The Power of a Pebble:
Exploring and Mapping Directed Graphs*

Michael A. Benderf Antonio Fernandez?
Department of Computer Science ESCET
State University of New York at Stony Brook Universidad Rey Juan Carlos
Stony Brook, NY 11794-4400 28933 Mostoles, Madrid, Spain
bender@cs.sunysb.edu afernandez@acm.org
Dana Ron® Amit Sahai¥
Department of EE — Systems MIT Laboratory for Computer Science
Tel Aviv University 545 Technology Square
Ramat Aviv, Israel Cambridge, MA 02139
danar@eng.tau.ac.il amitsQtheory.lcs.mit.edu

Salil Vadhan!!

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

salil@theory.lcs.mit.edu

*A preliminary version of this work appeared in STOC ‘98 [9].

" This work was done while the author was at the Division of Engineering and Applied Sciences, Harvard University,
and was supported by NSF grants CCR-95-04436 and CCR-93-13775.

tSupported by the Spanish Ministry of Education, Army grant DAAH04-95-1-0607, and ARPA contract N00014-
95-1-1246. This work was done while the author was at the Laboratory for Computer Science, MIT.

$This work was done while the author was at the Laboratory for Computer Science, MIT, and was supported by
an NSF postdoctoral grant and by an ONR Science Scholar Fellowhip at the Bunting Institute.

TSupported by a DOD NDSEG doctoral fellowship and partially by DARPA grant DABT63-96-C-0018.

IThis work was done while the author was supported by a DOD NDSEG graduate fellowship and partially by
DARPA grant DABT63-96-C-0018.

Abstract

Exploring and mapping an unknown environment is a fundamental problem that is studied
in a variety of contexts. Many results have focused on finding efficient solutions to restricted
versions of the problem. In this paper, we consider a model that makes very limited assumptions
about the environment and solve the mapping problem in this general setting.

We model the environment by an unknown directed graph G, and consider the problem of
a robot exploring and mapping G. The edges emanating from each vertex are numbered from
‘1’ to ‘d’, but we do not assume that the vertices of G are labeled. Since the robot has no way
of distinguishing between vertices, it has no hope of succeeding unless it is given some means
of distinguishing between vertices. For this reason we provide the robot with a “pebble” — a
device that it can place on a vertex and use to identify the vertex later.

In this paper we show: (1) If the robot knows an upper bound on the number of vertices
then it can learn the graph efficiently with only one pebble. (2) If the robot does not know
an upper bound on the number of vertices n, then ©(loglogn) pebbles are both necessary and
sufficient. In both cases our algorithms are deterministic.

1 Introduction

The problem of exploring and mapping an unknown environment is a fundamental problem with
applications ranging from robot navigation to searching the World Wide Web. As such, a large
body of work has focused on finding efficient solutions to variants of the problem, with restrictive
assumptions on the form of the environment (cf. [16, 15, 22, 31, 17, 35, 10, 6, 2]). In this paper, we
consider a model that makes very limited assumptions about the environment, and give efficient
algorithms to solve the mapping problem in this general setting.

A natural way to model the problem is by a robot exploring a graph G = (V,E). The case
in which the graph has both undirected edges and labeled vertices can be solved in time linear in
the number of edges by depth first search. Other search techniques [30] improve on this bound
by a constant factor. Unfortunately, many exploration and mapping problems do not satisfy these
constraints. For instance, if the graph represents a city (having one-way streets) or the Internet, it
contains directed edges. This alone does not make the problem substantially more difficult, since
the problem with directed edges and labeled vertices can be solved by a greedy search algorithm
in time O(|V] - |E|). More sophisticated techniques [22, 2] yield improved running times.

Regardless of whether there are directed edges, a more daunting difficulty arises if vertices are
not uniquely labeled. This situation could arise in applications from the limited sensory capabilities
of a robot or from the changing appearance of vertices. If no assumptions are made on the labeling
of the vertices (so that all vertices may appear the same), then we need a way to mark vertices
in order to have any hope of mapping the environment [23]. In this paper, we model a marking
device by a pebble, which can be dropped at a vertex and later identified and retrieved. This
notion of marking is basic and can be simulated in many situations. Dudek, Jenkin, Milios, and
Wilkes [23] show that a robot provided with a pebble can map an undirected graph with unlabeled
vertices in time O(|V] - |E|), by repeatedly marking nodes and backtracking.! However, without
the assumption that either the edges are undirected or the vertices are labeled, the existence of an
efficient algorithm has remained open.

The main contribution of this paper is a general mapping algorithm which efficiently solves the
mapping problem without assuming unique labelings of the vertices while allowing directed edges.

The problem. Let G be a strongly-connected directed graph over n vertices, where the vertices
have no labels. The outdegree of each vertex is d, where d is assumed to be known, and the outgoing
edges at each vertex are numbered from ‘1’ to ‘d’. We first observe that identical outdegrees can
be assumed without loss of generality, because vertices v having outdegree smaller than d can be
treated as if they have d — deg(v) additional self-loops. In fact, differences in degrees can actually
help our mapping algorithms, as discussed in Section 3.5. It is a minimal assumption that the edges
emanating from each vertex have labels. This is a local (and weak) assumption, as opposed to a
global assumption that the vertices are labeled. Such a method for distinguishing edges is essential
because otherwise it is undefined how to choose or specify a path from one vertex to another, even
when provided with a map of the graph. The vertices’ indegrees are not assumed to be seen, since
this too can only aid the robot in distinguishing between vertices.

The robot is placed at an arbitrary starting vertex in G, and at each step it traverses one of the

edges emanating from its current vertex. The robot’s task is to explore and map G efficiently. That
is, after walking a polynomial number of steps (in the size of the graph), it should output a graph

Tn addition to undirected edges and labeled vertices, other simplifying assumptions that can be made about the
environment include geometric structure, such as planarity, having a small diameter, and more.

G isomorphic to G. However, as noted in [23], unless the robot has a tool to help it distinguish
vertices, it is condemned to failure as a cartographer. For example, a robot traveling alone cannot
decide whether G consists of a single vertex or many vertices. A basic tool for the robot is a pebble.
Now, as the robot explores G, it can mark a vertex by dropping the pebble, and it can identify
the vertex if it finds the pebble later. Upon finding the pebble, the robot can pick it up. However,
because the graph is directed, the robot cannot retrace its steps to retrieve the pebble.

Bender and Slonim [10] show that a robot given a pebble can explore and map any graph in
exponential time. However, they prove that a robot cannot map graphs in polynomial time using
a constant number of pebbles, when it does not know a bound on n. This lower bound motivates
two questions: (1) How many pebbles are needed to learn graphs efficiently if n is known? (2) How
many pebbles are in fact needed if n is unknown?

In this paper we demonstrate that surprisingly few pebbles are needed in both cases. We show that

e If the robot knows n (or an upper bound 7 on n), it can learn the graph with only one pebble
in time polynomial in n (respectively, 7).

e If the robot does not know n (or 7), then ©(log log n) pebbles are both necessary and sufficient.
Here we think of there being a source of pebbles that the robot has access to, and the bound
is on the total number of pebbles it takes from this source in the process of exploring and
mapping the graph.

In both cases our algorithms are deterministic. The lower bound of Q(loglogn) for the case of
unknown n holds even for probabilistic algorithms.

Intuition. To understand the difficulties facing the exploring robot, consider the problem of
traversing a graph (i.e., visiting all vertices and edges). Certainly, in order to map a graph, the
robot must traverse it. One standard technique that comes to mind is random walks. Unfortunately,
for directed graphs, the expected time until a random walk visits all vertices may be exponential in
n and random walks are therefore ineffective for traversing. (For undirected graphs the expected
time is polynomial in n.)

Figure 1: A combination lock graph.

Consider, for example, the graph in Figure 1. This graph is called a combination lock graph,
because in order to reach the rightmost node v, starting from the leftmost node v, the robot must
discover the unique sequence of edge labels (the combination) extending from vy to v,. Notice
that, with very high probability, a polynomial-time random walk only visits a logarithmic number
of vertices in the combination lock. More generally, for any polynomial-time (randomized) algorithm
that does not mark vertices, there exists a combination lock graph that (with high probability) the
algorithm will not fully explore.

Figure 2: A graph consisting of two combination locks.

We now return to the problem of learning with a pebble. Although one (pebbleless) robot
cannot traverse combination locks efficiently, a robot with a pebble can learn them using random
walks [10].2 However, consider the graph shown in Figure 2. This graph consists of two combination
locks, where the end of one combination lock leads into the beginning of the other. If the robot
ever drops its pebble in the top lock and travels into the bottom lock, then it is doomed. The
robot will be stuck in the bottom combination lock without its pebble, and cannot even traverse
this lock, much less learn it.

This example illustrates the dilemma facing the robot as it explores the unknown graph G. The
robot must drop the pebble in order to learn new terrain, but when the robot drops the pebble, it
runs the risk of losing it.

Closed paths. To avoid losing its pebble, the robot must know how to return to it. Thus,
before dropping the pebble at a vertex, the robot should know a closed path containing this vertex.
However, such a path may be difficult to obtain. When n is unknown, the robot can only identify
a closed path by dropping the pebble and finding it again. Thus, we encounter a chicken-and-egg
situation. In order to safely drop the pebble, the robot must find a closed path. But in order to
find a closed path, the robot must drop its pebble.

Now we recognize the tangible benefit of knowing n. By repeating the same pattern of edges
n times, the robot can enter a closed path without dropping its pebble. For example, if the robot
repeatedly follows edges labeled ‘1°, it enters a cycle after at most n moves. We refer to this as
the cycling technique. Once the robot knows a closed path, it can map the subgraph visited by the
path using the pebble. However, it is not clear how to harness this additional power. By repeating
one pattern of edges, the robot enters a closed path and can map one subgraph. Later, the robot
may repeat a different pattern of edges, enter another closed path, and map a second subgraph.
Thus, the robot can map many subgraphs, but it is not obvious how to piece these maps together.
This is because the robot has little information about how the subgraphs overlap and interconnect.
As a result, finding closed paths permits the robot to drop the pebble, map a (small) portion of

“More generally, graphs having high conductance can be learned efficiently [10].

the graph and retrieve the pebble, but does not solve the mapping problem.

In order to solve the mapping problem, we use an algorithmic tool that we call an orienting
procedure. An orienting procedure allows our algorithms to construct a limited number of maps.
Instead of trying to piece these maps together, the algorithm expands them separately until one
maps all of G. This expansion is possible because by executing the orienting procedure, the robot
can recognize particular vertices in the graph that are associated with the maps.

Orienting procedures. Intuitively, an orienting procedure for a graph G leads the robot around
the graph and ultimately leaves the robot at a vertex it “recognizes”. The robot recognizes this
vertex by observing the output produced by the procedure. More precisely, if the robot sees the
same output when executing the procedure from two different initial vertices, then both times it
ends up at the same vertex.> The notion of orienting procedures is analogous to the notion of
(adaptive) homing sequences in automata theory [28], and it is closely related to the notion of
two-robot homing sequences introduced by Bender and Slonim [10]. In the context of learning,
homing sequences were first applied by Rivest and Schapire [35, 34]; they were used for learning
environments modeled by finite automata.

We argue that every graph has a polynomial-time 1-pebble orienting procedure. (Later, we
deduce from our mapping algorithm that there is actually a polynomial-time universal 1-pebble
orienting procedure that works for all graphs of a given size.) We show that given an orienting
procedure, the robot can build maps of subgraphs containing each of the possible ending vertices
of the procedure. Since the robot is not provided with an orienting procedure, it builds maps using
a partially-constructed orienting procedure, which it gradually improves. Each map is associated
with a different output of the procedure. There is a difficulty, however, in using a partial orienting
procedure. Namely, the underlying graph may look different from what the map associated with
the procedure’s output suggests. As a result, the robot could become disoriented and lose the
pebble.

A central idea in our algorithms is how to avoid losing the pebble while using misleading
information about the graph. The algorithms employ a two-tiered structure of the cycling technique
mentioned above. At the lower level, the robot uses the cycling technique to verify safely whether
the underlying graph is consistent with its map. If verification fails the robot is able to improve
the partial orienting procedure. At the higher level, the robot uses a generalization of the cycling
technique to arbitrary deterministic procedures (instead of edge-label patterns). This generalized
cycling technique allows the robot to find closed paths that visit increasingly large portions of G,
until all of G is visited and mapped.

Related work. The model we consider is essentially the directed-graph analogue of the one
introduced by Dudek, Jenkins, Milios and Wilkes [23]. Their problem involves a robot with a single
pebble mapping an undirected graph with unlabeled vertices. Their modeling of edge labels differs
slightly from ours, in that the labeling of edges leaving a vertex can depend on the previous vertex
visited (whereas our edge labelings are absolute). However, they impose an additional condition on
the edge labelings which permits backtracking. Hence they are able to solve the mapping problem
by repeatedly marking vertices and backtracking. Furthermore, we present an extension of our
algorithm (in Subsection 3.6) that works in directed graphs when the labels of edges emanating
from a vertex may depend on the previous vertex visited. Thus, we solve a problem that is strictly
more general than the one treated by Dudek et al.

3 Actually, the robot may be at vertices equivalent under automorphism, but we avoid this issue in the introduction.

Subsequent work in the model of Dudek et al. includes mapping algorithms that perform well
from the perspective of competitive analysis [21], and efficient solutions to related problems such
as “self-location” [24] and “map verification” [20].

Our work is very closely related to the work of Bender and Slonim [10]. Bender and Slonim
show that two cooperating robots can explore and map unknown directed graphs with unlabeled
vertices in polynomial time. The robots do not require any prior knowledge of the size of the graph.
Bender and Slonim demonstrate that two robots are strictly more powerful than one robot with
O(1) pebbles; they prove that one robot with a constant number of pebbles cannot (efficiently)
learn arbitrary directed graphs without knowing an upper bound on the number n of vertices.
They conjecture that the same holds when 7 is known; our results disprove this conjecture. Our
O(loglogn)-pebble algorithm (for unknown m) can be simulated by two robots. This yields a
deterministic alternative to Bender and Slonim’s randomized two-robot algorithm.*

Most early work on graph exploration assumed that the robot is a finite automaton. Rabin [32]
first proposed the idea of providing the automaton with pebbles to help it explore. This led to a body
of work examining the number of pebbles needed to explore various environments [38, 16, 15, 5, 33].
For a survey on automata exploring labyrinths, see [29]. Deng and Papadimitriou [22] propose and
study the problem of exploring an unknown directed graph having labeled vertices. Albers and
Henzinger [2] give improved algorithms for this problem. These works study exploration from the
perspective of competitive analysis. The results are stated in terms of the deficiency of the graph
(i.e., the minimum number of edges to be added to make the graph Eulerian). Betke, Rivest, and
Singh [12] and together with Awerbuch [6] study the problem of piecemeal learning undirected
labeled graphs. In the piecemeal learning problem the robot is required to return to its starting
position periodically.

Rivest and Schapire [35, 34] study the problem of learning environments modeled by finite
automata. Here, an environment is represented by a directed graph, in which each vertex has
one of two (or any constant number of) possible labelings. The robot has learned the environment
(automaton) when it can predict the label of any vertex (state) reached on an arbitrary walk. Hence,
if the automaton is irreducible, then the robot actually learns the topology of the underlying graph.
Their algorithms (with the exception of one, for permutation automata) rely on a teacher, and
build on the work of Angluin [3]. The teacher supplies counterexamples to the robot’s hypotheses.
Variants of this problem that do not rely on a teacher are studied in [17, 26, 36, 25]. We note that
Dean et al. [17] apply a cycling technique related to ours, but for different purposes. For a survey
covering some of the results mentioned above among others, see [18].

Exploring and navigating in geometric environments is studied extensively. A sample of papers
includes [7, 31, 19, 14, 8, 13, 11, 27, 4].

Applications. As mentioned earlier, algorithms for exploring and mapping unknown environ-
ments have a variety of applications. Examples are obtaining maps of existing networks (e.g.,
computer networks, sewage systems, unexplored caves) for which there are no maps or the existing
maps are outdated (e.g., after some links have gone down on a computer network). Another type of
application is obtaining maps of changing environments, like the Internet or the World Wide Web.
Due to the dynamic and distributed nature of these systems, it is often infeasible to maintain a
completely updated map of them. However, obtaining accurate maps of small parts of the network
is still useful. Another example of a changing environment comes from ad hoc mobile wireless net-
works [37]. These are networks in which the routers are mobile devices, and the topology depends

*In light of our results and those of Bender and Slonim, we see that a friend is only worth log logn pebbles.

on which devices are within range of each other. If the network does not change too rapidly, a fast
exploring algorithm could be used to obtain occasional snapshots of the network. We emphasize
that no exact implementation of our algorithms will satisfy these applications. Even for a modest
number of nodes, our algorithms are too time consuming to be immediately practical. However,
the underlying ideas of our algorithms could prove useful in these applications when the nodes are
not perfectly distinguishable and some of the links are unidirectional.

We also note that the problem solved in this paper is a generalization of the “twisty little pas-
sageways, all alike” problem made famous in the 1970’s computer game “Colossal Cave Adventure”
by Crowthers and Woods (cf., [1]).

2 Preliminaries

Let G = (V,E) be the unknown directed graph the robot has to explore and map. Suppose that
the graph is strongly connected and that all the vertices of G are unlabeled and have (the same)
outdegree d. Let the edges emanating from each vertex be labeled by distinct indices in {1,...,d}
and denote an edge from u to v with label o by (u,o,v). (In Section 3.6, we treat a more general
model in which the edge labeling can depend on the previous vertex visited.) Let n = |V| and let
7. be an upper bound on n.

The exploring robot starts at an arbitrary vertex of G. The robot has a single pebble.’ At
each time step, the robot may traverse any outgoing edge from the vertex it is at. In addition, the
robot may drop the pebble at the vertex or pick up the pebble that it has previously dropped at the
vertex.

We often use the term map to refer to a graph M = (Vy, Ey) in which each vertex has outdegree
at most d and the edges leaving each vertex are labeled by distinct indices iy, . . ., igeg(v) € {1,-..,d}.
We say a map M = (Vy, Env) is isomorphic to G (denoted, M 22 G) if there exists an isomorphism
between the two graphs that preserves edge labels. Namely, there exists a one-to-one and onto
mapping f : Vi — V, such that the following holds: For every two vertices w and z in Vi, there
is an edge labeled o from w to z in M, if and only if there is an edge labeled o from f(w) to
f(z) in G. Let wy and vy be distinguished vertices in M and G, respectively. We use the notation
(M, wo) = (G, vp) to say that there exists an isomorphism f between M and G such that f(wg) = vo.
We say that map (M, wq) is consistent with (G, vp) if there exists a subgraph G’ of G containing
vg, such that (M, wpy) = (G, vg).

We say that the robot at vertex v in G has learned the graph G when it outputs a graph G
together with a vertex 4 in G such that (G,9) 2 (G, v). Since in each time step the robot traverses
a single edge, the running time of the algorithm is the number of moves the robot makes. Though
computation time is ignored in this definition, we note that the total computation time of our
algorithms is polynomial in the upper bound 7 on the size of the graph.

3 Learning with a Single Pebble

In this section we present our algorithm for efficiently learning any graph using a single pebble and
knowledge of 7. We start (in Section 3.1) by describing an important subroutine of our algorithm,
which we call path compression. The robot executes this subroutine (using the pebble) to map
subgraphs of G that are visited by closed paths known to the robot. In Section 3.2 we show that

®In Section 4 we consider a robot having a source of pebbles.

the robot can learn G if we assume the robot has access to a return-path oracle for G. The robot can
query this oracle from any vertex in the graph and receive a sequence of edges that leads it back to
its start vertex. In the following sections we progressively weaken this assumption. In Section 3.3
we formally define an orienting procedure and describe how to devise such a procedure based on
procedures for distinguishing between vertices. In Section 3.4 we replace the assumption that the
robot has access to a return-path oracle with the assumption that it knows an orienting procedure
for G. Finally, in Section 3.5 we show how the robot can use knowledge of 7 to explore and learn
the graph while building an orienting procedure on its own. Our algorithm and the subroutines it
uses are described in pseudocode in Figures 4, 5, 6 and 7 at the end of this section.

3.1 Compressing Closed Paths

Here we present an essential building block of our algorithms. Let the robot be at vertex v in G,
and assume the robot knows a closed path in G that starts (and ends) at v. The path visits a
subgraph Gpatn of G. Namely, Gpatn consists of all vertices and edges traversed along the path.
Since the path may visit the same vertices several times, Gpath is not necessarily a simple cycle.
In the path compression procedure the robot uses the pebble to identify repeated vertices on the
path and construct a graph M isomorphic to Gpath.

More precisely, let path = o1,...,0% be a sequence of edge labels corresponding to a closed
path starting (and ending) at v. Let ug,uq,...,ur be the vertices in G visited along the path,
where ug = ur = v. The robot maintains a list of length k£ 4+ 1 where ultimately the ¢-th entry
in the list will identify the i-th vertex occurring on the path in G (where 7 ranges from 0 to k).
Initially, the list is (wo, A, ..., A,wp), where A means “unidentified.” The goal of the robot is to
replace all “unidentified” entries with vertex names.

The algorithm proceeds in at most n stages, each starting and ending with the robot and the
pebble at v. In the 0-th stage, the robot drops the pebble at vertex v and follows the entire closed
path; for each ¢ such that the robot observes the pebble after i steps (i.e., at the vertex reached by
traversing oq,...,0;), the robot replaces the i-th entry in the list with wg. In the j-th stage (for
7 =0,1,...), let t be the smallest index such that the ¢-th entry in the list is A. The robot traverses
o1,...,0t, and after the ¢-th step drops the pebble at the vertex reached. Then it replaces the ¢-th
entry with w; (i.e., a new vertex name). As in the first stage, it traverses the rest of the closed
path (and returns to v). For each i such that the robot observes the pebble after i steps (counting
steps from when it left v), the robot replaces the i-th entry in the list (which must be a A) with
wj. After returning to v, the robot follows path once more to pick up the pebble.

The algorithm maintains the property that the same label w; appears in places k and k' in the
list if and only if the k-th and k’-th vertices on the closed path in G are the same. When the list is
completed, the robot constructs a map M in accordance with the list and the edge labels in path.
Namely, the vertices of M are the vertices {w;} in the list, and if w; and wj appear in places i and
i+ 1 in the list, then there is an edge (wj, 0541, w;) in M. Pseudocode for this path compression
procedure is given in Figure 4.

Lemma 1 Let v be a vertex in G and path be a sequence of edge labels that corresponds to a
closed path in G starting and ending at v. Let Gpatn be the subgraph of G wvisited by path. The
path compression procedure runs in time O(n - [path|) and outputs a graph M such that (M, wg) =
(Gpathav)-

3.2 Learning with a Return-Path Oracle

In this section, we assume that the robot is given access to a return-path oracle. Namely, at any
time step it can query the oracle and receive a sequence of edge labels that returns the robot to a
particular vertex vg.

We show how the robot can learn G by querying the oracle and using repeated applications of
the path compression procedure. The return-path algorithm proceeds in at most n-d = |E| stages.
In each stage the robot learns at least one new edge in G. In the i-th stage, the robot constructs
a strongly connected map M; having a designated vertex wg. The initial map, My, consists only
of the vertex wy (and no edges). The final map is the output, @, of the algorithm. The algorithm
maintains the invariant that (M;,wp) is consistent with (G,vy) (where consistency is defined in
Section 2). The algorithm associates a closed path path(M;) with each map M;. This path starts
and ends at wp and passes through all vertices and edges in M;. Since M; is strongly connected,
the robot can easily compute such a path of length O(n?d).

We say that a vertex w in a map M; is finished if it has d outgoing edges in M;. Otherwise it is
unfinished. In the (i + 1)-th stage the algorithm augments the map M; with a new edge emanating
from an unfinished vertex in M; and perhaps other vertices and edges. This is done as follows. Let
w be an unfinished vertex in M; and let o be the label of a missing edge from w. Let explore(M;)
be a sequence of edge labels connecting wg to w, concatenated with . The robot performs the
walk corresponding to explore(M;) in G starting from vg. It then queries the return-path oracle.
Let the return path that the oracle provides be called ret;. The robot returns to vy using the path
ret;. Then it compresses the closed path path; ; = path(M;) cexplore(M;)oret;. The algorithm
lets M;11 be the resulting map. By Lemma 1, we know that (M;y1,wo) = (Gpatn,,,,v0). Since
path,,; contains path(M;), M;;; contains M; as a subgraph; by the choice of w and o, M;;; also
contains at least one new edge (the edge labeled o going out of w).

Note that the time complexity of this algorithm can be improved. However, the above formu-
lation serves as a basis for subsequent algorithms (that do not rely on a return-path oracle). From
all the above, we obtain the following lemma.

Lemma 2 Let ¢ be the length of the longest return path provided by the oracle. The return-path
algorithm runs in time O(nd - (n?d + £)) and outputs a map G isomorphic to G.

3.3 Orienting Procedures

Intuitively, an orienting procedure for a graph G guides the robot around the graph and ultimately
leaves the robot at a vertex it “recognizes.” An orienting procedure need not lead the robot back to a
particular vertex, so assuming an orienting procedure is weaker than assuming a return-path oracle.
Before we define an orienting procedure formally, we explain the notion of equivalence between
vertices. We say that two vertices u and v in G are equivalent, denoted u = v, if (G,u) = (G, v),
i.e., there exists an automorphism of G mapping u to v.

Definition 1 An orienting procedure op for a graph G has the following properties.

1. It determines the robot’s actions (i.e., what edge labels it traverses and when it drops and picks
up the pebble).

The robot starts and ends with the pebble, regardless of the starting verter.

The procedure is deterministic.

4. The procedure returns an output. The output is determined by the steps at which the robot sees
the pebble.

(Notice that because the procedure is deterministic, every time the robot executes the orienting
procedure starting from any fized vertex v in G, it returns the same output and finishes at the
same final vertex. Thus, an orienting procedure has at most n outputs.)

5. Let output(op,v) be the oulput of the procedure op when started at vertex v, and let
final(op,v) be the final vertex reached. An orienting procedure guarantees that for every u
and v in G output(op,u) = output(op,v) = final(op,u) = final(op,v).

(Note that the converse is not guaranteed. Namely, the procedure may end at the same vertex
with two different outputs.)

We show how to build an orienting procedure using distinguishing procedures for inequivalent ver-
tices in G.

Definition 2 Let u and v be two inequivalent vertices in G. A distinguishing procedure dp,,, for
u and v has the following properties.

1-4. As in Definition 1.
5. output(dp, ,,u) # output(dp,,,,v).

Notice that a distinguishing procedure differentiates between starting vertices whereas an orienting
procedure differentiates between ending vertices. In addition, a distinguishing procedure differen-
tiates between a single pair of starting vertices whereas an orienting procedure differentiates among
all possible ending vertices.

Every orienting procedure op that we consider can be viewed as a tree Top in the following
sense: Each leaf in Top corresponds to a different output of op. The internal nodes of Top are
distinguishing procedures. The branches emitting from a node are labeled by the possible outputs
of the distinguishing procedure. Leaves are labeled by the sequence of outputs on the branches
leading from the root to the leaf. For an illustration, see Figure 3. Consider all vertices in G that
the robot may end at when op terminates with output A at a leaf (4; denote this set of vertices
by reach(A). Property 5 dictates that all vertices in reach(A) are equivalent.

We can build an orienting procedure of the above type in stages, extending the tree in each stage.
Initially we let our candidate orienting procedure cop be the empty procedure, i.e. the robot makes
no actions, and the tree Tcop has a single leaf. Assume inductively that cop preserves properties
1-4 and has k possible outputs (so that Tcop has k leaves). If cop is not yet a complete orienting
procedure, then for some output A corresponding to leaf (o there exist inequivalent vertices v and
v in reach(A). Let dp,, be a distinguishing procedure for v and v. We replace the leaf (s with
dp, ,. Since output(dp,,,u) # output(dp,,,v), the new tree has at least k+1 leaves. Therefore,
the modified cop has at least k£ + 1 outputs. Since an orienting procedure has at most n different
outputs, we obtain an orienting procedure after at most n — 1 stages.® It can be shown that for
every pair of inequivalent vertices there exists a distinguishing procedure with running time O(n3d).
Hence, every graph has an orienting procedure with running time O(n*d). In Section 3.5, we exhibit
an algorithm in which the robot devises distinguishing procedures and builds an orienting procedure
while exploring the graph.”

SFor the purposes of this construction, it actually suffices to relax the definition of a distinguishing procedure to
allow either output(dp, ,,u) # output(dp, ,,v) or final(dp, ,,u) = final(dp, ,,v).
"However, our algorithm may terminate (correctly) before the orienting procedure is complete.

10

outl out2

outl out2

ONO

Figure 3: An illustration of Top assuming distinguishing procedures have two possible outputs (which is
not necessarily true but is the case in our usage). Each dp denotes a distinguishing procedure, and out1 and
out2 are the two possible outputs. The orienting procedure begins with an execution of dpl. Depending
on the output (outl or out2) either dp2 or dp3 is next executed. Each leaf corresponds to the sequence
of outputs labeling the edges on the path from the root to the leaf. The leaf 11 for example corresponds to
the output outl ... outl. Since op is an orienting procedure, no matter where it is started, if the sequence
of distinguishing procedures on the path from the root to 11 is executed and the outputs outl ... outl are
observed, then the vertices reached are equivalent.

3.4 Learning with an Orienting Procedure

In this section we assume that the robot is provided with an orienting procedure op for the graph
G. For ease of presentation, we assume throughout this section that the graph has no nontrivial
automorphisms (and hence no vertices are equivalent). This assumption can easily be removed here
and is not used in later sections.

By the above assumption, for each possible output A, the set reach(A) (defined in Section 3.3)
contains a single vertex, which we denote va. With each output A, the algorithm associates a map
M(A), which is constructed as the algorithm proceeds. The map M(A) contains a designated vertex
wo(A). The algorithm ensures that each M(A) is strongly connected and maintains the following
invariant:

INVARIANT 1 (orienting procedure): For every output A of op, (M(A),wy(A)) is consistent with
(G,Q)A)-

Learning proceeds in at most n2d phases. In each phase, some map M(A) is augmented with

at least one new edge. We say that a map is finished if all its vertices are finished (as defined in
Section 3.2). The algorithm terminates when some map M(A) is finished, in which case it outputs

11

M(A). We use the shorthand path(A) to represent path(M(A)) and explore(A) to represent
explore(M(A)), where path(-) and explore(-) were defined in Section 3.2. Let Gp,n(a) be the
subgraph of G visited by path(A) when starting from va. In each phase the algorithm uses the
orienting procedure to find a closed path satisfying the following:

1. For some output A, the path starts and ends at va.
2. The path visits all of Gp,¢p(4) and at least one additional edge.

The robot compresses this closed path and replaces M(A) with the resulting map.

To find a closed path satisfying the above properties the robot does the following. Starting
from its current vertex, it executes the orienting procedure, observes its output Ay, and follows
path(A;) o explore(A;). It then executes the orienting procedure again, observes its output As,
and follows path(Ay) o explore(A;). The robot repeats the above until it observes an output A;
that it has previously seen (i.e., A; = A; for some i < j). Note that some output must reappear
after at most n + 1 repetitions (though the robot need not know m). At this point the robot
has discovered a closed path that starts and ends at va;. Furthermore, this closed path starts
with path(A;) o explore(A;), and hence visits all of Gp,e,(a;) and at least one additional edge.
Informally, since the robot does not know to which vertex it will return, it “prepares” all vertices
va, for the possibility. It does so by following path(A;) o explore(A;) from each wva,.

Let T(op) be the running time of op. Since for every map M(A), |path(A)| =
O(n2d), and |explore(A)| < n, the length of the closed path found is O(n - (T(op) + n?d)). By
Lemma 1, the closed path can be compressed in time O(n?-(T(op)+n2d)). We obtain the following
lemma.

Lemma 3 A robot with o single pebble can learn any strongly connected graph G using an orienting
procedure op for G in time O(n*d - (T(op) + n2d)).

3.5 Learning the Graph while Building an Orienting Procedure

In this section we show that a robot having a single pebble can efficiently explore and map any
strongly-connected directed graph if it knows an upper bound 7 on the size of the graph. Recall
that if the robot does not know 7 then this task is impossible. The structure of the algorithm
presented here is similar to the structure of the algorithm described in Section 3.4. Since the robot
does not have a real orienting procedure it uses a candidate orienting procedure cop. In each phase,
for some output A of cop the algorithm either (1) replaces M(A) with a new, larger M(A) or (2)
discovers a distinguishing procedure dp,,, for some inequivalent vertices u and v in reach(A).
In the latter case it improves cop using dp, , (as described in Section 3.3). Since the improved
cop will never again output A, the algorithm discards M(A). The algorithm terminates when
some M(A) is finished, in which case it outputs M(A). We show that the algorithm maintains the
following invariant, which is a relaxation of Invariant 1.

INVARIANT 2 (candidate orienting procedure): For every output A of cop there exists a vertex
u € reach(A) such that (M(A),wo(A)) is consistent with (G, u).

In particular this invariant ensures that the finished map is isomorphic to G.

In Section 3.4 we had the property that reach(A) consisted of a single vertex va. This provided
a method for the robot to identify closed paths that start and end at some va. Here, this method
does not work since reach(A) may contain several vertices (equivalent or inequivalent). Therefore,

12

the robot could observe output A twice without being on a closed path. The robot’s knowledge of
7, combined with the following observation suggests a remedy for this problem — that is, how to
find a closed path that starts and ends at a vertex u in some reach(A).

Observation 1 Let f:V — V be any deterministic function. Then for every vertex v € V, the
sequence v, f(v), f(f(v)), ... becomes cyclic within the first n applications of f.

Suppose the robot repeats the following: it executes cop, observes its output A, and follows
path(A) o explore(A). Then after at most 7 repetitions it has entered a cycle. We later show
how after another 27 repetitions it can find a closed path that starts and ends at a vertex u in
reach(A), for some output A.

Suppose the robot runs the algorithm from the previous section with the enhancement above.
The robot can now find closed paths, but the algorithm still has a serious flaw. Consider a map
M(A) that results from compressing a closed path that starts and ends at u € reach(A). Assume
that in a subsequent stage in the algorithm, the robot obtains a new M(A) by compressing a closed
path that starts and ends at v’ € reach(A). If v’ = u then the argument that the new M(A) is
larger than the old M(A) holds as before. However, if v’ # u then we can claim nothing about the
size or structure of the new M(A). This is because (old M(A), wy(A)) may not be consistent with
(G, u'). Hence, the argument that the new M(A) is bigger than the old M(A) is no longer valid.
This motivates the need for a map verification procedure.

Map Verification. Suppose the robot is at a vertex v in some reach(A). We would like a
procedure to verify that (M(A),wo(A)) is consistent with (G,v). This is not difficult if we allow
the robot to lose its pebble. In particular the robot hypothesizes that path(A) corresponds to a
closed path in G starting at v. Then the robot attempts to compress path(A). If path(A) is not
a closed path starting from v and the robot loses the pebble, then clearly (M(A),wp(A)) is not
consistent with (G, v). Otherwise, the robot compares M(A) to the map resulting from compressing
the closed path.

Since we cannot allow the robot to lose the pebble (or else it will not be able to learn the
graph), we must modify the above procedure. The new procedure, described below, performs a
weaker form of verification. We later show that it nonetheless meets the needs of the algorithm.

1. The robot starts from v and follows path(A) 7 times.

Clearly, if (M(A),wq(A)) is consistent with (G, v), then the robot ends at v. However, even if
(M(A),wp(A)) is not consistent with (G,v) then by Observation 1 we know that the robot has
entered a cycle.

2. Next the robot drops the pebble at its current vertex v' and follows path(A) once.

e If the pebble is not at the vertex reached, then verification fails. To retrieve the pebble, the
robot continues repeating path(A) until it finds the pebble.

e Otherwise, the robot compresses path(A), which it has now identified as a closed path,
starting from o'. If the resulting map differs from M(A) then verification fails. Otherwise
verification passes.

We refer to this procedure as ver(A). Pseudocode for ver(-) can be found in Figure 6.

Note 2 There are two situations in which ver(A) passes:

13

=
>
I

0(A)) is consistent with (G,v), or
0(A)) is not consistent with (G,v), but (M(A),w(A)) is consistent with (G,v").

N~
g
=

IS

If verification fails, then because of Invariant 2 ver(A) is a distinguishing procedure. This pro-
cedure distinguishes between v and the vertex u in reach(A) such that (M(A),wo(A)) is consistent
with (G,u). Since for every map M(A), the length of path(M(A)) is O(n%d), the running time of
ver(A) is O(7 - n?d).

We note that the map verification problem is also considered in [24, 20]. However, those works
involve undirected graphs, so the problem of losing the pebble does not arise. We are now ready to
describe the final mapping algorithm.

The Algorithm. The algorithm proceeds in at most 2n?d phases. Initially, its candidate orienting
procedure cop is the empty procedure (as described in Section 3.3). Each phase consists of at most
4 stages:

1. To enter a closed path, the robot repeats the following 7 times.

(¥) The robot executes cop and obtains an output A. If this is the first appearance of output A
then the algorithm creates a new map M(A) consisting of a single vertex wy(A). Next the
robot executes ver(A) to verify the map M(A).

e If ver(A) fails, then ver(A) is a distinguishing procedure between a pair of vertices in
reach(A). The robot uses this distinguishing procedure, which outputs PASS or FAIL, to
improve cop (as described in Section 3.3). Thus, the output of cop is in {PASS, FAIL}*.
Because of the extension to cop, cop will never again output A, so the robot discards
M(A). The robot stops repeating (), skips Stages 2-4 (described below), and goes to
the next phase with the improved cop.

e Otherwise (i.e., if ver(A) passes), the robot follows explore(A). Note that by definition
of ver(A), the robot follows explore(A) starting from a vertex u such that (M(A), wy(A))
is consistent with (G, u).

The subroutine (x) can be viewed as a function taking the vertex at which the robot starts to
the vertex at which it finishes. By Observation 1, we know that after n repetitions of (x), the
robot enters a closed path consisting of some number of executions of (k).

2. The aim of this stage is to determine the closed path the robot has entered.® To determine
this closed path, the robot repeats (x) another 27 times. For i = 1,...,2n, let A; be the
output observed in the 7’th repetition of (x) and let L; be the sequence of edge labels traversed.
The robot finds the smallest p such that the sequence of pairs (A1,L1),..., (Ags, Los) consists
entirely of periodic repetitions of its last p entries. More precisely, for all i, (Ags—;, Lop—i) =
(A2~ (i mod p)> L2i—(i mod p))- Let seq = (Loa_py1,---,L2n) be the sequence of edge labels in
these last p entries. By the minimality of p, the closed path consists of one or more repetitions
of seq. To determine the closed path, the robot drops the pebble and repeatedly traverses seq
until it finds the pebble at the end of one of its traversals of seq. It then retrieves the pebble
for future use.

®Note that the robot cannot simply drop the pebble and repeat (*) until it sees the pebble again because the
robot needs the pebble to execute (x).

14

3. The robot proceeds along the closed path found above until it reaches the end of any execution
of cop, say with output A. The robot then compresses the closed path and replaces M(A) with
the resulting map.

4. If the new M(A) is finished then the algorithm outputs (the new) M(A) and terminates.

Pseudocode for this algorithm and subroutines used by the robot are provided in Figures 4, 5, 6
and 7. We now proceed to analyze the algorithm. As noted above, if ver ever fails in Stage 1,
the robot can improve cop. If all verifications pass, by Lemma 1 we know that in each phase
(new M(A),wp(A)) is consistent with (G,u) for some u € reach(A), and thus Invariant 2 is
preserved. Because ver(A) is part of the closed path and by Note 2, the new M(A) contains the
old M(A) as a subgraph. Because explore(A) is part of the closed path (and is followed from u)
the new M(A) also contains at least one new edge.

The algorithm terminates after at most 2n2d phases because in each phase the algorithm can
either improve the candidate orienting procedure or enlarge a map. More precisely, since the
candidate orienting procedure can be improved at most n — 1 times, at most » — 1 maps are
discarded. At any time the algorithm maintains at most n maps, and so the algorithm builds at
most 2n — 1 maps. Since each map contains at most n-d edges, the bound on the number of phases
follows. Note that the algorithm may terminate before completing the orienting procedure.

The running time of each phase is the sum of (1) the time to find a closed path, and (2) the
running time of the compression procedure. Item (1) is O(n) times the sum of (a) the running
time of the candidate orienting procedure, (b) the running time of the verification procedure, and
(c) the length of the exploration sequence (which is at most m). Recall that the running time
of the verification procedure is O(7An?d). Also recall that verification procedures (that fail) are
distinguishing procedures for improving the candidate orienting procedure. Therefore, we can
bound the running time of any candidate orienting procedure by n - O(An2d) = O(fn3d). Thus,
Item (1) amounts to 7 - O(in?d) = O(a’n3d). By Lemma 1, Item (2) is bounded by n - O(A?n3d) =
O(n%n*d). Since there are at most 2n2d phases, we obtain the following Theorem.

Theorem 1 A robot having a single pebble can learn any strongly connected graph given an upper
bound 7 on the size of the graph in time O(n?n°d?).

Note that the fact that the running time is stated as a function of n (and not only 7) does not
contradict the fact that the algorithm does not know n. The algorithm terminates when it has a
complete map, and only the analysis ensures the time bound as a function of n (as well as 7 and
d).

We observe that although our mapping algorithm may terminate before the orienting procedure
it devises is completed, the algorithm as a whole can be viewed as an orienting procedure that
outputs a completed map and a designated vertex. Thus, we have:

Corollary 4 There is a universal one-pebble orienting procedure that works for all graphs of out-
degree d with at most 0 vertices and runs in time poly(n, d).

Using additional knowledge. As noted in the introduction, we have tried to make as few
assumptions on the graph as possible. In particular, we have not assumed that the vertices are
labeled in any way, while we have assumed the outdegrees of all vertices are the same, and that
the indegrees are not observed. In case any additional distinguishing information is provided, the

15

robot can use it to its benefit. For example, suppose the outdegrees of the vertices vary, where the
outdegree of each vertex can be obtained at the vertex. Then this information can be incorporated
into the orienting procedure. In particular, when there is no distinguishing information, then the
output of the procedure is determined only by the step(s) in the procedure in which the pebble
(which was previously dropped) is observed. If some vertices have different outdegrees than others,
then the output of the orienting procedure can be determined also by the degrees of the vertices
observed during its execution.

compress(oy,...,0%)
/* o1,...,0f corresponds to a closed path from the current vertex. This procedure outputs a
map of the subgraph corresponding to the edges traversed by this path. */

1. fori=0,...,k do: List[i] < A.

2. j ¢ 0.

3. while i s.t. List[i] = A do

a) t < min{0 <i < k: List[i] = A}.

(
(b) traverse oq,...,0y.
(c) drop pebble.
(d) List[t] + wj.
(e) fori=t+1,...,k do
i. traverse o;;
ii. if pebble found then List[i] + w;.
(f) follow o1, ...,0% and pick up the pebble on the way.

(8) jJ+1

4. return map defined by List and o1, ...,0, (where wy is distinguished).

Figure 4: Subroutine compress.

explore(M,wq)
/* M is a (strongly connected) map, wg a distinguished vertex in M. This procedure (determin-
istically) traverses an edge that is unmapped in M. */

1. traverse a sequence of edge labels that induces a path in M from wg to some unfinished
vertex w (i.e., w has outdegree smaller than d in M). (It is easy to deterministically find
such a path of length < n.)

2. traverse an edge label corresponding to an unmapped edge from w in M.

Figure 5: Subroutine explore.

3.6 An Extension to Relative Edge Labels

The graph model treated in the previous sections captures a mapping problem for a very general
class of environments. However, it does assume that the labels on the edges incident to a vertex are
fixed. Although mapping would be impossible without some level of consistency in the labeling of

16

ver(M,wq)
/* M is a (strongly connected) map, wy a distinguished vertex in M. This procedure verifies if
the robot eventually reaches (or is currently at) a subgraph isomorphic to (M, wy). */

1. let path be a sequence of edge labels that induces a closed path starting and ending at
wy traversing all edges in M. (This can be found using the straightforward deterministic
O(n?d) algorithm that simply concatenates paths to and from all edges in M.)

follow path 7 times.
drop pebble.

follow path once.

ATl o

if pebble found at vertex reached then

(a) pick up pebble.

(b) (M, w()) < compress(path).

(c) if (M',wyp) is isomorphic to (M, wg) then return pass.
(d) else return fail.

(a) repeatedly follow path until pebble is found, and pick up pebble.
(b) return fail.

Figure 6: Subroutine ver.

edges, we can consider a relaxed model in which the local labeling of edges leading out of a vertex
can be a function of the previous vertex in the robot’s path. In this section, we sketch how our
algorithm can be adapted to this setting as well.

The new model. A map M consists of a set of vertices V, and for each vertex v, a set of at
most dn triples (u,o,w). Such a triple indicates the existence of an edge leading from v to w,
whose label is o when v is entered using an edge from u. (So w is determined by v, u, and o.)
For ease of presentation, we assume that for every v, there are either 0 or d triples of the form
(u,-,-) for each possible u, but, as in the original model, allowing the outdegree to be a function of
u and v only makes the problem easier. This model is now a strict generalization of the model of
Dudek et al. [23], who impose an additional condition on the graph and edge labelings that enables
backtracking.’

For example, in an environment modeling a city, the vertices might correspond to intersections
and the edge labels might be “turn left”, “turn right”, and “continue straight.” Clearly, the vertex
to which one of these labels leads depends on the direction from which the current vertex was
entered.

°Dudek et al. describe their model as allowing the labeling of edges leaving a vertex to depend on the edge
from which the vertex is entered. However, they allow at most one edge between every two vertices, and hence the
dependence on the edge entered translates to a dependence on the previous vertex visited. We allow multiple edges
and hence make the dependence on the previous vertex.

17

Algorithm Explore-and-Map
/* Map graph given one pebble and an upper bound 7n on number of nodes. */

1. cop < empty procedure.
2. set of maps < empty.
3. while no map is completed do

(a) update-cop « false.
(b) repeat 7 times or until update-cop = true:
i. execute cop and let A be the output observed.
ii. if no map corresponds to output A then create new map M(A) with single vertex
iii. if ver(M(A), wo(A)) = pass then explore(M(A),w(A)).
iv. else
A. use ver(M(A),wy(A)) to improve cop by replacing leaf of Tcop that corre-
sponds to A with internal node corresponding to ver(M(A), wy(A)).
B. remove M(A) from set of maps.
C. update-cop ¢ true.
(c) if update-cop = false
i. for j =1,...,27 do /* since entered cycle in Step 3b, will not need to create new
maps and the verifications below always pass */
A. execute cop and let A; be the output observed.
B. ver(M(A;),wo(Aj)).
C. explore(M(A;), wo(Aj)).
D. Let L; be the sequence of edge labels traversed in the above steps A-C.
ii. find smallest p such that for all i, (A2n—s, Loa—i) = (A2a—(i mod p)s L2a—(i mod p))-
iii. let seq = (Lzﬁ_p+1, - ,LQﬁ).
iv. drop pebble and repeat traversing (all of) seq until pebble found and retrieved.
let path = o1, ...,0 be the closed path found.
v. proceed along path until reach end of subsequence of edges corresponding to an
execution of cop. let the output corresponding to this execution be A, and let
the last edge taken be o;.
vi. replace (M(A),wo(A)) with compress(c;y1...0%,01...0;).

4. output completed map.

Figure 7: The algorithm

18

The new algorithm. We define a function f taking maps M in our new model to maps f(M)
in our previous model, where edge labels are unique. There is a vertex in f(M) corresponding to
each pair of vertices (u,v) connected by some edge in M. Then, for each triple of the form (u, o, w)
associated with vertex v in M, there is an edge labeled o from (u,v) to (v,w) in f(M). Clearly,
f is efficiently computable and injective. Let G denote the complete map of the unknown graph;
then f(G) has exactly dn nodes. Our objective now will be to use the algorithm presented in the
previous section to learn f(G), since f(G) is in our previous model. However, a direct application
our mapping algorithm would require dropping the pebble on vertices of f(G), whereas the robot is
only allowed to drop the pebble on vertices of G. Below, we sketch how, with slight modifications,
our mapping algorithm can be implemented even with this restriction.

We first observe that the compress procedure, if given a sequence of edge labels that induces
a closed path in f(G), can be implemented precisely as before. Referring to Figure 4, we see that
List and the sequence of edge labels oy, ..., 0, completely determine a map M such that f(M) is
strongly connected. We modify the procedure only slightly, so that instead of returning a single
vertex wo, it returns the pair (List[k — 1], wp) as the distinguished vertex of f(M).

Now, every path the robot takes in G induces a path in f(G). Since f(G) has at most dn nodes,
we obtain the following adaptation of Observation 1 to this setting:

Observation 3 Let p be any deterministic procedure for the robot. Let p(u,v) be the pair of
vertices (u',v") such that if the robot begins at node v having entered from node u, then apply-
ing p leads it to vertex v', entering from u'. Then for every vertex (u,v) € f(QG), the sequence
(u,v), p(u,v), p(p(u,v)), ... becomes cyclic within the first dn applications of p.

Thus, we redefine 71 to be d multiplied by our upper bound on the number of vertices. Now, by
Observation 3, we can be sure that after n applications of any deterministic procedure, the robot
will enter a cycle not only in G, but in f(G), as well.

The only difficulty that remains in using our original algorithm to map f(G) is that if the robot
drops its pebble, follows some path, and finds the pebble, we cannot conclude the robot has found a
cycle in f(G) (even though it has found a cycle in G). In order to do this, it must check that some
pair (u,v) occurs again after following the path. There are two places in the original algorithm
where this might be a problem: once in the ver procedure, and once in the main algorithm. We
discuss the remedy for each case now.

In the ver procedure, given in Figure 6, on input a map M and distinguished vertex (a,b) in
f(M), the robot follows a particular sequence of edge labels called path # times. (With our new
definition of 7, we know the robot is in a cycle in f(G) after this.) Now, the robot must first check
to see if (a single execution of) path indeed specifies a cycle in f(G) from its current location. We
now describe a procedure to do this. The procedure assumes that there exists some m < 7 such
that path™ is a cycle in f(G) from the current location of the robot (where path™ denotes path
concatenated with itself m times); this is indeed the because the robot has just executed path 7
times.

check(path): The robot drops its pebble, and does the following: For i = 1 to 7, the robot traverses
path once, and checks to see if the pebble is found. If so, it continues the for-loop. If not, then
path certainly does not define a cycle in f(G), and so the robot traverses path repeatedly until
the pebble is found (which is guaranteed since path™ was a cycle from the robot’s starting point
in f(G)). It picks up the pebble, and returns FAIL. If this for-loop ends with the robot always
finding the pebble after each traversal of path, then by Observation 3, we know that repeated

19

traversals of path induce a cycle (u1,v1), (ug,v2),..., (ug,vg) in f(G). However, since the robot
always sees the pebble after each traversal of path, this implies v1 = vy = -+ = v = v for some
vertex v. To confirm that path itself induces a cycle in f(G), we need only test that u; = u;4q for
some i. Note that if path takes (u;,v) back to (u;,v) = (uj1,v) for some i, by our definition of
(w1,v1),..., (uk,vg), this implies that u; = w41 = -++ = up = uy = ug = -+ = u;, and hence path
by itself induces a cycle in f(G). In order to test that u; = u; 11, the robot picks up the pebble,
and takes all but one step of path, and drops the pebble. The robot must now be at vertex u; for
some 7. It then takes the last step of path, and again traverses all but the last step of path. The
robot must now be at vertex w;; 1. If the pebble is not there, then path does not define a cycle in
f(G), so the robot takes the last step of path, and repeatedly traverses path until the pebble is
found along the way. It picks up the pebble and completes the traversal of path, and then returns
FAIL. If the pebble is found, then the robot has confirmed that following path takes it from some
vertex (u,v) back to (u,v) in f(G), and hence defines a closed path in f(G). The robot retrieves
the pebble, takes the last step of path, and returns PASS. Note that during this check procedure,
the robot’s path is always path/ for some integer ;.

We replace Steps 3-6 of ver with the following: The robot executes check(path). If the check
fails, the verification fails. If the check passes, then the robot calls compress using path, which
returns M’ and (a’,b'). It then checks to see if (f(M), (a,b)) is isomorphic to (f(M'), (a',?")). If so,
the verification procedure returns PASS, otherwise FAIL. With these changes, the new verification
procedure satisfies the conditions of Note 2 (with M(A) replaced by f(M(A)) and G replaced
by f(G)); these are precisely the properties the mapping algorithm requires from the verification
procedure.

In the main procedure, given in Figure 7, the situation is a little more complicated. Here, if
update-cop is false, we find a sequence seq of edge labels such that we know some number of
repetitions of seq induces a cycle in f(G), but we must figure out how many in order to have a
valid input to supply to compress later. Similar to above, we must modify Step 3.c.iv in order to
determine a closed path. Now, we know that at this point, the robot is in a cycle in f(G) defined
by some number of repetitions of seq between 1 and 7. We simply check each of these possibilities
one by one. For i = 1 to 7, the robot executes check(seq’). Whenever the check first succeeds,
the robot knows that seq’ is a closed path in f(G) starting at its current vertex. Thus, we let
path = seq’, exit the for-loop, and continue with the rest of the algorithm as before.

We can see by inspection that these are the only times in the algorithm where the pebble
is employed, and that the above changes satisfy the requirements of the algorithm. Hence, this
algorithm allows the robot to learn a map of f(G) in polynomial time. This map of f(G) can be
easily transformed into a map of G (in the new model).

4 Learning without an Upper Bound on n

In this section we prove our results concerning the number of pebbles needed to learn graphs
efficiently if the graph size is unknown. We use the algorithm of Section 3.5 as a subroutine to
show that for any ¢ > 0, [cloglog n] pebbles are sufficient. The resulting algorithm is deterministic.
In addition, we prove a matching lower bound demonstrating that €2(loglogn) pebbles are necessary.
The lower bound applies to any randomized algorithm that uses an expected polynomial number
of moves. We note that in our upper bound the total computation time to decide on moves is
polynomial, whereas the lower bound applies even when the robot is computationally unbounded.

20

Furthermore, our upper bound holds even when the pebbles used by the robot are indistinguishable
from each other, while the lower bound holds for distinguishable pebbles.

We want to study how the number of pebbles needed grows with the size of the unknown graph.
We denote the expected number of pebbles a (probabilistic) robot A uses on graphs of size n, by

pa(n). Namely,

pa(n) L ax E[# of pebbles that A uses on GJ,

GeGn

where G, is the set of all graphs on n vertices. The exzpected running time of A is defined analogously.
(Recall that in each time step the robot makes a single move, and hence the running time of the
algorithm is the number of moves the robot makes.)

Theorem 2 For every constant ¢ > 0, there exists a (deterministic) algorithm that learns graphs
of size n in polynomial-time using at most [cloglogn]| pebbles, without knowledge of n.

Theorem 3 Consider any algorithm A that, with probability greater than 1/2, learns any graph in
expected polynomial time without knowing the size of the graph. Then pa(n) = Q(loglogn).!°

Throughout the following proofs, all logarithms are have a base 2.

Proof (of Theorem 2): We use the algorithm of Section 3.5 combined with a variant of the
standard guess-and-double technique; instead of doubling, the algorithm takes the k’th power for
a suitably chosen k. To be precise, let k& = [21/¢], let onepeb(#) be the one-pebble learning
algorithm of Section 3.5 which takes a bound 7 on the number of vertices as input, and suppose
q(n) is a polynomial bound on its running time. Assume first that the pebbles used by the robot
are distinguishable. The new algorithm works as follows on a graph of outdegree d: Guess that
the number of vertices in the graph is n; = 2¥, and run onepeb(n;) for g(n;) steps using the first
pebble. If the algorithm outputs a finished map, i.e., every vertex has d edges coming out of it,
then output this graph and halt. On the other hand, if the algorithm fails to produce a finished
map or the robot loses the pebble during the execution of the algorithm, then the entire process
is repeated using ny = n¥ = 2+ instead of ny and using pebble 2. (If pebble 1 is seen during this
execution, it is ignored.) If the execution with ng fails, we continue with ng = n’Zc =2F . We repeat
like this, using ny = nf_l = 2k at the £’th stage until some execution is successful.

It is easy to see that if the algorithm onepeb ever outputs a finished graph, the output is correct,
even if the number of vertices given to onepeb is incorrect. Alternatively, we can simply add an
extra map verification procedure as in Section 3.5 to the end of onepeb to guarantee that the output
is always either correct or FAIL. Moreover, by Theorem 1, the algorithm onepeb is guaranteed to
give a correct output within time ¢(7) as long as it is given a bound 7 larger than the number of
vertices in the graph. Thus, given a graph of n vertices, the algorithm above will always succeed by
stage £, where £ is the first integer such that okt > n, i.e. £ = [(loglogn)/(logk)] < [cloglogn].
Since ny = nILI < nk, the running time of this algorithm is at most Eq(nk) < nq(nk), which is
polynomial in n. Lastly, the algorithm uses at most ¢ < [cloglogn]| pebbles.

To deal with indistinguishable pebbles, we add the following modification. Whenever the algo-
rithm onepeb assumes the robot is in a cycle and is about to drop its pebble, we have the robot
walk once around the cycle, picking up all pebbles that are there before proceeding. Consider stage
¢ of the (parent) algorithm, where £ is the first integer such that 2k" > n. Then we are guaranteed

19Tt is easy to see from the proof that the success probability of 1/2 is arbitrary and can be replaced by any
constant.

21

(by the properties of algorithm onepeb), that the robot is in fact in a cycle whenever it is about
to drop its pebble. Therefore, if it always picks up all pebbles left on the cycle before dropping
its current pebble, then it will not mistake its pebble with previously dropped pebbles, and will
consequently succeed in learning the graph. To ensure that the parent algorithm does not halt
prematurely and output an incorrect graph (in a stage ¢ such that 2k’ < n), we do the following.
Before halting and outputting a graph, we have the robot walk around its entire supposed view of
the graph collecting all pebbles it sees. If the number of pebbles it finds is the same as the number
of pebbles it has ever dropped (and not picked up), then it runs the map verification procedure
and halts if it passes. Otherwise, it continues to the next stage. ®

We note that the algorithm given in the above proof can be deterministically simulated by
two (synchronized or communicating) robots. The second robot can play the role of the pebble;
whenever the first robot does not find the second robot within the appropriate number of steps
(due to an underestimate for n), the second robot can “catch up” to the first robot by following the
first robot’s (deterministic) steps and then they can proceed with a larger guess for n. This gives
a deterministic alternative to Bender and Slonim’s randomized two-robot mapping algorithm [10].

Proof (of Theorem 3): In order to prove the theorem, we analyze the behavior of any algorithm
on two types of graphs of outdegree 2: cycles and combination locks with tails. Formally, the cycle
of n nodes is the labeled, directed graph C,, on vertex set {wg,---,wp—_1}, where there are two
directed edges labeled 0 and 1 going from w; to w(;11) modn- A combination lock with tail has
the following structure (see Figure 8). Let o = ayag --- g € {0,1}¢ be any string and let m > 0
be an integer. The combination lock with combination o and tail m is the graph L, ;,, on vertex
set {uy,ug,...,Un,v1,...,001} with the following edges: For each 1 < i < m — 1, there are two
edges labeled 0 and 1 from wu; to u;41; there are two edges labeled 0 and 1 from u,, to vi; for each
1 <2 </, there is an edge labeled «; from v; to v;1; and an edge labeled «; from v; to vy; there
are two edges labeled 0 and 1 from vy1q to uwy. It is important to note that a robot starting at
vertex vy (i.e., the start of the combination lock) does not reach vertex vy, unless it executes the
consecutive sequence of moves o - - - o at some point. We start by giving the intuition behind the
proof.

Figure 8: A combination lock with a tail.

We analyze any algorithm based on the times it drops pebbles in the case that it does not
see previously-dropped pebbles. We show that there must be huge gaps in these pebble-dropping
times or else the algorithm uses Q(loglogn) pebbles on sufficiently large cycles of length n. The
quantity Q(loglogn) is exactly the threshold below which the gaps between pebble drops become
superpolynomial. That is, for any polynomial f there are infinitely many time steps ¢ such that
no pebble is dropped between time ¢ and time f(¢) with high probability. Then, for one of these
big gaps, we can construct a combination lock with tail for which the following holds. With high
probability, the algorithm drops no pebble within the combination lock and fails to reach the last
few vertices of the lock in its allotted running time. Thus the robot fails to learn the graph. The

22

idea of using combination locks with tails to foil a robot comes from Bender and Slonim’s argument
that a constant number of pebbles is insufficient [10]. The novel aspect of our proof is the analysis
of pebble-dropping times to determine on which sizes of combination locks the algorithm fails.

We now turn to the details of the proof. Suppose, in contradiction to the claim in the the-
orem, that we have an expected polynomial-time algorithm A which succeeds in learning graphs
with probability greater than 1/2, but does not use Q(loglogn) pebbles. Let g(n) = O(n¥) be
a polynomial upper bound on the expected running time of the algorithm. In this proof, we use
the standard technique of treating the randomized algorithm A as a distribution on deterministic
algorithms A, i.e. for every infinite string r € {0, 1}, A, is the deterministic algorithm given by
A using random coins r. All probabilities and expectations in this proof are taken over the choice
of r.

We wish to study how the robot behaves when it doesn’t see the pebbles it has dropped pre-
viously. To formalize this, we look at the infinite graph I on vertex set {wi,ws,...} where there
are two edges labeled 0 and 1 from w; to w;y; for every ¢ > 1. Now consider the behavior of the
robot when it is placed at vertex wi. Notice that when the robot drops a pebble at vertex w; and
moves, it never sees the pebble again. For ¢ > s > 1, let P(s,t) be the probability that the robot
drops at least one pebble between vertices wy and w1, inclusive, and let E(s,t) be the expected
number of pebbles dropped by the robot between vertices ws and wy_1, so E(s,t) > P(s,t). Notice
that E(1,t) is a lower bound on the expected number of pebbles the robot uses on a cycle C; of ¢
vertices, because for every r, A,’s behavior in its first £ — 1 moves is the same in C; as in I. We
now use this to show that that there are superpolynomial gaps in the pebble-dropping times.

Claim: For every fixed ¢ > 0, there are infinitely many ¢ such that P(¢,¢¢) < 1/8.

Proof of claim: Suppose not, i.e. there is some ¢y such that for all ¢t > ¢, P(¢,t¢) >
1/8. Then for every £ > 0,

Y4
L j—1 j
E(thtS) = ZE(tSJ at[C]J)
j=1

l
> STPg Lt
j=1
> /8.

For n > tg, let 4, def min{/ : n < tgl}. Then loglogn < loglogty + ¢, logc, so
£, = Q(loglogn). We also have

n— l, —1
E(l,n) > E(to,n) > E(to,t§") > = Q(loglogn).

But E(1,7n) is a lower bound on the expected number of pebbles the robot uses on
a cycle of length n, so we have a contradiction. =<«

Recall that the expected running time of A is g(n) = O(nF). Using the above claim with
¢ =k+ 1, we can find a ¢ with the following properties:

o P(t,tFT1) < L.

23

o thtl > 8¢(2t 4 4).

Consider the random variable W which is a string consisting of the robot’s first 8q(2¢t+4) moves
in I. There are less than |W| = 8¢(2¢ + 4) contiguous subsequences of length ¢ in W, so there is
some string o € {0, 1} which occurs as a continguous subsequence of W with probability less than
8q(2t + 4)/2! < 1/8. In other words there is a sequence of moves « of length ¢ which the robot
performs with probability less than 1/8 during its first 8¢(2t + 4) steps in I.

Let 8 by any binary string of length 4, and consider the behavior of the robot when placed at

vertex «; in the combination lock Gg def Logt—1 with tail £ — 1 and combination a3 (and vertex
set {ui,...,u—1,v1,...,045} as above). Since A runs in expected time g(n) and Gg has 2t + 4
vertices, the probability that A makes more than 8¢(2¢ 4 4) moves in Gg is at most 1/8.

Let R; be the set of random coins r for which A, would drop a pebble between vertex w; and
wpk+1_1 in I. Let Ro be the set of random coins r for which A, executes the sequence of moves
a at some point during its first 8¢(2¢ + 4) moves in I. Let R be the set of random coins r for
which A, makes more than 8¢(2t + 4) moves in G®. Let R = R; URy U R3. We have shown that
Pr[r € R] < 3/8. Notice that for any r ¢ R, the output of A, on Gg is the same as its output
on G, for any string v of length 4 because the robot never sees a pebble that it has dropped and
never reaches vertex v;11. Let S, be the set of r ¢ R on which A, outputs G, when placed in G,
(equivalently, Gg). Then since A has overall success probability at least 1/2, A must succeed on at
least 1/8 of the r ¢ R. So Pr[r € S,] > 1/8. But there are 16 sets S, and they are disjoint. =<«
|

5 Conclusions and Future Work

In this paper we studied the exploring capabilities of a robot that can drop and pick up pebbles in
an unknown environment, modelled as an unknown directed graph with unlabeled and undistin-
guishable vertices. We showed that, if the robot knows an upper bound 7 on the number of vertices,
n, it can deterministically learn the environment in polynomial time, while it needs ©(loglogn)
pebbles to do the same if if does not know such a bound. The first result disproves a conjecture of
Bender and Slonim [10] while the second presents a deterministic alternative to their randomized
two-robot-based algorithm.

Future Research. The running time of our algorithms, though polynomial in the given param-
eters, leaves much to be desired. In particular, the algorithm for mapping an unknown graph given
an upper bound 7 on the number of vertices and a single pebble, runs in time O(72n5d?). Thus one
natural question is whether this running time can be significantly improved, either for the general
case studied here or for special cases of interest.

Another question is how to adapt the algorithm to deal with uncertainty. For instance, what
if the transitions taken by the robot are incorrect with some probability? (For example, upon
taking an edge labeled i the robot ends at the vertex to which the edge labeled j goes.) ' The
correctness of our algorithm clearly relies on correct transitions. The question is whether any of

1 Another standard form of uncertainty is with respect to possible observations the robot makes at vertices. Our
algorithm can be viewed as dealing with this type of uncertainty by ignoring any such (possibly unreliable) information.

24

our techniques can be adapted to such a scenario, perhaps while making some assumptions about
the graph. See [18] for further discussion on uncertainty in map learning. Even more generally,
perhaps some of our ideas can be used for learning Partially Observable Markov Decision Processes
(using some form of a pebble), in which for each action (edge label) there is a distribution on the
next vertex.

25

References

[1]

2]

[11]

[12]

[13]

[14]

[15]

Rick Adams. Colossal cave adventure page.
http://people.delphi.com/rickadams/adventure/index.html, April 2000.

S. Albers and M. R. Henzinger. Exploring unknown environments. In Proceedings of the
Twenty Ninth Annual ACM Symposium on the Theory of Computing, 1997.

D. Angluin. Learning regular sets from queries and counterexamples. Information and Com-
putation, 75:87-106, November 1987.

D. Angluin, J. Westbrook, and W. Zhu. Robot navigation with range queries. In Proceedings
of the Twenty Eighth Annual ACM Symposium on the Theory of Computing, pages 469478,
1996.

V. Anjan. Doctoral Thesis. PhD thesis, Mathematical Institute of the Academy of Sciences,
Minsk, 1987.

B. Awerbuch, M. Betke, R. L. Rivest, and M. Singh. Piecemeal graph exploration by a mobile
robot. In Proceedings of the Eighth Annual ACM Conference on Computational Learning
Theory, pages 321-328, 1995.

R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Information and
Computation, pages 234-252, 1993.

E. Bar-Eli, P. Berman, A. Fiat, and P. Yan. Online navigation in a room. Journal of Algorithms,
17(3):319-341, November 1994.

M. Bender, A. Ferndndez, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble: Exploring
and mapping directed graphs. In Proceedings of the 30th Annual ACM Symposium on Theory
of Computing, pages 269-278, Dallas, TX, May 1998. ACM.

M. A. Bender and D. Slonim. The power of team exploration: Two robots can learn unlabeled
directed graphs. In Proceedings of the Thirty Fifth Annual Symposium on Foundations of
Computer Science, pages 75-85, 1994.

P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosen, and M. Saks. Randomized robot navi-
gation algorithms. In Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 74-84, 1996.

M. Betke, R. L. Rivest, and M. Singh. Piecemeal learning of an unknown environment. Machine
Learning, 18(2/3):231-254, 1995.

A. Blum and P. Chalasani. An on-line algorithm for improving performance in navigation.
In Proceedings of the Thirty Fourth Annual Symposium on Foundations of Computer Science,
pages 2-11, 1993.

A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric terrain. SIAM
Journal on Computing, 26(1):110-137, January 1997.

M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to search than
graphs). In Proceedings of the Nineteenth Annual Symposium on Foundations of Computer
Science, pages 132-142, October 1978.

26

[16]

[17]

[21]

22]

23]

[24]

[25]

[26]

[27]

[28]
[29]

M. Blum and W. J. Sakoda. On the capability of finite automata in 2 and 3 dimensional space.
In Proceedings of the FEighteenth Annual Symposium on Foundations of Computer Science,
pages 147-161, 1977.

T. Dean, D. Angluin, K. Basye, S. Engelson, L. Kaelbling, E. Kokkevis, and O. Maron. In-
ferring finite automata with stochastic output functions and an application to map learning.
Machine Learning, 18(1):81-108, January 1995.

T. Dean, K. Basye, and L. Kaelbling. Uncertainty in graph-based map learning. Robot Learn-
ing, 1992.

X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environment I: The
rectilinear case. Journal of the ACM, 45(2):215-245, March 1998.

X. Deng, E. Milios, and A. Mirzaian. Robot map verification of a graph world. In Algo-
rithms and Data Structures (WADS ‘99), Lecture Notes in Computer Science, Vancouver, BC,
Canada, August 1999. Springer-Verlag.

X. Deng and A. Mirzaian. Competitive robot mapping with homogeneous markers. IEEFE
Transactions on Robotics and Automation, 12(4):532-542, August 1996.

X. Deng and C. H. Papadimitriou. Exploring an unknown graph. In Proceedings of the Thirty
First Annual Symposium on Foundations of Computer Science, pages 356-361, 1990.

G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration as graph construction.
IEEE Transactions on Robotics and Automation, 7(6):859-865, December 1991.

G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Map validation and robot self-location in a
graph-like world. Robotics and Autonomous Systems, 22(2):159-178, November 1997.

Y. Freund, M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, and R. E. Schapire. Efficient
algorithms for learning to play repeated games against computationally bounded adversaries.
In Proceedings of the Thirty Sizth Annual Symposium on Foundations of Computer Science,
pages 332-341, 1995.

Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie. Efficient learning
of typical finite automata from random walks. Information and Computation, 138(1):23-48,
10 October 1997.

F. Hoffman, C. Icking, R. Klein, and K. Kriegel. A competitive strategy for learning a polygon.
In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
166-174, 1997.

7. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, second edition, 1978.

V. B. Kudryavtsev, Sh. Ushchumlich, and G. Kilibarda. On the behavior of automata in
labyrinths. Discrete Math. and Applications, 3:1-28, 1993.

P. Panaite and A. Pelc. Exploring unknown undirected graphs. In Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, 1998.

C.H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical Computer
Science, 84:127-150, 1991.

27

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

M. O. Rabin. Maze threading automata. Seminar Talk presented at the University of California
at Berkeley, October 1967.

L. Reyzin. Traversal problems for certain types of deterministic and non-deterministic au-
tomata. Unpublished manuscript, 1992.

R. Rivest and R. Schapire. Inference of finite automata using homing sequences. Information
and Computation, 103(2):299-347, 1993.

R. Rivest and R. Schapire. Diversity-based inference of finite automata. Journal of the Asso-
ciation for Computing Machinery, 43(3):555-589, 1994.

D. Ron and R. Rubinfeld. Exactly learning automata of small cover time. Machine Learning,
27(1):69-96, 1997.

E. M. Royer and C.-K. Toh. A review of current routing protocols for ad hoc mobile wireless
networks. IEEE Personal Communications, 6(2):46-55, April 1999.

A.N. Shah. Pebble automata on arrays. Computer Graphics and Image Processing, pages
236-246, 1974.

L. Zhang. A survey of the problem of learning an unknown environment. Unpublished
manuscript, 1994.

28

