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Abstract. We introduce a “derandomized” analogue of graph squaring.
This operation increases the connectivity of the graph (as measured by
the second eigenvalue) almost as well as squaring the graph does, yet
only increases the degree of the graph by a constant factor, instead of
squaring the degree.

One application of this product is an alternative proof of Reingold’s
recent breakthrough result that S-T Connectivity in Undirected Graphs
can be solved in deterministic logspace.

1 Introduction

“Pseudorandom” variants of graph operations have proved to be useful in a
variety of settings. Alon, Feige, Wigderson, and Zuckerman [ | introduced
“derandomized graph products” to give a more illuminating deterministic reduc-
tion from approximating clique to within relatively small (eg constant) factors
to approximating clique to within relatively large (eg n¢) factors. Reingold, Vad-
han, and Wigderson | | introduced the “zig-zag graph product” to give a
new construction of constant-degree expander graphs. The zig-zag product found
many applications, the most recent and most dramatic of which is Reingold’s
deterministic logspace algorithm [Rei] for connectivity in undirected graphs.

In this paper, we present a pseudorandom analogue of graph squaring. The
square X? of a graph X is the graph on the same vertex set whose edges are paths
of length 2 in the original graph. This operation improves many connectivity
properties of the graph, such as the diameter and mixing time of random walks
of the graph (both of which roughly halve). However, the degree of the graph
squares. In terms of random walks on the graph, this means that although half
as many steps are needed to mix, each step costs twice as many random bits.
Thus, there is no savings in the amount of randomness needed for mixing.

Our derandomized graph squaring only increases the degree by a constant
factor rather than squaring it. Nevertheless, it improves the connectivity almost
as much as the standard squaring operation. The measure of connectivity for
which we prove this is the second eigenvalue of the graph, which is well-known
to be a good measure of the mixing time of random walks, as well as of graph
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expansion. The standard squaring operation squares the second eigenvalue; we
prove that the derandomized squaring does nearly as well.

The main new application of our derandomized squaring is a new logspace
algorithm for connectivity in undirected graphs, thereby giving a new proof
of Reingold’s theorem [Rei]. Our algorithm, while closely related to Reingold’s
algorithm, is arguably more natural. In particular, it can be viewed as apply-
ing a natural pseudorandom generator, namely that of Impagliazzo, Nisan, and
Wigderson | ], to random walks on the input graph. This makes the analysis
of the space requirements of the algorithm simpler. Reingold’s algorithm is based
on the zig-zag product, and constructs a sequence of graphs with an increasing
number of vertices. Our analysis, based on derandomized squaring, only works
on the vertex set of the original input graph.

Below we describe the derandomized squaring and its application to undi-
rected s-t connectivity in more detail.

1.1 Derandomized Graph Squaring

Let X be an undirected regular graph of degree K.! The square X2 of X has
an edge for every path of length 2 in X. One way to visualize it is that for every
vertex v in X, we place a clique on its K neighbours (this connects every pair
of vertices that has a length 2 path through v). The degree thus becomes K?2.
(Throughout the paper, we allow multiple edges and self-loops.)

In derandomized squaring, we use an auxiliary graph G on K vertices and
place it instead of a clique on the K neighbours of every vertex v (thus connecting
only some of the pairs of vertices which have a length 2 path through v). We
denote the resulting graph by X ®G.

If the degree of GG is D, the derandomized square will have degree K D, which
will be smaller than K?2. We will see, however, that if G is an expander, then
even if D is much smaller than K, the derandomized square of X with respect
to G improves connectivity similarly to standard squaring.

Our measure of connectivity is the second eigenvalue A € [0,1] of (the ran-
dom walk on) the graph; small X indicates that the random walk mixes rapidly
and that the graph has good expansion (i.e. is highly connected). If the second
eigenvalue of X is A then the second eigenvalue of X2 is A2. The second eigen-
value of the derandomized product is not very far. For example, we prove that
it is at most A2 + 2u where p is the second eigenvalue of G.

1.2 A New Logspace Algorithm for Undirected Connectivity

Recall that the problem of undirected st-connectivity is: given an undirected
graph G and two vertices s, t, decide whether there is a path from s to t in
G. While the time complexity of this problem is well-understood, the space

b Actually, following [ ], we actually work with regular directed graphs in the tech-
nical sections of the paper, but thinking of undirected graphs suffices for the informal
discussion here.
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complexity was harder to tackle. A long line of research, starting with Sav-

itch’s deterministic log*-space algorithm [Sav], and the log-space randomized
algorithm [ ], culminated in Reingold’s optimal deterministic log-space al-
gorithm [Rei] (see his paper and its references for more on the history and ap-

plications of this problem). We now shortly describe Reingold’s algorithm, then
present our algorithm and compare the two.

Reingold’s Algorithm. Notice that undirected connectivity is solvable in log-
space on bounded-degree graphs with logarithmic diameter (simply enumerate
all paths of logarithmic length in the graph out of the origin vertex). Examples
of graphs with logarithmic diameter are expander graphs, i.e. graphs whose
second eigenvalue is bounded away from 1. Reingold’s idea is to transform the
input graph into a bounded-degree expander by gradually decreasing its second
eigenvalue.

A natural attempt would be to square the graph. This indeed decreases the
second eigenvalue, but increases the degree. To decrease the degree, Reingold
uses the zig-zag graph product of | |, or the related replacement product. We
describe his algorithm in terms of the latter product.

Given a K-regular graph X on N vertices, and an auxiliary D-regular graph
G on K vertices, the replacement product X @G is a D + 1l-regular graph on
NK vertices. On each edge (v,w) in X put two vertices, one called e, “near” v
and another called e,, “near” w, for a total of N K vertices. This can be thought
of as splitting each vertex v into K vertices forming a “cloud” near v. Place the
graph G on each cloud. Now for each edge e = (v, w) of X, put an edge between
ey and e,,. The result is a (D + 1)-regular graph. Notice that X ©G is connected
if and only if both X and G are.

The replacement product reduces the degree from K to D + 1. It is proven
in | ] (and also follows from [M1}]) that when G is a good enough expander,
replacement product roughly preserves the second eigenvalue of X. Suppose that
X is (D + 1) regular and G has (D + 1)? vertices and degree D. Then X2 ®G
is again a (D + 1)-regular graph, whose second eigenvalue is roughly the square
of the second eigenvalue of X . Iterating this procedure log N times leads to a
constant-degree expander on polynomially many vertices, since at each iteration
the number of vertices grows by a factor of about D?. On the resulting expander
we can therefore solve connectivity in logarithmic space. (One also must confirm
that the iterations can be computed in logarithmic space as well).

Our Algorithm. Our approach also follows from this idea of increasing connec-
tivity by squaring the graph. However, instead of squaring, and then reducing
the degree by a zigzag product (and thus increasing the number of vertices)
we will replace the squaring by derandomized squaring, which maintains the
vertex set (but increases the degree). Iterating the derandomized squaring op-
eration yields highly connected graphs with relatively small degree compared to
doing the same iterations with standard squaring. In the next two paragraphs
we compare the resulting graphs in each case.



Derandomized Squaring of Graphs 439

Let X be a regular graph on N vertices. Squaring the graph log N times,
results in the graph X 28N — xN (whose edges are all paths of length N in X).
This graph is extremely well connected; it contains an edge between every two
vertices which are connected by a path in X. The degree however, is huge —
exponential in N. We want to simulate the behavior of X with a graph that
has much smaller degree.

Suppose that instead of standard squaring at each step we apply derandom-
ized squaring to obtain a sequence of graphs X1, Xo,.... At each step the degree
increases by a constant factor (instead of the degree squaring at each step). For
m = O(log N) the degree of X, is only polynomial in N. But we will show that is
as well-connected as XV (as measured by the second eigenvalue). In particular,
X, will contain an edge between every pair of vertices s, that are connected
by a path in X. Deciding whether s,¢ are connected therefore reduces to enu-
merating all neighbors of s in X,,, and looking for ¢. There are only polynomially
many neighbors, so the search can be done in logarithmic space. We will show
that computing neighbors in X,,, can also be done in logarithmic space. These
two facts yield a logarithmic space algorithm for undirected connectivity.

Comparing our approach to Reingold’s original solution, the main way in
which our algorithm differs from (and is arguably more natural than) Reingold’s
algorithm is that all the graphs we construct are on the same vertex set. Edges
in the graph X,, correspond to paths of length 2™ in X. The price we pay is
that the degree increases, but, thanks to the use of derandomized squaring, only
by a constant factor (which we can afford). In contrast, each step of Reingold’s
algorithm creates a graph that is larger than the original graph (but maintains
constant degree throughout).

1.3 Derandomized Squaring as a Pseudo-random Generator

Impagliazzo, Nisan, and Wigderson | | proposed the following pseudoran-
dom generator. Let G be an expander graph with K vertices and degree D.
Choose a random vertex z « [K|, a random edge label a « [D], and output
(x,z[a]) € [K] x [K]. This pseudorandom generator is at the heart of deran-
domized squaring. Notice that using this pseudorandom generator to generate a
pseudorandom walk of length 2 in a graph X of degree K is equivalent to taking
a random step in the derandomized square of X using auxiliary graph G.

Impagliazzo, Nisan, and Wigderson | ] suggested to increase the stretch
of the above generator by recursion. They proved that when the graphs G used
in the construction are sufficiently good expanders of relatively large degree, this
construction fools various models of computation (including randomized logspace
algorithms)?. However, the resulting generator has seed length O(log?n), and
hence does not prove that RL=L.

Our construction of the graph X,,, in our st-connectivity algorithm is precisely
the graph corresponding to using the INW generator to derandomize random

2 Specifically, to fool an algorithm running in space log n, they use expanders of degree
poly(n).
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walks of length 2™ in X. However, we are able to use constant-degree expanders
for G (for most levels of recursion), thereby obtaining seed length O(logn) and
hence a logspace algorithm (albeit for undirected st-connectivity rather than all
of RL).

Moreover, it follows from our analysis that taking the pseudorandom walk
in X corresponding to a random step in X, (equivalently, according to the
INW generator with appropriate parameters) will end at an almost-uniformly
distributed vertex. A pseudorandom generator with such a property was already
given in | | based on Reingold’s algorithm and the zig-zag product, but again
it is more natural in terms of derandomized squaring.

1.4 Relation to the Zig-Zag Product

The reader may have noticed a similarity between the derandomized squaring
and the zig-zag product of | ] (which we define precisely later in the paper).
Indeed, they are very closely related. When we use a square graph G? as auxiliary
graph, the derandomized square X ®G? turns out to be a “projection” of the
square of the zigzag product (X @@G)2. This observation allows us to prove the
expansion properties of the derandomized squaring by reducing to the zig-zag
product case.

We note that the derandomized squaring has complementary properties to
the zigzag product. In the zigzag product we are given a graph X and can
decrease its degree while (nearly) maintaining its second eigenvalue. We must
pay by slightly increasing the number of vertices. In the derandomized squaring
we manage to decrease the second eigenvalue while maintaining the number of
vertices, and we pay by slightly increasing the degree.

2 Preliminaries

Reingold, Trevisan, and Vadhan [ | generalized Reingold’s algorithm and the
zig-zag product to (regular) directed graphs, and working in this more general
setting turns out to be useful for us, too (even if we are only interested in solving
st-connectivity for undirected graphs). We present the necessary background on
such graphs in this section.

Let X be a directed graph (digraph for short) on N vertices. We say that
X is K-outregular if every node has outdegree K, K -inregular if every node
has indegree K, and K -regular if both conditions hold. Graphs may have self-
loops and multiple edges, where a self-loop is counted as both an outgoing and
incoming edge. All graphs in this paper are outregular directed graphs (and most
are regular).

For a K-regular graph X on N vertices, we denote by Mx the transition
matrix of the random walk on X, i.e. the adjacency matrix divided by K. Let
u = (1/N,...,1/N) € RY be the uniform distribution on the vertices of X.
Then, by regularity, Mxu = u (so u is an eigenvector of eigenvalue 1).

Following [Mih], we consider the following measure of the rate at which the
random walk on X converges to the stationary distribution u:
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where v 1 u refers to orthogonality with respect to the standard dot product
(z,y) =3, ziy; on RN and ||z|| = \/(x, x) is the Ly norm. The smaller A\(X), the
faster the random walk converges to the stationary distribution and the better
“expansion” properties X has. Hence, families of graphs with A(X) <1 — 2(1)
are referred to as expanders.

In case X is undirected, A(X) equals the second largest eigenvalue of the
symmetric matrix Mx in absolute value. In directed graphs, it equals the square
root of the second largest eigenvalue of M% M.

A K-regular directed graph X on N vertices with A(X) < A will be called
an (N, K, \)-graph. We define g(X) = 1 — A(X) to be the spectral gap of X.

A labelling of a K-outregular graph X is an assignment of a number in [K] to
every edge of X, such that the edges exiting every vertex have K distinct labels.
For a vertex v of X and an edge label © € [K] we denote by v[x] the neighbor
of v via the outgoing edge labelled x. We say that a labelling is consistent if for
every vertex all incoming edges have distinct labels. Notice that if a graph has a
consistent labeling, then it is K-inregular (and hence K-regular). We will work
with consistently labelled graphs in this extended abstract for simplicity and to
make the connection between derandomized squaring and the INW pseudoran-
dom generator | ] more apparent. But this condition condition can be relaxed
(eg in the definition and analysis of the derandomized square) by allowing each
edge (u,v) to have two labels, one as an outgoing edge from u and one as an
incoming edge to v, as formalized using the “rotation maps” of | , ]

The notion of consistent labelling we use is the same as in [[TW] and | ]
For undirected graphs, one can consider a stronger notion of consistent labelling,
where an edge (u,v) is required to have the same label leaving from u as it does
when leaving v, but this has the disadvantage that it is not preserved under the
operations we perform (such as the squaring operation below).

The square X2 of a graph X is the graph whose edges are paths of length 2 in
X . The square of a K-regular graph is K2-regular, and a consistent labelling of
X induces a consistent labelling of X? in a natural way. Specifically, for a label
(z,y) € [K]?, we define v[z,y] = v[z][y]. Notice that \(X?) < A(X)?. (This
is always an equality for undirected graphs, but not necessarily so for directed
graphs). We similarly define the n-th power X™ using paths of length n in X.

Like undirected graphs, the spectral gap of reqular connected directed graphs
is always at least an inverse polynomial. This holds provided the graph is con-
nected and aperiodic (i.e. the ged of all cycle-lengths is 1). (If either of these
conditions doesn’t hold than A(X) = 1.) The following can be proven by reduc-
tion to the corresponding lemma in the undirected case [AS].

Lemma 2.1. For every K-regular, connected, aperiodic graph. Then A(X) <
1—1/(2D?N?).

The next proposition shows that when the second eigenvalue is very small,
the graph is very well connected - it contains a clique (we omit the proof).
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Proposition 2.2. An (N, D,1/2N®)-graph X contains an edge between any
pair of vertices. Indeed, for a pair of vertices v,w the probability that a random
neighbor of v is equal w is at least 1/N — 1/N?2.

3 Derandomized Squaring

After giving a formal definition of derandomized squaring, we will show that it
decreases the second eigenvalue of a graph in a way comparable to squaring it.
The proof is by reduction to the zigzag product X @G (also defined below), of
X with an auxiliary graph G. We shall see that the derandomized square of X
with the auxiliary squared graph G2 is a “projection” (defined precisely later)
of the squared graph (X @G)?. We then show that projection does not increase
the second eigenvalue. We can therefore use the known bounds on the second
eigenvalue from | ]

Definition 3.1. Let X be a labelled K -regular graph on vertex set [N], let G
be a labelled D-regular graph on vertex set [K]. The derandomized square graph
X ®G has vertex set [N] and is K D-outreqular. The edges exiting a vertez v are
paths v[x][y] of length two in X such that y is a neighbor of x in G. Equivalently,
when x € [K| is an edge label in X and a € [D] is an edge label in G, the neighbor
of v € [N] via the edge labelled (x,a) is v[z][z[a]].

The derandomized square may, in general, not produce an in-regular graph.
However, it will do so provided that X is consistently labelled.

Proposition 3.2. If X is consistently labelled, then X ®G is K D-regular. If,
in addition, G is consistently labelled, then X ®G is consistently labelled.

Notice that even if X and G are consistently labelled and undirected, i.e. for
every edge (u,v) there is a corresponding reverse edge (v,u), then the deran-
domized square X ®G need not be undirected?.

Our main result is that when G is a good expander, then the expansion of
X ®G is close to that of X2,

Theorem 3.3. If X is an (N, K, \)-graph and G is a (K, D, u)-graph, then
X ®G? is an (N, KD?, f(\, u))-graph, for a function f, monotone increasing in
A and p, and satisfying

- f(A,,UJ)SA2+2‘U2,
- f(1=~,1/100) <1—(8/7) -~ , when ~ < 1/4.

We will prove the theorem via reduction to the zigzag product X @G which
we now turn to define®.

3 If X satisfied the stronger notion of consistent labeling where (u,v) and (v,u) are
required to have the same label, then X ®G would be undirected. Alas, this stronger
notion is not preserved under the derandomized square (or even the standard squar-
ing).

4 In the full version, we will provide a direct proof, which proceeds along similar lines
to the zig-zag analysis of | , ], but is simpler and provides a better bound.
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Definition 3.4 ([ D). Let X be an labelled K -regular graph on vertex set
[N]. Let G be a labelled D-regular graph on vertex set [K|. The zig-zag product
X @G is a graph on vertex set [N] x [K] of outdegree D?, where the edge label
(a,b) € [D] x [D] connects vertex (v,z) € [N] x [K] to (v[z[a]], z[a][b]).

Again, consistent labelling of X ensures that X @G is a regular graph. We
will prove the following lemma.

Lemma 3.5. Let X be consistently labelled. Then A\(X ®G?) < \(X @G)%.

Theorem 3.3 then follows by plugging in the bounds on A(X @ G) given by
[ : ]

Proof of Lemma 3.5: We will show that X ®G? is a projection (defined next)
of (X @@G)?, and prove that projection cannot increase the second eigenvalue.

Definition 3.6. Let X be a D-regular graph on vertex set [N] x [K]. The pro-
jection graph PX has vertex set [N] and edge labels [K] x [D]. The neighbor
labelled (xz,a) of a vertex v is defined by v[z,a] = (v,x)[a]1, where the right-
hand side refers to the first component of the a’th neighbor of (v,x) in X. The
projection PX 1s a K D-regular graph, but the labeling above is not necessarily
consistent.

Proposition 3.7. The projection graph P(X @G)? is equal to the graph ob-
tained from X ®G? by duplicating each edge K? times.

We omit the proof, which is a straightforward verification from the definitions.
Proposition 3.8. A\(PX) < A\(X).

Proof. Let f : [N] — R be a vector of PX that is orthogonal to the uniform
distribution (i.e. ), f(i) = 0) and ||Apx f|| = A || f||, where A = A(PX).

Define f : [N] x [K] — R by f(v,z) = f(v). Observe that f(v|z,a]) =
f(v,x)[a]. So

ZMvax vax Zf v[x,a]) = Mpx f(v).

zG[K] ae [D] ae [D]
z€[K] z€[K]

The leftmost expression above is a vector on [N] x [K]. It is obtained by ap-
plying an average operator to the vector Mx f, which cannot increase the Lo
norm. Therefore ||Mx f|| is at least A||f||. The sum of coordinates of f is zero,

so AM(X) > A

4 A Log-Space Algorithm for Undirected Connectivity

We describe how to solve undirected st-connectivity on an undirected graph X
with IV vertices in logarithmic space.
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Overview. We will assume that the input graph X is 3-regular and consistently
labelled. (in the full version we will show that this assumption does not lose gen-
erality). By Lemma 2.1, every 3-regular connected graph has second eigenvalue
1 —2(1/N). Our goal is to use derandomized squaring to decrease the second
eigenvalue (of each connected component) to less than 1/2N3 (we will need to
square O(log N) times). By Prop. 2.2, the resulting graph must contain a clique
on every connected component of X. We can therefore go over all the neighbors
of s in the resulting graph and look for ¢.

Starting with (some power of) X, we define a sequence of graphs X,,, each
of which is a derandomized square of its predecessor using a suitable auxiliary
graph. The algorithm works in two phases. Phase one works for m < 100log N,
and reduces the second eigenvalue to a constant (3/4), by using as auxiliary
graphs a sequence G,, of fired-degree expanders. We will see that the spectral
gap g(X,,) grows by at least a factor of 8/7 at each step. Therefore, after mg =
O(log N) steps, we obtain an expander X,,,, with second eigenvalue at most 3/4
and degree polynomial in N.

At this point we cannot use fixed-degree expanders as auxiliary graphs any
more. If we did, the second eigenvalue of the derandomized square would be
dominated by the second eigenvalue of the auxiliary graph, which is constant.
Thus we would not be able to decrease the eigenvalue to 1/2N?. In phase two,
we therefore use auxiliary graphs G,, with non-constant degrees. Specifically,
for m > my, the auxiliary graph G, will have degree doubly-exponential in
m — myg. The fast growth of the degree allows the eigenvalue of the auxiliary
graph to remain small enough to imply that A(X,,+1) < ¢ A(X,,)? for some
¢ > 1 quite close to 1. Therefore, after an additional loglog N 4+ O(1) steps we
obtain a graph X,,, with second eigenvalue at most 1/2N3.

Since the graph X,,, has degree polynomial in NV, we can enumerate all the
neighbors of s in logarithmic space. We will show (in Prop. 4.4) that neighbors in
X, are log-space computable, making the whole algorithm work in logarithmic
space.

The Auxiliary Expanders. We will need a family of logspace-constructible
constant-degree expanders with the following parameters, (which can be ob-
tained from e.g. [GG] or | ].

Lemma 4.1. For some constant Q = 39, there exists a sequence H,, of consis-
tently labeled (Q*™,Q,1/100)-graphs. Neighbors in H,, are computable in space
O(m) (i.e. given a vertex name v € [Q*™] and an edge label z € [Q], we can
compute v[z] in space O(m)).

Definition 4.2. Let H,, be the graph sequence of lemma 4.1. For a positive
integer N, we set mg = [1001log N'|, we define a graph sequence G, by G,, =
(Hm)? for m <mo, and Gy, = (Hpyyom-mo—1)%
G, are computable in space O(m + 2™~ ™0),

"% for m > mg. Neighbors in
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The Algorithm. Let X be a 3-regular consistently labelled graph. Given two
vertices s,t connected in X, we describe a log-space algorithm that outputs a
path between s and ¢. For simplicity, assume that X is connected (else carry out
the analysis below on each connected component of X).

Define X; = X?29, where Q = 39 is from lemma 4.1. Define inductively
X1 = X ®G,,. It can be verified by induction that the degree D,, of X,, is
equal to the number of vertices of G,,,, so the operation X,, ®G,, is indeed well-
defined. Specifically, we have D,, = Q%™ for m < myq, and D,,, = Q% (mo+2"""?)
for m > mg.

Phase One. By lemma 2.1 we have g(X;) > 1/3N. From the second inequality
in theorem 3.3 g(X,,) > g(Xm—1) - (8/7) as long as g(X,,—1) < 1/4. Therefore
for some m < 100log N we will get g(X,,) < 1/4. Because of the monotonicity
mentioned in theorem 3.3 the gap does not decrease in the proceeding iterations.
Therefore, for mo = [1001log N'| we have A\(X,,,) < 3/4.

Phase Two. We now decrease the second eigenvalue from 3/4 to 1/2N3. For
m > mo define A, = (64/65) - (7/8)2" "™ pip = (1/100)2" . Suppose that
A X ) < A Since 2u2, < A2, /64 we can use the first inequality in theorem 3.3
to deduce that A(X,,+1) < A2 (1 + 1/64). Since for m = mg indeed A\(X,,) <
Am we deduce this holds for all m > mg. The next proposition is a direct
consequence.

Proposition 4.3. Let m; = mg +loglog N + 10. Then A\( Xy, ) < 1/2N3.

By Prop. 2.2 the graph X,,, contains a clique on the N vertices. Moreover,
it has degree D,,, = Q%1001 N2loslos NHI0) poly(N). If we could compute
neighbors in X,,, in space O(log N) we could find a path from s to ¢ in loga-
rithmic space.

Proposition 4.4. Neighborhoods in X, are computable in space O(log N).

Proof. Edge labels in X,,, are vectors y,, = (y1,a1,...,am—1) where y; is an
edge label in X; and a; is an edge label on G;. Given a vertex v and an edge
label y,,, in X,,, we wish to compute the neighbor v[y,,| in X,,.

Every edge in X, corresponds to a path of length 2™ in X. It suffices to
give a (log-space) algorithm that, given v,y and an integer b in the range [1,2™],
returns the edge label in X of the b-th edge in this path of length 2. As we will
see below, this edge label is actually independent of the vertex v (and thus can
be computed given only y and b).

The path of length 2" originating from v corresponding to the edge label y,,
consists of two paths of length 27*~! corresponding to two edges in X,,_1. These
two edges in X,,_1 have labels y,,—1 = (y1,a1,...,am—2) and ymym_1[am—1], where
the latter is a neighbor computation in G,,—1.

From these observations the algorithm is simple. If b < 2~! then solve the
problem encoded by ¥ym—1,b in X,,—1. If b > 2™~ ! then instead set y,,—1 «—
Ym—1]@m—1], b — b —2™"1 and now solve the problem encoded by ¥,,_1,b on
Xm—1.

Here is a pseudo code for the algorithm. Write b — 1 as a binary string
(bmfl, PN ,bo), and let Yi be the string Y1,A1y oy Q5—1.
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fori=m—1to0do
if b; =1 then
set y; = y;[a;] (this is a computation in G;).
end if
end for
output yo
Now we argue that this can be computed in space O(log N) when m = m;.
Notice that the input length to the algorithm is m + log D,,, = O(log N). By
lemma 4.1, the computation in G; steps in the loop described in the code can
be performed in space O(m 4 2™~ ™) = O(log N ), and we are done.

A Pseudo-random Generator for Walks on X. Picking a random edge
in X,,, yields a walk of length 2™ = poly(N) in X. This walk is “pseudo-
random” - it ends at an almost-uniformly distributed vertex (by prop. 2.2 the
probability to reach any vertex of X is at least 1/N — 1/N?), but is generated
by only log D,,,, = O(log N) random bits (compare with poly(N) bits required
to generate a standard random walk of this length). Moreover, the edge labels
in this walk do not depend on the initial vertex v, but only on the edge label
chosen in X,,,. Indeed, the algorithm given above describes how to compute
the labels in the walk given the edge label y,,, in X,,,. In fact, the map from
Ym, to the sequence of edge labels in the walk is precisely the pseudorandom
generator constructed in [ | from the expanders G, ..., Gp,—1. This pseudo-
random walk generator will have the above property (producing walks that end
at almost-uniformly distributed vertices) in any consistently labeled graph (of
specified parameters). A pseudorandom walk generator with similar properties
was given in | | based on Reingold’s algorithm (which uses the zig-zag prod-
uct). However, the generator does not have as simple a description as above. In
particular, computing the b’th label produced by the walk seems to require com-
puting all the previous b — 1 labels of the walk (taking time up to 2™ = polyN,
rather than being computable directly as above (in time poly(log N)).

Acknowledgments

This work emerged from of our collaborations with Omer Reingold, Luca Tre-
visan, and Avi Wigderson. We are deeply grateful to them for their insights on
this topic and their encouragement in writing this paper.

References

[AKL"] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovész, and C. Rackoff. Random
walks, universal traversal sequences, and the complexity of maze problems.
In 20th Annual Symposium on Foundations of Computer Science (San Juan,
Puerto Rico, 1979), pages 218-223. IEEE, New York, 1979.

[AFWZ] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman. Derandomized graph
products. Comput. Complexity, 5(1):60-75, 1995.



[INW]

[MR]

[Mih]

[RTV]

[Rei]

[RTV]

[RVW]

[Sav]

Derandomized Squaring of Graphs 447

N. Alon and B. Sudakov. Bipartite subgraphs and the smallest eigenvalue.
Combin. Probab. Comput., 9(1):1-12, 2000.

O. Gabber and Z. Galil. Explicit Constructions of Linear-Sized Superconcen-
trators. J. Comput. Syst. Sci., 22(3):407-420, June 1981.

S. Hoory and A. Wigderson. Universal Traversal Sequences for Expander
Graphs. Inf. Process. Lett., 46(2):67-69, 1993.

R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for Network
Algorithms. In Proceedings of the Twenty-Sizth Annual ACM Symposium on
the Theory of Computing, pages 356-364, Montréal, Québec, Canada, 23-25
May 1994.

R. A. Martin and D. Randall. Sampling Adsorbing Staircase Walks Using a
New Markov Chain Decomposition Method. In Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, pages 492-502, Redondo
Beach, CA, 17-19 Oct. 2000. IEEE.

M. Mihail. Conductance and convergence of markov chains: a combinatorial
treatment of expanders. In In Proc. of the 37th Conf. on Foundations of
Computer Science, pages 526-531, 1989.

Reingold, Trevisan, and Vadhan. Pseudorandom Walks in Biregular Graphs
and the RL vs. L Problem. In ECCCTR: Electronic Colloquium on Compu-
tational Complexity, technical reports, 2005.

O. Reingold. Undirected ST-connectivity in log-space. In STOC' ’05: Proceed-
ings of the thirty-seventh annual ACM symposium on Theory of computing,
pages 376-385, New York, NY, USA, 2005. ACM Press.

O. Reingold, L. Trevisan, and S. Vadhan. Pseudorandom Walks in
Biregular Graphs and the RL vs. L Problem. FElectronic Colloquium
on Computational Complerity Technical Report TR05-022, February 2005.
http://www.eccc.uni-trier.de/eccc.

O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders. Ann. of Math. (2), 155(1):157—
187, 2002.

W. J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. J. Comput. System. Sci., 4:177-192, 1970.





