1/2 − neg(n)) − k/16 ≥ ke + k/4 for sufficiently large n.

Therefore, W ′
e is (k + 1) · (2−n)-close to a distribution with min-entropy at least

(g + kq − ke− k/8) + (ke + k/4) > kq + g + n

for sufficiently large n. A distribution of min-entropy at least w = kq+g+n can land
in Supp(We) with probability at most 2−w · |Supp(We)| ≤ 2−n. Therefore W ′

e lands
in Supp(We) with probability at most 2−n + (k + 1) · 2−n, as desired.

Acknowledgments. I am grateful to Emanuele Viola for an inspiring conversa-
tion about pseudoentropy and [37] that prompted me to revisit the questions addressed
in the present paper. I thank Oded Goldreich, Shafi Goldwasser, and Shien Jin Ong
for clarifying discussions. Their comments, as well as those of the anonymous refer-
ees, also improved the presentation significantly. Finally, I thank Danny Gutfreund,
Madhu Sudan, and Luca Trevisan for some past conversations that have influenced
this work.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1212 SALIL P. VADHAN

REFERENCES

[1] W. Aiello and J. Håstad, Statistical zero-knowledge languages can be recognized in two
rounds, J. Comput. System Sci., 42 (1991), pp. 327–345.

[2] L. Babai and S. Moran, Arthur-Merlin games: A randomized proof system and a hierarchy
of complexity classes, J. Comput. System Sci., 36 (1988), pp. 254–276.

[3] B. Barak, How to go beyond the black-box simulation barrier, in Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science (Las Vegas, NV), 2001, pp. 106–115.

[4] B. Barak, Y. Lindell, and S. Vadhan, Lower bounds for non-black-box zero knowledge,
J. Comput. System Sci., 72 (2006), pp. 321–391.

[5] M. Bellare, O. Goldreich, and E. Petrank, Uniform generation of NP-witnesses using an
NP-oracle, Inform. and Comput., 163 (2000), pp. 510–526.

[6] M. Bellare, S. Micali, and R. Ostrovsky, Perfect zero-knowledge in constant rounds, in
Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing
(Baltimore, MD), 1990, pp. 482–493.

[7] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali, and P. Ro-

gaway, Everything provable is provable in zero-knowledge, in Advances in Cryptology—
CRYPTO ’88, Lecture Notes in Comput. Sci. 403, S. Goldwasser, ed., Springer-Verlag,
Berlin, 1990, pp. 37–56.

[8] C. H. Bennett, G. Brassard, and J.-M. Robert, Privacy amplification by public discussion,
SIAM J. Comput., 17 (1988), pp. 210–229.

[9] M. Blum, How to prove a theorem so no one else can claim it, in Proceedings of the In-
ternational Congress of Mathematicians (Berkeley, CA), AMS, Providence, RI, 1987, pp.
1444–1451.

[10] G. Brassard, D. Chaum, and C. Crépeau, Minimum disclosure proofs of knowledge, J.
Comput. System Sci., 37 (1988), pp. 156–189.

[11] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., Wiley Series in
Telecommunications, John Wiley & Sons, New York, 1991.

[12] I. B. Damg̊ard, On the existence of bit-commitment schemes and zero-knowledge proofs, in
Advances in Cryptology—CRYPTO ’89, Lecture Notes in Comput. Sci. 435, G. Brassard,
ed., Springer-Verlag, Berlin, 1990, pp. 17–29.

[13] I. B. Damg̊ard, Interactive hashing can simplify zero-knowledge protocol design without com-
putational assumptions (extended abstract), in Advances in Cryptology—CRYPTO ’93,
Lecture Notes in Comput. Sci. 773, D. R. Stinson, ed., Springer-Verlag, Berlin, pp. 100–
109.

[14] A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung, Image density is complete
for non-interactive-SZK, in Proceedings of the 25th International Colloquium on Au-
tomata, Languages and Programming (Aalborg, Denmark), Lecture Notes in Comput.
Sci., Springer-Verlag, Berlin, pp. 784–795.

[15] G. Di Crescenzo, T. Okamoto, and M. Yung, Keeping the SZK-verifier honest uncondi-
tionally, in Advances in Cryptology—CRYPTO ’97, Lecture Notes in Comput. Sci. 1294,
B. S. Kaliski, Jr., ed., Springer-Verlag, Berlin, pp. 31–45.

[16] C. Dwork, M. Naor, and A. Sahai, Concurrent zero-knowledge, J. ACM, 51 (2004), pp.
851–898.

[17] S. Even, A. L. Selman, and Y. Yacobi, The complexity of promise problems with applications
to public-key cryptography, Inform. Control, 61 (1984), pp. 159–173.

[18] L. Fortnow, The complexity of perfect zero-knowledge, in Advances in Computing Research,
Vol. 5, S. Micali, ed., JAI Press, Greenwich, CT, 1989, pp. 327–343.

[19] M. Fürer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos, On completeness and
soundness in interactive proof systems, in Advances in Computing Research, Vol. 5, S.
Micali, ed., JAI Press, Greenwich, CT, 1989, pp. 429–442.

[20] O. Goldreich, A note on computational indistinguishability, Inform. Process. Lett., 34 (1990),
pp. 277–281.

[21] O. Goldreich, A uniform-complexity treatment of encryption and zero-knowledge, J. Cryp-
tology, 6 (1993), pp. 21–53.

[22] O. Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudorandomness, Algorithms
and Combin. 17, Springer-Verlag, Berlin, 1999.

[23] O. Goldreich, Foundations of Cryptography: Basic Tools, Cambridge University Press, Cam-
bridge, UK, 2001.

[24] O. Goldreich, On Promise Problems (A Survey in Memory of Shimon Even [1935–2004]),
Tech. Report TR05–018, Electronic Colloquium on Computational Complexity, 2005.
Available online at http://eccc.hpi-web.de/.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1213

[25] O. Goldreich and A. Kahan, How to construct constant-round zero-knowledge proof systems
for NP, J. Cryptology, 9 (1996), pp. 167–190.

[26] O. Goldreich and H. Krawczyk, Sparse pseudorandom distributions, Random Structures
Algorithms, 3 (1992), pp. 163–174.

[27] O. Goldreich and H. Krawczyk, On the composition of zero-knowledge proof systems, SIAM
J. Comput., 25 (1996), pp. 169–192.

[28] O. Goldreich and E. Kushilevitz, A perfect zero-knowledge proof system for a problem
equivalent to the discrete logarithm, J. Cryptology, 6 (1993), pp. 97–116.

[29] O. Goldreich, S. Micali, and A. Wigderson, Proofs that yield nothing but their validity,
or all languages in NP have zero-knowledge proof systems, J. Assoc. Comput. Mach., 38
(1991), pp. 691–729.

[30] O. Goldreich and Y. Oren, Definitions and properties of zero-knowledge proof systems,
J. Cryptology, 7 (1994), pp. 1–32.

[31] O. Goldreich and E. Petrank, Quantifying knowledge complexity, Comput. Complex., 8
(1999), pp. 50–98.

[32] O. Goldreich, A. Sahai, and S. Vadhan, Honest verifier statistical zero-knowledge equals
general statistical zero-knowledge, in Proceedings of the 30th Annual ACM Symposium on
Theory of Computing (Dallas, TX), 1998, pp. 399–408.

[33] O. Goldreich, A. Sahai, and S. Vadhan, Can statistical zero-knowledge be made non-
interactive?, or On the relationship of SZK and NISZK, in Advances in Cryptology—
CRYPTO ’99, Lecture Notes in Comput. Sci. 1666, M. Wiener, ed., Springer-Verlag, Berlin,
pp. 467–484.

[34] O. Goldreich and S. Vadhan, Comparing entropies in statistical zero-knowledge with appli-
cations to the structure of SZK, in Proceedings of the Fourteenth Annual IEEE Conference
on Computational Complexity (Atlanta, GA), 1999, pp. 54–73.

[35] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof
systems, SIAM J. Comput., 18 (1989), pp. 186–208.

[36] S. Goldwasser and M. Sipser, Private coins versus public coins in interactive proof systems,
in Advances in Computing Research, Vol. 5, S. Micali, ed., JAI Press, Greenwich, CT,
1989, pp. 73–90.

[37] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, A pseudorandom generator from any
one-way function, SIAM J. Comput., 28 (1999), pp. 1364–1396.

[38] R. Impagliazzo, L. A. Levin, and M. Luby, Pseudo-random generation from one-way func-
tions (extended abstract), in Proceedings of the Twenty-First Annual ACM Symposium on
Theory of Computing (Seattle, WA), 1989, pp. 12–24.

[39] R. Impagliazzo and M. Yung, Direct minimum-knowledge computations (extended abstract),
in Advances in Cryptology—CRYPTO ’87 Lecture Notes in Comput. Sci. 293, C. Pomer-
ance, ed., Springer-Verlag, Berlin, 1988, pp. 40–51.

[40] T. Itoh, Y. Ohta, and H. Shizuya, A language-dependent cryptographic primitive, J. Cryp-
tology, 10 (1997), pp. 37–49.

[41] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani, Random generation of combinatorial
structures from a uniform distribution, Theoret. Comput. Sci., 43 (1986), pp. 169–188.

[42] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, Algebraic methods for interactive proof
systems, J. Assoc. Comput. Mach., 39 (1992), pp. 859–868.

[43] D. Micciancio, S. J. Ong, A. Sahai, and S. Vadhan, Concurrent zero knowledge without
complexity assumptions, in Proceedings of the Third Theory of Cryptography Conference
(TCC ’06), Lecture Notes in Comput. Sci. 3876, S. Halevi and T. Rabin, eds., Springer-
Verlag, Berlin, pp. 1–20.

[44] D. Micciancio and S. Vadhan, Statistical zero-knowledge proofs with efficient provers: Lattice
problems and more, in Advances in Cryptology—CRYPTO ’03, Lecture Notes in Comput.
Sci. 2729, D. Boneh, ed., Springer-Verlag, Berlin, pp. 282–298.

[45] M. Naor, Bit commitment using pseudorandomness, J. Cryptology, 4 (1991), pp. 151–158.
[46] M. Nguyen and S. Vadhan, Zero knowledge with efficient provers, in Proceedings of the 38th

Annual ACM Symposium on Theory of Computing (STOC ’06), Seattle, WA, 2006, pp.
287–295.

[47] N. Nisan and A. Ta-Shma, Extracting randomness: A survey and new constructions, J. Com-
put. System Sci., 58 (1999), pp. 148–173.

[48] T. Okamoto, On relationships between statistical zero-knowledge proofs, J. Comput. System
Sci., 60 (2000), pp. 47–108.

[49] R. Ostrovsky, One-way functions, hard on average problems, and statistical zero-knowledge
proofs, in Proceedings of the Sixth Annual Structure in Complexity Theory Conference
(Chicago, IL), 1991, pp. 133–138.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1214 SALIL P. VADHAN

[50] R. Ostrovsky and A. Wigderson, One-way functions are essential for non-trivial zero-
knowledge, in Proceedings of the Second Israel Symposium on Theory of Computing and
Systems, IEEE Press, Los Alamitos, CA, 1993, pp. 3–17.

[51] E. Petrank and G. Tardos, On the knowledge complexity of NP, in Proceedings of the
37th Annual Symposium on Foundations of Computer Science (Burlington, VT), 1996, pp.
494–503.

[52] A. Sahai and S. Vadhan, A complete problem for statistical zero knowledge, J. ACM, 50
(2003), pp. 196–249.

[53] R. Shaltiel, Recent developments in explicit constructions of extractors, in Current Trends in
Theoretical Computer Science: The Challenge of the New Century, Vol. I: Algorithms and
Complexity, G. Paun, G. Rozenberg, and A. Salomaa, eds., World Scientific, River Edge,
NJ, 2004, pp. 189–228.

[54] A. Shamir, IP = PSPACE, J. Assoc. Comput. Mach., 39 (1992), pp. 869–877.
[55] M. Sipser, A complexity theoretic approach to randomness, in Proceedings of the Fifteenth

Annual ACM Symposium on Theory of Computing (Boston, MA), 1983, pp. 330–335.
[56] L. Stockmeyer, On approximation algorithms for #P, SIAM J. Comput., 14 (1985), pp.

849–861.
[57] S. P. Vadhan, A Study of Statistical Zero-Knowledge Proofs, Ph.D. thesis, Massachusetts

Institute of Technology, Cambridge, MA, 1999. Available from author’s Web page,
http://eccs.harvard.edu/∼salil.

[58] S. P. Vadhan, An unconditional study of computational zero knowledge, in Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science (Rome, Italy), 2004,
pp. 176–185.

[59] S. P. Vadhan, An Unconditional Study of Computational Zero Knowledge, Tech. Report TR06-
056, Electronic Colloquium on Computational Complexity, 2006. Available online from
http://eccc.hpi-web.de/.

[60] A. C. Yao, Theory and applications of trapdoor functions (extended abstract), in Proceedings
of the 23rd Annual IEEE Symposium on Foundations of Computer Science (Chicago, IL),
1982, pp. 80–91.

D
ow

nl
oa

de
d

06
/0

5/
20

 to
 2

06
.2

53
.2

07
.2

35
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

