A Programming Framework for OpenDP (extended abstract)*

Marco Gaboardil

In this paper, we propose a programming framework for the
library of differentially private algorithms that will be at the
core of the new OpenDP open-source software project (http:
//opendp.io/)). There are a number of goals we seek to achieve
with this programming framework and language choice:

Extensibility We would like the OpenDP library to be able
to expand and advance together with the rapidly growing
differential privacy literature, through external contribu-
tions to the codebase.

Flexibility The programming framework should be flexible
enough to incorporate the vast majority of existing and
future algorithmic developments in the differential privacy
literature. It should also be able to support many variants
of differential privacy.

Verifiability External code contributions need to be verified
to actually provide the differential privacy properties they
promise.

Programmability The programming framework should
make it relatively easy for programmers and researchers
to implement their new differentially private algorithms,
without having to learn entirely new programming
paradigms or having to face excessive code annotation
burdens.

Modularity The library should be composed of modular and
general-purpose components that can be reused in many
differentially private algorithms without having to rewrite
essentially the same code. This supports extensibility, ver-
ifiability, and programmability.

Usability It should be easy to use the OpenDP Library to
build a wide variety of DP Systems that are useful for
OpenDP’s target use cases.

Efficiency It should be possible to compile algorithms im-
plemented in the programming framework to execute effi-
ciently in the compute and storage environments that will
occur in the aforementioned systems.

Utility It is important that the algorithms in the library ex-
pose their utility or accuracy properties to users, both
prior to being executed (so that “privacy loss budget” is
not wasted on useless computations) and after being ex-
ecuted (so that analysts do not draw incorrect statistical
conclusions).

Programming Framework Components

We follow the tradition of systems such as PINQ [2] and Ek-
telo [3], and we identify measurements and transformations as
the two main kinds of operators.

*A full version of this paper is available at http://opendp.io/.

TDepartment of Computer Sciences, Boston University. Supported
by NSF through grants 1565365 and 1845803.

1Depar‘nment of Computer Sciences, Colgate University. Supported
by NSF through grant 1409125 and by DARPA and SPAWAR under
contract N66001-15-C-4067.

§School of Engineering and Applied Sciences, Harvard University.
Supported by a grant from the Sloan Foundation and a Simons Investi-
gator Award.

Michael Hay*

Salil Vadhan$

Measurements A measurement M is a randomized map-
ping from datasets to outputs of an arbitrary type. A mea-
surement operator M and its privacy properties are specified
by 5 attributes:

1. input_domain, describing the kind of data the measure-
ment expects as input.

2. input_metric, describing the metric (or adjacency rela-
tion) that is used for inputs.

3. output_measure, the similarity measure that the mecha-
nism guarantees on the output distributions.

4. privacy_relation, the relation asserting the privacy
properties of the measurement

5. function, the randomized function implemented by the
measurement.

The structure of a measurement operator favors generality. By
changing the different attributes we expect to be able to ex-
press most of the useful current and future privacy mechanisms
that satisfy variants of differential privacy. One key design
choice here is that we assert privacy through a privacy rela-
tion between an input distance d; and an output distance d,
and certifying that “for all z,z’ in the input domain, if z is
d;-close to ' under the input metric, then the outputs of run-
ning the function on x and running it on z’ are d,-close under
the similarity output measure”.

A crucial assumption about the output similarity measures
is that they satisfy post-processing. Beyond post-processing,
the proposed framework does not need to assume anything
else about the output measures.

Transformations A transformation is a (deterministic)
mapping from datasets to datasets. A transformation T and
its stability properties are specified by six attributes:

1. input_domain, describing the kind of data the transforma-
tion expects as input.

2. input_metric, describing the metric (or adjacency rela-
tion) that is used for inputs.

3. output_domain, describing the kind of data the transfor-
mation produces as output.

4. output_metric, describing the metric (or adjacency rela-
tion) that is used for outputs.

5. stability_relation, the relation asserting the stability
properties of the transformation.

6. function, the function implemented by the transforma-
tion.

Similarly to measurements, the structure of a transformation
operator favors generality. By changing the different attribute
we expect to be able to express most of the current and future
data transformations used when constructing or applying dif-
ferentially private mechanisms. To assert the properties of a
transformation we have a stability relation between an input
distance d; and an output distance d, and certifying that “for
all z,z’ in the input domain, if z is d;-close to =’ under the
input metric, then the outputs of running the function on z
and running it on z’ are d,-close under the output metric”.

http://opendp.io/
http://opendp.io/
http://opendp.io/

Chaining and composition From transformations and
measurements defined as above, we can build up more complex
transformations and measurements through various operators
that combine them.

Chaining For combining measurements and transformations
we use chaining, which is simply function composition.
‘We can chain two transformations to produce a new trans-
formation, or chain a transformation and a measurement
to produce a new measurement.

Composition For combining multiple measurements we can
use composition functions, which take multiple measure-
ments and return a new measurement with a privacy re-
lation built out of the privacy relations of the input mea-
surements accordingly to some composition theorem of the
underlying privacy measure.

This form of composition is “non-adaptive.” However, it is of-
ten useful to use more sophisticated, “adaptive” forms of com-
position, where the choice of the mechanism Ms depends on
the result of Mi(z), and we also allow even more mechanisms
M3, My, ... to be chosen adaptively. This kind of flexibility
is clearly important when allowing an analyst to interactively
query a dataset protected by differential privacy. To support
this, PINQ and other DP systems often manage the privacy
budget and composition at a higher layer that sits above the
basic transformations and measurements. (Indeed, PINQ also
handles chaining at that higher level, rather than as an oper-
ator that produces new transformations and measurements.)
We will discuss how we manage this form of adaptivity in the
next section.

Interactive Measurements The framework described be-
fore assumes that measurements are one-shot randomized func-
tions. However, many of the useful primitives in the differential
privacy literature, such as Adaptive Composition, the Sparse
Vector Technique, and Private Multiplicative Weights are ac-
tually interactive mechanisms, which allow one to ask an adap-
tive sequence of queries about the dataset. Having a library
that supports such interactive measurements is useful both for
enabling the design of interactive query systems for end users,
as well as tools for the design of even noninteractive differen-
tially private algorithms (such as differentially private gradient
descent).

An interactive measurement M is a (possibly randomized)
function that takes a private dataset and then “spawns” a
(possibly randomized) state machine called a queryable. The
queryable consists of an initial private state s and an evaluation
function Eval. It then receives a query ¢;. Based on ¢ and its
current state so, it generates a (possibly randomized) answer
a1 and updates its state to s;. That is, (a1, s1) < Eval(q1, so0)-
It then receives a new query g2, and similarly generates an an-
swer and state update as (az, s2) < Evaljs(g2, s1). And so on,
arbitrarily long.

An interactive measurement operator is specified with same
attributes as noninteractive measurements, as described above,
except that the function is now the (possibly randomized)
function that generates a queryable from the input dataset.

To define privacy for interactive measurements, we consider
an arbitrary adversarial strategy A interacting with M(z),
which selects each query g¢; adaptively based on all previ-
ous answers (ai,...,a;—1) and any randomness of A. Let
View(A < M(z)) be a random variable denoting the A’s
view of this entire interaction, namely all of A’s randomness
and the answers to all queries. We say that M is an pri-
vate with respect to the output measure if for every adversarial

strategy A, and for all z,z’ in the input domain, if z is d;-
close to z’ under the input metric, then the random variables
Y = View(A < M(z)) and Y’ = View(A + M(z')) are do-
close under the similarity output measure.

A noninteractive measurement M can be viewed as an in-
teractive measurement M’ where M’(z) returns a queryable
whose initial state is s = M (x) and whose transition function
always returns answer a = s and does not change the state.

Post-processing An important property of differential pri-
vacy is that it is closed under post-processing. For interactive
measurements, we think of the queryable itself as the analogue
of the “privacy-protected output” of the measurement operator
— no matter how one computes with the queryable (as a black
box, without examining its internal state!), privacy is main-
tained. This gives rise to a post-processing principle for in-
teractive measurements. Specifically we can apply a queryable
mapping function P that takes the queryable Q = M (z) pro-
duced by M and produces a new queryable Q' = P(Q). Impor-
tantly, P does not get to examine the internals of the queryable
Q, only interact with it as a (stateful) black box, issuing queries
and receiving answers. P can also embed the queryable Q in-
side the queryable Q’, so that whenever Q' receives a query, it
can issue some queries to @ to help compute an answer. Note
that @ continually updates its state as P and then Q' issues
queries to it. Postprocess(M, P) is the interactive measure-
ment M’(z) = P(M(z)) that outputs Q’.

The reason privacy is preserved under this interactive form of
post-processing is that for every adversary A interacting with
with Postprocess(M, P), there is an adversary AM interacting
with M and a function f°Ut such that for every dataset z,

View(A « Postprocess(M, P)(x)) = fo" (View (A" & M (x))).

That is, views of an adversary interacting with the post-
processed mechanism can be obtained by applying a function
to the view of an adversary interacting with the original mech-
anism, and thus differentially privacy of the latter implies dif-
ferential privacy of the former.

A concrete example We illustrate the different compo-
nents with an example: an instantiation of the differentially
private Statistical Query (SQ) Model. This can be imple-
mented as a post-processing of an interactive measurement
AdaptiveComposition.

In the SQ Model, we are given a dataset € MultiSets(X),
and an analyst can issue up to 1" queries that can be issued are
bounded functions f : X — [— B, B] and obtain noisy estimates
of the average E.« ¢ [f(2)] = (3_,c, [(2))/|z]. We can imple-
ment this using 7'+ 1 queries to an AdaptiveCompositiony .
queryable, spending half the budget on an initial query to esti-
mate the size of the dataset, and then dividing the remaining
budget evenly over the T remaining queries to estimate the
sum Y .. f(x). In our implementation, we don’t require that
the queries f are bounded as specified, but will rather enforce
it by evaluating the sums using a NoisyClampedSum measure-
ment.

Due to space constraints, we present this example in a sim-
plified form of the framework, where the private data is always
an element of MultiSets(X') for some record domain X, the
metrics on the private data are always symmetric difference of
multisets, the output measure for measurements is always pure
differential privacy, and the privacy and stability relations are
replaced by constants representing the pure-DP parameter e
or the stability /Lipschitz constant.

class InteractiveMeasurement:
input_domain
privacy_loss
function

class Queryable:
_state # --— the state need to be private --—-
eval
def query(q):

10 (a, _state)=eval(q,_state)

11 return a

© 0w N U A W N e

13 def MakeAdaptiveComposition(dom,epsilon:float):

14 input_domain = dom

15 privacy_loss = epsilon

16 def function(data):

17 initial_state=(data,epsilon)

18 def eval(query: Measurement, state):

19 (st_data, eps) = state

20 if query.input_domain!=dom: return ('domain mismatch',eps)

21 elif query.privacy_loss > eps: return ('insufficient budget',eps)
22 else return (query.function(st_data),eps-query.privacy_loss)
23 return Queryable(initial_state,eval)

24 return InteractiveMeasurement (input_domain,privacy_loss,function)

25
26 # Example

27 queryable_obj=MakeAdaptiveComposition(float,2).function(dataset)
28 resl=queryable_obj.query(NoisySum)

20 res2=queryable_obj.query(NoisyCount)

30

31 def Postprocess(intMeas: InteractiveMeasurement,queryable_map):

32 input_domain = intMeas.input_domain

33 privacy_loss = intMeas.privacy_loss

34 def function(data):

35 queryable_inner=intMeas.function(data)

36 return queryable_map(queryable_inner)

37 return InteractiveMeasurement (input_domain,privacy_loss,function)

38
39 # Ezample

40

41 def MakeRowTransform(in_dom, out_dom, f):
42

43
44 def MakeNoisySumFunction(in_dom,f,L,U,epsilon):

15 return(ChainingMT (MakeNoisyClampedSum(L,U,epsilon),

46 MakeRowTransform(in_dom, float, f)))

47

48

49 def MakeSQmodel(in_dom,T,B,epsilon):

50 def queryable_map(AC_queryable):

51 eps=epsilon/2

52 def sum_query(x): return 1

53 n=AC_queryable.query(MakeNoisySumFunction(in_dom,sum_query,-1,1,eps))

54 initial_state=T

55 def eval(query, state):

56 if state>0:

57 answer=AC_queryable.query(MakeNoisySumFunction(in_dom,query,-B,B,eps/T))/n
58 else:

59 answer='no more queries'

60 return (answer,state-1)

61 return Queryable(initial_state,eval)

62 return Postprocess(MakeAdaptiveComposition(in_dom,epsilon),queryable_map)

Figure 1: Differentially Private SQ Model

Chaining and Composition of Interactive Measure-
ments Chaining generalizes in a straightforward way to in-
teractive measurements. As far as composition, it is natural to
extend the AdaptiveComposition procedure described above
to allow queries that can be interactive measurement opera-
tors themselves. For example, we should be able to issue a
query g; describing an interactive measurement operator Mg,
that spawns an “inner queryable” Mg, (x) within the Adap-
tive Composition queryable, to which we can issue subsequent
queries. We can then choose to allow for either:

1. Sequential Composition: all of the queries to the first in-
ner queryable must be completed before another inner
queryable is spawned.

2. Concurrent Composition: multiple inner queryables can
be spawned and be simultaneously active, with queries to
them arbitrarily interleaved.

The basic, additive composition of privacy loss for pure dif-
ferential privacy applies for both sequential composition and
concurrent composition; indeed, PINQ allows for concurrent
composition and a formal proof of its correctness is given in
[I]. As far as we know, there has also been no rigorous analysis
of concurrent composition for approximate differential privacy
or other variants of differential privacy, or for general privacy
odometers; this is an important direction for future work.

Verifying Privacy Properties Our goal is to ensure that
the only measurements and transformations that can be con-
structed by the OpenDP Library have mathematically proven
privacy properties, based on either:

e A custom proof, which is provided by the contributor and
is verified by a human (on the OpenDP editorial board)
or by a computer (for components that are amenable to
formal verification techniques), or

e An automatically derived proof, if the new component is
obtained by combining components that already exist in
the library (using combination primitives that exist in the
library).

In our code examples, we implemented measurement (re-
spectively, transformation) families as constructors that take
the parameters and output a measurement (respectively a
transformation), or an exception if the parameters are invalid.
Thus we propose:

Code should only be accepted to the library if there is
a proof that (1) it can only ever construct valid mea-
surements or transformations, where valid means that
the measurement (resp. transformation) respects the
privacy-loss bound (resp., stability bound) promised
in its attributes, (2) it does not modify any measure-
ments or transformations that have been constructed,
and (3) it does not modify code in the library.

The proof can assume (by induction) that all mea-
surements and transformations given as inputs or con-
structed by existing code in the library are valid. In
particular, if the new code does not directly construct
any measurements or transformations on its own (but
only using existing code to do so), does not modify
any measurements or transformations that have been
constructed, and does not modify code in the library,
then it should be possible to verify its validity auto-
matically.

Other considerations FEnsuring privacy in implementa-
tions The design we outlined above guarantees private data
to be accessed only by means of valid measurement and trans-
formations. In addition, we will need to prevent leakages po-
tentially caused by:

e Timing channels
e Implementation of arithmetic
e Use of pseudorandomness

Using the Library Calling the library from a DP system re-
quires:

e determining the dataset and its type, determining the pri-
vacy notion one wants to use and its granularity,

e selecting an interactive measurement from the library,

e presenting all the queries to the queryable created by the
measurement.

To do this, the library needs information about the runtime
system, e.g. data access model, capabilities of the backend,
partition between secure and insecure storage, that need also
to be provided before the execution. These can be exposed
directly or through user interfaces built on top of the library,
e.g. SQL-like, GUI, Python notebook, etc.

Contributing to the Library We envision different kinds of code
contributions:

o New measurements or transformations combining existing
library components.
e New private data types, distance measures, or privacy no-

tions.

e New primitives to combine measurements and transfor-
mations.

e New “atomic” measurements or transformations with

proof of correctness.
e New types of privacy or stability calculus.

The Scope of the Framework What is supported within the
current framework:

e Many different dataset types, privacy measures and granu-
larities, ways to combine different primitives to build more
complex mechanisms.

e Common database transformations, mechanisms based on
global sensitivity or restricted sensitivity

What will require extensions of the framework:

e Mechanisms based on local sensitivity, privacy odometers,
privacy with explicit adversary models, randomized or in-
teractive transformations.

References

[1] H. Ebadi and D. Sands. Featherweight pinq. Journal of
Privacy and Confidentiality, 7(2), 2016.

[2] F. D. McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In Proceed-
ings of the 2009 ACM SIGMOD International Conference
on Management of data, pages 19-30. ACM, 2009.

[3] D. Zhang, R. McKenna, I. Kotsogiannis, M. Hay,
A. Machanavajjhala, and G. Miklau. Ektelo: A framework
for defining differentially-private computations. In Proceed-
ings of the 2018 International Conference on Management
of Data, pages 115-130. ACM, 2018.

