
comput. complex. 19 (2010), 265–304
1016-3328/10/020265-40, published online 14 May 2010
DOI 10.1007/s00037-010-0291-3

c© Springer Basel AG 2010

computational complexity

ARE PCPS INHERENT IN EFFICIENT

ARGUMENTS?

Guy N. Rothblum and Salil Vadhan

Abstract. Starting with Kilian (STOC ‘92), several works have shown
how to use probabilistically checkable proofs (PCPs) and cryptographic
primitives such as collision-resistant hashing to construct very efficient
argument systems (a.k.a. computationally sound proofs), for example
with polylogarithmic communication complexity. Ishai et al. (CCC ‘07)
raised the question of whether PCPs are inherent in efficient arguments,
and if so, to what extent. We give evidence that they are, by showing
how to convert any argument system whose soundness is reducible to
the security of some cryptographic primitive into a PCP system whose
efficiency is related to that of the argument system and the reduction
(under certain complexity assumptions).

Keywords. Probabilistically checkable proof, computationally sound
proof, argument, cryptographic reductions.

Subject classification. 68Q05.

1. Introduction

Probabilistically checkable proofs (PCPs) are one of the greatest successes of
the interaction between complexity theory and the foundations of cryptogra-
phy. The model of PCPs, and the equivalent model of multi-prover interac-
tive proofs, emerged from efforts to find unconditional constructions of zero-
knowledge proofs [8] and secure multiparty computation protocols [9, 15] (re-
placing the constructions of [25] and [44, 26], which relied on computational
complexity assumptions). But like their predecessor, interactive proofs, they
turned out to be extremely interesting from a purely complexity-theoretic point
of view [19], particularly through their surprising connection to the inapprox-
imability of optimization problems [18]. The PCP Theorem [3, 2] is one of the
most celebrated results in complexity theory, and has led to a large body of
work that continues to generate deep insights.

266 Rothblum & Vadhan cc 19 (2010)

The PCP Theorem has also provided some returns to cryptography. Specif-
ically, Kilian [33] showed how to use PCPs to construct arguments (i.e. compu-
tationally sound proof systems) forNP in which the communication complexity
is polylogarithmic.1 Kilian’s construction assumes the existence of collision-
resistant hash functions with subexponential security. Its zero-knowledge ver-
sion [33] and other variants due to Micali [36] and Barak and Goldreich [6], have
found further applications in cryptography [13, 5]. Moreover, these argument
systems provide the asymptotically most efficient approaches for proving gen-
eral NP statements, and thus are appealing for applications such as proving
the correctness of a delegated computation or the safety of a program.

In this paper, we consider the question of whether PCPs are really neces-
sary for very efficient arguments. One of our motivations is simply to better
understand the relation between these two fundamental notions in complexity
theory and cryptography. In addition, the use of PCPs in efficient argument
systems has the drawback that the protocols and their applications inherit the
somewhat complex construction and proof of the PCP Theorem. While there
have been some substantial advances on simplifying the PCP Theorem [10, 17],
it remains quite nontrivial and the construction may still be too involved to
use in practice.

The question we study here has previously been considered by Ishai, Kushile-
vitz and Ostrovsky [31]. They showed that by using a stronger cryptographic
primitive, namely (additively) homomorphic encryption rather than collision-
resistant hashing, it is possible to construct somewhat efficient arguments
using the simpler, exponential-length “Hadamard PCP” [2] rather than the
polynomial-length PCPs of the full PCP Theorem. Their arguments are only
“somewhat efficient” in that they have low (e.g. polylogarithmic) communica-
tion from the prover to the verifier, but the verifier-to-prover communication
is polynomial (cf. [27]).

Our results. In this paper, we provide results suggesting that PCPs are nec-
essary for constructing efficient arguments. Specifically, we consider a construc-
tion of an argument system based on a wide range of cryptographic primitives
(e.g. collision-resistant hashing, the RSA assumption, homomorphic encryp-
tion), where the computational soundness is based on the security of the primi-
tive via an efficient reduction. That is, there is an algorithm S such that if P∗ is
any prover strategy that convinces the verifier to accept a false statement, then

1Another important parameter is the computation time of the verifier, but we omit dis-
cussion of it in the introduction for the sake of simplicity.

cc 19 (2010) Are PCPs inherent in efficient arguments? 267

SP∗
“breaks” the cryptographic primitive.2 For example, the cryptographic

primitive could be a one-way function, and the reduction guarantees that any
cheating prover that breaks soundness can be used to invert the function. In-
deed, we provide a general formulation of a cryptographic primitive and what
it means to “break” such a primitive. This formulation is quite general, cover-
ing standard primitives such as one-way functions or homomorphic encryption,
and specific assumptions such as the hardness of factoring. For such construc-
tions we show how to construct PCPs whose efficiency is related to that of the
argument system, the reduction, and a variety of methods for “implementing”
the cryptographic primitive (discussed more below).

Informally, our construction works as follows. We view the PCP oracle
as specifying a prover strategy PPCP for the argument system (i.e. the next-
message function). The PCP verifier:

1. Chooses an “implementation” C of the cryptographic primitive (to be
discussed more below) and sends it to PPCP (with every query),

2. Runs the verifier of the argument system with PPCP,

3. Runs the reduction S with PPCP, and

4. Accepts if both the verifier of the argument system accepts (in Step 2)
and S does not break the cryptographic primitive (in Step 3).

To establish soundness, we note that if PPCP convinces the verifier of the
argument system of a false statement, then S will break the cryptographic prim-
itive; this means that at least one of the acceptance conditions will fail. Thus,
soundness of the PCP holds information-theoretically, unconditionally and re-
gardless of the implementation chosen in Step 1 above. For completeness, we
need to ensure that the implementation (of the cryptographic primitive) chosen
in Step 1 cannot be broken by SP , where P is the honest prover. We provide
several methods for achieving this, some based on complexity assumptions and
some unconditional. Below we describe a few of these and the resulting PCP
parameters.

Implementation and parameters. Arguments and PCPs have many pa-
rameters, which we treat with as much generality as possible. But for simplicity
in the current discussion, we focus on a few parameters of interest, with typical

2Thus, we require that the reduction is “black-box” in its access to P∗, which is true of
all of the existing constructions [33, 36, 6, 31].

268 Rothblum & Vadhan cc 19 (2010)

settings. In particular, we ignore prover and verifier computation time, and the
amount of randomness used by the verifier (see the discussion following Def-
inition 2.2). Consider an argument system constructed from a cryptographic
primitive C for a language L ∈ NP such that on inputs of length n, the
argument system has prover-to-verifier communication complexity polylog(n)
and completeness and soundness error 1/3. Moreover, there is a poly(n)-time
reduction S such that for every x /∈ L and every cheating prover P∗, if P∗

convinces the verifier to accept with probability at least 1/3, then SP∗
(C, x)

“breaks” C with constant probability.
Three key parameters for us are the verifier-to-prover communication com-

plexity v = v(n); the number of rounds r = r(n); and the number of queries
S makes to its oracle q = q(n). Kilian’s construction of arguments from
collision-resistant hash functions (CRHFs) of exponential hardness [33] achieves
v = O(log n+κ), where κ is the seed length for a CRHF, and r, q = O(1) (here
we augment Kilian’s construction by basing it on a PCP with constant query
complexity, e.g. [3, 2]). The Ishai et al. [31] construction from homomorphic
encryption has v = poly(n) and r, q = O(1).

Given the above, our resulting PCPs for L will always have constant com-
pleteness and soundness errors. The query complexity of our PCPs will be
r + q, matching the known constructions of arguments from PCPs. Taking C
to be the description length of the implementation of the cryptographic prim-
itive generated by the verifier, the length of our PCPs is 2|C|+v. If |C| = O(v),
then this matches known constructions of arguments from PCPs in terms of
the PCP length. I.e. if |C| = O(v), then the PCP obtained is of comparable
length (up to polynomial factors) as the one used in known constructions. For
example, exponential-length PCPs correspond to v = poly(n), and polynomial
length PCPs correspond to v = O(log n).

Note that we use here the fact that the number of oracle queries made by
S is small. This is the case in known constructions of argument systems, but
one could certainly conceive of (or, given our results, hope for) a reduction that
makes more queries and yields a PCP with query complexity that is too high
to be interesting. Indeed, this is a promising avenue for future research, see the
discussion below and in the appendix.

In this paper we present several approaches for implementing the crypto-
graphic primitive used by the construction. Recall that our PCP verifier needs
to generate an implementation C of the cryptographic primitive that cannot
be broken by SP , where P is the honest prover of the argument system. This
is done in a variety of different ways, we outline a few below:

◦ The general framework above is formalized in Section 4, where we also
present a natural (and efficient) instantiation. Assume that we have a

cc 19 (2010) Are PCPs inherent in efficient arguments? 269

secure implementation of the cryptographic primitive in the usual sense,
e.g. that collision-resistant hash functions exist or that homomorphic
encryption schemes exist, with whatever security parameter is used by
the underlying argument system (typically polylog(n) to achieve polylog-
arithmic communication) and security against poly(n)-time adversaries.
Such a primitive cannot be broken by SP , because this is a poly(n)-time
algorithm. Then, since the implementation C is described by a fixed al-
gorithm (which gets a security parameter as input), it can be hardwired
into the PCP protocol.

Here we obtain a standard (information-theoretically sound) PCP, where
completeness relies on the assumption that the implementation of the
primitive is secure. We view the assumption we use here as quite natu-
ral, as if there were no secure implementation of the primitive, then the
original construction was a significantly less interesting object to begin
with.

◦ In Section 5, we consider more restrictive notions of reductions, where all
entities in the argument system are given only black-box access to a cryp-
tographic primitive such as a one-way function, pseudorandom function
family, or collision resistant hash family. We show that, in some cases, we
can minimize or remove altogether the computational assumptions made
in the results presented above (for such fully black-box reductions). To
do so, we observe that the implementation of the cryptographic primitive
we use need only be secure against SP : a single fixed polynomial-time
algorithm. Obtaining an implementation that is secure against a fixed
polynomial time bounded algorithm can be considerably easier than ob-
taining an implementation secure against any polynomial-time algorithm
(the usual requirement from cryptographic primitives).

For example, we can obtain unconditional implementations of collision-
resistant hash functions against SP using a family of poly(n)-wise in-
dependent hash functions, yielding |C| = poly(n). Plugging these into
our construction above we obtain exponential-length PCPs. The PCP
length can be made independent of |C| by viewing it instead as a “ran-
domized PCP” (where the prover and verifier have shared randomness,
which we use to generate C)3, or by derandomizing the construction of

3Recalling that standard PCPs can be viewed as Karp reductions to approximate con-
straint satisfaction problems, these randomized PCPs can be viewed as randomized Karp
reductions to approximate constraint satisfaction problems. Later in this work we refer to
such randomized PCPs as “AM-PCPs”.

270 Rothblum & Vadhan cc 19 (2010)

C using either nonuniformity, or the pseudorandom generator of [30] (the
latter being under the assumption that EXP = DT IME(2O(n)) requires
circuits of size 2Ω(n).).

Remarks. We emphasize that even though we use complexity assumptions
in some of our transformations, the resulting PCPs achieve the standard, sta-
tistical definition of soundness — there does not exist any proof oracle that
can convince the verifier to accept a false statement, except with small proba-
bility. Indeed, the complexity assumptions are only used for the completeness
of (some of) our constructions, in order to ensure that the honest proof oracle
that describes the prover does not inadvertently allow (the reduction S) to
break the primitive. This conditional completeness differs from the soundness
of the original argument system, which also held under the same assumption,
but was only guaranteed against bounded malicious provers.

We also note that the main objects we study, PCPs and computationally
sound argument systems, give incomparable soundness guarantees. PCPs guar-
antee soundness against computationally unbounded but non-adaptive mali-
cious provers (i.e. a provers whose answers are not allowed to depend on queries
that the verifier made previously). Argument systems guarantee soundness
against computationally bounded (e.g. polynomial-time), but fully adaptive
malicious provers. Nonetheless, all our results apply even for constructions of
computationally sound PCPs, i.e. proof systems with soundness that is only
guaranteed against computationally bounded and non-adaptive provers. In
particular, we conclude that any construction of a computationally sound PCP
whose soundness is efficiently black-box-reducible to some cryptographic prim-
itive can be converted into an information-theoretically sound PCP (whose
completeness, as above, may rely on assumptions).

Perspective. Like all negative results regarding reductions, our results do
not entirely preclude the possibility of obtaining efficient arguments “without
PCPs,” and may be alternatively interpreted as suggesting avenues for doing so.
One possibility is to make non-black-box use of the cheating prover strategy
P∗ in the reduction from breaking the cryptographic primitive to violating
soundness (or at least to use the fact that P∗ is efficient). Another is to
make use of reductions S that make many queries q to the cheating prover,
even when soundness is violated with constant probability. (If q = poly(n),
we get a PCP with poly(n) queries, which is trivial.) Another direction is
to use a reduction where a malicious prover that breaks soundness with even
say constant probability only breaks the cryptographic primitive used with

cc 19 (2010) Are PCPs inherent in efficient arguments? 271

polynomially small advantage. Such a reduction would also yield only a PCP
with polynomial query complexity. Known reductions are not of any of the
above types.

2. Preliminaries and definitions

Let [n] be the set {1, 2, . . . n}. For x, y ∈ {0, 1}n we use x ◦ y to denote the
concatenation of x and y (a string in {0, 1}2n). For a (discrete) distribution D
over a set X we denote by x ∼ D the experiment of selecting x ∈ X by the
distribution D. A function f(n) is negligible if it is smaller than any (inverse)
polynomial. We refer the reader to [20, 21] for complete definitions of standard
cryptographic objects used in this work such as one-way functions, distribution
ensembles, collision resistant hash functions and pseudorandom functions. We
emphasize that throughout this work whenever we make or refer to hardness
assumptions, the assumptions are always against nonuniform adversaries.

We present definitions of the two types of proof system we consider in this
work:

Definition 2.1 (Argument system (P ,V) [12]). An argument system for a
language L ∈ NT IME(g(n)) consists of two interactive machines. P(x, w)
gets an n-bit input x and advice w ∈ {0, 1}g(|x|) (usually a witness to the
input’s membership in L). V(x) gets the input x. The requirements are:

◦ Completeness c(n). For every x ∈ L and corresponding witness w for
x’s membership in L, the interaction of V(x) with P(x, w) (sometimes
denoted (P(x, w),V(x))) makes V accept with probability at least c(n).

◦ Soundness s(n) vs. size f(n). For every n-bit input x /∈ L and every
cheating P∗ of (nonuniform) circuit size at most f(n), the probability
that (P∗(x),V(x)) makes V accept is at most s(n).

There are many complexity measures of an argument system that will in-
terest us, such as the communication complexity (in each direction), the round
complexity, the circuit size of the honest prover and verifier, and more.

Definition 2.2 (PCP (P ,V) [19, 4, 3]). A Probabilistically Checkable Proof
(PCP) for a language L ∈ NT IME(g(n)) consists of a non-adaptive (i.e.
stateless) machine P and an oracle machine V . P(x, w) gets an n-bit input x,
advice w ∈ {0, 1}g(|x|) (usually a witness to the input’s membership in L) and
an input oracle query. V(x) gets the input x. The requirements are:

272 Rothblum & Vadhan cc 19 (2010)

◦ Completeness c(n). For every x ∈ L and corresponding witness w for x’s
membership in L, the probability that V(x) accepts when it is run with
P(x, w) as its oracle (we denote this as V(x)P(x,w)), is at least c(n).

◦ Soundness s(n). For every n-bit input x /∈ L and every non-adaptive
cheating P∗ oracle, the probability that V(x)P∗(x) accepts is at most s(n).

There are many complexity measures of an PCP system that have been
extensively studied. In this work we focus on the query complexity (the number
of oracle calls V makes), the alphabet size (the size of P ’s output), the PCP
length (the number of possible P input queries), the circuit size of the honest
prover and verifier, and more.

Note that, unlike much of the literature, we do not focus on the PCP veri-
fier’s randomness complexity, but this quantity is closely related to proof length.
In general, the randomness complexity of the verifier provides an (exponential)
upper bound on the proof length. In the other direction, for “randomized
PCPs” (or “AM-PCPs”, see Section 5.1), where the prover and the verifier
are allowed to share common randomness, the verifier’s randomness can al-
ways be reduced to be logarithmic in the proof length. (See also [22, Exercises
9.15,9.16].)

3. Cryptographic primitives and reductions

In this section we consider reductions from computationally sound argument
systems to cryptographic primitives (we use the terminology of Reingold, Tre-
visan and Vadhan [40], where a reduction from A to B means that the existence
of B implies the existence of A). We would like to consider a general notion of
a cryptographic primitive and of a reduction.

We begin with intuition. In the formalism below, a cryptographic prim-
itive is associated with a class of circuits implementing the primitive and a
testing procedure that tests whether a given adversary breaks the primitive.
For example, we can illustrate the formalism via one-way functions. Here the
circuit family implementing the primitive is the family of circuits computing
the function. The testing procedure, to test a given adversary, repeatedly gen-
erates a random input, computes the function’s output on it, and feeds the
output to the adversary. The testing procedure accepts if the adversary suc-
cessfully inverts the function in one of its invocations. This notion, presented
in Definition 3.1, captures a host of cryptographic primitives such as one-way
functions, encryption schemes, specific assumptions, and more. See below for
a full discussion regarding how they fit the formalism.

cc 19 (2010) Are PCPs inherent in efficient arguments? 273

Definition 3.1 (Cryptographic primitive). A cryptographic primitive (C, T)
is defined by a class C of circuits and a testing procedure T . For a candidate C
in C (a circuit in the class), we say that an interactive adversary A (κ, ε)-breaks
C if:

Pr
T ’s coins

[
T A(C, 1κ, 1�1/ε�) accepts

]
≥ 2/3 .

On the other hand, we say C is (κ, ε)-secure against A if:

Pr
T ’s coins

[
T A(C, 1κ, 1�1/ε�) accepts

]
≤ 1/3

where in both cases T is given access to the circuit C. Throughout this work
we deal only with C and A for which there is a promise that either A breaks C,
or C is secure against A. The input parameter κ is typically used to denote a
security parameter that bounds the input and output sizes of circuit C (circuits
that don’t meet this bound make T (C, 1κ, ·) accept immediately).4 Intuitively,
the parameter ε is used to specify a “threshold” for the success probability of
A in breaking the primitive, see the examples below.

Note that the above notion can be extended to consider classes of circuit
distributions (rather than circuits, or circuit distributions with support size 1,
as done above). For simplicity and clarity we use the more restricted notion
(Definition 3.1 suffices to capture all the cryptographic primitives we consider
in this work). We proceed by considering several examples and how they fit
into the above definition of a cryptographic primitive:

1. One-Way Functions. Here C is the class of circuits computing a func-
tion, say from {0, 1}κ to {0, 1}κ. Given a circuit C and adversary A, the
tester T A(C, 1κ, 1�1/ε�) chooses O(1/ε) random inputs to the function,
applies C to each of the inputs, and runs A on each of the outputs. T
accepts if the adversary inverts C on at least one of these outputs (i.e.
C(A(C(x))) = C(x) for one of the inputs x). If f : {0, 1}∗ → {0, 1}∗ is
a (length-preserving) one-way function, this means that it is computable
in polynomial time (in its input length), and for every PPT A and poly-
nomial p(·), for sufficiently large κ, fκ is (κ, 1/p(κ))-secure against Aκ.
I.e., it holds that: Pr[T Aκ(fκ, 1

κ, 1p(κ)) accepts] ≤ 1/3, where fκ and Aκ

are the restrictions of f and A to inputs of length κ.

We can also consider subexponentially-hard one-way functions. If f :
{0, 1}∗ → {0, 1}∗ is a (length-preserving) subexponentially-hard one-way

4Note that even though κ could also be used to bound the circuit size of the circuit C,
we will not do so in this work.

274 Rothblum & Vadhan cc 19 (2010)

function, then it is computable in polynomial time (in its input length),
and for some constant δ > 0 and every probabilistic algorithm A run-
ning in time at most 2κ

δ
, for sufficiently large κ, fκ is (κ, 1/2κ

δ
)-secure

against Aκ.

2. Collision-Resistant Hash Families. Here C is the class of circuits that
evaluate families of shrinking hash functions say from {0, 1}2κ to {0, 1}κ.
I.e., C in C gets as input a seed s and an input x and outputs the
function Cs(x) = C(s, x). The tester T chooses O(1/ε) random seeds
{s1, s2, . . . , sO(1/ε)}, and asks A to find a collision on each of them. It
accepts if A succeeds on at least one (i.e. if for any of the seeds si, the
adversary A(si) finds x and x′ such that C(si, x) = C(si, x

′)).

3. Hardness of Factoring. We can also view specific number-theoretic (or
other) assumptions as cryptographic primitives in our framework. To
capture, for example, the assumption that factoring is hard, we have a
single circuit Cκ for every value of the security parameter. This circuit Cκ

is the canonical circuit that picks two random κ/2-bit primes and outputs
their product. The tester T takes O(1/ε) random samples (numbers)
{n1, n2, . . . , nO(1/ε)} from the distribution. It then asks A to factor each
of these numbers, and accepts if A succeeds on at least one (A finds a
non-trivial factorization of some ni into two prime factors). Alternatively,
the circuit Cκ could be empty, with the tester T generating the primes
and their products on its own.

4. Homomorphic Encryption Scheme. A homomorphic encryption scheme
is a (public or secret key) scheme with a special homomorphic evalua-
tion procedure that can be used on a sequence of ciphertexts to compute
an encryption of some function f of the plaintexts (common functions
include addition and multiplication). The scheme remains semantically
secure against an adversary who is given a circuit computing this homo-
morphic evaluation procedure. See [21] for more details on semantically
secure encryption schemes.

In this example, C is the class of circuits that perform key generation,
encryption, decryption and homomorphic evaluation procedures. The
tester uses C ∈ C to generate a key and feeds the adversary with the ho-
momorphic evaluation procedure (for public-key schemes, the adversary
is also given the encryption procedure). The tester and adversary then
run the semantic security game O(1/ε2) times, and the tester accepts if
the adversary has advantage ε in breaking the scheme’s semantic security

cc 19 (2010) Are PCPs inherent in efficient arguments? 275

in these experiments (to detect w.h.p. an ε-advantage we need to run the
experiment O(1/ε2) times).

Discussion. Note that the definition of a cryptographic primitive is decou-
pled from the question of whether there exists an implementation of the prim-
itive that is (κ, ε)-secure against a collection of adversaries. The related work
of Naor also considers general notions of cryptographic assumptions and prim-
itives [38]. That work sets forth the notion of falsifiable assumptions: assump-
tions for which there exists a procedure for testing whether a given adversary
breaks the assumption. The primary focus there is classifying cryptographic
assumptions according to how efficiently they can be falsified. In that setting,
one of the goals is designing specific procedures that not only break the crypto-
graphic assumption (assuming that it can be broken), but that do so in a way
that can be verified very efficiently. In our notion of a cryptographic primitive,
we consider falsifiable primitives, but we focus on verifying that an arbitrary
adversary (provided by a security reduction) breaks the cryptographic prim-
itive. Falsifiable (and even only somewhat falsifiable, cf. [38] assumptions)
naturally fall into our framework of a cryptographic primitive. Non-falsifiable
assumptions, such as the knowledge of exponent assumption [16], may not fit
into our notion. This is because there is no efficient “testing procedure” that
can be used to tell whether an adversary breaks the assumption; we need the
testing procedure to be efficient because it is run by the (efficient) PCP verifier.

Haitner and Holenstein [29] also consider reductions to a wide class of cryp-
tographic primitives (the reductions are from encryption schemes with key-
dependant security). Their notion of a “cryptographic game” does not distin-
guish between the testing procedure and the description of the primitive.

Now that we have presented our notion of a cryptographic primitive, we
proceed to define a reduction from a computationally sound argument system
to a cryptographic primitive.

Definition 3.2 (Reduction). A reductionR=(P ,V ,S, (C, T), κ(·), ε(·)) from
an argument system for a language L to a cryptographic primitive defined by
(C, T), consists of several components. We use x to denote an n bit input
whose membership is being proved, and w to denote the prover’s auxiliary
input (usually a witness to the input’s membership).

(i) A cryptographic primitive (C, T) as in Definition 3.1.

(ii) Two functions κ : N → N, ε : N → [0, 1] that determine the param-
eters of the cryptographic primitive as a function of the input length.

276 Rothblum & Vadhan cc 19 (2010)

The function κ(·) determines the security parameter, and ε(·) determines
the advantage of an adversary who breaks the argument’s soundness in
breaking the cryptographic primitive.5

(iii) Two interactive Turing machines: a prover P(C, x, w) and verifier V(C, x)
with access to a candidate circuit C in C.

(iv) A proof of security: an oracle machine S with black-box access to a
cheating prover P∗(C, x) that gets as input C in C and x ∈ {0, 1}n.

We require that (P(C, ·, ·),V(C, ·)) is complete for every candidate C ∈ C.
For security, we require that if a cheating prover P∗(C, x) violates soundness
for some x /∈ L and C, then SP∗

(·, x) breaks the (supposedly hard) C. If C is
indeed hard to break, then the argument system is thus sound. We state these
requirements formally below:

(i) Completeness c(n). For every C in C, given x ∈ L and a valid witness w,
the prover P(C, x, w) convinces V(C, x) with probability at least c(n).

(ii) Security proof of soundness s(n). For every C in C, every n-bit input
x /∈ L and every cheating prover P∗(C, x): if (P∗(C),V(C))(x) accepts
with probability at least s(n), then SP∗(·,x) breaks C, i.e.:

Pr
[
T SP∗(·,x)

(C, 1κ(n), 1�1/ε(n)�) accepts
]
≥ 2/3 .

For simplicity, one can think of ε(n) = s(n)O(1) throughout this work.

We assume throughout that s(n) ≤ 0.1 and c(n) ≥ 0.9. We use t(n) to
denote the circuit size of SP (i.e., t(n) is at most |S| · |P|, here we refer only
to the honest P), and q(n) to denote the number of P∗-oracle queries made by

T SP∗
.6 We use v(n) to denote a bound on the number of bits sent from V to

P , u(n) to denote a bound on the length (in bits) of each of P ’s answers, and
r(n) to denote the number of rounds of communication of (P ,V).

5We find it convenient to have the reduction determine the security parameter κ = κ(n)
and the advantage in breaking the cryptographic primitive ε = ε(n), rather than give κ as
input to all the algorithms.

6Throughout, whenever we refer to a bound on a parameter that depends on P∗ we mean
the worst case bound over the input, the cheating prover, etc. for input length n. Note that
these bounds may also depend on the security parameter κ(n), which is a parameter of the
reduction.

cc 19 (2010) Are PCPs inherent in efficient arguments? 277

In the reduction notion of Definition 3.2, all the algorithms in the argument
system (prover, verifier, tester T) get access to C’s explicit representation.
The only “black-box” access in the definition is the security proof’s access to
the cheating prover. This is quite a general notion of reduction. See [40] for
a discussion of different notions of reductions. In this work we also consider
more restricted notions. (Fully) black-box reductions are reductions where the
algorithms access C as a black box. We will also consider black-box reductions
with bounded adaptiveness. See Section 5 for a discussion and definitions of
these more restricted types of reductions. See Appendix A for an overview
of known argument constructions and a discussion of how they fit into our
framework.

4. From arguments to PCPs

In this section, we take any reduction R = (P ,V ,S, (C, T), κ(·), ε(·)) from an
argument system for a language L to a cryptographic primitive specified by
(C, T), and construct from it a PCP for L.

4.1. A generic transformation. For all of our results, we need an addi-
tional property from the reduction. We require that it is possible to generate
candidates C in C for the cryptographic primitive, that cannot be broken by
the security proof SP when it runs with the honest prover (except with small
probability). We formalize this property below.

Property 4.1. The reduction R (with soundness s(n)) has a (polynomial
time deterministic) generation procedure G(1n) that outputs a candidate C in
C such that for every x ∈ L and every valid witness w for x’s membership in
L, C is (κ(n), ε(n))-secure against SP(·,x,w)(·, x).7

In Section 5 we extend this notion to probabilistic generators G. We will
restrict our attention to deterministic G throughout this section.

We now specify a “generic” PCP construction for reductions with Prop-
erty 4.1. We will later show how to instantiate this generic construction for
specific cryptographic primitives, by constructing a generator G that meets
Property 4.1 (unconditionally or under various assumptions). Recall that we
view the verifier for the PCP as an oracle machine (with oracle access to the
proof or oracle-prover). We run the generator G to generate a candidate C.

7Recall that in Definition 3.1 we captured “security against A” by saying that the testing
procedure T accepts A with probability at most 1/3.

278 Rothblum & Vadhan cc 19 (2010)

The generic verifier VPCP and the (honest) prover oracle PPCP depend on this
candidate C.

Verifier VPCP(C, x).

1. Choose random coins for V . Simulate V(C, x) in the interactive argu-
ment system using these coins and the candidate C, using the PCP
prover PPCP to obtain the messages of the argument system’s prover
P(C, x,w).

Thus, each query to PPCP specifies a transcript of the interactive argu-
ment (the verifier’s messages are computed using the existing transcript
and the random coins chosen.) If V rejects, then reject. Otherwise,
continue to Step 2.

2. Repeat the following O(log(1/α)) times, where α = α(n) is a parameter
(its effect on completeness and soundness is analyzed below):

Run the tester T SPPCP (C, 1n, 1�1/ε(n)�) with independent random coins
to check whether SPPCP breaks C. Here PPCP plays the role of answering
S’s oracle queries to P∗. Again, each query to PPCP specifies a transcript
of the interactive argument.

If in at least half of these iterations T accepts, then reject. Otherwise
accept.

Figure 4.1: Verifier VPCP.

(Honest) PCP Proof Oracle PPCP(C, x,w)

For any query specifying a transcript of past messages for the interactive
argument, simulate P(C, x,w) on this transcript and output its next message.

Figure 4.2: (Honest) PCP Proof Oracle PPCP.

The intuition is that if for x /∈ L a cheating PCP prover P∗
PCP makes

the verifier VPCP accept with probability s(n) or greater in Step 1, then the
reduction R guarantees that in Step 2, the security proof SP∗

PCP will break C
correctly with advantage ε(n) (and VPCP rejects). This guarantees soundness.
On the other hand, when x ∈ L, we know by Property 4.1 that C is (κ(n), ε(n))-
secure against the security proof run with the honest prover (and so the verifier
should usually accept). This guarantees completeness. We formalize this in the
theorem below.

cc 19 (2010) Are PCPs inherent in efficient arguments? 279

Theorem 4.2. Let R = (P ,V ,S, (C, T), κ(·), ε(·)) be a reduction from an
argument system for a language L to a cryptographic primitive specified by
(C, T), as in Definition 3.2. Suppose furthermore that R satisfies Property 4.1
and has a generator G for hard candidates.

Let c = c(n) and s = s(n) be the completeness and soundness of the
argument system, and take ε = ε(n) and κ = κ(n). Recall that v = v(n)
bounds the communication from V to P , the value u = u(n) bounds P ’s answer
lengths, the value r = r(n) bounds the number of rounds, and q = q(n) bounds

the number of P∗-queries made by T SP∗
(C, 1n, 1�1/ε�).

Then (PPCP,VPCP) is a PCP for L with completeness c− α and soundness
max{s, α}. The number of queries is r + O(log(1/α) · q). The alphabet size
is 2u. The length of the PCP is 2v. Furthermore, the PCP oracle can be
evaluated in time polynomial in the running time of P(C, x, w). The running
time of the PCP verifier is polynomial in the running time of G, of V(C, x) and
of T SP∗

(C, 1n, 1�1/ε�).

Proof. We begin by analyzing the proposed construction’s alphabet size,
length and query number:

◦ Query number: The verifier VPCP makes r queries to PPCP in Step 1
(one for each round of communication between V and P). It then runs
O(log(1/α)) simulations of S, each of which makes q queries. The total
number of queries is thus r +O(log(1/α) · q).

◦ Alphabet size: The answers of PPCP are messages sent by the prover P in
the interactive argument, their length is bounded by u and the alphabet
size is bounded by 2u.

◦ PCP length: Each query made by VPCP includes a transcript for the
interactive argument. The length of each such query is thus v, and the
length of the PCP is 2v.

We now turn our attention to completeness and soundness. For soundness,
suppose x /∈ L but P∗

PCP makes the verifier VPCP accept in Step 1 with prob-
ability at least s. We view P∗

PCP as a cheating prover P∗ for the interactive
argument. By Property (ii) in Definition 3.2 (security proof of soundness), we
know that SP ∗

(·, x) will have advantage ε in breaking C. This means that in
Step 2, every time that VPCP simulates T , it accepts with probability at least
2/3. Thus (repeating Θ(log(1/α)) times), the verifier VPCP will reject in Step 2
with all but probability α. On the other hand, if the probability of “accepting”

280 Rothblum & Vadhan cc 19 (2010)

(i.e. not rejecting) in Step 1 is smaller than s, then the total probability of the
verifier accepting is smaller than s. Hence, the total probability of accepting is
at most max{s, α}.

For completeness, in Step 1 of VPCP’s operation, when it runs the argument
system’s V , it will accept with probability at least c by the completeness of
(P ,V). By Property 4.1, the candidate C is (κ, ε)-secure against SPPCP . So in
every iteration of Step 2, T will reject with probability at least 2/3. Repeating
O(log(1/α)) times, the probability that the verifier rejects in Step 2 is at most
α. Taking a union bound, the total probability of accepting when x ∈ L and
the prover is honest is at least c− α. �

4.2. Constructions under cryptographic assumptions. As an immedi-
ate corollary of Theorem 4.2, we obtain conditional constructions of PCPs from
argument systems. If there is indeed a computationally hard candidate for the
cryptographic primitive on which the argument’s construction is based, then
this candidate immediately satisfies Property 4.1. We view this as a natural
assumption to make: presumably we consider the construction of an argu-
ment to be meaningful because we believe that the cryptographic primitive
has a secure implementation. Given such an implementation, we get a PCP
(with statistical soundness) “for free”. We can use the candidate to construct
the PCP. We emphasize that the soundness of the PCP obtained is uncondi-
tional and information-theoretic; it is only completeness that is based on the
cryptographic assumption. In fact, it suffices that the implementation is se-
cure against (the reduction run with) the fixed polynomial-time bounded honest
prover, so we can even make do with a cryptographic primitive that is only se-
cure against this fixed algorithm (we elaborate and build on this in subsequent
sections).

Here the notion of reduction from arguments to cryptographic primitives
used is the general notion of Definition 3.2, i.e. the reduction is black-box only
in the adversary. In particular, we obtain the following (informal) corollary:

Corollary 4.3 (Informal). Let R be a reduction from a computationally
sound argument system for language L to a cryptographic primitive. If there
exists a secure implementation of the cryptographic primitive, then the argu-
ment system can be used to construct a PCP as in Theorem 4.2.

In particular, if there exists a family of collision-resistant hash functions,
then any reduction from a computationally sound argument system to a CRHF
can be used to construct a PCP. If there exists an additively homomorphic
encryption scheme, then any reduction from a computationally sound argument
system to additively homomorphic encryption can be used to construct a PCP.

cc 19 (2010) Are PCPs inherent in efficient arguments? 281

Perspective from known constructions. We first examine the known re-
ductions using collision-resistant hashing for NP arguments [33, 36, 6]. Tak-
ing κ to be the security parameter, the communication from V to P is v(n) =
O(log n+κ) (specifying the hash function and O(1) PCP queries), the length of
prover answers is u(n) = O(κ · log n), and the number of rounds is r(n) = O(1).

The number of calls T SP∗
makes to P∗ is q(n) = O(1) (for constant soundness

and advantage in breaking the primitive). Theorem 4.2 gives (for any instantia-
tion) a PCP with constant completeness and soundness, O(1) queries, alphabet
size 2O(κ·log n), and proof length poly(n) ·2κ. Thus, if we take a poly-logarithmic
security parameter, the PCP length is quasi-polynomial. This does not quite
match the Kilian [33] construction (which needed a polynomial-length PCP),
but as we show in Section 5, we can actually (under complexity assumptions)
get implementations of the CRHF that suffice for the construction above and
with logarithmic κ. This yields a polynomial-length PCP from any (black-box)
construction with the parameters of [33].

If we examine the reduction of [31], there the communication from the
verifier to the prover is κ times the logarithm of the length of the PCP being
used, v(n) = poly(n) · κ (in their case the PCP used was exponential, and
so v(n) is polynomial). The communication from the prover to the verifier is
u(n) = O(κ), and the number of rounds is r(n) = O(1). Again, the number of

calls T SP∗
makes to P∗ is q(n) = O(1) (for constant soundness and advantage

in breaking the encryption). Theorem 4.2 gives (for any instantiation) a PCP
with constant completeness and soundness, O(1) queries, alphabet size 2O(κ),
and proof length 2poly(n)·κ (as should be expected, because they started with
an exponential length PCP).

5. Weakening or eliminating computational assumptions

In this section we consider more restricted reductions than those of Defini-
tion 3.2, and obtain PCP constructions with better parameters than the ones
obtained in Section 4.2. The main idea will be to build an implementation for
the cryptographic primitive used by the reduction that is only secure against
one specific adversary: the adversary that runs the reduction together with
the honest argument prover (such an implementation still suffices for arguing
completeness via Theorem 4.2). In this section, we will look at (fully) black-
box reductions and (even more restricted) black-box reductions with bounded
adaptivity (see Section 5.3 for formal definitions of these restricted reduction
notions). We begin in Section 5.1 with a generalization of the notion of PCPs to
“randomized” PCPs (which we call AM-PCPs), which can then be used to con-

282 Rothblum & Vadhan cc 19 (2010)

struct standard PCPs. We also give a generalization of Theorem 4.2. We then
introduce bounded-adversary primitives in Section 5.2. The generalized theo-
rem and bounded-adversary primitives are then used together in Section 5.3 to
obtain improved PCPs.

5.1. Generalized PCPs and Theorem 4.2.

AM-PCPs. Most of our constructions in this section actually yield a slightly
relaxed notion of PCPs, which we call AM-PCPs (as their relation to standard
PCPs is analogous to the relation between AM and NP). These are PCPs
where the prover and verifier are allowed to share a common random string.
Completeness and soundness are required to hold w.h.p. over the (uniformly
random) choice of this string. These are of independent interest (corresponding
to hardness of approximation under randomized Karp reductions, see below),
and in many cases they can later be converted into standard PCPs (sometimes
under assumptions).

Definition 5.1 (AM-PCP (P ,V)). An AM-PCP for a language L ∈
NT IME(g(n)) consists of a non-adaptive (i.e. stateless) machine P and an
oracle machine V , which both share a random string z ∈ {0, 1}b(n). P(x, w)
gets an n-bit input x, advice w ∈ {0, 1}g(|x|) (usually a witness to the input’s
membership in L), the random string z and an input oracle query. V(x) gets
the input x and random string z. The requirements are:

◦ Completeness (c(n), γc(n)). For every x ∈ L and corresponding witness
w for x’s membership in L, with probability at least 1 − γc(n) over z,
V(x, z)P(x,w,z) accepts with probability at least c(n) (over V ’s coins).

◦ Soundness (s(n), γs(n)). For every n-bit input x /∈ L and every non-
adaptive cheating P∗ oracle, with probability at least 1 − γs(n) over z,
V(x, z)P∗(x,z) accepts with probability at most s(n) (over V ’s coins).

Some remarks are in order. First, throughout this work we will be con-
cerned with the case where γs(n) = 0 (i.e. soundness holds for every random
string). Also, as mentioned above AM-PCPs, beyond being a natural notion
in their own right, correspond to hardness of approximation under randomized
Karp reductions. An AM-PCP can be converted into a standard PCP (with
completeness c− γc and soundness s+ γs) by having the verifier choose z and
include it in its oracle queries. This increases the PCP length by a 2b(n) mul-
tiplicative factor. Moreover, there are several ways of reducing the amount of

cc 19 (2010) Are PCPs inherent in efficient arguments? 283

shared randomness used by an AM-PCP (b(n)), and getting a shorter standard
PCP. See the remark below.

Remark 5.2. When γs = 0 and both the verifier and honest prover are effi-
cient (e.g. computable in time poly(n)), AM-PCPs can be de-randomized under
standard complexity assumptions. This shortens the shared random string’s
length. To do this, generate the shared random string using a pseudo-random
generator, e.g. that of Impagliazzo and Wigderson [30]. Under appropriate
complexity assumptions, this yields b(n) = O(log n). See Proposition 5.10 and
its proof for the main ideas (used in a slightly different context). If γs = 0 and
the honest prover is inefficient, AM-PCPs can be de-randomized using the gen-
erators of [35] or [37]. This again gives b(n) = O(log n) , under the (worst-case)
assumption that EXP = DT IME(2O(n)) requires exponential-sized nondeter-
ministic circuits.

We note that this derandomization is different than (and simpler than)
Zimand’s approach to derandomizing PCPs [45] due to the fact that we start
with γs = 0. In contrast, soundness is the difficulty for Zimand’s approach, and
thus it only yields a PCP that is sound against cheating provers with limited
access to the shared randomness. Our situation is similar to that of [7], who
derandomize certain cryptographic protocols using pseudorandom generators
that fool algorithms of fixed polynomial (nondeterministic) circuit size, even
though the final protocols need to be secure against arbitrary polynomial-sized
adversaries. Like here, their derandomization works because the generators are
only needed to preserve properties that depend on honest parties, which run in
a fixed polynomial time.

As a final remark, another approach to reducing or eliminating the shared
randomness is via non-uniformity. This goes along the lines of the proof of
Proposition 5.9 below. By the probabilistic method, there are t = O(n/γc)
fixed strings z1, . . . , zt such that for every x ∈ L∩{0, 1}n completeness holds for
at least a 1−2γc fraction of the zi’s. Thus, hardwiring z1, . . . , zt as nonuniform
advice, only log t = log n+ log(1/γc) +O(1) shared random bits are needed to
select a random i ← {1, . . . , t}.

Probabilistic candidate generator. To get unconditional results and re-
sults under weaker (worst-case) assumptions, we need to generalize Property
4.1. We need to extend that property to the case where we do not have a de-
terministic generator that outputs a single hard implementation, but rather a
probabilistic generator outputs a hard implementation (for a specific algorithm)
w.h.p.

284 Rothblum & Vadhan cc 19 (2010)

Property 5.3. The reduction R (with soundness s(n)) has a probabilistic
polynomial-time generation procedure G(1n) that outputs a candidate C in C
such that for every x ∈ {0, 1}n and advice string w ∈ {0, 1}poly(n) given to the
prover P :

Pr
C∼G(1n)

[
C is

(
κ(n), ε(n)

)
-secure against SP(·,x,w)(·, x)

]
≥ 1− γ(n)

where γ(n) is a parameter. The randomness complexity b = b(n) of G is the
number of random bits it uses.

Generalized Theorem 4.2 Note that now, when we want to use the generic
transformation of Theorem 4.2 for a reduction with a probabilistic generator a
la Property 5.3, we need for the PCP proof to depend on the hard candidate
C. To do this, we use an AM-PCP, where the shared random string determines
C. We modify (PPCP,VPCP) accordingly. This is formalized as a generalization
of Theorem 4.2. Alternatively, we could then transform the AM-PCP into a
standard PCP (increasing the PCP length by a 2b(n) multiplicative factor).

Theorem 5.4. Let R = (P ,V ,S, (C, T), κ(·), ε(·)) be a reduction from an
argument system for a language L to a cryptographic primitive specified by
(C, T), as in Definition 3.2. Suppose furthermore that R satisfies Property 5.3
and has a probabilistic generator G for hard candidates that has randomness
complexity b(n) and with parameter γ(·) such that for all n, γ(n) ≤ 1/4.

Let c = c(n) and s = s(n) be the completeness and soundness of the
argument system, and take ε = ε(n), κ = κ(n), b = b(n), and γ = γ(n). Recall
that v = v(n) bounds the communication from V to P , the value u = u(n)
bounds P ’s answer lengths, the value r = r(n) bounds the number of rounds,

and q = q(n) bounds the number of P∗-queries made by T SP∗
(C, 1n, 1�1/ε�).

Then (PPCP,VPCP) is an AM-PCP for L with completeness (c − α, γ) and
soundness (max{s, α}, 0). The number of queries is r + O(log(1/α) · q). The
alphabet size is 2u. The length of the PCP is 2v. Furthermore, the PCP oracle
can be evaluated in time polynomial in the running time of P(C, x, w) and
G(1n). The running time of the PCP verifier is polynomial in the running time

of G(1n), of V(C, x) and of T SP∗
(C, 1n, 1�1/ε�).

Proof. The proof is identical to that of Theorem 4.2, except that we use the
shared randomness as the coin tosses of G to generate the candidate C. The

cc 19 (2010) Are PCPs inherent in efficient arguments? 285

analysis is the same, except that completeness only holds when the candidate
C is secure against SP(·,x,w)(·, x), which holds with probability at least 1−γ(n)
over the shared randomness. Thus, we obtain an AM-PCP with completeness
(c− α, γ). �

5.2. Bounded-adversary PRFs and CRHFs. In Section 4.2 we obtained
PCPs based on cryptographic assumptions. As noted previously, however, the
type of hardness we need is much more relaxed than what is usual in the cryp-
tographic setting: we only need hardness for a specific algorithm SP . In this
setting, for algorithms that access C as a black box, we can even obtain uncon-
ditional results. For example, to an algorithm that makes only q oracle queries,
a q-wise independent hash function “looks like” a truly random function. We
can use this intuition to transform (black-box) constructions of arguments from
collision-resistant hash families (CRHFs) or one-way functions into AM-PCPs
(and PCPs) unconditionally or under relatively mild complexity assumptions.
The price we pay beyond the (conditional) results of Section 4.2, is that the
AM-PCP randomness, and with it the PCP length and verifier running time,
may become large.

We define and later construct bounded-adversary pseudorandom function
families (PRFs) and collision-resistant hash families (CRHFs). These are func-
tion families that (from black-box access) look random or collision resistant
(respectively) to a bounded adversary. We do not bound the (polynomial)
time needed to compute the function: it may be a larger polynomial than the
adversary’s running time (note that we do still require that the function is com-
putable in polynomial time). We will then show that bounded-adversary PRF
families (i) suffice for building a candidate generator instantiating the generic
construction of Theorem 5.4. That is, they can be used to build AM-PCPs
from black-box reductions (see Section 5.3) from several different cryptographic
primitives to argument systems, and (ii) can be constructed unconditionally or
under weak worst-case complexity assumptions (with various seed lengths). We
will also define bounded-adversary collision-resistant hash families (a weaker
primitive), show that they can be used to construct a PCP from any black-box
reduction from an argument system to CRHF families, and present efficient
constructions.

Definition 5.5 (Pseudorandom function). Consider an ensemble F = {fn :
{0, 1}j(n) × {0, 1}k(n) → {0, 1}�(n)}n with seed length j(n), input length k(n)
and output length �(n). We say that F is a (s(·), ε(·))-pseudorandom function
(PRF) family if for every (nonuniform) circuit-size s(n) adversary A (an oracle

286 Rothblum & Vadhan cc 19 (2010)

circuit ensemble), for all but finitely many n’s:

∣
∣
∣
∣ Pr
seed∼R{0,1}j(n)

[
Afn(seed,·)(1n) = 1

]
−

Pr
random function r : {0, 1}k(n) → {0, 1}�(n)

[
Ar(1n) = 1

]
∣
∣
∣
∣ ≤ ε(n)

I.e. no circuit-size s adversary can distinguish a random function in the family
from a truly random function (except with advantage ε).

Sometimes it is easier to construct function families that do not look pseu-
dorandom, but are collision-resistant. In particular, this will be the case for
adversaries of bounded adaptivity. When restricting the adversary’s adaptiv-
ity, we consider the adversary as an oracle circuit with black-box access to the
CRH. If the adversary has adaptivity a then the depth of the oracle calls on any
path from the circuit’s output to an input is at most a. We proceed with a def-
inition of bounded adaptivity oracle algorithms, and then bounded-adversary
collision-resistant hash functions.

Definition 5.6 (a(·)-Bounded adaptivity algorithm). A circuit ensembleA=
{Afn

n }n with oracle access to a function (ensemble) f has bounded adaptivity
a(·) if:

(i) Each oracle call of A = An to f = fn is associated with an adaptiveness
level i ∈ {0, . . . , a(n)}. We require that each query made by A is actually
of the form (i, y) where i is the adaptiveness level, and y is the input
to f .8

(ii) For every input x ∈ {0, 1}n, on every path from A’s output to an input,
the adaptiveness levels of the oracle queries are strictly decreasing.

As discussed above, we define CRHFs against adversaries with bounded
adaptivity (and circuit size). These adversaries can only access the CRHF as
a black-box, and are further restricted in the total adaptivity of their oracle
accesses (and also in terms of their total circuit size).

8More generally it would suffice to be able to efficiently extract the adaptiveness level
from any query.

cc 19 (2010) Are PCPs inherent in efficient arguments? 287

Definition 5.7 (Collision-resistant functions). Consider an efficiently con-
structible ensemble F = {fn : {0, 1}j(n) × {0, 1}k(n) → {0, 1}�(n)}n with seed
length j(n), input length k(n) and output length �(n), where k(n) > �(n). We
say that F is a (s(·), a(·), ε(·))-collision resistant function (CRHF) family if no
(nonuniform) circuit-size s(n) adversary A (an oracle circuit ensemble) with
adaptivity a(n) (as in Definition 5.6) can find a collision on a random function
from the ensemble with probability ε or greater.

Note here that we do not bound the complexity of computing the pseudo-
random and collision-resistant functions, and in particular the function might
not be computable by size s circuits (or circuits with depth a). This is sim-
ilar to complexity-theoretic pseudorandom generators such as those of Nisan
and Wigderson [39]. We outline several constructions of bounded-adversary
pseudorandom and collision resistant functions. The first is an unconditional
construction of PRFs that uses a large seed. The second construction replaces
the large seed with a nonuniform construction that uses only a short seed. Then
we show how to shorten the seed without resorting to nonuniformity by deran-
domizing the unconditional construction, using the pseudorandom generators of
[39, 30]. The final construction is an unconditional construction of CRHFs for
bounded-depth adversaries. The seed length will also be significantly reduced.
We begin with the unconditional construction:

Proposition 5.8. For any input and output lengths k(n) and �(n), there
exists an (s(n), 0)-pseudorandom function. The seed length is j(n) =
s(n) · max(k(n), �(n)). The function can be evaluated in (uniform) time
poly(s(n), k(n), �(n)).

Proof. The pseudorandom function family is a collection of s(n)-wise in-
dependent functions from {0, 1}k(n) to {0, 1}�(n) (cf., [1]). A random function
in this family looks perfectly random to any algorithm that makes at most
s(n) queries. This is because even given the function’s value on any up to
(adaptively chosen) s(n)− 1 points, its value on any other point is completely
random (over the choice of the function from the family). Such an s(n)-wise
independent function can be generated using a seed of s(n) · max(k(n), �(n))
random bits and in time poly(s(n), k(n), �(n)). �

The main disadvantage of this construction is the large seed length (as
large as the adversary’s circuit size). We can reduce this seed length by using
nonuniformity:

288 Rothblum & Vadhan cc 19 (2010)

Proposition 5.9. For any input and output lengths k(n), �(n) and circuit size
s(n), there exists a (s(n), 1/s(n))-pseudorandom function. The seed length
is j(n) = O(log s(n)). The function can be evaluated in nonuniform time
poly(s(n), k(n), �(n)). In fact, a random advice string of this length will yield
a PRF of these parameters with probability at least 1− 2−s(n). Hence, this can
be viewed as a construction in the Common Random String (CRS) Model.

Proof. We construct the PRF by choosing uniformly at random a set B of
poly(s(n)) seeds for the PRF of Proposition 5.8. For any fixed circuit-size s(n)
distinguisherD, with probability at least 1−2−poly(s(n)) over this choice of B, the
distinguisher D’s behavior on a random seed from the set B is 1/s(n)-close to
its behavior given a truly random seed. Taking a union bound, with probability
at least 1− 2−s(n) over the choice of B no circuit-size s(n) distinguisher has a
1/s(n) advantage in distinguishing a random seed from B from a truly random
seed. In conclusion, the PRF whose seed is of length log |B| = O(log s(n))
and is used to choose a (larger) seed from B and compute that larger seed’s
function, is a (s(n), 1/s(n)-PRF. �

Another way of reducing the seed length without resorting to nonuniformity
is derandomizing. We can use derandomization techniques, e.g. the work of
Impagliazzo and Wigderson [30], to reduce the seed length without hurting
pseudorandomness too much. The idea here is to use a pseudorandom generator
that stretches a short seed into a longer PRF seed that is indistinguishable from
a uniformly random seed to the a fixed circuit-size distinguisher. Here the
running time of the generator is allowed to be larger than the (fixed) running
time of the distinguisher. To build such a pseudorandom generator, we must
make mild (worst-case) complexity assumptions. This is the approach taken in
Proposition 5.10.

Proposition 5.10. Assume that there is a function in DTIME (2O(n)) that
has circuit complexity 2Ω(n). Then for any input and output lengths k(n), �(n)
and circuit size s(n), there exists a (s(n), 1/s(n))-pseudorandom function. The
seed length is j(n) = O(log(s(n) · max(k(n), �(n)))). The function can be
evaluated in (uniform) time poly(s(n), k(n), �(n)).

Proof. If there is a function in DT IME(2O(n)) that has circuit complexity
2Ω(n), then by the results of [39, 30] there is a pseudorandom generator that
stretches O(log t(n)) bits to t(n) bits s.t. no distinguisher of circuit-size t(n)
has advantage greater than 1/t(n) in distinguishing the generator’s output
on a random seed from a truly random string. We take t(n) = max{2s(n) ·

cc 19 (2010) Are PCPs inherent in efficient arguments? 289

max(k(n), �(n)), s(n) · q(n)}, where q(n) = poly(s(n), k(n), �(n)) is the time to
evaluate the PRF of Proposition 5.8.

Consider then the pseudorandom function that gets a seed of length
O(log t(n)) for the generator, stretches it to a string of length t(n), and uses
the first 2s(n) ·max(k(n), �(n)) bits of that string as a seed for the “large seed”
pseudorandom function of Proposition 5.8. Any algorithm that distinguishes
the “large seed PRF” when it is evaluated using this pseudorandom seed from
the “large seed PRF” function evaluated using a truly random seed can be
used (together with the “large seed PRF” evaluator) to break the pseudoran-
dom generator with the same advantage. A (circuit-) size s(n) “large seed
PRF” adversary thus corresponds to a size s(n) · q(n) adversary for the PRG,
and this means that no size s(n) PRF adversary has advantage greater than
1/t(n) in distinguishing the “large seed PRF” using a pseudorandom seed from
the “large seed PRF” using a truly random seed. In particular, since with a
truly random (“large”) PRF seed the distinguishing advantage for a size s(n)
adversary from a random function is 0, with the pseudorandom seed the dis-
tinguishing advantage of a size s(n) adversary between the PRF and a truly
random function is at most 1/t(n) < 1/s(n). �

Remark 5.11. In Proposition 5.10 we made a relatively strong complexity as-
sumption, i.e. we assumed that there is a function in EXP = DT IME(2O(n))
that has circuit complexity 2Ω(n). In general, we could use more relaxed as-
sumptions to obtain a weaker de-randomization and longer seed length, via
[42]. For clarity, we focus only on the “high-end” assumption made above. For
each setting of parameters, these assumptions about the circuit complexity of
EXP) seem to be weaker than assuming the existence of cryptographic pseu-
dorandom functions or collision resistant hash functions with the kind of seed
length and security we wish to obtain. The reason is that a cryptographic func-
tion with seed length κ (as well as input and output length κ) yields a function
in DT IME(2O(κ)) whose hardness is related to the security of function.

Another approach for reducing the seed length is considering bounded
adaptivity adversaries (a la Definition 5.6), and settling for collision-resistance
(rather than pseudorandomness). Here the idea is that a non-adaptive adver-
sary cannot (information theoretically) find collisions in a pairwise-independent
function (except with small probability). For an adversary with fixed adaptiv-
ity, we can construct a CRHF by picking the function computed at each level
of adaptivity from a pairwise-independent hash family. This will ensure that
the adversary cannot (except with small probability) find any collisions, and it
is the approach taken below.

290 Rothblum & Vadhan cc 19 (2010)

Proposition 5.12. For any input and output lengths k(n), �(n), circuit size
s(n), and adaptiveness bound a(n), there exists an (s(n), a(n), a(n)·s2(n)/2�(n))
-collision resistant function. The seed length is j(n) = 2(a(n) + 1) ·max(k(n),
�(n)). The function can be evaluated in (uniform) time poly(a(n), k(n), �(n)).

Proof. Take a = a(n), k = k(n), � = �(n). Recall that for an adversary A
with bounded adaptivity, each query made by the adversary has an adaptivity
level between 0 and a(n), and this adaptivity level is given to the hash function
as part of its input. Here we choose a hash function h that includes a + 1
pairwise-independent hash functions h0, . . . , ha : {0, 1}k → {0, 1}�−log a. The
hash function h on input (i, y) (i.e. adaptivity level i and data y) outputs
(i, hi(y)). That is, we use a separate hash function for each level of adaptivity.
We now claim that the probability that A finds a collision is at most a · s2/2�.

To bound the probability that A finds a collision, first recall that for a
pairwise independent hash function hi : {0, 1}k → {0, 1}�−log a, the probability
of a collision in any set of q non-adaptive (i.e. fixed before the choice of h)
queries is less than a · q2/2�. For each pair of queries the collision probability is
a/2� = 1/2�−log a, there are less than q2 pairs of queries. For the hash function
we chose, collisions occur only within the same adaptivity level, i.e. on two
queries of the form (i, y) and (i, y′). When S runs, in each level of adaptivity
it is making non-adaptive queries to a new hash function. For any fixing of
the hash functions up to level i− 1 and the randomness of SP , the probability
of a collision in level i is thus at most a · q2i /2� (over the choice of hi), where
qi is the number of queries made in level i. Fixing the number of queries in
adaptivity level i to be qi, the total probability of a collision is (taking a union
bound over the levels of adaptivity) at most

∑a
i=0 a · q2i /2�. Since we know that∑a

i=0 qi ≤ s, this is at most a · s2/2�. The number of queries made in level i,
qi, is itself a random variable, and so we get that for any adversary A:

Pr
A’s coins,h0,...,ha

[collision in some level]

≤ EA’s coins

[
a∑

i=0

Eh0,...,hi−1

[
Pr
hi

[collision in level i]

]]

≤ EA’s coins

[
a∑

i=0

Eh0,...,hi−1

[
a · q2i /2�

]
]

= (a/2�) · EA’s coins,h0,...,ha

[
a∑

i=0

q2i

]

≤ a · s2/2� .

cc 19 (2010) Are PCPs inherent in efficient arguments? 291

Where the last inequality is because it is always the case that
∑a

i=0 qi ≤ s. The
description size of each hi is less than 2 ·max(k, �) (see [14]), so the description
of h is of size at most 2(a(n) + 1) ·max(k, �). The function can be evaluated in
(uniform) time poly(a(n), k(n), �(n)). �

5.3. Instantiations using bounded-adversary primitives. In this sec-
tion we show that restricted reductions, black-box reductions and reductions
with bounded adaptivity, combined with the bounded-adversary primitives of
Section 5.2, yield AM-PCPs with improved parameters. We begin with formal
definitions of restricted reductions.

Definition 5.13 (Black-box reduction.). A reduction R = (P ,V ,S, (C, T),
κ(·), ε(·)) is a (fully) black-box reduction if it is a reduction, as in Definition
3.2, and also P and S only have black-box access to C, i.e. they access C as
an oracle. Here t(n) also bounds the number of oracle calls made by SP (as
t(n) is the total combined size of this procedure).

Definition 5.14 (Black-box reduction with a(·) adaptivity.). A reduction
R = (P ,V ,S, (C, T), κ(·), ε(·)) is a black-box reduction with adaptivity a(n) if
it is a black-box reduction as in Definition 5.13, and for every candidate C in
C also SP(C,x,w) (run with the honest prover), is an a(·)-bounded adaptiveness
algorithm in its oracle calls to C (see Definition 5.6).

A good example to keep in mind when thinking about bounded-adaptivity
reductions is a hash-tree constructed using collision-resistant hashing, say a
hash function that shrinks its input by a factor of 2. Here a long string is divided
into blocks, each pair of blocks is hashed, the hashes are divided into pairs and
each pair is itself hashed, then each pair of hashes of hashes is hashed etc.,
until a single “hash root” is obtained. The number of hash levels is logarithmic
in the number of blocks. This hash-tree construction is a primary component
of the argument systems of [33, 36, 6], and both the constructions and the
security reductions in these argument systems have logarithmic adaptivity in
the sense of Definition 5.14 (see Appendix A for further discussion of these
constructions).

Bounded-adversary PRF families can be used to transform reductions from
argument systems to one-way functions, PRF families or CRHF families into
PCPs. This is done by showing that for any such reduction, the bounded-
adversary PRF family can be used to obtain a generator G satisfying Property
5.3. The fixed and bounded adversary for this PRF is the reduction run with
the honest prover: SP(·,x,w)(·, x). Recall that this procedure is of circuit-size at

292 Rothblum & Vadhan cc 19 (2010)

most t(n) (and in particular, it makes at most t(n) oracle queries to the PRF
family).

For reductions to one-way functions (say functions from {0, 1}κ to {0, 1}κ),
the generator simply outputs a bounded-adversary PRF chosen at random
from the family with input and output length κ. Since SP(·,x,w)(·, x) cannot
distinguish (from its bounded oracle access) this function from a random one,
w.h.p. it cannot invert the function on a random input.

The situation is similar for reductions to CRHF families (say with input
length 2κ and output and seed length κ). The generator generates a bounded-
adversary PRF chosen at random from the family with input length 2κ and
output length κ. This function g(·) is interpreted as a CRHF f(x, y) = g(x)
by ignoring the first argument (the seed to a function in the family). Since
SP(·,x,w)(·, x) cannot distinguish (from its bounded oracle access) the function
g(·) from a random one, w.h.p. it cannot find collisions on the family f(·, ·).

Reductions from an argument system to PRF families (say with input length
2κ and output and seed length κ) are handled in a slightly different manner.
Here we cannot just ignore the seed and have a family of size 1 (a random
function from any PRF family of size 1 is easily distinguished from a random
function). Instead, we use a bounded-adversary PRF family {fs : {0, 1}κ ×
{0, 1}2κ → {0, 1}κ}. The generator G outputs a random member fs of the
bounded-PRF family by choosing a random seed s. We interpret this as a
PRF family by parsing the first input argument t ∈ {0, 1}κ as the index to a
function in the PRF, and the second argument as the actual input. Now since
SP(·,x,w)(·, x) cannot distinguish fs(·, ·) from a truly random function (from its
bounded oracle access), it should not be able to distinguish fs(t, ·) from a truly
random function. This gives us a generator for reductions to PRF families.

These three cases are captured in the three claims below. The claims and
proofs for one-way functions and CRHF families are similar and appear to-
gether.

Claim 5.15. LetR = (P ,V ,S, (C, T), κ(·), ε(·)) be a black-box reduction from
a computationally sound argument system to a one-way function fn : {0, 1}κ×
{0, 1}κ → {0, 1}κ (or from a CRHF family fn : {0, 1}κ × {0, 1}2κ → {0, 1}κ),
where κ = κ(n). Let γ(·) be a parameter, and let t(n) be an upper bound on
the running time of SP(x,w)(x). Suppose there exists a (λ · t(n), δ)-PRF as in
Definition 5.5 that can be evaluated in time poly(n) and has seed length j(n),
input length κ(n) (or 2κ(n) for the CRHF case) and output length κ(n), where
δ = 1/2 · (γ · ε − t(n)2/2κ) and λ > 0 is a fixed universal constant. Then R
satisfies Property 5.3, with the given γ(n) and where the number of coins used
by the generator G is j(n).

cc 19 (2010) Are PCPs inherent in efficient arguments? 293

Proof of Claim 5.15. The proof is presented for the case of CRHF fam-
ilies, the case of one-way functions is similar. The generator G outputs the
j(n)-bit seed for a bounded-adversary PRF F as above. This PRF is inter-
preted as a CRHF by ignoring the first input and taking the second argument
to be the actual input. We claim that with probability 1-γ over the choice
of seed to F this is a (κ, ε)-secure CRHF against SP . Otherwise, if SP can
with probability γ (over the choice of the j(n)-bit seed) find collisions on this
CRHF with probability ε, then there is a distinguisher that distinguishes the
PRF F from a truly random function with advantage γ · ε − t(n)2/2κ > δ, a
contradiction.

To see this, we construct a PRF-distinguisher for F (with black-box access
to a random PRF or a truly random function). The distinguisher gets oracle
access to a function (in F or truly random). It chooses a random index, runs
SP on the CRHF formed by fixing the first κ input bits of its oracle function to
that index, and outputs 1 if SP finds a collision. The size of this distinguisher
is at most λ · t(n). When run on a random PRF in F , the probability that the
distinguisher outputs 1 is at least γ · ε. When run on a truly random function,
the CRHF we get is a family of random functions, and so the probability that
SP finds a collision and the distinguisher outputs 1 is at most t(n)2/2κ. �

Claim 5.16. LetR = (P ,V ,S, (C, T), κ(·), ε(·)) be a black-box reduction from
a computationally sound argument system to a one-way function fn : {0, 1}κ →
{0, 1}κ or to a CRHF (or PRF) fn : {0, 1}κ × {0, 1}2κ → {0, 1}κ, where κ =
κ(n). Let γ(·) be a parameter, and let t(n) be an upper bound on the running
time of SP(x,w)(x). Suppose there exists a (λ · t(n) · log(1/γ) ·1/ε2, γ/2)-PRF as
in Definition 5.5 that can be evaluated in time poly(n) and has seed length j(n),
input length 3κ(n) and output length κ(n), where λ > 0 is a fixed universal
constant. Then R satisfies Property 5.3, with the given γ(n) and where the
number of coins used by the generator G is j(n).

Proof. The construction and proof for PRF families is similar to the proof of
Claim 5.15. The generator G outputs the j(n)-bit seed for a bounded-adversary
PRF F as above. This PRF is interpreted as a PRF family by parsing the first
input argument as the index to a function in the PRF family, and the second
argument as the actual input.

If SP has with probability γ advantage ε in distinguishing the “small PRF”
(meaning the PRF built by choosing an index and fixing the first κ bits of
the original function in F to that index) from a “small” (i.e., from {0, 1}2κ to
{0, 1}κ) truly random function, then we build a distinguisher for F with total

294 Rothblum & Vadhan cc 19 (2010)

advantage γ/2. This F -distinguisher gets black-box access to a PRF in F or
random function. It then executes O(log(1/γ)·1/ε2) runs of SP on “small func-
tions” produced by fixing the first input bits of its oracle function to random
distinct indices, and also O(log(1/γ) · 1/ε2) executions of SP on truly random
“small functions”. If the gap between the fraction of executions that output
1 using the input oracle function and truly random functions is at least ε/2,
then the distinguisher outputs 1. Now we know that if this distinguisher is
given a random function in F , then with probability γ the gap between the
probability of 1 in the two executions is at least ε. Thus (by a Chernoff bound)
the distinguisher will output 1 with probability at least 3γ/4. If the distin-
guisher is given a truly random function, then the probability of 1 in both sets
of executions is identical, and (by a Chernoff bound) the distinguisher outputs
1 with probability less than γ/4. The circuit size of this new distinguisher is
bounded by λ · t(n) · log(1/γ) · 1/ε2. �

Similarly, for reductions from an argument system to CRHFs with bounded
adaptivity (say with input length 2κ and output length κ), we use a bounded-
depth-adversary CRHF family {fs : {0, 1}2κ → {0, 1}κ} (the “original” family).
The generator G outputs a random function from bounded-CRHF family. We
interpret this as a family of CRHFs (the “derived” family) by ignoring the first
input argument, and taking the second argument as the actual input (similarly
to the construction of Claim 5.15). Now since SP(·,x,w)(·, x) cannot find any
collision on fs chosen at random from the “original” family (from its bounded
oracle access), it should not be able to find fs-collisions in the “derived” family
(where the seed is ignored). This gives us a candidate generator for reductions
from CRHFs.

Claim 5.17. LetR = (P ,V ,S, (C, T), κ(·), ε(·)) be a black-box reduction with
adaptivity a(n) from a computationally sound argument system to a CRHF
fn : {0, 1}2κ → {0, 1}κ, let γ(·) be a parameter, and let t(n) be an upper bound
on the running time of SP(x,w)(x). Let F be a (λ · t(n), a, δ)-CRHF family as
in Definition 5.5 that is computable in time poly(n) and has seed length j(n),
input length 2κ(n) and output length κ(n), where δ = 1/2 · (γ · ε − t(n)2/2κ)
and λ > 0 is a fixed universal constant. Then R satisfies Property 5.3, with
the given γ(·) and where the number of coins used by the generator G is j(n).

Proof. The proof is similar to that of Claim 5.15. The generator G out-
puts the j(n)-bit seed for a bounded-adversary CRHF f ∈ F as above. This
“original” CRHF f is interpreted as a family of “derived” CRHFs by ignoring
the first input argument and taking the second argument as the actual input.

cc 19 (2010) Are PCPs inherent in efficient arguments? 295

With probability 1-γ over the choice of seed to F this is a (κ, ε)-secure CRHF
against SP . Otherwise, if SP can with probability γ (over the choice of the
j(n)-bit seed) find collisions on the randomly chosen “derived” CRHF family
(which ignores its seed) with probability ε, then SP can be used to break the
“original” family F with probability γ · ε. The F -adversary gets a random
function f(·) from F , and runs SP on the “derived” family f(x, y) = g(y), to
find a collision. With probability γ · ε, this returns a collision in the “original”
family F . The circuit size of this F -adversary is about the same as the circuit
size of SP (up to say some constant multiplicative factor). When run on a
truly random function, the CRHF we get is a random function, and so the
probability that SP finds a collision and the distinguisher outputs 1 is at most
t(n)2/2κ. �

Instantiating the generic transformation. Recall from Sections 5.1, 5.2
the generic transformation of Theorem 5.4 and also the parameters it gives on
known reductions. We instantiate this transformation, converting reductions
from pseudorandom functions or collision-resistant hash families into AM-PCPs
(or standard PCPs), using the bounded-adversary PRF families and CRHF
families of the previous section. Note that in this setting it even makes sense
to consider reductions with logarithmic security parameter (logarithmic in the
running time of the bounded adversary).

Unconditional PRF. Any reduction from arguments to one-way functions,
PRF families or CRHF families yields (unconditionally) an AM-PCP using the
bounded-adversary PRF families of Proposition 5.8 together with Claims 5.15
and 5.16. The completeness, soundness, query complexity and alphabet size
are as in the theorem statement of Theorem 5.4. The main “price” of this
instantiation is the amount of shared randomness used by the AM-PCP that
is obtained. The number of bits needed to choose a function in the family
is O(t · κ), where t is the circuit size of SP (e.g. poly(n) for arguments with
efficient provers). If we wanted to translate this AM-PCP into a standard PCP,
the length of the PCP would thus become exponential: 2v+O(t·κ). While this
length is large, constructing even such exponential length PCPs from scratch
(e.g. the Hadamard PCP of [2]) is quite nontrivial. Another disadvantage is
that the verifier’s running time becomes fairly large (polynomial in t).

The shared randomness used by the AM-PCP (and thus the length of the
standard PCP from it) can be improved either using nonuniformity or de-
randomization. These techniques can be applied either to the final AM-PCP
(following Remark 5.2), or directly to the PRFs, as we describe now:

296 Rothblum & Vadhan cc 19 (2010)

Nonuniform unconditional PRF. Continuing the discussion above, if we
use the nonuniform bounded-adversary PRF of Proposition 5.9, the number of
bits needed to choose a function in the family becomes only O(log t). The length
of the standard PCP we can obtain shrinks to 2v ·poly(t). The verifier’s running
time, however, remains polynomial in t, and moreover the prover and verifier
are now nonuniform. An alternative approach that avoids the nonuniformity
(at the cost of making complexity assumptions) is derandomization.

Derandomized conditional PRF. The (almost) final approach we sug-
gest for transforming reductions into PCPs is shortening the seed length of
PRF families using derandomization under (worst-case) complexity assump-
tions. If we assume that for some β > 0, it holds that there is a function in
DTIME (2O(n)) that does not have circuits of size 2β·n, then we can use the
PRF of Proposition 5.10. The number of bits needed to choose a function
in the family becomes only O(log t + log(1/ε)).9 As before, the length of the
standard PCP we can obtain shrinks to 2v · poly(t, 1/ε). The verifier’s running
time, while uniform, still remains polynomial in t.

Remark 5.18. If we are willing to make stronger assumptions, we can assume
here the existence of one-way permutations f : {0, 1}κ → {0, 1}κ that are
hard to invert for circuits of size 2Ω(κ). This would give (using the works of
[11, 43, 24, 23]), a (s, 1/s)-PRF families with seeds of length O(log s) that can
be computed in (uniform) time poly(log s(n)) and give efficient verifier running
time and a standard PCP with short length.

Finally, an alternative that lets us reduce the PCP length and verifier run-
ning time is considering bounded-adaptivity black-box reductions.

Bounded-adaptivity CRHF. If we have a reduction to CRHFs with
bounded adaptivity a, we can use the (unconditional) bounded-adversary
CRHF of Proposition 5.12 together with Claim 5.17. The number of bits
needed to choose a random function in the family is O(a(n) · κ). The veri-
fier’s running time becomes polynomial in that of the PCP verifier and in a(n)
and κ. The length of the standard PCP we can obtain shrinks to 2v · 2O(a(n)·κ).

To get an idea of what these results mean for the known reductions, observe
that in known reductions we can choose κ to be logarithmic, and for a CRHF
reduction with logarithmically bounded adaptivity (e.g. that of [33]), we get

9Note that we could make milder assumptions about the hardness of DTIME (2O(n)) and
obtain weaker derandomizations (i.e. longer seed) as in Remark 5.11.

cc 19 (2010) Are PCPs inherent in efficient arguments? 297

(unconditionally) a (standard) PCP of only quasipolynomial length. Using such
reductions to (unconditionally) construct a PCP of polynomial length remains
an open question.

Acknowledgements

Preliminary versions of this paper appeared in 24th IEEE Conference on Com-
putational Complexity and on the Electronic Colloquium on Computational
Complexity [41].

We thank Oded Goldreich for illuminating conversations and encourage-
ment, Luca Trevisan for an old discussion which led to the bounded-adversary
pseudorandom functions we use in Section 5, and the anonymous CCC 2009
and computational complexity reviewers for their helpful comments.

Guy Rothblum’s research was done mostly while at MIT, U.C. Berkeley
and Microsoft Research, and supported by NSF Grants CCF-0635297, NSF-
0729011, CNS-0430336 and CCF-0832797 and by a Computing Innovations
Fellowship.

Salil Vadhan’s work was done in part while visiting U.C. Berkeley, sup-
ported by the Miller Institute for Basic Research in Science and a Guggenheim
Fellowship, and was also supported by NSF grant CNS-0831289.

References

[1] N. Alon & J. H. Spencer. The Probabilistic Method. Wiley, New York,
1992.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan &M. Szegedy. Proof ver-
ification and the hardness of approximation problems. J. ACM, 45(3):501–
555, 1998.

[3] S. Arora & S. Safra. Probabilistic checking of proofs: A new charac-
terization of np. J. ACM, 45(1):70–122, 1998.

[4] L. Babai, L. Fortnow, L. A. Levin & M. Szegedy. Checking com-
putations in polylogarithmic time. In STOC, pages 21–31, 1991.

[5] B. Barak. How to go beyond the black-box simulation barrier. In FOCS,
pages 106–115, 2001.

[6] B. Barak&O. Goldreich. Universal arguments and their applications.
SIAM J. Comput., 38(5):1661–1694, 2008.

298 Rothblum & Vadhan cc 19 (2010)

[7] B. Barak, S. J. Ong & S. P. Vadhan. Derandomization in cryptog-
raphy. SIAM J. Comput., 37(2):380–400, 2007.

[8] M. Ben-Or, S. Goldwasser, J. Kilian & A. Wigderson. Multi-
prover interactive proofs: How to remove intractability assumptions. In
STOC, pages 113–131, 1988.

[9] M. Ben-Or, S. Goldwasser & A. Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In STOC, pages 1–10, 1988.

[10] E. Ben-Sasson & M. Sudan. Short pcps with polylog query complexity.
SIAM J. Comput., 38(2):551–607, 2008.

[11] M. Blum & S. Micali. How to generate cryptographically strong se-
quences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

[12] G. Brassard, D. Chaum & C. Crépeau. Minimum disclosure proofs
of knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988.

[13] R. Canetti, O. Goldreich & S. Halevi. The random oracle method-
ology, revisited. J. ACM, 51(4):557–594, 2004.

[14] L. Carter & M. N. Wegman. Universal classes of hash functions.
J. Comput. Syst. Sci., 18(2):143–154, 1979.

[15] D. Chaum, C. Crépeau & I. Damg̊ard. Multiparty unconditionally
secure protocols (extended abstract). In STOC, pages 11–19, 1988.

[16] I. Damg̊ard. Towards practical public key systems secure against chosen
ciphertext attacks. In CRYPTO, pages 445–456, 1991.

[17] I. Dinur. The pcp theorem by gap amplification. J. ACM, 54(3):12, 2007.

[18] U. Feige, S. Goldwasser, L. Lovász, S. Safra & M. Szegedy.
Interactive proofs and the hardness of approximating cliques. J. ACM,
43(2):268–292, 1996.

[19] L. Fortnow, J. Rompel & M. Sipser. On the power of multi-prover
interactive protocols. Theor. Comput. Sci., 134(2):545–557, 1994.

[20] O. Goldreich. The Foundations of Cryptography – Volume 1. Cambridge
University Press, 2001.

cc 19 (2010) Are PCPs inherent in efficient arguments? 299

[21] O. Goldreich. The Foundations of Cryptography – Volume 2. Cambridge
University Press, 2004.

[22] O. Goldreich. Computational Complexity: A Conceptual Perspective.
Cambridge University Press, 2008.

[23] O. Goldreich, S. Goldwasser& S. Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

[24] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way
functions. In STOC, pages 25–32, 1989.

[25] O. Goldreich, S. Micali & A. Wigderson. Proofs that yield nothing
but their validity and a methodology of cryptographic protocol design
(extended abstract). In FOCS, pages 174–187, 1986.

[26] O. Goldreich, S. Micali & A. Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority. In
STOC, pages 218–229, 1987.

[27] O. Goldreich, S. P. Vadhan & A. Wigderson. On interactive proofs
with a laconic prover. Computational Complexity, 11(1-2):1–53, 2002.

[28] J. Groth. Linear algebra with sub-linear zero-knowledge arguments. In
CRYPTO, pages 192–208, 2009.

[29] I. Haitner & T. Holenstein. On the (im)possibility of key dependent
encryption. In TCC, pages 202–219, 2009.

[30] R. Impagliazzo & A. Wigderson. = BPP if requires exponential
circuits: Derandomizing the xor lemma. In STOC, pages 220–229, 1997.

[31] Y. Ishai, E. Kushilevitz & R. Ostrovsky. Efficient arguments with-
out short pcps. In IEEE Conference on Computational Complexity, pages
278–291, 2007.

[32] Y. T. Kalai & R. Raz. Probabilistically checkable arguments. In
CRYPTO, pages 143–159, 2009.

[33] J. Kilian. A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In STOC, pages 723–732, 1992.

300 Rothblum & Vadhan cc 19 (2010)

[34] J. Kilian. Improved efficient arguments (preliminary version). In
CRYPTO, pages 311–324, 1995.

[35] A. Klivans & D. van Melkebeek. Graph nonisomorphism has subex-
ponential size proofs unless the polynomial-time hierarchy collapses. SIAM
J. Comput., 31(5):1501–1526, 2002.

[36] S. Micali. Cs proofs (extended abstracts). In FOCS, pages 436–453,
1994.

[37] P. Bro Miltersen & N. V. Vinodchandran. Derandomizing arthur-
merlin games using hitting sets. Computational Complexity, 14(3):256–
279, 2005.

[38] M. Naor. On cryptographic assumptions and challenges. In CRYPTO,
pages 96–109, 2003.

[39] N. Nisan & A. Wigderson. Hardness vs randomness. J. Comput. Syst.
Sci., 49(2):149–167, 1994.

[40] O. Reingold, L. Trevisan & S. P. Vadhan. Notions of reducibility
between cryptographic primitives. In TCC, pages 1–20, 2004.

[41] G. N. Rothblum & S. P. Vadhan. Are pcps inherent in efficient argu-
ments? In IEEE Conference on Computational Complexity, pages 81–92,
2009.

[42] C. Umans. Pseudo-random generators for all hardnesses. J. Comput.
Syst. Sci., 67(2):419–440, 2003.

[43] A. C.-C. Yao. Theory and applications of trapdoor functions (extended
abstract). In FOCS, pages 80–91, 1982.

[44] A. C.-C. Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

[45] M. Zimand. Probabilistically checkable proofs the easy way. In IFIP
TCS, pages 337–351, 2002.

cc 19 (2010) Are PCPs inherent in efficient arguments? 301

A. Known argument constructions

In this section we briefly review known constructions of argument systems
from cryptographic primitives, and their parameters in terms of our notions of
reduction. The approaches taken in the works of Kilian [33], Micali [36] and
Barak and Goldreich [6] are all based on collision-resistant hash functions (or
random oracles) and polynomial-length PCPs (polynomial in the time needed
to recognize the language). The work of Ishai, Kushilevitz and Ostrovsky [31] is
based on homomorphically additive encryption over a large (super-polynomial)
field and exponential length PCPs (exponential in the time needed to recognize
the language), where each symbol in the PCP is a linear function of its location
in the PCP (the locations are viewed as vectors over a large field). We review
the constructions from CRH and homomorphic encryption (we do not review
the random-oracle construction of [36]).

Overview of constructions. In all of these constructions, the cryptographic
primitive is used by the prover to “commit” to a (long) PCP proof string.
The (short) computationally binding commitment can be sent to the verifier.
This commitment allows de-committing to individual bits (or symbols) of the
PCP very efficiently (in terms of the verifier’s work and the communication).
To build an argument system, the prover commits to a PCP and sends the
commitment to the argument verifier. This verifier runs the PCP verifier who
requests some bits of the PCP, the argument verifier requests these bits and
their decommitment from the (argument) prover. The argument prover sends
the bits and decommitments, the verifier verifies that they are valid, completes
the simulation of the PCP verifier and accepts if it accepts.

To argue computational soundness, the intuition is that unless the prover
can break the commitment scheme, once it sends the commitment it is es-
sentially bound to a single PCP string, and the PCP’s soundness (against
non-adaptive provers) carries over to the argument setting.

To be more precise, consider the distribution Di of (non-adaptive) queries
made by the PCP verifier, chosen uniformly and at random conditioned on the
PCP verifier querying location i. The distribution Di (given i) is efficiently
sampleable for the PCPs used. Consider the following decommitment experi-
ment using any (potentially cheating) prover: run the commitment scheme on
a PCP string of the prover’s choice, then choose a random verifier query set
and a random query i from that set, take two samples from Di, and run the
prover (twice) to decommit to the each of the two index sets. Compare the
two answers to query i. The commitment schemes have the property that if

302 Rothblum & Vadhan cc 19 (2010)

in this experiment with probability at least ε the prover de-commits to two
different values as the i-th symbol, then this prover can be used to generate
an adversary A that breaks the underlying cryptographic primitive (collision
resistant hash or homomorphic encryption) with advantage εΩ(1) (in the sense
of Definition 3.1).10 The number of queries A makes to the cheating prover is
constant, i.e. O(1).

Soundness of the argument systems follows from the soundness sPCP of the
PCP and ε-security of the primitive. Let q = O(1) be the PCP’s query com-
plexity. If the primitive is ε secure, then by the above, the prover’s cheating
probability in the decommitment experiment is at most ε. From this we con-
clude that the argument’s soundness is at least sPCP − (ε · q)O(1): roughly, this
because with high probability over the coins of the commitment phase, with
high probability over the verifier’s query, there is only a single high-probability
answer that the prover gives to this query. Changing the prover to always
return this high-probability answer makes it non-adaptive without changing
the system’s behavior much. This means that the adaptive but computation-
ally bounded prover could not have cheated with too high probability to begin
with (since an unbounded but non-adaptive prover cannot break the PCP’s
soundness).

The parameters. Turning our attention to the parameters of these construc-
tions, in the constructions of [33, 36, 6], collision-resistant hash functions that
shrink their input by a multiplicative factor of 2, say from {0, 1}2κ to {0, 1}κ,
are used to build a hash tree of logarithmic depth (logarithmic in the PCP
length). The commitment is the root of the hash tree. To decommit to a sym-
bol in the PCP the prover reveals the (logarithmically many) values along the
path from the root to the requested symbol. The completeness c and sound-
ness are (more or less) inherited from the PCP, the parameter ε is polynomial
in the soundness and query complexity of the original PCP, as is the number

of queries q made by T SP∗
to a cheating prover oracle. The circuit size t of

T SP
is polynomial in the PCP length and the soundness. The communication

complexity is logarithmic in the PCP length, and polynomial in the number
of queries and the security parameter κ. The number of rounds of communi-
cation is O(1). Note also that the hash tree being used can very naturally be
framed in terms of a bounded-adaptivity reduction, where the number of levels
of adaptivity is logarithmic in the PCP length.

10For the [31] reduction, we are assuming that the field size here is larger than some
polynomial in 1/ε.

cc 19 (2010) Are PCPs inherent in efficient arguments? 303

In summary, if we consider a PCP for an NP language with small constant
soundness and completeness, and constant query complexity we get an argu-
ment with (slightly worse) constant soundness and completeness. The security
proof uses a cheating prover to break the CRH with small constant advan-

tage (polynomial in the soundness). The number of queries made by T SP∗
to a

cheating prover is constant, and its circuit size when run with the honest prover
is polynomial. The number of rounds is constant and the communication com-
plexity is log n · κ. Viewed as a bounded-adaptivity reduction, the adaptivity
is logarithmic.

Turning to the reduction of [31], which uses homomorphic encryption and
using a linear PCP, the parameters are similar, except that the running times
of the honest prover and of T SP

depend logarithmically on the PCP length. We
also note that the communication from the prover to the verifier is proportional
only to κ (not even logarithmic in the PCP length).

Other related work. Kilian [34] gave constructions of arguments from
collision-resistant hash families with improved efficiency, this improved con-
struction still falls into our framework (and indeed uses PCPs). Groth [28]
gives efficient arguments for specific algebraic functionalities and also for cir-
cuit satisfiability (based on specific assumptions). These constructions achieve
communication that roughly proportional to the square-root of the circuit size.
When plugged into our reductions, such parameters do not imply a non-trivial
PCP. Kalai and Raz [32] construct computationally sound PCPs (Probabilis-
tically Checkable Arguments PCAs) using some PCP techniques and a com-
putational Private Information Retrieval protocol. This construction also falls
into our framework. Their PCAs are short (polynomial only in the witness
length), but require that the verifier first send a message (or public key) to the
prover. This message causes the PCP we could obtain from the reduction to
be significantly longer.

Number of queries to the reduction. As a final note, observe that in our
results the number of queries made by the PCP verifier grows with the number
of queries the reduction proof of security makes to the cheating prover. In
known constructions of argument systems, i.e. those outlined above, the num-
ber of queries to the reduction is a fixed polynomial in the cheating prover’s
success probability. This is the case in many (but certainly not all) reductions
in cryptography. In hybrid arguments, for example, (a standard proof tech-
nique for cryptographic reductions) polynomially many queries are sometimes
necessary. For reductions from computationally sound argument systems, if the

304 Rothblum & Vadhan cc 19 (2010)

number of queries was larger - e.g. polynomial, we would not obtain an inter-
esting PCP. This remains a promising avenue for future research (as discussed
in the introduction).

Manuscript received 26 September 2009

Guy N. Rothblum

Computer Science Department
Center for Computational Intractability
Princeton University
Princeton, NJ 08540, USA
rothblum@csail.mit.edu

Salil Vadhan

School of Engineering & Applied
Sciences
and
Center for Research on Computation
& Society
Harvard University
Cambridge, MA 02138, USA
salil@seas.harvard.edu

	ARE PCPS INHERENT IN EFFICIENT ARGUMENTS?
	Abstract
	1. Introduction
	2. Preliminaries and definitions
	3. Cryptographic primitives and reductions
	4. From arguments to PCPs
	4.1. A generic transformation.
	4.2. Constructions under cryptographic assumptions.

	5. Weakening or eliminating computational assumptions
	5.1. Generalized PCPs and Theorem 4.2.
	5.2. Bounded-adversary PRFs and CRHFs.
	5.3. Instantiations using bounded-adversary primitives.

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00417
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

