Manipulating Statistical Difference

Amit Sahai and Salil Vadhan

ABSTRACT. We give several efficient transformations for manipulating the sta-
tistical difference (variation distance) between a pair of probability distribu-
tions. The effects achieved include increasing the statistical difference, de-
creasing the statistical difference, “polarizing” the statistical relationship, and
“reversing” the statistical relationship. We also show that a boolean formula
whose atoms are statements about statistical difference can be transformed
into a single statement about statistical difference. All of these transforma-
tions can be performed in polynomial time, in the sense that, given circuits
which sample from the input distributions, it only takes polynomial time to
compute circuits which sample from the output distributions.

By our prior work (see FOCS 97), such transformations for manipulating
statistical difference are closely connected to results about SZK, the class of
languages possessing statistical zero-knowledge proofs. In particular, some
of the transformations given in this paper are equivalent to the closure of
SZK under complement and under certain types of Turing reductions. This
connection is also discussed briefly in this paper.

1. Introduction

Statistical difference, also known as variation distance, is a fundamental mea-
sure of similarity between probability distributions. This measure is the most appro-
priate choice for many applications in algorithms and cryptography, so it is natural
to seek efficient means of manipulating it. In this paper, we exhibit polynomial-
time transformations mapping pairs of distributions to pairs of distributions which
have the following effects:

A (Increasing Statistical Difference) “Noticeable” statistical difference is
driven exponentially close to 1 (whereas negligible statistical difference re-
mains negligible). This is a well-known technique — we simply repeat each
distribution many times independently.

B (Decreasing Statistical Difference) Statistical difference that is bounded
away from 1 is driven exponentially close to 0 (whereas statistical difference
that is negligibly close to 1 remains as such). This is achieved by an XOR
construction inspired by a technique of [DDPY94].
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C (Polarizing the Statistical Relationship) If the original distributions
have (moderately) large statistical difference, then the resulting distributions
will have statistical difference exponentially close to 1, and if the original dis-
tributions have (moderately) small statistical difference, then the resulting
ones will have statistical difference exponentially close to 0.

D (Reversing the Statistical Relationship) If the original distributions
have small statistical difference, the resulting ones will have large statisti-
cal difference, and if the original ones have large statistical difference, the
resulting ones will have small statistical difference.

Of these, Transformations C and D are the main new contributions of this
work, though we also describe Transformations A and B in detail, as we make
use of them for the former. The final result of this paper is an application of all
of these techniques to show that a boolean formula whose atoms are statements
about statistical difference can be efficiently transformed into a single statement
about statistical difference. All of these results are discussed in more detail below.

Our initial motivation for addressing these questions arose from our recent
work [SV97] showing a close relationship between statistical difference and sta-
tistical zero-knowledge (SZK) proofs. Specifically, the problem of distinguishing
between pairs of (succinctly described) distributions with large statistical differ-
ence and pairs with small statistical difference was shown to be complete for SZK,
the class of languages possessing statistical zero-knowledge proofs [SV9T7]. By that
result, efficient transformations for manipulating statistical difference yield closure
properties of SZK, and conversely. For example, one of the transformations given
here is equivalent to the closure of SZK under complementation, and another is
equivalent to the closure of SZK under certain types of Turing (or Cook) reduc-
tions. In fact, some of these transformations were developed in [SV97] in order to
prove things about SZK, whereas others were obtained by extracted ideas which
appeared in [DDPY94, Oka96, SV97] stated in terms of SZK.

Another reason for looking at statistical difference is that many computational
problems of interest can be cast as statistical difference problems; examples include
QuADRATIC RESIDUOSITY [GMRS89], GRAPH ISOMORPHISM [GMW91], and ap-
proximate versions of the CLOSEST and SHORTEST VECTOR PROBLEMs [GG98].
Indeed, statistical zero-knowledge proofs are often constructed for such problems
based on this observation.

1.1. Formal Setting. If X and Y are probability distributions (or random
variables) on a discrete space D, the statistical difference between X and Y is

defined to be
[[X = Y| = max|Pr[X € S]—Pr[Y € 5]|.
sch

In this paper, we focus on distributions Z which have a “succinct description”
which enables them to be sampled efficiently. By “succinct description” we mean a
circuit C' which, when fed the uniform distribution, has output distribution Z. For
example, if C' has m input gates and n output gates, Z would be the distribution
induced on {0, 1}" when C is fed the uniform distribution on {0, 1}™. Thus, when
we speak of “efficient transformations” of pairs of distributions, we mean that there
is a polynomial-time computable function on pairs of circuits that achieves the
desired transformation on the corresponding pair of distributions. For notational
convenience, we write C' for both the circuit and the distribution Z 1t defines.
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1.2. Contrast with the “Standard” Setting. In the setting of randomized
algorithms, there is typically a single probability space at hand, and one is interested
in the probability of some event (such as the algorithm giving the correct answer.)
To achieve various effects on the probability of this event (such as decreasing the
error probability), a Chernoff bound argument is often all that is needed. In the
setting of statistical difference, there are two probability spaces at hand, and we
are interested in the maximum difference in probabilities, over all possible events.
Because of this, we are limited in what we can achieve with Chernoff bounds alone.
Chernoff bounds do, however, enable us to analyze the following direct product
construction: Suppose we have a pair of distributions Xy and X;, and we let Yy
and Y7 consist of k independent copies of Xy and X7, respectively. Then a Chernoff
bound argument tells us that

(1.1) X0 — X[ > € = [|Yo = Vi|| > 1 — e~ 9,
Moreover, one can also show that
[|[Xo — Xi| < € = ||Yo — Y1| < ke.

This gives us Transformation A — noticeable statistical differences are driven ex-
ponentially close to 1, whereas negligible statistical differences remain negligible.

1.3. Polarizing the Statistical Relationship. Our first main result is a
transformation which “polarizes” the statistical relationship between two distribu-
tions. That is, pairs of distributions which are statistically close become much
closer and pairs of distributions which are statistically far apart become much fur-
ther apart. That is, we exhibit a polynomial-time computable transformation which
takes a triple (Co, Cy, 1¥), where Cy and €} are circuits and produces a new pair
of circuits (Dg, Dy) such that

|Co—Ci]| >2/3 = ||Do— Dy >1-27F
ICo—Cill<1/3 = ||Do— Dy]| <27

Note that this is not achieved by the direct product construction described above.
Looking back at Equation 1.1, we see that the statistical difference will go to 1 in
both cases, whereas we want the statistical difference to go to 1 in the first case and
0 in the second case. Thus, the Polarization Lemma' is achieved by carefully com-
bining the direct product construction with another construction which decreases
statistical difference.

To decrease statistical difference, we show that, given two pairs of distributions,
we can efficiently produce a third pair of distributions whose statistical difference
is exactly the product of the original two statistical differences. Iterating this drives
statistical differences which are bounded away from 1 to 0 as desired, whereas
statistical differences that are negligibly close to 1 remain as such. The construction
is based on the intuition that the hardness of guessing the XOR of two bits should
be the “product” of the hardnesses of the bits individually, and is inspired by
[DDPY94].

1The Polarization Lemma stated here is called the Amplification Lemma in [SV97]. We
change the name here to stress that the Polarization Lemma does not merely increase statistical
difference.
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1.4. Reversing the Statistical Relationship. Our second result is per-
haps even more unexpected than the Polarization Lemma — we exhibit an efficient
transformation that “reverses” the statistical relationship between a pair of distri-
butions. That is, we show that there 1s polynomial-time computable function that
maps pairs of circuits (Cy, C1) to pairs of circuits (Dyg, Dy) such that

[[Co—Ch|| < 1/3 = ||Do— D1l >2/3
[[Co—Ch|| >2/3 = ||Do—D1|<1/3

The techniques used in this transformation come from work on statistical zero-
knowledge [Oka96, SV97], as discussed below.

1.5. Statistical Zero-Knowledge. Informally, zero-knowledge proofs [GMR89]
are interactive proofs in which the verifier “learns nothing” other than the assertion
being proven. A statistical zero-knowledge proof is a type of zero-knowledge proof in
which the “learns nothing” condition is interpreted in a strong information-theoretic
sense. Statistical zero-knowledge proofs are of interest both in cryptography and
complexity, and the set of languages possessing such proofs, SZK, has been studied
in a number of recent works.

In prior work [SV97], we related SZK to statistical difference by proving that
the problem of deciding whether the statistical difference between two distributions
is large or small is complete for SZK. This can be formally described as a “promise”
problem? STATISTICAL DIFFERENCE (abbreviated SD) whose YES instances are
pairs of circuits whose statistical difference is greater than 2/3 and whose NO
instances are pairs whose statistical difference is less than 1/3:

SDy

2
{evsic-ci>2}

SDy

1
{evic-cai<g)
The main theorem in relating SD to SZK is the following:

THEOREM 1.1 ([SV9T]). SD is complete for SZK. That is, SD € SZK, and
every problem in SZK reduces to SD (via a many-one polynomial-time reduction).

By Theorem 1.1, efficient transformations for manipulatingstatistical difference
can yield closure properties of SZK, and conversely. For example, by Theorem 1.1,
the Reversal Mapping described above is equivalent to the closure of SZK under
complement. In fact, the existence of such a transformation was originally de-
duced from the fact that SZK is closed under complement [Oka96, SV97]. This
result motivated our search for a more explicit description of such a mapping. By
extracting ideas used in the transformations of statistical zero-knowledge proofs
given in [Oka96] and [SV97], we obtained the description of this transformation
given in this paper. The Polarization Lemma, on the other hand, was originally
developed for the purpose of proving things about SZK [SV97], but now also serves
as an essential tool in the construction of our other transformations on statistical
difference.

2 A promise problem is simply a decision problem in which some inputs are excluded [ESY84].
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1.6. Boolean Closure. The final result of this paper 1s an application of
all of the above transformations to show that a boolean formula whose atoms are
statements about membership in SD can be efficiently transformed into a single
statement about SD. This is a strengthening of a result of [DDPY94] who show
how to do this for monotone formulae whose atoms are statements about reandom
self-reducible languages (which can be reduced to an extreme case of SD in which
the thresholds are 1 and 0).

This result is based on the observation that some of transformations described
above can be interpreted as boolean operations on statistical difference. For exam-
ple, suppose we let distribution Z; consist of a copy of of distribution X followed
by an independent copy of distribution Yy, and similarly let Z; consist of X; fol-
lowed by Y;. Then we see that if either Xy and X or Yy and Y; are statistically
far apart, then Zy and Z; will be statistically far apart. Similarly, if both pairs
(X0, X7) and (Yo, Y1) are statistically very close, then Zy and Z; will be statistically
close. Thus, this operation in some sense represents OR. Similarly, the XOR con-
struction mentioned earlier represents AND, and the Reversal Mapping represents
negation. Combining these operations with the Polarization Lemma, we see that,
given a k-ary formula ¢ and k pairs of input distributions, we can produce a pair
of distributions whose statistical difference indicates whether or not the formula
is true when its variables are set according to whether the corresponding pairs of
input distributions are statistically far or statistically close. How efficient is this
procedure? We show that a careful implementation of this procedure, using these
particular AND or OR operations, can be performed in time polynomial in the size
of ¢ and the circuits describing the input distributions.

By Theorem 1.1, this implies a very strong boolean closure property of SZK,
one that does not necessarily follow from the fact that SZK is closed under comple-
ment, union, and intersection. As explained in Section 6, this can also be viewed
as closure under a weak form of polynomial-time Turing reductions, and a step
towards determining whether SZK is closed under general polynomial-time Turing
reductions.

2. Notation and Basic Facts

First, we introduce some notation that will be used throughout the paper. If X
is a probability distribution (or random variable), we write z — X to indicate that »
is a sample taken from X. If S is a set, we write €S to indicate that « is uniformly
selected from 5. In this paper, we focus on probability distributions that have a
“succinct description” which enables them to sampled efficiently. By “succinct
distribution” we mean a circuit C' which, when fed the uniform distribution, has
output distribution Z. For example, if ' has m input gates and n output gates, 7
would be the distribution induced on {0, 1}" by feeding C' the uniform distribution
on {0,1}™. For notational convenience, we write C' for both the circuit and the
distribution Z it defines.

Recall the definition of statistical difference given in Section 1.1. For probability
distributions (or random variables) X and Y on a discrete set D,

[[X = Y| = max|Pr[X € S]—-Pr[Y € 5]|.
SCh

This is often also called the wariation distance between X and Y. There is an
equivalent formulation of statistical difference in terms of the ¢; norm |-|; that will
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sometimes be more convenient for us. To every probability distribution X on a
discrete set D, the mass function of X is a vector in R? whose ’th coordinate is
Pr[X = «]. For the sake of elegance, we also denote this vector by X. With this
notation, we can state the following well-known fact.

Fact 2.1. ||IX - Y| =4 X - Y],.

ProoF. For any set S C D,

2|Pr[X € S]—Pr[Y € 9]
= |Pr[XeS]|—-Pr[Y eS|+ Pr[X ¢S] —Pr[Y ¢5]

= Do (Pr[X=a]-Pr[Y =a])|+ > (Pr[X =a]— Pr[Y = z])
z€S zg S
< DO Pr[X =a]-Pr[Y =a]|+ ) [Pr[X =2] - Pr[y =2
z€S zgS
Equality is achieved by taking S = {z: Pr[X =] > Pr[Y = «]}. O

It 1s immediate from this characterization of statistical difference that it is a
metric (as long as we identify random variables that are identically distributed). In
particular, it satisfies the Triangle Inequality.

Fact 2.2 (Triangle Inequality). For any probability distributions X, Y, and
ZAIX =YI<IX =2l +11Z =Y

Recall that for any two vectors v € R™ and w € R", their tensor product
v @ w is the vector in R™”, whose (7, j)’th component is v;w;. Now, if we have a
pair of random variables (X,Y") (on the same probability space) taking values in
D x E| then X is independent from Y iff the corresponding mass functions satisfy
(X,Y) = X ®Y, where we view the mass functions of X and Y as elements of R”
and IR? | respectively. For this reason, if we have random variables X and Y taking
values in sets D and E, respectively, we write X ® Y for the random variable taking
values in D x F which consists of independent samples of X and Y.

Now, for any two vectors v and w, |[v ® w|; = |v|, - |wl],. In addition, for any
mass function X, |X|; = 1. These facts enable one to show that the statistical
difference behaves well with respect to independent random variables:

Fact 2.3. Suppose Xy and Xy are independent random variables on one prob-
ability space and Yy and Yy are independent random variables on another probability
space. Then,

(X1, Xo) = (Y1, Yo)[| < [|Xy = Yaf| + [|Xz — Yal|.
Proor.
I(X71, Xa) — (Y1, Y2)|

IN

(1(X1, X2) — (Y1, Xo)[| +[|(Y1, X2) — (Y1, Ya)|
1 1
= 3 X1 @ Xy — Y1 @ Xof, + 3 Y1 © X — Y1 @Ys,

1
(X1 = Y1) © Xy + 5 V1 @ (X2 = ¥2)y

— N =

1
= §|X1—Y1|1'|X2|1+§|Y1|1'|X2—Y2|1
= |IXq = Yi|| + [|X2 = Yo
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O

One basic fact about statistical difference is that it cannot be created out of
nothing. That is, for any procedure A, even if it be randomized, the statistical
difference between A(X) and A(Y) is no greater than the statistical difference
betewen X and Y. Formally, if D is any set, a randomized procedure on D is a
a pair A = (f, R), where R is a probability distribution on some set F and f is
a function from D x E to any set F'. Think of the distribution R as providing a
“random seed” to the procedure A. If X is a probability distribution on D, then
A(X) denotes the probability distribution on F' obtained by sampling X @ R and
applying f to the result. Note that applying a function is a special case of applying
a randomized procedure.

Fact 2.4. If X and Y are random variables and A is any randomized proce-
dure, then [|JA(X) — A(Y)|| < | X =Y.
ProoF. Let A = (f, R). Then, for any set S C F|,
|Pr[A(X) € S]— Pr[A(Y) € 5]|
[Prif(X@R)eS|—Pr[f(Y ® R) € 5]
[PriX@Re I (S)] -Pr[Y@Re [TH(9)]]

< [[Xe@R-YaR|
< X =Y +[R-R|
= [|X-Y].
Taking the maximum over all sets S completes the proof. O

The next fact is useful when arguing that the statistical difference between two
distributions is small.

FacT 2.5. Suppose X = (X1, X2) and Y = (Y1,Y3) are probability distributions
on a set D x F such that
1. X1 and Y7 are identically distributed, and
2. With probability > 1 — € over x — X3 (equivalently, x — Y1),
(21) ||X2|X1:x - Y2|Y1:x|| < 6
(where Bla=q denotes the conditional distribution of B given that A = a for
Jointly distributed random variables A and B).
Then | X =Y < e+ 6.
ProoFr. Let T'C D be the set of 2’s for which Equation 2.1 holds. Now, let S be

an arbitrary subset of D x E and, for every « € D, define S, = {y € E: (z,y) € S}.
Then,

Pr[X €8] < PrlXy ¢T]+ > PriXs € S,|X; =2]Pr[X; = 1]
zeT
< e+ > (Pr[Ys € Spl¥y = 2]+ 6)Pr[Y; = 2]
zeT
< e4+6+Pr[Y ed].

By symmetry, we also have Pr[Y € S] < ¢4+ 6+ Pr[X € S5]. Since S was arbitrary,
[[X =Y <e+é. O
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The next fact formalizes the intuition that if two distributions have small sta-
tistical difference, then their mass functions must be close at most points.

Fact 2.6. If X and Y are any two distributions such that | X —Y|| < ¢, then
with probability > 1 — 2,/€ over v — X,

(2.2) (1-VOPr[X=z]<Pr[Y =z] < (1+e) Pr[X =2].

ProoF. Let S = {x: (1 —+/¢)Pr[X =] > Pr[Y = z]}, i.e. the set of z’s for
which the left-hand inequality in Equation 2.2 is violated. Then,

Prlyes] < (1-+e)Pr[X e S]
= PriXeS]|—+ePr[Xes9].

Thus, ||X — Y| > /ePr[X € S],;s0 we must have Pr[X € 5] < /6. A similar
argument show that the right-hand inequality in Equation 2.2 is violated with
probability less than /e. O

3. Direct Product and XOR Lemmas

In this section, we describe two simple constructions, and their effect on the
statistical difference between a pair of distributions. These are essential building
blocks for the more complex transformations in later sections. The first construction
is known as the direct product construction. In this construction, one samples a
distribution independently &k times. When applied to a pair of distributions, this
construction has the effect of increasing any noticeable statistical difference to one
exponentially close to 1. This is formalized in the following lemma:

LEMMA 3.1 (Direct Product Lemma). Let X and Y be distributions such that
| X =Y|| =€ Then for all k,

ke > || @ X — @Y || > 1—2e7F/?

ProoOF. The upper bound of ke follows immediately from Fact 2.3, so we pro-
ceed to the proof of the lower bound. Recall, from the definition of statistical
difference, that there must exist a set S such that

PriX eS| —Pr[Y e S =e

Let p = Pr[Y € S]. Then, Pr[X € S] = p+ €. Hence, in k independent samples
of X, the expected number of samples that lie in S is (p 4+ €)k, whereas in k
independent samples of Y| the expected number of samples that lie in S is pk. The
Chernoff bound? tells us that the probability that at least (p + £)k components of
@*Y liein S is at most exp(—ke?/2), whereas the probability that at most (p+ Sk
components of @* X lie in S is at most exp(—ke?/2). Let S’ be the set of all k-tuples
that contain more than (p+ $)k components that lie in S. Then we have,

" X —oY|| > Pr[ofX e '] —Pr[e'Y € 8] > 1 —2e7F/2,
O

3For the formulation of the Chernoff bound we use, see, for example, the formulation of
Hoeffding’s inequality in [Hof95, Sec. 7.2.1].
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At first glance, it may seem that the proof above is unnecessarily loose, and that
one might be able to prove that the statistical difference increases even for small
values of k. However, Madhu Sudan [Sud97] has pointed out that for any p € [0, 1],
there exist distributions X and Y such that [ X @ X - Y @ Y| = || X = Y| = p.
Consider the following two distributions:

v - 1 with probability
- 0 with probability

v = 0 with probability
1 with probability

1+p
I-p
1+p
I-p

/2
/2
/2
/2

AA/_\/_\
T e

Here, || X =Y||=((1+p)— (1 —p))/2 = p, and also
[XoX-YoY|=(1+p)?®-(1-p)?*)/4=0p

Nevertheless, the direct product construction gives us an efficient and effective
technique for increasing the statistical difference between two distributions. The
two bounds in Lemma 3.1 show that large values go to 1 faster than small val-
ues. The following lemma provides a complementary technique which decreases the
statistical difference to 0, with small values going to 0 faster than large values.

LEMMA 3.2 (XOR Lemma). There is a polynomial-time computable function
that maps a triple (Cy, C1, 1%), where Cy and Cy are circuits, to a pair of circuits
(Do, Dy) such that ||Dy — Dy|| = ||Co — C'1||k. Specifically, Dy and D1 are defined

as follows:

Dqg: Uniformly select (by, ... by) € {0,1}* such that by & --- P by, = 0, and output
a sample of Cp, @ -+~ @ Ch, .
Dy: Uniformly select (by, ... by) € {0,1}* such that by & --- P by = 1, and output
a sample of Cp, @ -+~ @ Ch, .

In order to prove this lemma, we employ a generalization of the technique used
in [DDPY94] to represent the logical AND of statements about GRAPH NONISOMORPHISM.
This tool i1s described in the following Proposition.

ProPOSITION 3.3. Let Xy, X1,Ys, Y1 be any random variables, and define the
following pair of random variables:

Zo: Choose a,b€r{0, 1} such that a® b= 0. Ouipul a sample of X, @Y.
Zy: Choose a,b€r{0, 1} such that a® b= 1. Ouipul a sample of X, @Y.

Then [|Zo — Z1|| = (| Xo — Xa] - [[¥o — Ya|.

The statistical difference between Xy and X; (or Yy and Y1) measures the ad-
vantage a computationally unbounded party has, over random guessing, of guessing
b given a sample from X;, where b is selected uniformly from {0, 1}. Intuitively,
the above Proposition says that the advantage one has in guessing the XOR of
two independent bits is the product of the advantages one has for guessing each
individual bit.
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ProoOF.

120 — Z1]|

1
5 |Zo — 71|,

1]/1 1 1 1
= || =XoY+=-X10Y, ) - =-X19Y+ =-Xy,0Y]
2‘<2 0 ® 0-1-2 1 ® 1) (2 1® 0-1-2 0 ® 1)

1

1
7 Ko=) o (Yo -l

1 1
= (5 |Xo —X1|1) : (5 [Yo —Y1|1)

= |[Xo = Xq|l - ||Yo — Y1l|
O

Proposition 3.3 and an induction argument establish Lemma 3.2. Yao’s XOR
Lemma [Yao82] (see also [GN'W95]) can be seen as an analogue of Lemma 3.2 in
the computational setting, where the analysis is much more difficult.

4. Polarizing the Statistical Relationship

In this section, we combine the techniques from the previous section to yield
the following lemma:

LEMMA 4.1 (Polarization Lemma).* There is a polynomial-time computable func-
tion that takes a triple (Co, C1,1%), where Cy and Cy are circuits, and outputs a
pair of circuits (Dy, Dy) such that

ICo—Cil| <1/3 = ||Do— Dy <27F
|Co—Ci]| >2/3 = ||Do— Dy >1-27F

The usefulness of the Polarization Lemma comes from the fact that the two
distributions it produces can be treated almost as if they were identically distributed
or digjoint (7.e. statistical difference 0 and 1, respectively). Indeed, it will be used
in the constructions of the next two sections, and it was essential in proving that
SD (with thresholds of 2/3 and 1/3, as we’ve defined it) is in SZK [SV97].

Recall that the Direct Product construction of Lemma 3.1 gives a way to in-
crease statistical difference with large values going to 1 faster than small values.
Similarly, the XOR Lemma (Lemma 3.2) shows how to decrease statistical differ-
ence with small values going to 0 faster than large values. Intuitively, alternating
these procedures should “polarize” large and small values of statistical difference,
pushing them closer to 1 and 0, respectively. A similar alternation between proce-
dures with complementary effects was used by Ajtai and Ben-Or [AB84] to amplify
the success probability of randomized constant-depth circuits.

ProoF. Let £ = [log,,36k]. Apply the XOR Lemma (Lemma 3.2) to the triple
(Co, C1,1%) to produce (C4, C1) such that if
1Co=Cill <1/3 = (IG5 = il < (1/3)
1Co = Cull > 2/3 = [IC5 = Cill > (2/3)".
*The Polarization Lemma stated here is called the Amplification Lemma in [SV97]. We

change the name here to stress that the Polarization Lemma does not merely increase statistical
difference.
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Let m = 3~!. Then apply the direct product construction, letting C¥ = @™C}
and let C} = @Y. Then, by Lemma 3.1,

ICo—Chll<1/3 = |ICF =CYlI<1/3
ICo—Cil|>2/3 = |ICF=CV||>1—2e737 /2 5 1 _ 9k,

Finally, apply the XOR Lemma (Lemma 3.2) one more time to (C¥,CY 1*) to
produce (Dg, D7) such that

||Co — 01” < 1/3 = ||D0 — D1|| < 3_k < 2_k
ICo—Cil| >2/3 = ||Do— D]l > (1 —2e75)F >1—2ke™®>1-27F
O
Notice that the above analysis relies on the fact that (2/3)% > (1/3), so it will
not work if 1/3 and 2/3 are replaced by, say, .49 and .51. We do not know how to
prove such a polarization lemma for arbitrary constant thresholds. We can however

extend it to thresholds a and 3, where 32/« is greater than 1. More precisely, we
have the following lemma:

LEMMA 4.2 (General Polarization Lemma). There is a function that takes as
input a S-tuple (Co, Ch,r, B,1%), where 2 = X -, with A > 1, and Cy and C,
are circuits. The function s computable in time polynomial in the input size and
a~ 108N and outputs a pair of circuits (Do, D1) such that

ICo—Ci|l <a = ||Do—Dy| <27F
||Co - 01” >0 = ||D0 - D1|| >1-— 2k

ProOF. Let £ = [log,(61n6)]. Apply the XOR Lemma (Lemma 3.2) to the
triple (Cp, C1, 1) to produce (C4, C1) such that if

[Co=Cill<a = [|Co—Cifl <af
1Co—Cill > 8 = ||y —Cil| > "

Let m = 1/3a® = X/(33%). Then apply the direct product construction,
letting CJ = @™} and let CY = @™ C}. Then, by Lemma 3.1,

1Co—Cill<a = [IC7-CY[[<1/3

24

_at g2t
[Co—Ci||>83 = ||C—=CY||>1—2e =7 = >2/3
An application of Lemma 4.1 finishes the proof. O

5. Reversing the Statistical Relationship
ProPosITION 5.1 (Reversal Mapping). There is a polynomial-time computable
function that maps pairs of circuits (Cy, Cy) to pairs of circuits (Dy, D1) such that
[|Co—Chl|< 1/3 = ||Do— Dyf| >2/3
[|Co—Chl| > 2/3 = ||Do— D1|| <1/3.
That is, SD reduces to SD.
By Theorem 1.1 (and the closure of SZK under reductions [SV97]), Proposi-
tion 5.1 is equivalent to the closure of SZK under complement. In fact, the existence

of such a transformation was originally deduced from the fact that SZK is closed
under complement [Oka96, SV97]. This result motivated our search for a more
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explicit description of such a mapping. By extracting ideas used in the transforma-
tions of statistical zero-knowledge proofs given in [Oka96] and [SVIT], we obtained
the description of this transformation given below.

The Construction. Let (Cy, Cy) be any pair of circuits and let n = |(Cy, C1)|.
By the Polarization Lemma (Lemma 4.1), we can produce in polynomial time a
pair of circuits (C}, CY) such that

ICo—Call<1/3 = |ICh-Cifl>1-27"

ICo—Call>2/3 = |ICh—Cifl<27"
Let ¢ = poly(n) be the number of input gates of C{, and C] (w.l.o.g. we may assume
they have the same number) and let ¢ = poly(n) be the number of output gates.

For notational convenience, let R = {0,1}¢ and L = {0,1}*. Let m = n®¢? and
define a new distribution C': {0,1}™ x R™ — L™ as follows:

Cb,7) = (Ch (r1), ..., Cy (rm)).

We use the notation Z < C to denote Z chosen according to C, i.e. select b and 7
uniformly and let 7 = C(b, 7).

Let H be a 2-universal family of hash functions from {0,1}™ x R™ x L™ to
T = {0, 1} e+ Dm=28=n where A = \/nmq? = m/n. We can now describe the new

distributions:

The important things to note about these distributions are that b is part of
the output, and that Dy and D only differ in the last component, where Dy has
the value of the hash function and D; has a truly random element of 7. Also
note that the size of T is chosen to be |{0,1}™ x R™|/222%" which is essentially
[{0,1}™ x R™|, scaled down by a factor of 224" which can be thought of as a
“fudge factor” needed to make the proof work. The introduction of the sample ¥
in Dy may at first seem superfluous; we explain below.

Intuition. For intuition, consider the case that C is a uniform distribution; that
is, for every 7 € range(C), the size of the preimage set |{(b,7): C(b,7) = Z}| is
the same value N. (It turns out that C is actually “close enough” to uniform for
these arguments to work.) Then the range of C' has size 2lat)m /N So in Dy,
conditioned on a value for C(b,7), the triple (b,7,7) is selected uniformly from a
set of size 24+ Since this is much greater than |T'|, the Leftover Hash Lemma
of [ILL89] implies that conditioned on any value for the first component of Dy, the
last two components (h, h(b,7,7)) are distributed close to the uniform distribution
on M x T, which is the distribution that D; has in its last two components.® Thus,
if their second components were missing, Dy and D; would be statistically close.

5Here we see the importance of §: Without ¥, conditioned on some value of 6(5, 7), the pair
(g, 7) would be selected uniformly from a space of size N. If we were only hashing this pair, for the
distribution h(g, 7) to be uniform by the Leftover Hash Lemma, T would have had to be chosen
so that |T'| € N. The value of N, however, depends on the inner workings of the circuit C', and
is in general unknown. By including 7, which comes uniformly from a space of size 2(‘1‘|'1)m/]\77
we balance the arguments to & so that they come from a space of size 2(‘1‘“)7"7 a known quantity.
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Now, consider the case that ||Ch — C1|| ~ 1. Then b is essentially “determined” by
6(5, 7). So the presence of b can be ignored, and the above argument says that Dy
and Dy are statistically very close. Now, consider the case that ||C} — C]|| =~ 0.
Then b is essentially “unrestricted” by 6(5, 7). Since there are 2™ choices for b,
conditioning on b in addition to C(b,7), cuts the number of triples (b,7,%) down
from 2™+ to roughly 27(4+1D) /2™ - Since 2m4+1) /27 is much smaller than |T,
h(b,7,7) will cover only a small fraction of |T'| and thus will be far from uniform

(conditioned on values for C(b,7), b, and h).

Proof of Proposition 5.1. First we will argue that C' is close to uniform, so
that we can apply arguments like those given above. This is the case because C'
is composed of many independent, identically distributed random variables. For
zZ € L we say the weight of 7 is the logarithm of the size of the preimage set of

7. Formally, let wt(Z) = log, |{(b,7): C(b,7) = Z}|. Let w be the expected weight
of an image, w = E-_z[wt(Z)]. Then we can show the following:

LEMMA 5.2, Pro_5[|wt(Z) — w| > A] < 2790,

ProOF. For z € L, let wtg(z) = log, [{(b,7): Cy(r) = z}|. Then, for z € L™,
wt(Z) = wto(21) + - - + wto(2m ). Observe that when Z is selected according to C,
Z1,...,2%n are independent and identically distributed. Moreover, for any z € L,
0 < wtp(z) < ¢. So, by the Hoeffding inequality [Hof95, Sec. 7.2.1], we have

Pr [|[wt(Z) — w| > A] < 2e~28%/me* = 9e=n.

z—C

O

It will be convenient to eliminate those z € L™ that have weight far above

or below the mean. Let G = {(b,7): |wt(C(b,7)) — w| < A} be the set of good
pairs (b, 7). The above Lemma says that |G| > (1 — 2=%)[{0,1}™ x R™|. Thus
|G = {0,1}" x R™|| < 2=%") where for simplicity of notation, we let the name
of a set also refer to the uniform distribution on the same set. Define C' to be the
distribution obtained by selecting (b,7) « G and outputting C(b, 7). Then, since C
is a function, Fact 2.4 tells us that ||6—6/|| = 279" Similarly, we define variants
of Dy and Dy that sample from G instead of {0, 1} x R™:

Di: Let (b,F)€rG, T —C , and he gH. Output (T (5,7), 5, h, h(b, 7, 7)).
_ L,

D4 Let (b,7)ErG, h€rM, and t€gT. Output (C (b,7),b, h, ).

Since Df (or D}) is arandomized procedure applied to two (or one) independent
samplings from G, Fact 2.4 tells us that ||Dg — Dj|| = 2= (and ||D; — D}|| =
Q_Q(”)). Hence, 1t suffices to prove that these modified distributions have the
properties we want in each case. For the case when Cy and C are statistically far,
we prove the following claim:

Cramm 5.3. If ||C4 — O] > 1 — 277, then || D) — D}|| < 2790,

This use of “dummy” samples to form a space whose size is known is the “complementary usage
of messages” technique of Okamoto [Oka96].
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ProoF. First we formalize the idea that b is “determined” by C'. Define f: L —
{0,1} by
[0 ifPr[Ch=2]>Pr[C] = 2]
1) = { 1 otherwise

Then

1

Pr(CH(r) = 8] = 5 PrUA(CH () = 01+ 5 PLACH) = 11

Now, by the definition of statistical difference, Pr,[C%(r) € f~1(0)] > 1 — 27" and
Pr,.[Ci(r) € f~Y(1)] > 1 —27". Thus, Pry,[f(C}(r)) = b] > 1 —27". Now define
F: L™ —{0,1}™ by f(Z) = (f(21),..., f(zm)). Then

Pr[F(C(5,7) =B8] > (1 —277)™ = 1 — 270,
bF

Since G is a 1 — 27 fraction of {0, 1} x R™, the same is true when (b,7) is
selected uniformly from (. Thus, if we define:

DY Let (b, 7)€, ¥ —C , and hegM. Output (C'(b,7), F(C'(5, 7)), h, h(b, 7, 7).

DY: Let (b,7)ERG, herH, and tegT. Output (C'(b,7), F(C (b, 7)), h, t).

Then, by Fact 2.5, ||Dj — DJ|| = 2=%) and ||D} — DY|| = 27", So it
suffices to show that || DY — DY|| = 27%"). Since the first components of DY and
DY are identically distributed and the second components are determined by the
first ones, it suffices to show (by Fact 2.5) that, conditioned on any value for the
first coordinate, the third and fourth components have statistical difference 27",
This will follow from the Leftover Hash Lemma [ILL89]:

LEMMA 5.4 (Leftover Hash Lemma [ILL89]). Let H be a family of 2-universal
hash functions from D to T. Let X by a probability distribution on D such that for
allz € D, Pr[X = 2] < ¢/|T|. Then the following two distribulions have statistical
difference at most €'/3.

1. Choose # — X, hegH. Output (h, h(2x)).

2. Choose hegH, terT. Output (h,t).

By the above argument and the Leftover Hash Lemma, it suffices to show that
conditioned on any value 7 for 6/(5, 7), no triple (b, 7, %) has probability more than
2=%)/|T|. The pair (b,7) comes uniformly from a set of size 2"%%) > 2v=4 "and

y is selected independently according to 6/, so the probability of any triple (E, 7, Y)

is at most
1 2w+A - 22A 2—Q(n)
<2w‘A) ( G| ) = (1 =27 mylerim ]

Thus, || DY — D[] < 2= and the claim is established. O

Now we treat the other case, when Cy and C; are stastically close.

CramM 5.5. If ||C4 — O] < 277, then || Db — D[] > 1 — 2790,
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ProOF. First, we formalize the idea that b is almost completely “undeter-
mined” by C'(b,F). Since ||C) — C1|| < 27", it follows from Fact 2.6 that with
probability 1 — 2= over z — (Y,

(1 =27 Pr[C] = 2] < Pr[Ch =21 < (1427 Pr[C = 2].
In other words,
- Co(r) = 2}
1—27% < HTO—< 1 4 2= %(n),
{r: Ci(r) = 2}
The same is true with probability 1 — 27%") when the roles of C} and Cf are

reversed. Thus, with probability 1 — m2=%") = 1 — 2=%") over 7 — C, we have
for every pair b, ce {0,1}™,

1_2—Q(n):(1_20(n m |{7“ C(b ? :EH
|{r: C(c F) = z}|
Since there are 2™ choices for ¢, this, combined with Lemma 5.2, implies that, with
probability 1 — 2= over 7 — C, the following holds for every b € {0,1}™:

< (1427 0ym = | 4 9=5Un),

2wt(7)

|{7° b 7“ = Z}| 1_|_ 2—Q(n)) < (1 4 Q—Q(n)) LQuwtA-m.

Since this is true with probability 1 — 27" for Z selected according to C, it is
also true with probability 1 — 27 for 7 selected according to C’. Fix any such
7 and fix any b € {0,1}™ and h € H. Then, in D}, conditioned on 6/(5, F)=7Z,b,
and h, there are at most

—am)y qwta-m (|G|
(1427 Un)y . guta <2w——A

IN

(1 + 2—Q(n)) . 22A—m(2m+mq)

possible values for (7, 7). Thus, with probability 1 — 2-9")  conditioned on values
for the first three components of D), the fourth component h(b,7,7) can cover at
most a 272 < 2= fraction of T. In contrast, conditioned on values for the
first three components of D/, the fourth component is uniformly distributed on T'.
Therefore, || D) — D}|| > 1 — 2%, O

6. An Application — Boolean Closure

In this section, we use the transformations developed in the prior sections to
prove that any boolean formulae whose atoms are statements about membership
in SD can be efficiently transformed into a single statement about SD. By Theo-
rem 1.1 [SV97], this implies a very strong boolean closure property of SZK: given
an arbitrary boolean formula whose atoms are statements about membership in any
language in SZK, one can efficiently construct a statistical zero-knowledge interac-
tive proof for its validity. Note that such a property does not follow immediately
from the fact that a class is closed under intersection, union, and complementa-
tion, because applying these more than a constant number of times could incur a
superpolynomial cost in efficiency, while we ask that the construction can be done
efficiently with respect to the size of the formula. The procedure for doing this
is based on work by De Santis, Di Crescenzo, Persiano, and Yung [DDPY94].
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They show how to construct statistical zero-knowledge proofs for all monotone
boolean formulae whose atoms are statements about a random self-reducible lan-
guage. Their zero-knowledge proofs are constructed by producing two distributions
which are either disjoint or identical, depending on whether or not the formula is
true. Hence, their construction can be viewed as a reduction to an extreme case of
SD, in which the thresholds are 1 and 0.

Using the direct product construction, the XOR Lemma, and the Polarization
Lemma, we generalize their result to monotone formulae whose atoms are state-
ments about membership in SD. Then, using our Reversal Mapping, we further
generalize to non-monotone formulae.

DEFINITION 6.1. Let II be any promise problem. Then we define a new promise
problem ®(II) whose instances are (¢,#1,...,2;) where & > 0, z1,...,2; €
My UMy (i.e. 21,...,x; satisfy the promise for ), and ¢(v1,...,vy) is a k-ary
propositional formula. The YES instances of ®(II) are those instances for which
é((x1 € My ), ..., (xp € My)) is true and the NO instances are those for which it
1s false.

Mon(II) is defined analogously, except that only monotone ¢ are considered.”

The main result of this section follows:

THEOREM 6.2. ®(SD) reduces to SD. That is, there is a polynomial-time com-
putable function that maps an instance x = (¢,(CE, CL), ..., (CE CF)) of ®(SD)
to an instance y = (Do, D1) of SD such that

r€®(SD)y = yeSDy
r€®(SD)y = yeSDy.

The main step in proving Theorem 6.2 is the following Lemma, which mimics
the construction of [DDPY94] for Mon(GrRAPH NONISOMORPHISM ):

LEMMA 6.3. Mon(SD) reduces to SD.

ProoF. For intuition, consider two instances of statistical difference (Cy, C1)
and (Dg, Dy), both of which have statistical difference very close to 1 or very close
to 0 (which can be achieved by the Polarization Lemma). Then (Cy® Dy, C1 ® Dy)
will have statistical difference very close to 1 if either of the original statistical
differences is very close to 1 and will have statistical difference very close to 0
otherwise. Thus, this operation represents OR. Similarly, the XOR operation in
Proposition 3.3 represents AND. To obtain Lemma 6.3, we will recursively apply
these constructions, taking care to keep the running time polynomial.

Let w = (¢, (CL,CH), ..., (CE, CF)) be an instance of Mon(SD) and let n = |w|.
By applying the Polarization Lemma (Lemma 4.1), we can constuct in polynomial
time pairs of circuits (D}, Di),... (D DY) such that the statistical difference
between DY and Di is greater than 1 — 27" if (C¢, C?) € SDy and is less than 277
if (CE,C%) € SDy.

Consider the randomized recursive procedure Sample(y, b) in Figure 6 which
takes a subformula ¢(v;,, ..., v;, ) of ¢ and a bit b € {0, 1} as input.

Executing Sample(¢,b) for & € {0,1} takes time polynomial in n, because
the number of recursive calls is equal to the number of subformulas of ¢. For a

6In [DDPY94], only monotone formulae are treated. What they call ®(L) is what we call
Mon(L).
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Sample(¢, b)

If ¢ = v;, sample z — Dé.

fy=7Vpu,
Sample z; < Sample(r, b);
Sample z; — Sample(y, b);
Let z = (21, z2).

fy=1rApu,
Choose ¢, deg{0, 1} subject to ¢ ® d = b;
Sample z; < Sample(r, ¢);
Sample z; — Sample(r, d);
Let z = (21, z2).

Output z.

FIGURE 1

subformula 7 of ¢, let Dif(7) = ||Sample(r, 0) — Sample(r, 1)||. Then we can prove
the following about Dif:

Cramv 6.4. For every subformula 7 = 7(v;,, ..., v;;) of ¢, Dif(1) > 1—m2™"

of
T((Cy,C) € SDy, ..., (Cy,CY) € SDy)
is true and Dif(7) < m2™" if it is false, where m = |7|.

ProoFr oF CrLAIM. By induction on subformulae of . It holds for atomic
subformulae (i.e. the variables v;) by the properties of the Dé’s.

Consider the case when ¢ = 7V pu. If ¢/ is true (with the appropriate arguments),
either 7 or p must be true. Without loss of generality, say 7 is true. Then, by
Fact 2.4 and induction,

Dif(¢) > Dif(r) > 1 — |7|27" > 1 — |[¢|27".
If ¢ 1s false, then both 7 and p are false. By Fact 2.3 and induction,
Dif(1) < Dif(r) + Dif() < 727" + [ul2™" < [p]27".
Now consider the case when ¢ = 7 A u. By Proposition 3.3, Dif(¢) = Dif(r) -
Dif(p). If 4 is true, then, by induction,
Dif(e) > (1= [r|27")(1 = |ul2=") > 1= (|7 + [u))2™" > 1 = [p]2".
If ¢ 1s false, then, without loss of generality, say 7 is false. By induction,
Dif(w) < Dif(r) < 727" < 2",
O

Now, let A and B be circuits describing the computations of Sample(¢, 0) and
Sample(¢, 1), respectively, (which take the random bits each procedure uses as
input). By the above claim, ||A — B|| > 1 — n2™" > 2/3 if ¢ is true with the
appropriate arguments, and [|[4A — B|| < n27" < 1/3 if ¢ is false. In other words,
the construction of A and B from w describes a many-one reduction from Mon(SD)
to SD. This reduction can be computed in polynomial time because Sample runs
in polynomial time. O

Now it is straightforward to deduce Theorem 6.2
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PRrROOF. Let (¢, 21,..., ) be any instance of ®(SD), where ¢ = ¢(vq, ..., vg).
Use DeMorgan’s laws to propagate all negations of ¢ to its variables. Now replace all
occurrences of the literal —v; with a new variable w;. Let ¢(vy, ... o5, wy, ..., wg)
be the resulting (monotone) formula. Then, letting f be the Reversal Mapping of
Proposition 5.1 which reduces SD to SD,

(¢ax1a"'axk)H(1/)axla"'axkaf(xl)a"'af(xk))

is a reduction from ®(SD) to Mon(SD). Composing this with the reduction in
Lemma 6.3, we obtain Theorem 6.2. O

By Theorems 1.1 and 6.2 (along with the fact that SZK is closed under many-
one reductions [SV9T]), we obtain the following:

COROLLARY 6.5. For every language L, L € SZK = ®(L) € SZK.

Corollary 6.5 is a strengthening of several previous results. In [DDPY94], it
was shown that Mon(L) € SZK for any language L which is random self-reducible,
whose complement 1s self-reducible, or whose complement has a noninteractive sta-
tistical zero-knowledge proof. They also gave statistical zero-knowledge proofs for
some simple statements involving a random-self-reducible language and its com-
plement. Damgard and Cramer [DC96] extended these results by showing that
Mon(L) € SZK as long as L or its complement has a 3-round public coin statistical
zero-knowledge proof, and also treat a larger class of monotone functions.

Corollary 6.5 can be generalized to work for all boolean formulae whose atoms
are statements about membership in any finite set of languages in SZK, but we omit
the notationally cumbersome formal statement. Corollary 6.5 can be viewed as
demonstrating that SZK is closed under a weak form of (polynomial-time) Turing
reducibility. In particular, if ®(L) were defined in terms of circuits rather than
formulae, then the analogue of Corollary 6.5, together with the closure of SZK
under many-one reductions, would imply that SZK is closed under nonadaptive
Turing reductions. We do not know whether this is true, but we can prove that
SZK is closed under a weaker form of Turing reductions:

PRrROPOSITION 6.6. SZK is closed under (adaptive) polynomial-time Turing re-
ductions which make a O(logn) of oracle queries on inputs of length n. That is, if
A is a language” in SZK and B reduces to A via such a reduction, then B € SZK.

Proor. Let M be the polynomial-time oracle machine such that M decides B
when given oracle access to A, and on every input z, M4 asks at most m = clog|z|

oracle queries. We define a transcript to be asequence t = (y1,01, ..., Ym, Om) such
that M (x) would ask oracle queries y1,...,ym (in that order) when given oracle
responses oy, ...,0,m € {0,1}. (Note that we are not requiring o1,...,0n to be

the correct responses which would indicate whether or not #; € A.) We call such
a transcript accepting if it would make M (z) accept. Notice that, given x, we can
enumerate in polynomial time all accepting transcripts for & by simulating M on
all 2™ possible sequences of oracle responses. Let ¢; = (y!,a%,... 4, 0%)) be the
tth accepting transcript in this enumeration, and let s be the number of accepting

7This proposition extends to the case of promise problems if we assume the oracle queries in
the reduction never violate the promise.
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transcripts. Now consider the following formula ¢ on a total of s - m variables:

5

(b(v%,...,v,ln,...,vf,...,vfn):\/(ﬁi/\~~~/\£in),

i=1
where the literal Ej» 1s v;: if Uj» =1 and is —w;: if Uj» = 0. Now we claim that

MA(x) accepts < ¢((y1 € A), ..., (yh, €A),...,(¥i €A),... (v, € A) =1

If MA(z) accepts then the term corresponding to the transcript with the correct
oracle responses will evaluate to true. However, if M4 (x) does not accept, then any
accepting transcript must have at least one ¢; which disagrees the response oracle
A would give on input y;, so all the terms evaluate to false. Thus,

xH(¢’y§II:""’y}Tl""’yi""’y’fn)
is a (many-one) reduction from B to ®(A). By Corollary 6.5 and the fact that SZK
is closed under many-one reductions [SV97], we conclude that B € SZK. O

It would be interesting to prove that SZK is closed under Turing reductions,
adaptive or nonadaptive, that make polynomially many oracle calls; or give evidence
that this 1s not the case.
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