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Abstract. We present an explicit pseudorandom generator for oblivi-
ous, read-once, permutation branching programs of constant width that
can read their input bits in any order. The seed length is O(log2 n),
where n is the length of the branching program. The previous best seed
length known for this model was n1/2+o(1), which follows as a special
case of a generator due to Impagliazzo, Meka, and Zuckerman (FOCS
2012) (which gives a seed length of s1/2+o(1) for arbitrary branching
programs of size s). Our techniques also give seed length n1/2+o(1) for

general oblivious, read-once branching programs of width 2n
o(1)

, which
is incomparable to the results of Impagliazzo et al.

Our pseudorandom generator is similar to the one used by Gopalan et
al. (FOCS 2012) for read-once CNFs, but the analysis is quite different;
ours is based on Fourier analysis of branching programs. In particular, we
show that an oblivious, read-once, regular branching program of width
w has Fourier mass at most (2w2)k at level k, independent of the length
of the program.

1 Introduction

A major open problem in the theory of pseudorandomness is to construct an
“optimal” pseudorandom generator for space-bounded computation. That is, we
want an explicit pseudorandom generator that stretches a uniformly random
seed of length O(log n) to n bits that cannot be distinguished from uniform by
any O(log n)-space algorithm (which receives the pseudorandom bits one at a
time, in a streaming fashion, and may be nonuniform).

Such a generator would imply that every randomized algorithm can be de-
randomized with only a constant-factor increase in space (RL = L), and would
also have a variety of other applications, such as in streaming algorithms [1],
deterministic dimension reduction and SDP rounding [2], hashing [3], hardness
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amplification [4], almost k-wise independent permutations [5], and cryptographic
pseudorandom generator constructions [6].

Unfortunately, for fooling general logspace algorithms, there has been essen-
tially no improvement since the classic work of Nisan [7], which provided a pseu-
dorandom generator of seed length O(log2 n). Instead, a variety of works have
improved the seed length for various restricted classes of logspace algorithms,
such as algorithms that use no(1) random bits [8, 9], combinatorial rectangles
[10–13] random walks on graphs [14, 15], branching programs of width 2 or 3
[16–18], and regular or permutation branching programs (of bounded width)
[19–23].

The vast majority of these works are based on Nisan’s generator or its variants
by Impagliazzo, Nisan, and Wigderson [24] and Nisan and Zuckerman [8], and
show how the analysis (and hence the final parameters) of these generators can
be improved for logspace algorithms that satisfy the additional restrictions. All
three of these generators are based on recursive use of the following principle: if
we consider two consecutive time intervals I1, I2 in a space s computation and
use some randomness r to generate the pseudorandom bits fed to the algorithm
during interval I1, then at the start of I2, the algorithm will ‘remember’ at most
s bits of information about r. So we can use a randomness extractor to extract
roughly |r|−s almost uniform bits from r (while investing only a small additional
amount of randomness for the extraction). This paradigm seems unlikely to yield
pseudorandom generators for general logspace computations that have a seed
length of log1.99 n (see [20]).

Thus, there is a real need for a different approach to constructing pseudo-
random generators for space-bounded computation. One new approach has been
suggested in the recent work of Gopalan et al. [25], which constructed improved
pseudorandom generators for read-once CNF formulas and combinatorial rect-
angles, and hitting set generators for width 3 branching programs. Their basic
generator (e.g. for read-once CNF formulas) works as follows: Instead of consid-
ering a fixed partition of the bits into intervals, they pseudorandomly partition
the bits into two groups, assign the bits in one group using a small-bias genera-
tor [26], and then recursively generate bits for the second group. While it would
not work to assign all the bits using a single sample from a small-bias generator,
it turns out that generating a pseudorandom partial assignment is a significantly
easier task.

An added feature of the Gopalan et al. generator is that its pseudorandom-
ness properties are independent of the order in which the output bits are read
by a potential distinguisher. In contrast, Nisan’s generator and its variants de-
pend heavily on the ordering of bits (the intervals I1 and I2 above cannot be
interleaved), and in fact it is known that a particular instantiation of Nisan’s
generator fails to be pseudorandom if the (space-bounded) distinguisher can read
the bits in a different order [27, Corollary 3.18]. Recent works [28, 29] have con-
structed nontrivial pseudorandom generators for space-bounded algorithms that
can read their bits in any order, but the seed length achieved is larger than

√
n.



Pseudorandomness for Regular Branching Programs via Fourier Analysis 657

In light of the above, a natural question is whether the approach of Gopalan
et al. can be extended to a wider class of space-bounded algorithms. We make
progress on this question by using the same approach to construct a pseudoran-
dom generator with seed length O(log2 n) for constant-width, read-once, obliv-
ious permutation branching programs that can read their bits in any order. In
analysing our generator, we develop new Fourier-analytic tools for proving pseu-
dorandomness against space-bounded algorithms.

1.1 Models of Space-Bounded Computation

A (layered) branching program B is a nonuniform model of space-bounded
computation. The program maintains a state from the set [w] = {1, . . . , w} and,
at each time step i, reads one bit of its input x ∈ {0, 1}n and updates its state
according to a transition function Bi : {0, 1} × [w] → [w]. The parameter w is
called the width of the program, and corresponds to a space bound of logw
bits. We allow the transition function Bi to be different at each time step i. We
consider several restricted forms of branching programs:

– Read-once branching programs read each input bit at most once.
– Oblivious branching programs choose which input bit to read depending

only on the time step i, and not on the current state
– Ordered branching programs (a.k.a. streaming algorithms) always read

input bit i in time step i (hence are necessarily both read-once and oblivious).

To derandomize randomized space-bounded computations (e.g. prove RL = L),
it suffices to construct pseudorandom generators that fool ordered branching
programs of polynomial width ( w = poly(n)), and hence this is the model ad-
dressed by most previous constructions (including Nisan’s generator). However,
the more general models of oblivious and read-once branching programs are also
natural to study, and, as discussed above, can spark the development of new
techniques for reasoning about pseudorandomness.

As mentioned earlier, Nisan’s pseudorandom generator [7] achieves O(log2 n)
seed length for ordered branching programs of polynomial width. It is known
how to achieve O(log n) seed length for ordered branching programs width 2 [17],
and for width 3, it is only known how to construct “hitting-set generators” (a
weaker form of pseudorandom generators) with seed length O(log n) [18, 25].
(The seed length is Õ(logn) if we want the error of the hitting set generator to
be subconstant.) For pseudorandom generators for width w ≥ 3 and hitting-set
generators for width w ≥ 4, there is no known construction with seed length
o(log2 n).

The study of pseudorandomness against non-ordered branching programs
started more recently. Tzur [27] showed that there are oblivious, read-once,
constant-width branching programs that can distinguish the output of Nisan’s
generator from uniform. Bogdanov, Papakonstantinou, and Wan [28] exhibited
a pseudorandom generator with seed length (1−Ω(1)) ·n for oblivious read-once
branching programs of width w for w = 2Ω(n). Impagliazzo, Meka, and Zucker-
man [29] gave a pseudorandom generator with seed length s1/2+o(1) for arbitrary
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branching programs of size s; note that s = O(nw) for a read-once branching
program of width w and length n.

We consider two further restrictions on branching programs:

– Regular branching programs are oblivious branching programs with the
property that, if the distribution on states in any layer is uniformly random
and the input bit read by the program at that layer is uniformly random, then
the resulting distribution on states in the next layer is uniformly random.
This is equivalent to requiring that the bipartite graph associated with each
layer of the program, where we have edges from each state u ∈ [w] in layer
i to the possible next-states u0, u1 ∈ [w] in layer i + 1 (if the input bit is b,
the state goes to ub), is a regular graph.

– Permutation branching programs are a further restriction, where we
require that for each setting of the input string, the mappings between layers
are permutations. This is equivalent to saying that (regular) bipartite graphs
corresponding to each layer are decomposed into two perfect matchings, one
corresponding to each value of the current input bit being read.

The fact that pseudorandomness for permutation branching programs might be
easier than for general branching programs was suggested by the proof that
Undirected S-T Connectivity is in Logspace [14] and its follow-ups [15, 30].
Specifically, the latter works construct “pseudorandom walk generators” for
“consistently labelled” graphs. Interpreted for permutation branching programs,
these results ensure that if an ordered permutation branching program has the
property that every layer has a nonnegligible amount of “mixing” — meaning
that the distribution on states becomes closer to uniform, on a truly random in-
put — then the overall program will also have mixing when run on the output of
the pseudorandom generator (albeit at a slower rate). The generator has a seed
length of O(log n) even for ordered permutation branching programs of width
poly(n). Reingold, Trevisan, and Vadhan [15] also show that if a generator with
similar properties could be constructed for (ordered) regular branching programs
of polynomial width, then this would suffice to prove RL = L. Thus, in the case
of polynomial width, regularity is not a significant constraint.

Recently, there has been substantial progress on constructing pseudorandom
generators for ordered regular and permutation branching programs of constant
width. Braverman, Rao, Raz, and Yehudayoff [19] and Brody and Verbin [20]
gave pseudorandom generators with seed length Õ(logn) for ordered regular
branching programs of constant width. Koucký, Nimbhorkar and Pudlák [21]
showed that the seed length could be further improved to O(log n) for ordered,
permutation branching programs of constant width; see [22, 23] for simplifica-
tions and improvements.

All of these generators for ordered regular and permutation branching pro-
grams are based on refined analyses of the pseudorandom generator construction
of Impagliazzo, Nisan, and Wigderson [24].
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1.2 Our Results and Techniques

Our main result is a pseudorandom generator for read-once, oblivious, (un-
ordered) permutation branching programs of constant width:

Theorem 1.1 (Main Result). For every constant w, there is an explicit pseu-

dorandom generator G : {0, 1}O(log2 n) → {0, 1}n fooling oblivious, read-once (but
unordered), permutation branching programs of width w and length n.

To be precise, the seed length and space complexity of the pseudorandom gen-
erator is

O(w2 log(w) log(n) log(nw/ε) + w4 log2(w/ε))

for oblivious, read-once, permutation branching programs of length n and width
w, where ε is the error.

Previously, it was only known how to achieve a seed length of n1/2+o(1) for
this model, as follows from the aforementioned results of Impagliazzo, Meka, and
Zuckerman [29] (which actually holds for arbitrary branching programs).

Our techniques also achieve seed length n1/2+o(1) for arbitrary read-once,

oblivious branching programs of width up to 2n
o(1)

:

Theorem 1.2. There is an explicit pseudorandom generator G : {0, 1}Õ(
√
n logw)

→ {0, 1}n fooling oblivious, read-once (but unordered) branching programs of
width w and length n.

This result is incomparable to that of Impagliazzo et al. [29]. Their seed length
depends polynomially on the width w, so require width w = no(1) to achieve
seed length n1/2+o(1). On the other hand, our result is restricted to read-once,
oblivious branching programs.

Our construction of the generator in Theorem 1.1 is essentially the same
as the generator of Gopalan et al. [25] for read-once CNF formulas, but with
a new analysis (and different setting of parameters) for read-once, oblivious,
permutation branching programs. The generator works by selecting a subset
T ⊂ [n] of output coordinates in a pseudorandom way, assigning the bits in
T using another pseudorandom distribution X , and then recursively assigning
the bits outside T . We generate T using an almost O(log n)-wise independent
distribution, including each coordinate i ∈ T with a constant probability pw
depending only on the width w. We assign the bits in T using a small-bias
distribution X on {0, 1}n [26]; such a generator has the property that for every
nonempty subset S ⊂ [n], the parity ⊕i∈SXi of bits in S has bias at most ε.
Generating T requires O(log n) random bits, generating X requires O(log n) bits
(even for ε = 1/poly(n)), and we need O(log n) levels of recursion to assign all
the bits. This gives us our O(log2 n) seed length.

Let B : {0, 1}n → {0, 1} be a function computed by an oblivious, read-once,
permutation branching program of width w. Following [25], to show that our
pseudorandom generator fools B, it suffices to show that the partial assignment
generated in a single level of recursion approximately preserves the acceptance
probability of B (on average). To make this precise, we need a bit of notation.
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For a set t ⊂ [n], a string x ∈ {0, 1}n, and y ∈ {0, 1}n−|t|, define Select(t, x, y) ∈
{0, 1}n as follows:

Select(t, x, y)i =

{
xi if i ∈ t

y|{j≤i:j /∈t}| if i /∈ t

Once we choose a set t ← T and an assignment x ← X to the variables in t,
the residual acceptance probability of B is P

U
[B(Select(t, x, U)) = 1], where U

is the uniform distribution on {0, 1}n. So, the average acceptance probability
over t ← T and x ← X is P

T,X,U
[B(Select(T,X,U)) = 1]. We would like this

to be close to the acceptance probability under uniformly random bits, namely
P
U
[B(U) = 1] = P

T,U ′,U
[B(Select(T, U ′, U) = 1]. That is, we would like our small-

bias distribution X to fool the function B′(x) := E
T,U

[B(Select(T, x, U))]. The

key insight in [25] is that B′ can be a significantly easier function to fool than
B, and even than fixed restrictions of B (like B(Select(t, ·, y)) for fixed t and
y). We show that the same phenomenon holds for oblivious, read-once, regular
branching programs. (The reason that the analysis of our overall pseudorandom
generator applies only for permutation branching programs is that regularity
is not preserved under restriction (as needed for the recursion), whereas the
permutation property is.)

To show that a small-bias space fools B′(x), it suffices to show that the

Fourier mass of B′, namely
∑

s∈{0,1}n,s�=0 |B̂′[s]|, is bounded by poly(n). (Here

B̂′[s] = E
U

[
B′[U ] · (−1)s·U] is the standard Fourier transform over Zn

2 . So B̂′[s]

measures the correlation of B′ with the parity function defined by s.) We show
that this is indeed the case (for most choices of the set t← T ):

Theorem 1.3 (Main Lemma). For every constant w, there are constants
pw > 0 and dw ∈ N such that the following holds. Let B : {0, 1}n → {0, 1}
be computed by an oblivious, read-once, regular branching program of width
w and length n ≥ dw. Let T ⊂ [n] be a randomly chosen set so that every
coordinate i ∈ [n] is placed in T with probability pw and these choices are
n−dw-almost (dw logn)-wise independent. Then with high probability over t← T
B′(x) = E

U
[B(Select(t, x, U))] has Fourier mass at most ndw .

As a warm-up, we begin by analysing the Fourier mass in the case the set T
is chosen completely at random, with every coordinate included independently
with probability pw. In this case, it is more convenient to average over T and work

with B′(x) = E
T,U

[B(Select(T, x, U))]. Then it turns out that B̂′[s] = p
|s|
w · B̂[s],

where |s| denotes the Hamming weight of the vector s. Thus, it suffices to analyse
the original program B and show that for each k ∈ {1, · · · , n}, the Fourier mass
of B restricted to s of weight k is at most ckw, where cw is a constant depending
only on w (not on n). We prove that this is indeed the case for regular branching
programs:
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Theorem 1.4. Let B : {0, 1}n → {0, 1} be a function computed by an oblivious,
read-once, regular branching program of width w. Then for every k ∈ {1, . . . , n},
we have ∑

s∈{0,1}n:|s|=k

|B̂[s]| ≤ (2w2)k.

Our proof of Theorem 1.4 relies on the main lemma of Braverman et al. [19],
which intuitively says that in a bounded-width, read-once, oblivious, regular
branching program, only a constant number of bits have a significant effect on
the acceptance probability. More formally, if we sum, for every time step i and
all possible states v at time i, the absolute difference between the acceptance
probability after reading a 0 versus reading a 1 from state v, the total will be
bounded by poly(w) (independent of n). This directly implies a bound of poly(w)
on the Fourier mass of B at the first level: the correlation of B with a parity of
weight 1 is bounded by the effect of a single bit on the output of B. We then
bound the correlation of B with a parity of weight k by the correlation of a prefix
of B with a parity of weight k − 1 times the effect of the remaining bit on B.
Thus we inductively obtain the bound on the Fourier mass of B at level k.

Our proof of Theorem 1.3 for the case of a pseudorandom restriction T uses the
fact that we can decompose the high-order Fourier coefficients of an oblivious,
read-once branching programB′ into products of low-order Fourier coefficients of
“subprograms” (intervals of consecutive layers) of B′. Using an almost O(log n)-
wise independent choice of T enables us to control the Fourier mass at level
O(log n) for all subprograms of B′, which suffices to control the total Fourier
mass of B′.

2 Preliminaries

2.1 Branching Programs

We define a length-n, width-w program to be a function B : {0, 1}n×[w]→ [w],
which takes a start state u ∈ [w] and an input string x ∈ {0, 1}n and outputs a
final state B[x](u).

In our applications, the input x is randomly (or pseudorandomly) chosen, in
which case a program can be viewed as a Markov chain randomly taking initial
states to final states. For each x ∈ {0, 1}n, we let B[x] ∈ {0, 1}w×w be a matrix
defined by

B[x](u, v) = 1 ⇐⇒ B[x](u) = v.

For a random variableX on {0, 1}n, we have E
X
[B[X ]] ∈ [0, 1]w×w, where E

R
[f(R)]

is the expectation of a function f with respect to a random variable R. Then
the entry in the uth row and vth column E

X
[B[X ]] (u, v) is the probability that

B takes the initial state u to the final state v when given a random input from
the distribution X .

A branching program reads one bit of the input at a time (rather than reading
x all at once) maintaining only a state in [w] = {1, 2, · · · , w} at each step.
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We capture this restriction by demanding that the program be composed of
several smaller programs, as follows.

Let B and B′ be width-w programs of length n and n′ respectively. We define
the concatenation B ◦B′ : {0, 1}n+n′ × [w]→ [w] of B and B′ by

(B ◦B′)[x ◦ x′](u) := B′[x′](B[x](u)),

which is a width-w, length-(n+n′) program. That is, we runB and B′ on separate
inputs, but the final state of B becomes the start state of B′. Concatenation
corresponds to matrix multiplication—that is, (B ◦ B′)[x ◦ x′] = B[x] · B′[x′],
where the two programs are concatenated on the left hand side and the two
matrices are multiplied on the right hand side.

A length-n, width-w, ordered branching program is a program B that can
be written B = B1 ◦B2 ◦ · · · ◦Bn, where each Bi is a length-1 width-w program.
We refer to Bi as the ith layer of B. We denote the subprogram of B from
layer i to layer j by Bi···j := Bi ◦Bi+1 ◦ · · · ◦Bj .

General read-once, oblivious branching programs (a.k.a. unordered branching
programs) can be reduced to the ordered case by a permutation of the input
bits. Formally, a read-once, oblivious branching program B is an ordered
branching programB′ composed with a permutation π. That is, B[x] = B′[π(x)],
where the ith bit of π(x) is the π(i)th bit of x.

For a program B and an arbitrary distribution X , the matrix E
X
[B[X ]] is

stochastic—that is,
∑

v EX
[B[X ]] (u, v) = 1 for all u and E

X
[B[X ]] (u, v) ≥ 0 for

all u and v. A program B is called a regular program if the matrix E
U
[B[U ]]

is doubly stochastic—that is, both E
U
[B[U ]] and its transpose E

U
[B[U ]]

∗
are

stochastic. A program B is called a permutation program if B[x] is a permu-
tation matrix for every x or, equivalently, B[x] is doubly stochastic. Note that
a permutation program is necessarily a regular program and, if both B and B′

are regular or permutation programs, then so is their concatenation.
A regular program B has the property that the uniform distribution is a sta-

tionary distribution of the Markov chain E
U
[B[U ]], whereas, if B is a permutation

program, the uniform distribution is stationary for E
X
[B[X ]] for any X .

A regular branching program is a branching program where each layer Bi

is a regular program and likewise for a permutation branching program.

2.2 Fourier Analysis

Let B : {0, 1}n → R
w×w be a matrix-valued function (such as given by a length-

n, width-w branching program). Then we define the Fourier transform of B

as a matrix-valued function B̂ : {0, 1}n → R
w×w given by

B̂[s] := E
U
[B[U ]χs(U)] ,
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where s ∈ {0, 1}n (or, equivalently, s ⊂ [n]) and

χs(x) = (−1)
∑

i x(i)·s(i) =
∏
i∈s

(−1)x(i).

We refer to B̂[s] as the sth Fourier coefficient of B. The order of a Fourier

coefficient B̂[s] is |s|—the Hamming weight of s, which is the size of the set
s or the number of 1s in the string s. Note that this is equivalent to taking the
real-valued Fourier transform of each of the w2 entries of B separately, but we
will see below that this matrix-valued Fourier transform is nicely compatible
with matrix algebra.

For a random variable X over {0, 1}n we define its sth Fourier coefficient
as

X̂(s) := E
X
[χs(X)] ,

which, up to scaling, is the same as taking the real-valued Fourier transform of
the probability mass function of X . We have the following useful properties.

Lemma 2.1. Let A,B : {0, 1}n → R
w×w be matrix valued functions. Let X, Y ,

and U be independent random variables over {0, 1}n, where U is uniform. Let
s, t ∈ {0, 1}n. Then we have the following.

– Decomposition: If C[x ◦ y] = A[x] ·B[y] for all x, y ∈ {0, 1}n, then Ĉ[s ◦ t] =
Â[s] · B̂[t].

– Expectation: E
X
[B[X ]] =

∑
s B̂[s]X̂(s).

– Parseval’s Identity:
∑

s∈{0,1}n

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣2
Fr

= E
U

[
||B[U ]||2Fr

]
, where ||·||Fr is the

Frobenius norm.

The Decomposition property is what makes the matrix-valued Fourier transform
more convenient than separately taking the Fourier transform of the matrix
entries as done in [28]. If B is a length-n width-w branching program, then, for
all s ∈ {0, 1}n,

B̂[s] = B̂1[s1] · B̂2[s2] · · · · · B̂n[sn].

2.3 Fourier Mass

Define the Fourier mass of a matrix-valued function B to be

L2(B) :=
∑
s�=0

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣
2
,

where ||M ||2 := maxx ||xM ||2 / ||x||2 is the spectral norm. Also, define the
Fourier mass of B at level k as

Lk
2(B) :=

∑
s∈{0,1}n:|s|=k

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣
2
.

Note that L2(B) =
∑

k≥1 L
k
2(B).

The Fourier mass is unaffected by order:
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Lemma 2.2. Let B,B′ : {0, 1}n → R
w×w be matrix-valued functions satisfying

B[x] = B′[π(x)], where π : [n]→ [n] is a permutation. Then, for all s ∈ {0, 1}n,
B̂[s] = B̂′[π(s)]. In particular, L2(B) = L2(B

′) and Lk
2(B) = Lk

2(B
′) for all k.

Lemma 2.2 implies that the Fourier mass of any read-once, oblivious branching
program is equal to the Fourier mass of the corresponding ordered branching
program.

A random variable X is called ε-biased if |X̂ [s]| ≤ ε for all s 
= 0n [26]. If
L2(B) is small, then B is fooled by any small-bias distribution:

Lemma 2.3. Let B be a length-n, width-w, branching program. Let X be a ε-
biased random variable on {0, 1}n. We have

∣∣∣∣∣∣E
X
[B[X ]]− E

U
[B[U ]]

∣∣∣∣∣∣
2
=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
s�=0

B̂[s]X̂(s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ L2(B)ε.

In the worst case L2(B) = 2Θ(n), even for a length-n width-3 permutation
branching program B. For example, the program Bmod 3 that computes the
Hamming weight of its input modulo 3 has exponential Fourier mass.

We show that, using ‘restrictions’, we can ensure that L2(B) is small.

3 Fourier Analysis of Regular Branching Programs

We use a result by Braverman et al. [19]. The following is a Fourier-analytic
reformulation of their result.

Lemma 3.1 ([19, Lemma 4]). Let B be a length-n, width-w, ordered, regular
branching program. Then

∑
1≤i≤n

∣∣∣∣∣∣B̂i···n[1 ◦ 0n−i]
∣∣∣∣∣∣
2
≤ 2w2.

Braverman et al. instead consider the sum, over all i ∈ [n] and all states u ∈ [w]
at layer i, of the difference in acceptance probabilities if we run the program
starting at v with a 0 followed by random bits versus a 1 followed by random
bits. They refer to this quantity as theweight ofB. Their result can be expressed
in Fourier-analytic terms by considering subprograms Bi···n that are the original
program with the first i− 1 layers removed:

∑
1≤i≤n

∣∣∣∣∣∣B̂i···n[1 ◦ 0n−i]q
∣∣∣∣∣∣
1
≤ 2(w − 1)

for any q ∈ {0, 1}w with
∑

u q(u) = 1. (The vector q can be used to specify the

accept state of B, and the vth row of B̂i···n[1 ◦ 0n−i]q is precisely the difference
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in acceptance probabilities mentioned above.) By summing over all w possible
q, we obtain ∑

i∈[n]

∑
u

∣∣∣∣∣∣B̂i···n[1 ◦ 0n−i](·, u)
∣∣∣∣∣∣
1
≤ 2w(w − 1).

This implies Lemma 3.1, as the spectral norm of a matrix is bounded by the
sum of the 1-norms of the columns.

Lemma 3.1 is similar (but not identical) to a bound on the first-order Fourier

coefficients of a regular branching program: The term B̂i···n[1 ◦ 0n−i] measures
the effect of the ith bit on the output of B when we start the program at layer
i, whereas the ith first-order Fourier coefficient B̂[0i−1 ◦ 1 ◦ 0n−i] measures the
effect of the ith bit when we start at the first layer and run the first i− 1 layers
with random bits. This difference allows us to use Lemma 3.1 to obtain a bound
on all low-order Fourier coefficients of a regular branching program:

Theorem 3.2. Let B be a length-n, width-w, read-once, oblivious, regular
branching program. Then

Lk
2(B) :=

∑
s∈{0,1}n:|s|=k

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣
2
≤ (2w2)k.

The bound does not depend on n, even though we are summing
(
n
k

)
terms.

Proof. By Lemma 2.2, we may assume that B is ordered. We perform an induc-
tion on k. If k = 0, then there is only one Fourier coefficient to bound—namely,
B̂[0n] = E

U
[B[U ]], which is doubly stochastic. The base case follows from the

fact that every doubly stochastic matrix has spectral norm 1. Suppose the result
holds for k. We split the Fourier coefficients based on where the last 1 is:∑

s∈{0,1}n:|s|=k+1

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣
2

=
∑

1≤i≤n

∑
s∈{0,1}i−1:|s|=k

∣∣∣∣∣∣B̂[s ◦ 1 ◦ 0n−i]
∣∣∣∣∣∣
2

≤
∑

1≤i≤n

∑
s∈{0,1}i−1:|s|=k

∣∣∣∣∣∣B̂1···i−1[s]
∣∣∣∣∣∣
2
·
∣∣∣∣∣∣B̂i···n[1 ◦ 0n−i]

∣∣∣∣∣∣
2

(by Lemma 2.1 (Decomposition))

≤(2w2)k · 2w2 (by the induction hypothesis and Lemma 3.1).

4 Random Restrictions

Our results involve restricting branching programs. However, our use of restric-
tions is different from elsewhere in the literature. Here, as in [25], we use (pseu-
dorandom) restrictions in the usual way, but we analyse them by averaging over
the unrestricted bits. Formally, we define a restriction as follows.
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Definition 4.1. For t ∈ {0, 1}n and a length-n branching program B, let B|t
be the restriction of B to t—that is, B|t : {0, 1}n → R

w×w is a matrix-valued
function given by B|t[x] := E

U
[B[Select(t, x, U)]], where U is uniform on {0, 1}n.

The most important aspect of restrictions is how they relate to the Fourier trans-

form: For all B, s, and t, we have B̂|t[s] = B̂[s] if s ⊂ t and B̂|t[s] = 0 otherwise.
The restriction t ‘kills’ all the Fourier coefficients that are not contained in it.
This means that a restriction significantly reduces the Fourier mass:

Lemma 4.2. Let B be a length-n, width-w program. Let T be n independent
random bits each with expectation p. Then

E
T
[L2(B|T )] =

∑
s�=0

p|s|
∣∣∣∣∣∣B̂[s]

∣∣∣∣∣∣
2
.

We can use Theorem 3.2 to prove a result about random restrictions of regular
branching programs:

Proposition 4.3. Let B be a length-n, width-w, read-once, oblivious, regular
branching program. Let T be n independent random bits each with expectation
p ≤ 1/4w2. Then E

T
[L2(B|T )] ≤ 1.

5 Pseudorandom Restrictions

To analyse our generator, we need a pseudorandom version of Proposition 4.3.
That is, we need to prove that, for a pseudorandom T (generated using few
random bits), L2(B|T ) is small. We will generate T using an almost O(log n)-
wise independent distribution:

Definition 5.1. A random variable X on Ωn is δ-almost k-wise indepen-
dent if, for any I = {i1, i2, · · · , ik} ⊂ [n] with |I| = k, the coordinates
(Xi1 , · · · , Xik) ∈ Ωk are δ statistically close to being independent.We say that
X is k-wise independent if it is 0-almost k-wise independent.

We can sample a random variable X on {0, 1}n that is δ-almost k-wise indepen-
dent such that each bit has expectation p = 2−d usingO(kd+log(1/δ)+d log(nd))
random bits. See the full version of this paper for more details.

Our main lemma (stated informally as Theorem 1.3) is as follows.

Theorem 5.2 (Main Lemma). Let B be a length-n, width-w, read-once, obliv-
ious, regular branching program. Let T be a random variable over {0, 1}n where
each bit has expectation p and the bits are δ-almost 2k-wise independent. Suppose
p ≤ (2w)−2 and δ ≤ (2w)−4k. Then

P
T

[
L2(B|T ) ≤ (2w2)k

] ≥ 1− n4 · 2
2k

.
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In particular, we show that, for w = O(1), k = O(log n), and δ = 1/poly(n), we
have L2(B|T ) ≤ poly(n) with probability 1− 1/poly(n).

First we show that the Fourier mass at level O(log n) is bounded by 1/n with
high probability. This also applies to all subprograms.

Lemma 5.3. Let B be a length-n, width-w, ordered, regular branching program.
Let T be a random variable over {0, 1}n where each bit has expectation p and
the bits are δ-almost k-wise independent. If p ≤ (2w)−2 and δ ≤ (2w)−2k, then,
for all β > 0,

P
T

[∀1 ≤ i ≤ j ≤ n Lk
2(Bi···j |T ) ≤ β

] ≥ 1− n2 2

2kβ
.

Proof. By Theorem 3.2, for all i and j,

E
T

[
Lk
2(Bi···j |T )

]
=

∑
s⊂{i···j}:|s|=k

P
T
[s ⊂ T ]

∣∣∣∣∣∣B̂i···j [s]
∣∣∣∣∣∣
2
≤ (2w2)k(pk + δ) ≤ 2

2k
.

The result now follows from Markov’s inequality and a union bound.

Now we use Lemma 5.3 to bound the Fourier mass at higher levels. We decompose
high-order (k′ ≥ 2k) Fourier coefficients into low-order (k ≤ k′ < 2k) ones,
similarly to the proof of Theorem 3.2:

Lemma 5.4. Let B be a length-n, ordered branching program and t ∈ {0, 1}n.
Suppose that, for all i, j, and k′ with 1 ≤ i ≤ j ≤ n and k ≤ k′ < 2k,
Lk′
2 (Bi···j |t) ≤ 1/n. Then, for all k′′ ≥ k and all i and j, Lk′′

2 (Bi···j |t) ≤ 1/n.

Lemmas 5.3 and 5.4 combine to give Theorem 5.2: By Lemma 5.3, a pseudoran-
dom restriction guarantees that, with high probability the Fourier mass at levels
k to 2k is small for all subprograms Bi···j . Lemma 5.4 implies that, with high
probability, the Fourier mass is small at all levels above k. The Fourier mass at
levels below k can be bounded directly using Theorem 3.2.

6 The Pseudorandom Generator

Our main result (Theorem 1.1) is stated more formally as follows.

Theorem 6.1 (Main Result). There exists a pseudorandom generator family
Gn,w,ε : {0, 1}sn,w,ε → {0, 1}n with seed length

sn,w,ε = O(w2 log(w) log(n) log(nw/ε) + w4 log2(w/ε))

such that, for any length-n, width-w, read-once, oblivious (but unordered), per-
mutation branching program B and ε > 0,∣∣∣∣

∣∣∣∣ E
Usn,w,ε

[
B[Gn,w,ε(Usn,w,ε)]

] − E
U
[B[U ]]

∣∣∣∣
∣∣∣∣
2

≤ ε.

Moreover, Gn,w,ε can be computed in space O(sn,w,ε).
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Now we use the above results to construct our pseudorandom generator for a
read-once, oblivious, permutation branching program B.

Theorem 5.2 says that with high probability over T , B|T has small Fourier
mass, where T is almost k-wise independent with each bit having expectation p.
This implies that B|T is fooled by small bias X and thus

E
T,X,U

[B[Select(T,X,U)]] ≈ E
T,U,U ′

[B[Select(T, U ′, U)]] = E
U
[B[U ]] .

If we define Bt,x[y] := B[Select(t, x, y)], then E
T,X,U

[
BT,X [U ]

] ≈ E
U
[B[U ]]. So

now we need only construct a pseudorandom generator for Bt,x, which is a
length-(n− |t|) permutation branching program. Then

E
T,X,Ũ

[
BT,X [Ũ ]

]
≈ E

T,X,U

[
BT,X [U ]

] ≈ E
U
[B[U ]] ,

where Ũ is the output of the pseudorandom generator for Bt,x. We construct

Ũ ∈ {0, 1}n−|T | recursively; each time we recurse, the required output length is
reduced to n − |T | ≈ n(1 − p). Thus after O(log(n)/p) levels of recursion the
required output length is constant.

The only place where the analysis breaks down for regular branching programs
is when we recurse. If B is only a regular branching program, Bt,x may not be
regular. However, if B is a permutation branching program, then Bt,x is too.
Essentially, the only obstacle to generalising the analysis to regular branching
programs is that regular branching programs are not closed under restrictions.

The pseudorandom generator is formally defined as follows.

Algorithm for Gn,w,ε : {0, 1}sn,w,ε → {0, 1}n.
1. Compute appropriate values of p ∈ [1/8w2, 1/4w2],

k ≥ log2
(
4
√
wn4/ε

)
, δ = ε(2w)−4k, and μ = ε(2w2)−k.1

2. If n ≤ (4 · log2(2/ε)/p)2, output n truly random bits and stop.
3. Sample T ∈ {0, 1}n where each bit has expectation p and the bits

are δ-almost 2k-wise independent.
4. If |T | < pn/2, output 0n and stop.
5. Recursively sample Ũ ∈ {0, 1}�n(1−p/2)�. i.e. Ũ = G�n(1−p/2)�,w,ε(U).
6. Sample X ∈ {0, 1}n from a μ-biased distribution.
7. Output Select(T,X, Ũ) ∈ {0, 1}n.

The analysis of the algorithm proceeds as follows.

– Every time we recurse, n is decreased to �n(1 − p/2)�. After O(log(n)/p)
recursions, n is reduced to O(1) and the recursion terminates.

– The probability of failing because |T | < pn/2 is small by a Chernoff bound
for limited independence. This requires that n is not too small (step 2).

– The output is pseudorandom, as

1 For the purposes of the analysis we assume that p, k, δ, and μ are the same at every
level of recursion. So if Gn,w,ε is being called recursively, use the same values of p,
k, δ, and μ as at the previous level of recursion.
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E
T,X,Ũ

[
B[Select(T,X, Ũ)]

]
≈ E

T,X,U
[B[Select(T,X,U)]] ≈ E

U
[B[U ]] .

The first approximate equality holds because we inductively assume that Ũ
is pseudorandom; the second holds as a result of the main lemma.

– The total seed length is the seed length needed to sample X and T at each
level of recursion and O((log(1/ε)/p)2) truly random bits at the last level.
Sampling X requires seed length O(log(n/μ)) and sampling T requires seed
length O(k log(1/p) + log(log(n)/δ)).

For more details, see the full version of this paper.

7 General Read-Once, Oblivious Branching Programs

With a different setting of parameters, our pseudorandom generator can fool
arbitrary oblivious, read-once branching programs, rather than just permuta-
tion branching programs (Theorem 1.2). The key to proving Theorem 1.2 is the
following Fourier mass bound for arbitrary branching programs.

Lemma 7.1. Let B be a length-n, width-w, read-once, oblivious branching pro-
gram. Then, for all k ∈ [n], Lk

2(B) ≤
√
wnk.

Proof. By Parseval’s Identity,

∑
s∈{0,1}n:|s|=k

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣2
2
≤

∑
s∈{0,1}n

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣2
Fr

= E
U

[
||B[U ]||2Fr

]
= w.

The result follows from Cauchy-Schwartz.

For more details, see the full version of this paper.
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