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Abstract� We give several e�cient transformations for manipulating the sta�
tistical di�erence �variation distance� between a pair of probability distribu�
tions� The e�ects achieved include increasing the statistical di�erence� de�
creasing the statistical di�erence� �polarizing� the statistical relationship� and
�reversing� the statistical relationship� We also show that a boolean formula
whose atoms are statements about statistical di�erence can be transformed
into a single statement about statistical di�erence� All of these transforma�
tions can be performed in polynomial time� in the sense that� given circuits
which sample from the input distributions� it only takes polynomial time to
compute circuits which sample from the output distributions�

By our prior work �see FOCS 	
�� such transformations for manipulating
statistical di�erence are closely connected to results about SZK� the class of
languages possessing statistical zero�knowledge proofs� In particular� some
of the transformations given in this paper are equivalent to the closure of
SZK under complement and under certain types of Turing reductions� This
connection is also discussed brie�y in this paper�

�� Introduction

Statistical di�erence� also known as variation distance� is a fundamental mea�
sure of similaritybetween probability distributions� This measure is the most appro�
priate choice for many applications in algorithms and cryptography� so it is natural
to seek e�cient means of manipulating it� In this paper� we exhibit polynomial�
time transformations mapping pairs of distributions to pairs of distributions which
have the following e�ects�

A �Increasing Statistical Di�erence� �Noticeable� statistical di�erence is
driven exponentially close to � 	whereas negligible statistical di�erence re�
mains negligible
� This is a well�known technique � we simply repeat each
distribution many times independently�

B �Decreasing StatisticalDi�erence� Statistical di�erence that is bounded
away from � is driven exponentially close to � 	whereas statistical di�erence
that is negligibly close to � remains as such
� This is achieved by an XOR
construction inspired by a technique of 
DDPY����
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C �Polarizing the Statistical Relationship� If the original distributions
have 	moderately
 large statistical di�erence� then the resulting distributions
will have statistical di�erence exponentially close to �� and if the original dis�
tributions have 	moderately
 small statistical di�erence� then the resulting
ones will have statistical di�erence exponentially close to ��

D �Reversing the Statistical Relationship� If the original distributions
have small statistical di�erence� the resulting ones will have large statisti�
cal di�erence� and if the original ones have large statistical di�erence� the
resulting ones will have small statistical di�erence�

Of these� Transformations C and D are the main new contributions of this
work� though we also describe Transformations A and B in detail� as we make
use of them for the former� The �nal result of this paper is an application of all
of these techniques to show that a boolean formula whose atoms are statements
about statistical di�erence can be e�ciently transformed into a single statement
about statistical di�erence� All of these results are discussed in more detail below�

Our initial motivation for addressing these questions arose from our recent
work 
SV��� showing a close relationship between statistical di�erence and sta�
tistical zero�knowledge 	SZK
 proofs� Speci�cally� the problem of distinguishing
between pairs of 	succinctly described
 distributions with large statistical di�er�
ence and pairs with small statistical di�erence was shown to be complete for SZK�
the class of languages possessing statistical zero�knowledge proofs 
SV���� By that
result� e�cient transformations for manipulating statistical di�erence yield closure
properties of SZK� and conversely� For example� one of the transformations given
here is equivalent to the closure of SZK under complementation� and another is
equivalent to the closure of SZK under certain types of Turing 	or Cook
 reduc�
tions� In fact� some of these transformations were developed in 
SV��� in order to
prove things about SZK� whereas others were obtained by extracted ideas which
appeared in 
DDPY��� Oka�	� SV��� stated in terms of SZK�

Another reason for looking at statistical di�erence is that many computational
problems of interest can be cast as statistical di�erence problems� examples include
Quadratic Residuosity 
GMR
��� Graph Isomorphism 
GMW���� and ap�
proximate versions of the Closest and Shortest Vector Problems 
GG�
��
Indeed� statistical zero�knowledge proofs are often constructed for such problems
based on this observation�

���� Formal Setting� If X and Y are probability distributions 	or random
variables
 on a discrete space D� the statistical di�erence between X and Y is
de�ned to be

kX � Y k � max
S�D

jPr 
X � S� � Pr 
Y � S� j�
In this paper� we focus on distributions Z which have a �succinct description�
which enables them to be sampled e�ciently� By �succinct description� we mean a
circuit C which� when fed the uniform distribution� has output distribution Z� For
example� if C has m input gates and n output gates� Z would be the distribution
induced on f�� �gn when C is fed the uniform distribution on f�� �gm� Thus� when
we speak of �e�cient transformations� of pairs of distributions� we mean that there
is a polynomial�time computable function on pairs of circuits that achieves the
desired transformation on the corresponding pair of distributions� For notational
convenience� we write C for both the circuit and the distribution Z it de�nes�
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���� Contrast with the �Standard
 Setting� In the setting of randomized
algorithms� there is typically a single probability space at hand� and one is interested
in the probability of some event 	such as the algorithm giving the correct answer�

To achieve various e�ects on the probability of this event 	such as decreasing the
error probability
� a Cherno� bound argument is often all that is needed� In the
setting of statistical di�erence� there are two probability spaces at hand� and we
are interested in the maximum di�erence in probabilities� over all possible events�
Because of this� we are limited in what we can achieve with Cherno� bounds alone�
Cherno� bounds do� however� enable us to analyze the following direct product
construction� Suppose we have a pair of distributions X� and X�� and we let Y�
and Y� consist of k independent copies of X� and X�� respectively� Then a Cherno�
bound argument tells us that

kX� �X�k � �� kY� � Y�k � �� e���k�
���	���


Moreover� one can also show that

kX� �X�k � �� kY� � Y�k � k��

This gives us Transformation A � noticeable statistical di�erences are driven ex�
ponentially close to �� whereas negligible statistical di�erences remain negligible�

���� Polarizing the Statistical Relationship� Our �rst main result is a
transformation which �polarizes� the statistical relationship between two distribu�
tions� That is� pairs of distributions which are statistically close become much
closer and pairs of distributions which are statistically far apart become much fur�
ther apart� That is� we exhibit a polynomial�time computable transformation which
takes a triple 	C�� C�� �

k
� where C� and C� are circuits and produces a new pair
of circuits 	D�� D�
 such that

kC� �C�k � ��� � kD� �D�k � �� ��k
kC� �C�k � ��� � kD� �D�k � ��k�

Note that this is not achieved by the direct product construction described above�
Looking back at Equation ���� we see that the statistical di�erence will go to � in
both cases� whereas we want the statistical di�erence to go to � in the �rst case and
� in the second case� Thus� the Polarization Lemma� is achieved by carefully com�
bining the direct product construction with another construction which decreases
statistical di�erence�

To decrease statistical di�erence� we show that� given two pairs of distributions�
we can e�ciently produce a third pair of distributions whose statistical di�erence
is exactly the product of the original two statistical di�erences� Iterating this drives
statistical di�erences which are bounded away from � to � as desired� whereas
statistical di�erences that are negligibly close to � remain as such� The construction
is based on the intuition that the hardness of guessing the XOR of two bits should
be the �product� of the hardnesses of the bits individually� and is inspired by

DDPY����

�The Polarization Lemma stated here is called the Ampli�cation Lemma in �SV���� We
change the name here to stress that the Polarization Lemma does not merely increase statistical
di�erence�
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���� Reversing the Statistical Relationship� Our second result is per�
haps even more unexpected than the Polarization Lemma� we exhibit an e�cient
transformation that �reverses� the statistical relationship between a pair of distri�
butions� That is� we show that there is polynomial�time computable function that
maps pairs of circuits 	C�� C�
 to pairs of circuits 	D�� D�
 such that

kC� �C�k � ��� � kD� �D�k � ���
kC� �C�k � ��� � kD� �D�k � ���

The techniques used in this transformation come from work on statistical zero�
knowledge 
Oka�	� SV���� as discussed below�

���� Statistical Zero�Knowledge� Informally� zero�knowledge proofs 
GMR
��
are interactive proofs in which the veri�er �learns nothing� other than the assertion
being proven� A statistical zero�knowledge proof is a type of zero�knowledge proof in
which the �learns nothing� condition is interpreted in a strong information�theoretic
sense� Statistical zero�knowledge proofs are of interest both in cryptography and
complexity� and the set of languages possessing such proofs� SZK� has been studied
in a number of recent works�

In prior work 
SV���� we related SZK to statistical di�erence by proving that
the problem of deciding whether the statistical di�erence between two distributions
is large or small is complete for SZK� This can be formally described as a �promise�
problem� Statistical Difference 	abbreviated SD
 whose YES instances are
pairs of circuits whose statistical di�erence is greater than ��� and whose NO
instances are pairs whose statistical di�erence is less than ����

SDY �

�
	C�� C�
 � kC� �C�k � �

�

�

SDN �

�
	C�� C�
 � kC� �C�k � �

�

�

The main theorem in relating SD to SZK is the following�

Theorem ��� 	
SV���
� SD is complete for SZK� That is� SD � SZK� and
every problem in SZK reduces to SD �via a many�one polynomial�time reduction��

By Theorem ���� e�cient transformations for manipulating statistical di�erence
can yield closure properties of SZK� and conversely� For example� by Theorem ����
the Reversal Mapping described above is equivalent to the closure of SZK under
complement� In fact� the existence of such a transformation was originally de�
duced from the fact that SZK is closed under complement 
Oka�	� SV���� This
result motivated our search for a more explicit description of such a mapping� By
extracting ideas used in the transformations of statistical zero�knowledge proofs
given in 
Oka�	� and 
SV���� we obtained the description of this transformation
given in this paper� The Polarization Lemma� on the other hand� was originally
developed for the purpose of proving things about SZK 
SV���� but now also serves
as an essential tool in the construction of our other transformations on statistical
di�erence�

�A promise problem is simply a decision problem in which some inputs are excluded �ESY����
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��	� Boolean Closure� The �nal result of this paper is an application of
all of the above transformations to show that a boolean formula whose atoms are
statements about membership in SD can be e�ciently transformed into a single
statement about SD� This is a strengthening of a result of 
DDPY��� who show
how to do this for monotone formulae whose atoms are statements about random
self�reducible languages 	which can be reduced to an extreme case of SD in which
the thresholds are � and �
�

This result is based on the observation that some of transformations described
above can be interpreted as boolean operations on statistical di�erence� For exam�
ple� suppose we let distribution Z� consist of a copy of of distribution X� followed
by an independent copy of distribution Y�� and similarly let Z� consist of X� fol�
lowed by Y�� Then we see that if either X� and X� or Y� and Y� are statistically
far apart� then Z� and Z� will be statistically far apart� Similarly� if both pairs
	X�� X�
 and 	Y�� Y�
 are statistically very close� then Z� and Z� will be statistically
close� Thus� this operation in some sense represents OR� Similarly� the XOR con�
struction mentioned earlier represents AND� and the Reversal Mapping represents
negation� Combining these operations with the Polarization Lemma� we see that�
given a k�ary formula � and k pairs of input distributions� we can produce a pair
of distributions whose statistical di�erence indicates whether or not the formula
is true when its variables are set according to whether the corresponding pairs of
input distributions are statistically far or statistically close� How e�cient is this
procedure� We show that a careful implementation of this procedure� using these
particular AND or OR operations� can be performed in time polynomial in the size
of � and the circuits describing the input distributions�

By Theorem ���� this implies a very strong boolean closure property of SZK�
one that does not necessarily follow from the fact that SZK is closed under comple�
ment� union� and intersection� As explained in Section �� this can also be viewed
as closure under a weak form of polynomial�time Turing reductions� and a step
towards determining whether SZK is closed under general polynomial�time Turing
reductions�

�� Notation and Basic Facts

First� we introduce some notation that will be used throughout the paper� If X
is a probability distribution 	or random variable
� we write x� X to indicate that x
is a sample taken fromX� If S is a set� we write x�RS to indicate that x is uniformly
selected from S� In this paper� we focus on probability distributions that have a
�succinct description� which enables them to sampled e�ciently� By �succinct
distribution� we mean a circuit C which� when fed the uniform distribution� has
output distribution Z� For example� if C has m input gates and n output gates� Z
would be the distribution induced on f�� �gn by feeding C the uniform distribution
on f�� �gm� For notational convenience� we write C for both the circuit and the
distribution Z it de�nes�

Recall the de�nition of statistical di�erence given in Section ���� For probability
distributions 	or random variables
 X and Y on a discrete set D�

kX � Y k � max
S�D

jPr 
X � S� � Pr 
Y � S� j�

This is often also called the variation distance between X and Y � There is an
equivalent formulation of statistical di�erence in terms of the �� norm j�j� that will
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sometimes be more convenient for us� To every probability distribution X on a
discrete set D� the mass function of X is a vector in RD whose x�th coordinate is
Pr 
X � x�� For the sake of elegance� we also denote this vector by X� With this
notation� we can state the following well�known fact�

Fact ���� kX � Y k � �
� jX � Y j��

Proof� For any set S � D�

� jPr 
X � S� � Pr 
Y � S�j
� jPr 
X � S�� Pr 
Y � S�j� jPr 
X �� S� � Pr 
Y �� S�j

�

�����
X
x�S

	Pr 
X � x�� Pr 
Y � x�


������
�����
X
x��S

	Pr 
X � x�� Pr 
Y � x�


�����
�

X
x�S

jPr 
X � x�� Pr 
Y � x�j�
X
x��S

jPr 
X � x�� Pr 
Y � x�j

� jX � Y j� �
Equality is achieved by taking S � fx � Pr 
X � x� � Pr 
Y � x�g�
It is immediate from this characterization of statistical di�erence that it is a

metric 	as long as we identify random variables that are identically distributed
� In
particular� it satis�es the Triangle Inequality�

Fact ��� 	Triangle Inequality
� For any probability distributions X� Y � and
Z� kX � Y k � kX � Zk � kZ � Y k�

Recall that for any two vectors v � Rm and w � Rn� their tensor product
v � w is the vector in Rnm� whose 	i� j
�th component is viwj� Now� if we have a
pair of random variables 	X�Y 
 	on the same probability space
 taking values in
D �E� then X is independent from Y i� the corresponding mass functions satisfy
	X�Y 
 � X � Y � where we view the mass functions of X and Y as elements of RD

and RE� respectively� For this reason� if we have random variables X and Y taking
values in sets D and E� respectively� we write X�Y for the random variable taking
values in D �E which consists of independent samples of X and Y �

Now� for any two vectors v and w� jv � wj� � jvj� � jwj�� In addition� for any
mass function X� jXj� � �� These facts enable one to show that the statistical
di�erence behaves well with respect to independent random variables�

Fact ���� Suppose X� and X� are independent random variables on one prob�
ability space and Y� and Y� are independent random variables on another probability
space� Then�

k	X�� X�
� 	Y�� Y�
k � kX� � Y�k� kX� � Y�k �
Proof�

k	X�� X�
 � 	Y�� Y�
k � k	X�� X�
� 	Y�� X�
k� k	Y�� X�
� 	Y�� Y�
k
�

�

�
jX� �X� � Y� �X�j� �

�

�
jY� �X� � Y� � Y�j�

�
�

�
j	X� � Y�
 �X�j� �

�

�
jY� � 	X� � Y�
j�

�
�

�
jX� � Y�j� � jX�j� �

�

�
jY�j� � jX� � Y�j�

� kX� � Y�k� kX� � Y�k
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One basic fact about statistical di�erence is that it cannot be created out of
nothing� That is� for any procedure A� even if it be randomized� the statistical
di�erence between A	X
 and A	Y 
 is no greater than the statistical di�erence
betewen X and Y � Formally� if D is any set� a randomized procedure on D is a
a pair A � 	f�R
� where R is a probability distribution on some set E and f is
a function from D � E to any set F � Think of the distribution R as providing a
�random seed� to the procedure A� If X is a probability distribution on D� then
A	X
 denotes the probability distribution on F obtained by sampling X � R and
applying f to the result� Note that applying a function is a special case of applying
a randomized procedure�

Fact ���� If X and Y are random variables and A is any randomized proce�
dure� then kA	X
 �A	Y 
k � kX � Y k�

Proof� Let A � 	f�R
� Then� for any set S � F �

jPr 
A	X
 � S�� Pr 
A	Y 
 � S�j
� jPr 
f	X �R
 � S� � Pr 
f	Y �R
 � S�j
�

��Pr �X � R � f��	S

� � Pr �Y � R � f��	S


���
� kX � R� Y �Rk
� kX � Y k� kR� Rk
� kX � Y k�

Taking the maximum over all sets S completes the proof�

The next fact is useful when arguing that the statistical di�erence between two
distributions is small�

Fact ���� Suppose X � 	X�� X�
 and Y � 	Y�� Y�
 are probability distributions
on a set D �E such that

�� X� and Y� are identically distributed� and
�� With probability � �� � over x� X� �equivalently� x� Y���

kX�jX��x � Y�jY��xk � �	���


�where BjA�a denotes the conditional distribution of B given that A � a for
jointly distributed random variables A and B��

Then kX � Y k � �� ��

Proof� Let T � D be the set of x�s for which Equation ��� holds� Now� let S be
an arbitrary subset of D�E and� for every x � D� de�ne Sx � fy � E � 	x� y
 � Sg�
Then�

Pr 
X � S� � Pr 
X� �� T � �
X
x�T

Pr 
X� � SxjX� � x�Pr 
X� � x�

� ��
X
x�T

	Pr 
Y� � SxjY� � x� � �
 Pr 
Y� � x�

� �� � �Pr 
Y � S� �

By symmetry� we also have Pr 
Y � S� � �� ��Pr 
X � S�� Since S was arbitrary�
kX � Y k � �� ��
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The next fact formalizes the intuition that if two distributions have small sta�
tistical di�erence� then their mass functions must be close at most points�

Fact ���� If X and Y are any two distributions such that kX � Y k � �� then
with probability � �� �p� over x� X��

��p��Pr 
X � x� � Pr 
Y � x� �
�
� �

p
�
�
Pr 
X � x� �	���


Proof� Let S � fx � 	��p�
 Pr 
X � x� 	 Pr 
Y � x�g� i�e� the set of x�s for
which the left�hand inequality in Equation ��� is violated� Then�

Pr 
Y � S� � �
��p��Pr 
X � S�

� Pr 
X � S��p�Pr 
X � S� �

Thus� kX � Y k 	 p
�Pr 
X � S��so we must have Pr 
X � S� �

p
�� A similar

argument show that the right�hand inequality in Equation ��� is violated with
probability less than

p
��

�� Direct Product and XOR Lemmas

In this section� we describe two simple constructions� and their e�ect on the
statistical di�erence between a pair of distributions� These are essential building
blocks for the more complex transformations in later sections� The �rst construction
is known as the direct product construction� In this construction� one samples a
distribution independently k times� When applied to a pair of distributions� this
construction has the e�ect of increasing any noticeable statistical di�erence to one
exponentially close to �� This is formalized in the following lemma�

Lemma ��� 	Direct Product Lemma
� Let X and Y be distributions such that
kX � Y k � �� Then for all k�

k� 	 k �k X � �kY k 	 �� �e�k����

Proof� The upper bound of k� follows immediately from Fact ���� so we pro�
ceed to the proof of the lower bound� Recall� from the de�nition of statistical
di�erence� that there must exist a set S such that

Pr 
X � S�� Pr 
Y � S� � ��

Let p � Pr 
Y � S�� Then� Pr 
X � S� � p � �� Hence� in k independent samples
of X� the expected number of samples that lie in S is 	p � �
k� whereas in k
independent samples of Y � the expected number of samples that lie in S is pk� The
Cherno� bound� tells us that the probability that at least 	p� �

�
k components of

�kY lie in S is at most exp	�k����
� whereas the probability that at most 	p� �
�
k

components of �kX lie in S is at most exp	�k����
� Let S� be the set of all k�tuples
that contain more than 	p� �

�
k components that lie in S� Then we have�

k �k X ��kY k 	 Pr ��kX � S�
�� Pr ��kY � S�

� 	 �� �e�k�����

�For the formulation of the Cherno� bound we use� see� for example� the formulation of
Hoe�ding�s inequality in �Hof��� Sec� 
������
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At �rst glance� it may seem that the proof above is unnecessarily loose� and that
one might be able to prove that the statistical di�erence increases even for small
values of k� However� Madhu Sudan 
Sud��� has pointed out that for any p � 
�� ���
there exist distributions X and Y such that kX � X � Y � Y k � kX � Y k � p�
Consider the following two distributions�

X �

�
� with probability 	� � p
��
� with probability 	�� p
��

Y �

�
� with probability 	� � p
��
� with probability 	�� p
��

Here� kX � Y k � 		� � p
� 	�� p

�� � p� and also

kX �X � Y � Y k � 		� � p
� � 	�� p
�
�� � p�

Nevertheless� the direct product construction gives us an e�cient and e�ective
technique for increasing the statistical di�erence between two distributions� The
two bounds in Lemma ��� show that large values go to � faster than small val�
ues� The following lemma provides a complementary technique which decreases the
statistical di�erence to �� with small values going to � faster than large values�

Lemma ��� 	XOR Lemma
� There is a polynomial�time computable function
that maps a triple 	C�� C�� �k
� where C� and C� are circuits� to a pair of circuits

	D�� D�
 such that kD� �D�k � kC� � C�kk� Speci�cally� D� and D� are de�ned
as follows�

D�� Uniformly select 	b�� � � � � bk
 � f�� �gk such that b� 
 � � � 
 bk � �� and output
a sample of Cb� � � � � �Cbk �
D�� Uniformly select 	b�� � � � � bk
 � f�� �gk such that b� 
 � � � 
 bk � �� and output
a sample of Cb� � � � � �Cbk �

In order to prove this lemma� we employ a generalization of the technique used
in 
DDPY��� to represent the logical AND of statements aboutGraph Nonisomorphism�
This tool is described in the following Proposition�

Proposition ���� Let X�� X�� Y�� Y� be any random variables� and de�ne the
following pair of random variables�

Z�� Choose a� b�Rf�� �g such that a 
 b � �� Output a sample of Xa � Yb�
Z�� Choose a� b�Rf�� �g such that a 
 b � �� Output a sample of Xa � Yb�

Then kZ� � Z�k � kX� �X�k � kY� � Y�k�

The statistical di�erence between X� and X� 	or Y� and Y�
 measures the ad�
vantage a computationally unbounded party has� over random guessing� of guessing
b given a sample from Xb� where b is selected uniformly from f�� �g� Intuitively�
the above Proposition says that the advantage one has in guessing the XOR of
two independent bits is the product of the advantages one has for guessing each
individual bit�
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Proof�

kZ� � Z�k �
�

�
jZ� � Z�j�

�
�

�

����
�
�

�
X� � Y� �

�

�
X� � Y�

�
�
�
�

�
X� � Y� �

�

�
X� � Y�

�����
�

�
�

�
j	X� �X�
� 	Y� � Y�
j�

�

�
�

�
jX� �X�j�

�
�
�
�

�
jY� � Y�j�

�

� kX� �X�k � kY� � Y�k

Proposition ��� and an induction argument establish Lemma ���� Yao�s XOR
Lemma 
Yao
�� 	see also 
GNW���
 can be seen as an analogue of Lemma ��� in
the computational setting� where the analysis is much more di�cult�

�� Polarizing the Statistical Relationship

In this section� we combine the techniques from the previous section to yield
the following lemma�

Lemma ��� 	Polarization Lemma
�� There is a polynomial�time computable func�
tion that takes a triple 	C�� C�� �k
� where C� and C� are circuits� and outputs a
pair of circuits 	D�� D�
 such that

kC� �C�k � ��� � kD� �D�k � ��k
kC� �C�k � ��� � kD� �D�k � �� ��k

The usefulness of the Polarization Lemma comes from the fact that the two
distributions it produces can be treated almost as if they were identically distributed
or disjoint 	i�e� statistical di�erence � and �� respectively
� Indeed� it will be used
in the constructions of the next two sections� and it was essential in proving that
SD 	with thresholds of ��� and ���� as we�ve de�ned it
 is in SZK 
SV����

Recall that the Direct Product construction of Lemma ��� gives a way to in�
crease statistical di�erence with large values going to � faster than small values�
Similarly� the XOR Lemma 	Lemma ���
 shows how to decrease statistical di�er�
ence with small values going to � faster than large values� Intuitively� alternating
these procedures should �polarize� large and small values of statistical di�erence�
pushing them closer to � and �� respectively� A similar alternation between proce�
dures with complementary e�ects was used by Ajtai and Ben�Or 
AB
�� to amplify
the success probability of randomized constant�depth circuits�

Proof� Let � � dlog��� �ke� Apply the XOR Lemma 	Lemma ���
 to the triple
	C�� C�� ��
 to produce 	C�

�� C
�

�
 such that if

kC� �C�k � ��� � kC�

� �C�

�k � 	���
�
kC� �C�k � ��� � kC�

� �C�

�k � 	���
��
�The Polarization Lemma stated here is called the Ampli�cation Lemma in �SV���� We

change the name here to stress that the Polarization Lemma does not merely increase statistical
di�erence�
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Let m � ����� Then apply the direct product construction� letting C��
� � �mC�

�

and let C��

� � �mC�

�� Then� by Lemma ����

kC� � C�k � ��� � kC��

� �C��

� k � ���
kC� � C�k � ��� � kC��

� �C��

� k � �� �e��
������������ � �� �e�k�

Finally� apply the XOR Lemma 	Lemma ���
 one more time to 	C��

� � C
��

� � �
k
 to

produce 	D�� D�
 such that

kC� �C�k � ��� � kD� �D�k � ��k � ��k
kC� �C�k � ��� � kD� �D�k � 	�� �e�k
k � �� �ke�k � �� ��k�

Notice that the above analysis relies on the fact that 	���
� � 	���
� so it will
not work if ��� and ��� are replaced by� say� ��� and ���� We do not know how to
prove such a polarization lemma for arbitrary constant thresholds� We can however
extend it to thresholds 	 and 
� where 
��	 is greater than �� More precisely� we
have the following lemma�

Lemma ��� 	General Polarization Lemma
� There is a function that takes as
input a ��tuple 	C�� C�� 	� 
� �k
� where 
� � � � 	� with � � �� and C� and C�
are circuits� The function is computable in time polynomial in the input size and
	��� log���� and outputs a pair of circuits 	D�� D�
 such that

kC� � C�k � 	 � kD� �D�k � ��k
kC� �C�k � 
 � kD� �D�k � �� ��k

Proof� Let � � dlog�	� ln�
e� Apply the XOR Lemma 	Lemma ���
 to the
triple 	C�� C�� ��
 to produce 	C�

�� C
�
�
 such that if

kC� �C�k � 	 � kC�

� � C�

�k � 	�

kC� �C�k � 
 � kC�

� � C�

�k � 
��

Let m � ���	� � ���	�
��
� Then apply the direct product construction�
letting C ��

� � �mC�
� and let C

��
� � �mC�

�� Then� by Lemma ����

kC� � C�k � 	 � kC��

� � C��

� k � ���
kC� � C�k � 
 � kC��

� � C��

� k � �� �e�
��

����
�
���

� 	 ���
An application of Lemma ��� �nishes the proof�

�� Reversing the Statistical Relationship

Proposition ��� 	Reversal Mapping
� There is a polynomial�time computable
function that maps pairs of circuits 	C�� C�
 to pairs of circuits 	D�� D�
 such that

kC� � C�k � ��� � kD� �D�k � ���
kC� � C�k � ��� � kD� �D�k � ����

That is� SD reduces to SD�

By Theorem ��� 	and the closure of SZK under reductions 
SV���
� Proposi�
tion ��� is equivalent to the closure of SZK under complement� In fact� the existence
of such a transformation was originally deduced from the fact that SZK is closed
under complement 
Oka�	� SV���� This result motivated our search for a more
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explicit description of such a mapping� By extracting ideas used in the transforma�
tions of statistical zero�knowledge proofs given in 
Oka�	� and 
SV���� we obtained
the description of this transformation given below�

The Construction� Let 	C�� C�
 be any pair of circuits and let n � j	C�� C�
j�
By the Polarization Lemma 	Lemma ���
� we can produce in polynomial time a
pair of circuits 	C�

�� C
�

�
 such that

kC� � C�k � ��� � kC�

� � C�

�k � �� ��n
kC� � C�k � ��� � kC�

� � C�

�k � ��n
Let q � poly	n
 be the number of input gates of C�

� and C
�

� 	w�l�o�g� we may assume
they have the same number
 and let � � poly	n
 be the number of output gates�
For notational convenience� let R � f�� �gq and L � f�� �g�� Let m � n�q� and
de�ne a new distribution C � f�� �gm �Rm � Lm as follows�

C	b� r
 � 	C�

b�	r�
� � � � � C
�

bm	rm

�

We use the notation z � C to denote z chosen according to C� i�e� select b and r
uniformly and let z � C	b� r
�

Let H be a ��universal family of hash functions from f�� �gm � Rm � Lm to

T � f�� �g�q���m����n� where � �
p
nmq� � m�n� We can now describe the new

distributions�

D�� Let 	b� r
�Rf�� �gm�Rm� y �C� and h�RH� Output 	C	b� r
� b� h� h	b� r� y

�
D�� Let 	b� r
�Rf�� �gm�Rm� h�RH� and t�RT � Output 	C	b� r
� b� h� t
�

The important things to note about these distributions are that b is part of
the output� and that D� and D� only di�er in the last component� where D� has
the value of the hash function and D� has a truly random element of T � Also
note that the size of T is chosen to be jf�� �gm � Rmj�����n� which is essentially
jf�� �gm � Rmj� scaled down by a factor of ����n� which can be thought of as a
�fudge factor� needed to make the proof work� The introduction of the sample y
in D� may at �rst seem super�uous� we explain below�

Intuition� For intuition� consider the case that C is a uniform distribution� that
is� for every z � range	C
� the size of the preimage set jf	b� r
 � C	b� r
 � zgj is
the same value N � 	It turns out that C is actually �close enough� to uniform for
these arguments to work�
 Then the range of C has size ��q���m�N � So� in D��
conditioned on a value for C	b� r
� the triple 	b� r� y
 is selected uniformly from a
set of size ��q���m� Since this is much greater than jT j� the Leftover Hash Lemma
of 
ILL
�� implies that conditioned on any value for the �rst component of D�� the
last two components 	h� h	b� r� y

 are distributed close to the uniform distribution
on H�T � which is the distribution that D� has in its last two components�� Thus�
if their second components were missing� D� and D� would be statistically close�

�Here we see the importance of y� Without y� conditioned on some value of C�b� r�� the pair

�b� r� would be selected uniformly from a space of size N � If we were only hashing this pair� for the

distribution h�b� r� to be uniform by the Leftover Hash Lemma� T would have had to be chosen
so that jT j � N � The value of N � however� depends on the inner workings of the circuit C� and

is in general unknown� By including y� which comes uniformly from a space of size ��q���m�N �

we balance the arguments to h so that they come from a space of size ��q���m� a known quantity�
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Now� consider the case that kC�
� �C�

�k � �� Then b is essentially �determined� by
C	b� r
� So the presence of b can be ignored� and the above argument says that D�

and D� are statistically very close� Now� consider the case that kC�
� � C�

�k � ��
Then b is essentially �unrestricted� by C	b� r
� Since there are �m choices for b�
conditioning on b in addition to C	b� r
� cuts the number of triples 	b� r� y
 down
from �m�q��� to roughly �m�q�����m� Since �m�q�����m is much smaller than jT j�
h	b� r� y
 will cover only a small fraction of jT j and thus will be far from uniform
	conditioned on values for C	b� r
� b� and h
�

Proof of Proposition ���� First we will argue that C is close to uniform� so
that we can apply arguments like those given above� This is the case because C
is composed of many independent� identically distributed random variables� For
z � Lm� we say the weight of z is the logarithm of the size of the preimage set of
z� Formally� let wt	z
 � log� jf	b� r
 � C	b� r
 � zgj� Let w be the expected weight
of an image� w � Ez�C 
wt	z
�� Then we can show the following�

Lemma ���� Prz�C 
jwt	z
 �wj � �� � ����n��
Proof� For z � L� let wt�	z
 � log� jf	b� r
 � Cb	r
 � zgj� Then� for z � Lm�

wt	z
 � wt�	z�
 � � � �� wt�	zm
� Observe that when z is selected according to C�
z�� � � � � zm are independent and identically distributed� Moreover� for any z � L�
� � wt�	z
 � q� So� by the Hoe�ding inequality 
Hof��� Sec� ������� we have

Pr
z�C


jwt	z
� wj � �� � �e�����mq� � �e��n�

It will be convenient to eliminate those z � Lm that have weight far above
or below the mean� Let G � f	b� r
 � jwt	C	b� r

 � wj � �g be the set of good
pairs 	b� r
� The above Lemma says that jGj 	 	� � ����n�
jf�� �gm � Rmj� Thus
kG � f�� �gm � Rmk � ����n�� where for simplicity of notation� we let the name

of a set also refer to the uniform distribution on the same set� De�ne C
�

to be the
distribution obtained by selecting 	b� r
� G and outputting C	b� r
� Then� since C

is a function� Fact ��� tells us that kC�C �k � ����n�� Similarly� we de�ne variants
of D� and D� that sample from G instead of f�� �gm � Rm�

D�

�� Let 	b� r
�RG� y �C
�

� and h�RH� Output 	C�

	b� r
� b� h� h	b� r� y

�

D�
�� Let 	b� r
�RG� h�RH� and t�RT � Output 	C

�

	b� r
� b� h� t
�

SinceD�
� 	orD

�
�
 is a randomized procedure applied to two 	or one
 independent

samplings from G� Fact ��� tells us that kD� �D�

�k � ����n� 	and kD� � D�

�k �
����n�
� Hence� it su�ces to prove that these modi�ed distributions have the
properties we want in each case� For the case when C� and C� are statistically far�
we prove the following claim�

Claim ���� If kC�

� � C�

�k � �� ��n� then kD�

� �D�

�k � ����n��

This use of �dummy� samples to form a space whose size is known is the �complementary usage
of messages� technique of Okamoto �Oka����
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Proof� First we formalize the idea that b is �determined� byC� De�ne f � L�
f�� �g by

f	z
 �

�
� if Pr 
C�

� � z� � Pr 
C�
� � z�

� otherwise

Then

Pr
b�r

f	C�

b	r

 � b� �
�

�
Pr
r

f	C�

�	r

 � �� �
�

�
Pr
r

f	C�

�	r

 � ���

Now� by the de�nition of statistical di�erence� Prr
C
�

�	r
 � f��	�
� 	 �� ��n and
Prr 
C

�

�	r
 � f��	�
� 	 � � ��n� Thus� Prb�r
f	C�

b	r

 � b� � � � ��n� Now de�ne
f � Lm � f�� �gm by f 	z
 � 	f	z�
� � � � � f	zm

� Then

Pr
b�r

f 	C	b� r

 � b� � 	�� ��n
m � �� ����n��

Since G is a � � ����n� fraction of f�� �gm � Rm� the same is true when 	b� r
 is
selected uniformly from G� Thus� if we de�ne�

D��
� � Let 	b� r
�RG� y �C

�

� and h�RH� Output 	C�

	b� r
� f	C
�

	b� r

� h� h	b� r� y

�

D��
� � Let 	b� r
�RG� h�RH� and t�RT � Output 	C

�

	b� r
� f	C
�

	b� r

� h� t
�

Then� by Fact ���� kD�

� � D��

�k � ����n� and kD�

� � D��

�k � ����n�� So it
su�ces to show that kD��

� �D��
�k � ����n�� Since the �rst components of D��

� and
D��
� are identically distributed and the second components are determined by the

�rst ones� it su�ces to show 	by Fact ���
 that� conditioned on any value for the
�rst coordinate� the third and fourth components have statistical di�erence ����n��
This will follow from the Leftover Hash Lemma 
ILL
���

Lemma ��� 	Leftover Hash Lemma 
ILL
��
� Let H be a family of 	�universal
hash functions from D to T � Let X by a probability distribution on D such that for
all x � D� Pr 
X � x� � ��jT j� Then the following two distributions have statistical
di�erence at most �����

�� Choose x� X� h�RH� Output 	h� h	x

�
�� Choose h�RH� t�RT � Output 	h� t
�

By the above argument and the Leftover Hash Lemma� it su�ces to show that

conditioned on any value z for C
�

	b� r
� no triple 	b� r� y
 has probability more than
����n��jT j� The pair 	b� r
 comes uniformly from a set of size �wt�z� 	 �w��� and
y is selected independently according to C

�

� so the probability of any triple 	b� r� y

is at most �

�

�w��

��
�w��

jGj
�
� ���

	�� ����n�
��q���m �
����n�

jT j �

Thus� kD��
� �D��

�k � ����n�� and the claim is established�

Now we treat the other case� when C� and C� are stastically close�

Claim ���� If kC�

� � C�

�k � ��n� then kD�

� �D�

�k � �� ����n��
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Proof� First� we formalize the idea that b is almost completely �undeter�
mined� by C	b� r
� Since kC�

� � C�

�k � ��n� it follows from Fact ��� that with
probability �� ����n� over z � C�

��

	�� ����n�
 Pr 
C �

� � z� � Pr 
C�

� � z� � 	� � ����n�
 Pr 
C�

� � z� �

In other words�

�� ����n� � jfr � C�
�	r
 � zgj

jfr � C�
�	r
 � zgj � � � �

���n��

The same is true with probability � � ����n� when the roles of C�

� and C�

� are
reversed� Thus� with probability � � m����n� � � � ����n� over z � C� we have
for every pair b� c � f�� �gm�

�� ����n� � 	�� ���n�
m �
��fr � C	b� r
 � zg����fr � C	c� r
 � zg�� � 	� � ����n�
m � � � ����n��

Since there are �m choices for c� this� combined with Lemma ���� implies that� with
probability �� ����n� over z � C� the following holds for every b � f�� �gm�

��fr � C	b� r
 � zg�� � 	� � ����n�
 � �wt�z�
�m

� 	� � ����n�
 � �w���m�

Since this is true with probability � � ����n� for z selected according to C� it is
also true with probability � � ����n� for z selected according to C�

� Fix any such

z and �x any b � f�� �gm and h � H� Then� in D�
�� conditioned on C

�

	b� r
 � z� b�
and h� there are at most

	� � ����n�
 � �w���m
� jGj
�w��

�
� 	� � ����n�
 � ����m	�m�mq


� 	� � ����n�
 � ����n�mjT j
� ����m�jT j

possible values for 	r� y
� Thus� with probability �� ����n�� conditioned on values
for the �rst three components of D�

�� the fourth component h	b� r� y
 can cover at
most a ����m� � ����n� fraction of T � In contrast� conditioned on values for the
�rst three components of D�

�� the fourth component is uniformly distributed on T �
Therefore� kD�

� �D�
�k 	 �� ����n��

	� An Application � Boolean Closure

In this section� we use the transformations developed in the prior sections to
prove that any boolean formulae whose atoms are statements about membership
in SD can be e�ciently transformed into a single statement about SD� By Theo�
rem ��� 
SV���� this implies a very strong boolean closure property of SZK� given
an arbitrary boolean formula whose atoms are statements about membership in any
language in SZK� one can e�ciently construct a statistical zero�knowledge interac�
tive proof for its validity� Note that such a property does not follow immediately
from the fact that a class is closed under intersection� union� and complementa�
tion� because applying these more than a constant number of times could incur a
superpolynomial cost in e�ciency� while we ask that the construction can be done
e�ciently with respect to the size of the formula� The procedure for doing this
is based on work by De Santis� Di Crescenzo� Persiano� and Yung 
DDPY����
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They show how to construct statistical zero�knowledge proofs for all monotone
boolean formulae whose atoms are statements about a random self�reducible lan�
guage� Their zero�knowledge proofs are constructed by producing two distributions
which are either disjoint or identical� depending on whether or not the formula is
true� Hence� their construction can be viewed as a reduction to an extreme case of
SD� in which the thresholds are � and ��

Using the direct product construction� the XOR Lemma� and the Polarization
Lemma� we generalize their result to monotone formulae whose atoms are state�
ments about membership in SD� Then� using our Reversal Mapping� we further
generalize to non�monotone formulae�

Definition ���� Let � be any promise problem� Then we de�ne a new promise
problem �	�
 whose instances are 	�� x�� � � � � xk
 where k 	 �� x�� � � � � xk �
�Y 
 �N 	i�e� x�� � � � � xk satisfy the promise for �
� and �	v�� � � � � vk
 is a k�ary
propositional formula� The YES instances of �	�
 are those instances for which
�		x� � �Y 
� � � � � 	xk � �Y 

 is true and the NO instances are those for which it
is false�

Mon	�
 is de�ned analogously� except that only monotone � are considered�	

The main result of this section follows�

Theorem ���� �	SD
 reduces to SD� That is� there is a polynomial�time com�
putable function that maps an instance x � 	�� 	C�

�� C
�
�
� � � � � 	C

k
� � C

k
� 

 of �	SD


to an instance y � 	D�� D�
 of SD such that

x � �	SD
Y � y � SDY

x � �	SD
N � y � SDN �

The main step in proving Theorem ��� is the following Lemma� which mimics
the construction of 
DDPY��� for Mon	Graph Nonisomorphism
�

Lemma ���� Mon	SD
 reduces to SD�

Proof� For intuition� consider two instances of statistical di�erence 	C�� C�

and 	D�� D�
� both of which have statistical di�erence very close to � or very close
to � 	which can be achieved by the Polarization Lemma
� Then 	C��D�� C��D�

will have statistical di�erence very close to � if either of the original statistical
di�erences is very close to � and will have statistical di�erence very close to �
otherwise� Thus� this operation represents OR� Similarly� the XOR operation in
Proposition ��� represents AND� To obtain Lemma ���� we will recursively apply
these constructions� taking care to keep the running time polynomial�

Let w � 	�� 	C�
� � C

�
�
� � � � � 	C

k
� � C

k
� 

 be an instance of Mon	SD
 and let n � jwj�

By applying the Polarization Lemma 	Lemma ���
� we can constuct in polynomial
time pairs of circuits 	D�

�� D
�
�
� � � � � 	D

k
� � D

k
� 
 such that the statistical di�erence

between Di
� and D

i
� is greater than �� ��n if 	Ci

�� C
i
�
 � SDY and is less than �

�n

if 	Ci
�� C

i
�
 � SDN �

Consider the randomized recursive procedure Sample	�� b
 in Figure � which
takes a subformula �	vi� � � � � � vik
 of � and a bit b � f�� �g as input�

Executing Sample	�� b
 for b � f�� �g takes time polynomial in n� because
the number of recursive calls is equal to the number of subformulas of �� For a

�In �DDPY���� only monotone formulae are treated� What they call ��L� is what we call
Mon�L��
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Sample	�� b

If � � vi� sample z � Di

b�
If � � 
 � ��

Sample z� � Sample	
� b
�
Sample z� � Sample	�� b
�
Let z � 	z�� z�
�

If � � 
 � ��
Choose c� d�Rf�� �g subject to c 
 d � b�
Sample z� � Sample	
� c
�
Sample z� � Sample	
� d
�
Let z � 	z�� z�
�

Output z�

Figure �

subformula 
 of �� let Dif	
 
 � kSample	
� �
� Sample	
� �
k� Then we can prove
the following about Dif�

Claim ���� For every subformula 
 � 
 	vi� � � � � � vij 
 of �� Dif	
 
 � ��m��n

if


 		Ci�
� � C

i�
� 
 � SDY � � � � � 	C

ij
� � C

ij
� 
 � SDY 


is true and Dif	
 
 � m��n if it is false� where m � j
 j�
Proof of Claim� By induction on subformulae of �� It holds for atomic

subformulae 	i�e� the variables vi
 by the properties of the Di
b�s�

Consider the case when � � 
��� If � is true 	with the appropriate arguments
�
either 
 or � must be true� Without loss of generality� say 
 is true� Then� by
Fact ��� and induction�

Dif	�
 	 Dif	
 
 � �� j
 j��n � �� j�j��n�
If � is false� then both 
 and � are false� By Fact ��� and induction�

Dif	�
 � Dif	
 
 � Dif	�
 � j
 j��n� j�j��n � j�j��n�
Now consider the case when � � 
 � �� By Proposition ���� Dif	�
 � Dif	
 
 �

Dif	�
� If � is true� then� by induction�

Dif	�
 	 	� � j
 j��n
	� � j�j��n
 � �� 	j
 j� j�j
��n 	 �� j�j��n�
If � is false� then� without loss of generality� say 
 is false� By induction�

Dif	�
 � Dif	
 
 � j
 j��n � j�j��n�

Now� let A and B be circuits describing the computations of Sample	�� �
 and
Sample	�� �
� respectively� 	which take the random bits each procedure uses as
input
� By the above claim� kA � Bk � � � n��n � ��� if � is true with the
appropriate arguments� and kA � Bk � n��n � ��� if � is false� In other words�
the construction of A and B from w describes a many�one reduction fromMon	SD

to SD� This reduction can be computed in polynomial time because Sample runs
in polynomial time�

Now it is straightforward to deduce Theorem ���
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Proof� Let 	�� x�� � � � � xk
 be any instance of �	SD
� where � � �	v�� � � � � vk
�
Use DeMorgan�s laws to propagate all negations of � to its variables� Now replace all
occurrences of the literal �vi with a new variable wi� Let �	v�� � � � � vk� w�� � � � � wk

be the resulting 	monotone
 formula� Then� letting f be the Reversal Mapping of
Proposition ��� which reduces SD to SD�

	�� x�� � � � � xk
 �� 	�� x�� � � � � xk� f	x�
� � � � � f	xk



is a reduction from �	SD
 to Mon	SD
� Composing this with the reduction in
Lemma ���� we obtain Theorem ����

By Theorems ��� and ��� 	along with the fact that SZK is closed under many�
one reductions 
SV���
� we obtain the following�

Corollary ���� For every language L� L � SZK� �	L
 � SZK�

Corollary ��� is a strengthening of several previous results� In 
DDPY���� it
was shown that Mon	L
 � SZK for any language L which is random self�reducible�
whose complement is self�reducible� or whose complement has a noninteractive sta�
tistical zero�knowledge proof� They also gave statistical zero�knowledge proofs for
some simple statements involving a random�self�reducible language and its com�
plement� Damg ard and Cramer 
DC�	� extended these results by showing that
Mon	L
 � SZK as long as L or its complement has a ��round public coin statistical
zero�knowledge proof� and also treat a larger class of monotone functions�

Corollary ��� can be generalized to work for all boolean formulae whose atoms
are statements about membership in any �nite set of languages in SZK� but we omit
the notationally cumbersome formal statement� Corollary ��� can be viewed as
demonstrating that SZK is closed under a weak form of 	polynomial�time
 Turing
reducibility� In particular� if �	L
 were de�ned in terms of circuits rather than
formulae� then the analogue of Corollary ���� together with the closure of SZK
under many�one reductions� would imply that SZK is closed under nonadaptive
Turing reductions� We do not know whether this is true� but we can prove that
SZK is closed under a weaker form of Turing reductions�

Proposition ���� SZK is closed under �adaptive� polynomial�time Turing re�
ductions which make a O	logn
 of oracle queries on inputs of length n� That is� if
A is a language
 in SZK and B reduces to A via such a reduction� then B � SZK�

Proof� Let M be the polynomial�time oracle machine such that M decides B
when given oracle access to A� and on every input x�MA asks at mostm � c log jxj
oracle queries� We de�ne a transcript to be a sequence t � 	y�� ��� � � � � ym� �m
 such
that M 	x
 would ask oracle queries y�� � � � � ym 	in that order
 when given oracle
responses ��� � � � � �m � f�� �g� 	Note that we are not requiring ��� � � � � �m to be
the correct responses which would indicate whether or not xi � A�
 We call such
a transcript accepting if it would make M 	x
 accept� Notice that� given x� we can
enumerate in polynomial time all accepting transcripts for x by simulating M on
all �m possible sequences of oracle responses� Let ti � 	yi�� �

i
�� � � � � y

i
m� �

i
m
 be the

ith accepting transcript in this enumeration� and let s be the number of accepting

	This proposition extends to the case of promise problems if we assume the oracle queries in
the reduction never violate the promise�
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transcripts� Now consider the following formula � on a total of s �m variables�

�	v��� � � � � v
�
m� � � � � v

s
�� � � � � v

s
m
 �

s	
i��

�
�i� � � � � � �im

�
�

where the literal �ij is v
i
j if �

i
j � � and is �vij if �ij � �� Now we claim that

MA	x
 accepts � �		y�� � A
� � � � � 	y�m � A
� � � � � 	ys� � A
� � � � � 	ysm � A

 � ��

If MA	x
 accepts then the term corresponding to the transcript with the correct
oracle responses will evaluate to true� However� ifMA	x
 does not accept� then any
accepting transcript must have at least one �j which disagrees the response oracle
A would give on input yj� so all the terms evaluate to false� Thus�

x �� 	�� y��� � � � � y
�
m� � � � � y

s
�� � � � � y

s
m


is a 	many�one
 reduction from B to �	A
� By Corollary ��� and the fact that SZK
is closed under many�one reductions 
SV���� we conclude that B � SZK�

It would be interesting to prove that SZK is closed under Turing reductions�
adaptive or nonadaptive� that make polynomiallymany oracle calls� or give evidence
that this is not the case�
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