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Abstract
A recent paper of Braverman, Cohen, and Garg (STOC 2018) introduced the concept of a weighted
pseudorandom generator (WPRG), which amounts to a pseudorandom generator (PRG) whose
outputs are accompanied with real coefficients that scale the acceptance probabilities of any potential
distinguisher. They gave an explicit construction of WPRGs for ordered branching programs whose
seed length has a better dependence on the error parameter ε than the classic PRG construction of
Nisan (STOC 1990 and Combinatorica 1992).

In this work, we give an explicit construction of WPRGs that achieve parameters that are
impossible to achieve by a PRG. In particular, we construct a WPRG for ordered permutation
branching programs of unbounded width with a single accept state that has seed length Õ(log3/2 n)
for error parameter ε = 1/ poly(n), where n is the input length. In contrast, recent work of Hoza et
al. (ITCS 2021) shows that any PRG for this model requires seed length Ω(log2 n) to achieve error
ε = 1/ poly(n).

As a corollary, we obtain explicit WPRGs with seed length Õ(log3/2 n) and error ε = 1/ poly(n)
for ordered permutation branching programs of width w = poly(n) with an arbitrary number of
accept states. Previously, seed length o(log2 n) was only known when both the width and the
reciprocal of the error are subpolynomial, i.e. w = no(1) and ε = 1/no(1) (Braverman, Rao, Raz,
Yehudayoff, FOCS 2010 and SICOMP 2014).

The starting point for our results are the recent space-efficient algorithms for estimating random-
walk probabilities in directed graphs by Ahmadenijad, Kelner, Murtagh, Peebles, Sidford, and
Vadhan (FOCS 2020), which are based on spectral graph theory and space-efficient Laplacian solvers.
We interpret these algorithms as giving WPRGs with large seed length, which we then derandomize
to obtain our results. We also note that this approach gives a simpler proof of the original result of
Braverman, Cohen, and Garg, as independently discovered by Cohen, Doron, Renard, Sberlo, and
Ta-Shma (these proceedings).
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1 Introduction

The notion of a pseudorandom generator (PRG) [7, 35, 26] is ubiquitous in theoretical
computer science, with vast applicability in cryptography and derandomization. (See the
texts [17, 34] for more background on pseudorandomness.) A recent work of Braverman,
Cohen, and Garg [9] introduced the following intriguing generalization of a PRG, in which
we attach real coefficients to the outputs of the generator:
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33:2 Pseudodistributions That Beat All Pseudorandom Generators

▶ Definition 1. Let B be a class of boolean functions B : {0, 1}n → {0, 1}. An ε-weighted
pseudorandom generator (WPRG) for B is a function (G, ρ) : {0, 1}s → {0, 1}n × R
such that for every B ∈ B,∣∣∣∣ E

x←U{0,1}n

[B(x)] − E
x←U{0,1}s

[ρ(x) · B(G(x))]
∣∣∣∣ ≤ ε.

The value s is the seed length of the WPRG, and n is the output length of the WPRG.
We say that the WPRG is (mildly)1 explicit if given x, G(x) and ρ(x) are computable in
space O(s), and ρ(x) has absolute value at most 2O(s).

Above and throughout, we use the standard definition of space-bounded complexity, which
counts the working, read-write memory of the algorithm, and does not include the length of
the read-only input or write-only output, which can be exponentially longer than the space
bound.

In the original work of Braverman, Cohen, and Garg [9] and previous versions of this pa-
per [28], generators as above were called pseudorandom pseudodistributions (PRPDs).
The terminology of weighted pseudorandom generators (WPRGs) was introduced by Cohen
et al. [14], and we find it more intuitive (and it avoids the double use of the “pseudo-” prefix).

With Definition 1, a PRG is a special case of a WPRG with ρ(x) = 1. The power
of WPRGs comes from allowing the coefficients to be negative, which yields cancellations.
Indeed, an explicit ε-WPRG with seed length s in which all of the coefficients are nonnegative
can be converted into an explicit O(ε)-PRG with seed length O(s + log(1/ε)). A general
WPRG can be converted into a linear combination of two unweighted generators. That
is, for every explicit WPRG (G, ρ) : {0, 1}s → {0, 1}n × R, there are explicit generators
G+ : {0, 1}s′ → {0, 1}n and G− : {0, 1}s′ → {0, 1}n with seed length s′ = O(s + log(1/ε))
and coefficients ρ+, ρ− ∈ R such that for every function B : {0, 1}n → {0, 1}, we have:

E
x
[ρ(x) · B(G(x))] = ρ+ · E

x
[G+(x)] − ρ− · E

x
[G−(x)] ± ε.

The motivation for WPRGs is that they can be used to derandomize algorithms in the
same way as a PRG: we can estimate the acceptance probability of any function B ∈ B
by enumerating over the seeds x of the WPRG (G, ρ) and calculating the average of the
values ρ(x) · B(G(x)). Furthermore, [9] observe that if (G, ρ) is an ε-WPRG for a model
then G is an ε-hitting set generator (HSG). That is, if B is any function in B with
Pr[B(Un) = 1] > ε, then there exists an x ∈ {0, 1}s such that B(G(x)) = 1.

Given this motivation, it is natural to ask whether WPRGs are more powerful than
PRGs. That is, can ε-WPRGs achieve a shorter seed length than ε-PRGs for a natural
computational model B? (There are simple constructions of artificial examples.) As discussed
below, Braverman, Cohen, and Garg [9] gave an explicit construction of WPRGs achieving
a shorter seed length than the best known construction of PRGs for ordered branching
programs, but not beating the best possible seed length for that model (given by a non-
explicit application of the Probabilistic Method). In this work, we give an explicit construction
of WPRGs for a natural computational model (ordered permutation branching programs of
unbounded width) with a seed length that beats all possible PRGs for that model.

1 We consider this definition to correspond to mild explicitness because requiring that the generator be
computable in space linear in its seed length only implies that it is computable in time exponential in
its seed length (i.e. time polynomial in the size of its truth table), which is mildly explicit according to
the terminology in [34]. Strong explicitness, in contrast, would require that each bit of the truth table is
computable in time polynomial in s.
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1.1 Ordered Branching Programs
The work of Braverman, Cohen, and Garg [9], as well as our paper, focuses on WPRGs for
classes B of functions computable by ordered branching programs, a nonuniform model that
captures how a space-bounded randomized algorithm accesses its random bits.

▶ Definition 2. An (ordered) branching program B of length n and width w computes
a function B : {0, 1}n → {0, 1}. On an input σ ∈ {0, 1}n, the branching program computes
as follows. It starts at a fixed start state v0 ∈ [w]. Then for r = 1, . . . , n, it reads the next
symbol σr and updates its state according to a transition function Br : [w] × {0, 1} → [w] by
taking vt = Br(vt−1, σt). Note that the transition function Br can differ at each time step.

The branching program accepts σ, denoted B(σ) = 1, if vn ∈ Vacc, where Vacc ⊆ [w]
is the set of accept states, and otherwise it rejects, denoted B(σ) = 0. Thus an ordered
branching program is specified by the transition functions B1, . . . , Bn, the start state v0 and
the set Vacc of accept states.

An ordered branching program of length n and width w can compute the output of an
algorithm that uses log w bits of memory and n random bits, by taking the state at each
layer as the contents of memory at that time. We note that we can convert any ordered
branching program into one with a single accept state by collapsing all of Vacc to a single
state.

Using the probabilistic method, it can be shown that there exists an ε-PRG for ordered
branching programs of length n and width w with seed length s = O(log(nw/ε)). The classic
construction of Nisan [25] gives an explicit PRG with seed length s = O(log n · log(nw/ε)),
and this bound has not been improved except for extreme ranges of w, namely when w

is at least quasipolynomially larger than (n/ε) [27, 5, 22] or when w ≤ 3 [8, 32, 19, 24].
Braverman, Cohen, and Garg [9] gave an explicit construction of a WPRG that achieves
improved dependence on the error parameter ε, with seed length

s = Õ (log n · log(nw) + log(1/ε)) .

In particular, for error ε = n− log n and width w = poly(n), their seed length improves Nisan’s
from O(log3 n) to Õ(log2 n). Chatthopadhyay and Liao [12] gave a simpler construction
of WPRGs with a slightly shorter seed length than [9], with an additive dependence on
O(log(1/ε)) rather than Õ(log(1/ε)).

1.2 Permutation Branching Programs
Due to the lack of progress in constructing improved PRGs for general ordered branching
programs as well as some applications, attention has turned to more restricted classes of
ordered branching programs. In this work, our focus is on permutation branching programs:

▶ Definition 3. An (ordered) permutation branching program is an ordered branching
program B where for all t ∈ [n] and σ ∈ {0, 1}, Bt(·, σ) is a permutation on [w].

This can be thought of as the computation being time-reversible on any fixed input σ. We
note that we cannot assume without loss of generality that a permutation branching program
has a single accept state, as merging a set of accept states will destroy the permutation
property. Nevertheless, ordered permutation branching programs with a single accept state
can compute interesting functions, such as testing whether a

∑
i∈S xi ≡ 0 (mod m), for any

m ≤ w and any S ⊆ [n]. An ordered permutation branching program with a single accept
state can also test whether x|T = π(x|S) for any permutation π : {0, 1}ℓ → {0, 1}ℓ and any
two subsets S, T ⊆ [n] of size ℓ such that all elements of T are larger than all elements of S,
provided that w ≥ 2ℓ [20].

CCC 2021
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Previous works on various types of PRGs for permutation branching programs [30, 29,
10, 23, 15, 33, 20] have achieved seed lengths that are logarithmic or nearly logarithmic in
the length n of the branching program, improving the log2 n bound in Nisan’s generator.
In particular, Braverman, Rao, Raz, and Yehudayoff [10] gave a PRG for the more general
model of regular branching programs (with an arbitrary number of accept states) with seed
length

s = O (log n · (log w + log(1/ε) + log log n)) .

For getting a HSG, they also showed how how to eliminate the log log n and log(1/ε) terms
at the price of a worse dependence on w,2 achieving a seed length of

s ≤ log(n + 1) · w.

For the specific case of permutation branching programs, Koucký, Nimbhorkar, and
Pudlák [23], De [15], and Steinke [33] showed how to remove the log log n term in the
Braverman et al. PRG at the price of a worse dependence on w, achieving seed length

s = O(log n · (poly(w) + log(1/ε))).

Most recently, Hoza, Pyne, and Vadhan [20] showed that the dependence on the width w

could be entirely eliminated if we restrict to permutation branching programs with a single
accept state, constructing a PRG with seed length

s = O(log n · (log log n + log(1/ε)).

In particular, they show that this seed length is provably better than what is achieved by
the Probabilistic Method; that is, a random function with seed length o(n) fails to be a
PRG for unbounded-width permutation branching programs with high probability. Like
the prior PRGs for bounded-width permutation branching programs, the seed length has a
term of O(log n · log(1/ε)). However, in contrast to the bounded-width case, this cannot be
improved to O(log(n/ε)) by a non-explicit construction. Hoza et al. prove that seed length
Ω(log n·log(1/ε)) is necessary for any ε-PRG against unbounded-width permutation branching
programs. For hitting-set generators (HSGs), they show that seed length O(log(n/ε)) is
possible via the Probabilistic Method, thus leaving an explicit construction as an open
problem.

1.3 Our Results
In this paper, we construct an explicit WPRG for permutation branching programs of
unbounded width and a single accept state that beats the aforementioned lower bounds for
PRGs:
▶ Theorem 4. For all n ∈ N and ε ∈ (0, 1/2), there is an explicit ε-WPRG (and hence
ε-HSG) for ordered permutation branching programs of length n, arbitrary width, and a single
accept state, with seed length

s = O
(

log(n)
√

log(n/ε)
√

log log(n/ε) + log(1/ε) log log(n/ε)
)

.

In particular, when ε = 1/ poly(n), we achieve seed length Õ(log3/2 n), while a PRG requires
seed length Ω(log2 n) [20].

2 The lack of dependence on ε can be explained by the observation of Braverman et al. that any regular
branching program that has nonzero acceptance probability has acceptance probability at least 1/2w−1,
so WLOG ε > 1/2w, i.e. w > log(1/ε).
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As noted in [20], an ε-WPRG for branching programs with a single accept state is also
an (a · ε)-WPRG for branching programs with at most a accept states. For bounded-width
permutation branching programs, we can take a = w and obtain:

▶ Corollary 5. For all n, w ∈ N and ε ∈ (0, 1/2), there is an explicit ε-WPRG (and hence
ε-HSG) for ordered permutation branching programs of length n and width w (and any
number of accept states), with seed length

s = O
(

log(n)
√

log(nw/ε)
√

log log(nw/ε) + log(w/ε) log log(nw/ε)
)

.

In particular for w = poly(n) and ε = 1/ poly(n), we achieve seed length Õ(log3/2 n). Note
that the previous explicit PRGs (or even HSGs) for permutation branching programs (as
mentioned in Subsection 1.2) achieved seed length o(log2 n) only when both w = no(1) and
ε = 1/no(1). With seed length o(log2 n), Corollary 5 can handle width as large as w = nΩ̃(log n)

and error as small as ε = 1/n−Ω̃(log(n)). We summarize these results in a table.

Citation Type Model Seed Length
Non-explicit (folklore) PRG General Θ(log(nw/ε)

[25, 21] PRG General O(log n · log(nw/ε))
[10] PRG Regular Õ(log n · log(w/ε))
[10] HSG Regular log(n + 1) · w

[23, 15, 33] PRG Permutation O(log n · (poly(w) + log(1/ε))
[9, 12, 28] WPRG General Õ(log n · log nw + log(1/ε))

[20] PRG Permutation (1 accept) Θ̃(log n · log(1/ε))
Non-explicit [20] HSG Permutation (1 accept) O(log(n/ε))

Theorem 4 WPRG Permutation (1 accept) Õ(log n
√

log(n/ε) + log(1/ε))
Corollary 5 WPRG Permutation Õ(log n

√
log(nw/ε) + log(w/ε))

2 Overview of Proofs

The starting point for our results are the recent space-efficient algorithms for estimating
random-walk probabilities in directed graphs by Ahmadenijad, Kelner, Murtagh, Peebles,
Sidford, and Vadhan [2], which are based on spectral graph theory and space-efficient
Laplacian solvers. We interpret these algorithms as giving WPRGs with large seed length,
which we then derandomize to obtain our results.

The specific problem considered by Ahmadenijad et al. is the following: given a directed
graph G = (V, E), two vertices s, t ∈ V , a walk-length k ∈ N, and an error parameter ε > 0,
estimate the probability that a random walk of length k started at s ends at t to within ±ε.
Such an algorithm can be applied to the following graph in order to estimate the acceptance
probability of an ordered branching program:

▶ Definition 6. Given a length n, width w branching program B with transition functions
(B1, . . . , Bn) with start vertex v0 ∈ [w], and a single accept vertex vacc, the (layered) graph
associated with B is the graph G with vertex set {0, 1, . . . , n} × [w] and directed edges from
(i − 1, v) to (i, Bi(v, 0)) and (i, Bi(v, 1)) for every i = 1, . . . , n and v ∈ [w].

Applying the algorithms of Ahmadenijad et al. to the graph G with s = (0, v0), t = (n, vacc),
and k = n, we obtain an estimate of the acceptance probability of B to within ±ε, just like
an ε-WPRG for B would allow us to obtain. But a WPRG (G, ρ) is much more constrained
than an arbitrary space-efficient algorithm, which can directly inspect the graph. Instead,
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a WPRG is limited to generating S = 2s walks of length n in the layered graph, described
by sequences G(x1), . . . , G(xS) ∈ {0, 1}n of edge labels, and then combining the indicators
B(G(x1)), . . . , B(G(xn)) of whether the walks ended at t via a linear combination with fixed
coefficients ρ(x1), . . . , ρ(xS) ∈ R.

Note that if B is a permutation branching program, then the graph G above is 2-regular
(except for layer 0 which has no incoming edges and layer n which has no outgoing edges).
Thus, the basis for Theorem 4 is the (main) result of Ahmadenijad et al., which applies
to regular (or more generally, Eulerian) directed graphs G. However, they also give a
new algorithm for estimating random-walk probabilities in arbitrary directed graphs. This
algorithm is not as space-efficient as the ones for regular graphs, but is significantly simpler,
so we begin by describing how to obtain a WPRG based on that algorithm. The resulting
WPRG matches the parameters of the WPRG of Braverman, Cohen, and Garg [9], but has a
significantly simpler proof (and is also simpler than the construction of Chatthopadhyay and
Liao [12]). A similar construction was independently discovered by Cohen, Doron, Renard,
Sberlo, and Ta-Shma [14].

2.1 WPRG for Arbitrary Ordered Branching Programs
Let B be an arbitrary width w, length n ordered branching program, with associated
layered graph G as in Definition 6. The algorithm of Ahmadenijad et al. starts with the
(n + 1)w × (n + 1)w random-walk transition matrix W of G, which has the following block
structure:

W =



0 B1 0 · · · 0
0 0 B2 · · · 0
...

. . .
...

0 0 0
. . . Bn

0 0 0 · · · 0


Here entry ((i, u), (j, v)) is the probability that taking one random step in G from vertex
(i, u) ends at (j, v). Thus Bi is the w × w transition matrix for the random walk from layer
i − 1 to i in the branching program. (Note that the matrix W is not quite stochastic due to
layer n having no outgoing edges.)

Ahmadenijad et al. consider the Laplacian L = I(n+1)w − W. Its inverse L−1 =
(I(n+1)w − W)−1 = I(n+1)w + W + W2 + W3 + · · · sums up random-walks of all lengths in
G, and thus has the following form:

L−1 =



B0...0 B0...1 B0...2 · · · B0...n

0 B1...1 B1...2 · · · B1...n

...
. . .

...

0 0 0
. . . Bn−1...n

0 0 0 · · · Bn...n

 ,

where

Bi...j = Bi+1Bi+2 · · · Bj .

In particular, the (0, n)’th block of L−1 gives the random-walk probabilities from layer 0
to layer n, and thus the acceptance probability of G is exactly the (v0, vacc)’th entry of the
(0, n)’th block of L−1. Therefore, the task reduces to producing a sufficiently good estimate
of L−1.
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Ahmadenijad et al. estimate L−1 in two steps. First, they observe that the Saks–
Zhou derandomization of logspace [31] can be used to produce, in deterministic space
O(log(nw)

√
log(n)), approximations B̃i...j of the blocks Bi...j to within entrywise error

1/ poly(nw), resulting in an approximate pseudoinverse

L̃−1 =



B̃0...0 B̃0...1 B̃0...2 · · · B̃0...n

0 B̃1...1 B̃1...2 · · · B̃1...n

...
. . .

...

0 0 0
. . . B̃n−1...n

0 0 0 · · · B̃n...n


, (1)

with the property that∥∥∥I(n+1)w − L̃−1L
∥∥∥

1
≤ 1/nw,

where ∥ · ∥1 denotes the ℓ1 operator norm on row vectors, ie ∥M∥1 = supx̸=0 ∥xM∥1/∥x∥1.
Next, Ahmadenijad et al. reduce the approximation error to an arbitrary ε < 1/(nw)O(1)

by using preconditioned Richardson iterations, as captured by the following lemma:

▶ Lemma 7 (preconditioned Richardson iteration, [2] Lemma 6.2). Let ∥·∥ be a submultiplicative
norm on N × N real matrices. Given matrices A, P0 ∈ RN×N such that ∥IN − P0A∥ ≤ α

for some constant α > 0, let Pm =
∑m

i=0(IN − P0A)iP0. Then ∥IN − PmA∥ ≤ αm+1.

Setting N = (n + 1)w, A = L, P0 = L̃−1, and α = 1/nw, and m = O(lognw(1/ε)), we
obtain L̃ε = Pm such that ∥IN − L̃εL∥1 ≤ ε/(nw)O(1), which implies that L̃ε and L−1 are
entrywise equal up to ±ε, for

L̃ε =
m∑

i=0
(IN − L̃−1L)iL̃−1 (2)

In particular, the (v0, vacc)’th entry of the (0, n)’th block of L̃ε is an estimate of the acceptance
probability of the branching program to within ±ε. Computing L̃ε from L and L̃−1 can be
done in space O((log nw) · log m), yielding Ahmadenijad et al.’s space bound of

O(log(nw)
√

log(n) + (log nw) · log lognw(1/ε)).

Now we show how, with appropriate an modification, we can interpret this algorithm
of Ahmadenijad et al. as a WPRG (albeit with large seed length). We replace the use of
the Saks–Zhou algorithm (which requires looking at the branching program) with Nisan’s
pseudorandom generator. Specifically, we take B̃i...j to be the matrix whose (u, v)’th entry
is the probability that, if we start at state u in the the i’th layer and use a random output of
Nisan’s pseudorandom generator to take j − i steps in the branching program, we end at
state v in the j’th layer. For B̃i...j to approximate Bi...j to within error ±1/ poly(nw) as
above, Nisan’s pseudorandom generator requires seed length

sNisan = O(log(j − i) · log nw) = O(log n · log nw).

Observe that for every i, B̃i...i = Iw = Bi...i. Without loss of generality, we may also assume
that ˜B(i−1)...i = B(i−1)...i, since taking one step only requires one random bit.

CCC 2021
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Next, we observe from Equation 2 that the matrix L̃ε is a polynomial of degree 2m + 1
in the matrices L and L̃−1. In particular the (0, n)’th block of L̃ε is a polynomial of degree
at most 2m + 1 in the matrices B̃i...j . Specifically, using the upper-triangular structure of
the matrices L and L̃−1 and noting that the product of d (n + 1) × (n + 1) block matrices
expands into a sum of (n + 1)d−1 terms, each of which is a product of d individual blocks,
we show:

▶ Observation 8. The (0, n)’th block of L̃ε is equals the sum of at most (n + 1)O(m) terms,
each of which is of the form

±B̃i0···i1B̃i1···i2 · · · ˜Bir−1···ir , (3)

where 0 = i0 < i1 < i2 < · · · < ir = n and r ≤ 2m + 1.

Notice that, up to the sign, each term as expressed in Equation (3) is the transition
matrix for a pseudorandom walk from layer 0 to layer n of the branching program, where we
use r ≤ m + 1 independent draws from Nisan’s generator, with the j’th draw being used to
walk from layer ij−1 to layer ij . In particular, the (v0, vacc) entry of Equation (3) equals the
acceptance probability of the branching program on such a pseudorandom walk (up to the ±
sign). Thus the algorithm now has the form required of a WPRG.

The seed length for the WPRG is the sum of the seed length ssum needed to select a
random term in the sum (using the coefficients of the WPRG to rescale the sum into a
expectation) and the seed length sterm to generate a walk for the individual term. To select
a random term in the sum requires a seed of length

ssum = log nO(m) = O(m · log(n)) = O(lognw(1/ε) · log(n)) = O(log(1/ε)).

The seed length needed for an individual term is at most

sterm = O(m) · sNisan = O(lognw(1/ε) · log(n) · log nw) = O(log(1/ε) · log(n)).

The latter offers no improvement over Nisan’s PRG. (Recall that ε < 1/nw.) To obtain a
shorter seed length, we just need to derandomize the product in Equation (3). Instead of
using r independent seeds, we use dependent seeds generated using the Impagliazzo–Nisan–
Wigderson pseudorandom generator [21]. Specifically, we can produce a pseudorandom walk
that approximates the product to within entrywise error ±γ using a seed of length

s′term = sNisan + O((log r) · log(rw/γ)).

The entrywise error of γ in each term may accumulate over the nO(m) terms, so to achieve a
WPRG error of O(ε), we should set γ = ε/nO(m) = 1/εO(1). Recalling that r ≤ 2m + 1 =
O(lognw(1/ε)), we attain a seed length of

ssum + s′term = O(log(1/ε)) + O(log n · log nw) + O(log lognw(1/ε) · log(1/ε))
= O(log n · log nw + log(1/ε) · log lognw(1/ε)),

which slightly improves over the bound of Braverman, Cohen, and Garg [9], and is incompar-
able to that of Chattopadhyay and Liao [12]. Specifically, our first term of O(log n · log nw) is
better than [12] by a factor of log log(nw), but our second term of O(log(1/ε) · log lognw(1/ε))
is worse by a factor of log lognw(1/ε).
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2.2 WPRG for Permutation Branching Programs

Now we give an overview of our WPRG for permutation branching programs, as stated in
Theorem 4. This is based on the the algorithm of Ahmademnijad et al. that estimates
random-walk probabilities in regular (or even Eulerian) digraphs with better space complexity
than the algorithm described in Subsection 2.1. As before, we will review their algorithm as
applied to the ((n + 1) · w)-vertex graph G associated with an ordered branching program B

of length n and width w. Since we assume that the branching program B is a permutation
program, the graph G will be 2-regular at all layers other than 0 and n. For the spectral
graph-theoretic machinery used by Ahmadenijad et al., it is helpful to work with random-walk
matrices that correspond to strongly connected digraphs, so we also add a complete bipartite
graph of edges from layer n back to layer 0, resulting in the following modified version of the
matrix W:

W0 =



0 B1 0 · · · 0
0 0 B2 · · · 0
...

. . .
...

0 0 0
. . . Bn

Jw 0 0 · · · 0

 , (4)

where the Jw in the lower-left corner is the w × w matrix in which every entry is 1/w

(corresponding to the complete bipartite graph we added). Notice that the matrix Jw is
identically zero when applied to any vector that is orthogonal to the uniform distribution, so
it is not very different than having 0 in the lower-left block as we had before. Indeed, the
powers of W look as follows:

W2
0 =



0 0 B0..2 0 0
... 0 0

. . . 0

0
... Bn−2..n

Jw 0 0 · · · 0
0 Jw 0 · · · 0

 , . . . , Wn
0 =



0 0 · · · 0 B0..n

Jw 0 0

0
. . . 0

... 0 Jw 0 0
0 0 0 Jw 0

 (5)

where

Bi...j = Bi+1Bi+2 · · · Bj .

Notice in particular that Wn+1
0 will be a block-diagonal matrix with Jw’s on the diagonal

(i.e. Wn+1
0 = In+1 ⊗ Jw), and thus has no dependence on the branching program B.

Now the Laplacian I(n+1)w −W0 is no longer invertible (the uniform distribution is in the
kernel). In [2], they instead estimate the Moore-Penrose pseudoinverse of I(n+1)w − W0. We
instead scale W0 by a factor c = 1−1/(n+1), and consider the Laplacian L0 = I(n+1)w −cW0.
Looking ahead, this scaling factor ensures that the condition number of L0 depends only on
n, allowing us to obtain a seed length independent of w. Then, by the expressions above for
the powers of W0, it can be shown that from

L−1
0 = I(n+1)w + cW0 + c2W2

0 + c3W3
0 + . . .

we can compute B0..n, which appears in Wn
0 with a scaling factor cn ≥ 1/4.
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So again to estimate the acceptance probability of B, it suffices to compute a sufficiently
good approximation to L−1

0 . As before, it suffices to compute a matrix L̃−1
0 such that

∥IN − L̃−1
0 L0∥ ≤ α for some constant α < 1 and a submultiplicative matrix norm ∥ · ∥,

because then we can use preconditioned Richardson iterations (Lemma 7) to estimate L0 to
within arbitrary entrywise accuracy.

Unfortunately, we don’t know how to directly obtain such an initial approximation L̃−1
0

efficiently enough for our result. Instead, following Ahmadenijad et al., we tensor W0 with a
sufficiently long directed cycle. Specifically, we let Ci be the directed cycle on 2i vertices,
and consider Cq for q = log(n + 1) (which we assume is an integer WLOG). We consider the
cycle lift, whose transition matrix is

Cq ⊗ W0 =



0 W0 0 · · · 0
0 0 W0 · · · 0
...

. . .
...

0 0 0
. . . W0

W0 0 0 · · · 0

 ,

Then, we seek to invert the Laplacian L = I2qN − cCq ⊗ W0. Similarly to the above, we
have:

L−1 = (I2qN − cCq ⊗ W0)−1

=
(
I2qN − cn+1Cn+1

q ⊗ Wn+1
0

)−1 ·
(
I2qN + cCq ⊗ W0 + c2C2

q ⊗ W2
0 + · · · cnCn

q ⊗ Wn
0
)

=
(
I2qN − cn+1Cn+1

q ⊗ (In+1 ⊗ Jw)
)−1 ·

(
I2qN + cCq ⊗ W0 + c2C2

q ⊗ W2
0 + · · · cnCn

q ⊗ Wn
0
)

.

Thus, letting

M = I2qN − cn+1Cn+1
q ⊗ (In+1 ⊗ Jw) = I2qN − cn+1I2q ⊗ (In+1 ⊗ Jw),

which has no dependence on the branching program, we have:

M · L−1 = I2qN + cCq ⊗ W0 + c2C2
q ⊗ W2

0 + · · · cnCn
q ⊗ Wn

0

=



IN cW0 c2W2
0 · · · cnWn

0
cnWn

0 IN cW0 · · · cn−1Wn−1
0

...
. . .

...

c2W2
0 c3W3

0 c4W4
0

. . . cW0
cW1

0 c2W2
0 c3W3

0 · · · IN


Thus, if we can accurately estimate L−1, we can obtain an accurate estimate of Wn

0 ,
whose upper-right block equals B0..n and thus contains the acceptance probability of the
branching program.

To compute an approximate inverse of L = I2qN − cCq ⊗ W0, Ahmadenijad et al. provide
a recursive formula expressing (I2qN − cCq ⊗ W0)−1 in terms of (I2q−1N − c2Cq−1 ⊗ W2

0)−1

and some applications of the matrix W0. That is, computing the inverse of the Laplacian of
the cycle lift of W0 reduces to computing the inverse of the Laplacian of a cycle lift of W2

0
with a cycle of half the length. At the bottom of the recursion (after q levels of recursion),
we need to compute the inverse of

IN − c2q

W2q

0 = IN − cn+1Wn+1
0 = IN − cn+1In+1 ⊗ Jw,
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which is easy (and does not depend on the branching program). The resulting formula for
(I2qN − cCq ⊗ W0)−1 is a polynomial in W0, W2

0, W4
0, . . . , W2q−1

0 . However, computing
these high powers of W0 exactly is too expensive in space usage.

Thus, instead Ahmadenijad et al. use the derandomized square [30] which allows for
computing a sequence W0, W1, . . . , Wq where Wi a sparsification of W2

i−1 with the property
that Wq can be constructed in deterministic space

O(log nw + q · log(1/δ))

for an error parameter δ, rather than the space O(q · log nw) of exact repeated squaring.
They also introduce a new notion of spectral approximation, called unit-circle approximation,
and show that the derandomized square Wi is a unit-circle approximation of W2

i−1 to within
error δ. Using repeated derandomized squaring in the recursion, Ahmadenijad et al. obtain
an approximate inverse L̃−1 with the properties that:
1. The N × N blocks of M · L̃−1 are each of the form Wi1Wi2 · · · Wir

where r = O(q)
2. There is a submultiplicative matrix norm ∥ · ∥F such that ∥I2qN − L̃−1L∥F = O(q2δ).

Moreover, achieving an ε/ poly(n) approximation in F-norm implies an ε approximation
of M · L−1 in max-norm. Ahmadenijad et al. actually lose a factor of poly(nw) in moving
from F-norm to approximation in max-norm, but we improve this bound to poly(n) by
our choice of scaling factor c = 1 − 1/(n + 1).

Item 1 allows for constructing M · L̃−1 from W0, W1, . . . , Wq in space

O(log q · log nw).

By Item 2, if we take δ < 1/O(q2), we can apply preconditioned Richardson iterations
(Lemma 7) with degree m = O(log(n/ε)/ log(1/qδ)) to obtain L̃ε = Pm such that M · L̃ε

approximates ML−1 to within entrywise error ε. The preconditioned Richardson iterations
have an additive space cost of:

O(log m · log nw).

Taking δ = 1/O(q2) and recalling that q = log(n + 1), the final space complexity is

O(log(nw)+q log q)+O(log q · log nw)+O(log log(n/ε) · log nw) = O(log nw · log log(n/ε)).

To view this algorithm as a WPRG for permutation branching programs, we use the
equivalence between the Impagliazzo–Nisan–Wigderson (INW) generator on permutation
branching programs and the derandomized square of the corresponding graph, as established
in [30, 20]. Using this correspondence, the matrix Wi has the same structure as W2i (see
Equation 5), except that each block of the form Bj..j+2i is replaced with a matrix B̃j..j+2i

that is the transition matrix of a pseudorandom walk from layer j of the branching program
to layer j + 2i using the INW generator. The seed length to generate this pseudorandom
walk is

sINW = O(q log(q/δ)),

which, as highlighted in [20], is independent of the width w of the branching program. This
is the place where we use the fact that B is a permutation branching program rather than a
regular branching program. Even though the algorithm Ahmadenijad et al. works for regular
directed graphs (and hence regular branching programs), the derandomized square operations
used in that case can no longer be viewed as being obtained by using a pseudorandom
generator to derandomize walks in the graph.

Then, again assuming without loss of generality that ˜B(j−1)...j = B(j−1)...j for j = 1, . . . , n,
we have the following analogue of Observation 8:
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▶ Observation 9. The upper-right w × w block of M · L̃ε equals the sum of at most nO(m)

terms, each of which is of the form

±B̃i0···i1B̃i1···i2 · · · ˜Bir−1···ir
, (6)

where 0 = i0 < i1 < i2 < · · · < ir = n and r = O(qm).

As in Subsection 2.1, the algorithm now has the form required of a WPRG and our only
remaining challenge is to keep the seed length small. The seed length for the WPRG is the
sum of the seed length needed to select a random term in the sum (using the coefficients of
the WPRG to rescale the sum into a expectation) and the seed length to generate a walk for
the individual term. To select a random term in the sum requires a seed of length

ssum = log(nO(m)).

The seed length needed for an individual term is at most

sterm = O(qm) · sINW,

which again would be too expensive for us. To derandomize the product in Equation (6),
we again use the INW generator, but rely on the analysis in [20] for permutation branching
programs to maintain a seed length that is independent of the width. Specifically, we can
produce a pseudorandom walk that approximates the product to within entrywise error ±γ

using a seed of length

s′term = sINW + O((log r) · log(log(r)/γ)) = sINW + O(log qm · log(log(qm)/γ)).

The entrywise error of γ in each term may accumulate over the nO(m) terms, so to achieve a
WPRG error of O(ε), we should set γ = ε/nO(m), which means that s′term ≥ ssum.

All in all, we attain a seed length of

ssum + s′term = O(m log n) + sINW + O((log qm) · log(log(qm)/γ))
= O(q log(q/δ)) + Õ(m log n) + O(log qm · log(n/ε))

= Õ

(
log n · log(1/δ) + log(n/ε)

log(1/(δ log n)) · log n + log log(n/ε) · log(n/ε)
)

Optimizing the choice of δ as δ = exp(−Θ̃(
√

log(n/ε))), we get a seed length of

Õ(log n
√

log(n/ε) + log(1/ε)).

Note that the choice of δ here is much smaller than in the Ahmadenijad et al. algorithm,
which used δ = 1/ polylog(n). The reason we need the smaller choice of δ is to reduce the
effect of the log(nO(m)) price we pay in ssum and s′term, which does not have an analogue in
the algorithm of Ahmadenijad et al.

2.3 Perspective
Some intuition for the ability of WPRGs to beat the parameters of PRGs can come from the
study of samplers [16]. A sampler for a class F of functions f : {0, 1}m → R is randomized
algorithm Samp that is given oracle access to a function f ∈ F and, with probability at
least 1 − δ, outputs an estimate of E[f(Un)] to within additive error ±ε. Most often, the
class F is taken to be the class of all bounded functions f : {0, 1}m → [0, 1], but some works
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have considered the general definition and other classes, such as the class F of unbounded
functions f such that the random variable f(Un) has subgaussian tails [6, 1]. Two key
complexity parameters of a sampler are its randomness complexity (the number of coin tosses
it uses, typically as a function of m, δ, and ε) and its sample complexity (the number of
queries it makes to oracle f). An averaging sampler is one that has a restricted form, where
it uses its coin tosses to generate (possibly correlated) samples x1, . . . , xS , and then outputs
the average of f on the samples, i.e. (f(x1) + · · · + f(xS))/S.

As noted by Cheng and Hoza [13], PRGs and WPRGs can be viewed as deterministic
averaging samplers (i.e. with randomness complexity and failure probability zero). Specifically,
a PRG G : {0, 1}s → {0, 1}m for a class F is a deterministic averaging sampler for the class
F with sample complexity S = 2s. Indeed, the sampler simply outputs the set of all S = 2s

outputs of G. A WPRG as a more general form of a nonadaptive deterministic sampler for
the class F , one that is restricted to output a linear combination of the function values.

So comparing the power of PRGs vs. WPRGs is a special case of the more general
problem of comparing the power of averaging samplers vs. more general nonadaptive
samplers. In this more general framing, there are some natural examples of classes F where
nonadaptive samplers can have smaller sample complexity than any averaging sampler.
Specifically, if we consider the class F of unbounded functions f : {0, 1}m → R with bounded
variance, i.e. Var[f(Un)] ≤ 1, then the best sample complexity for an averaging sampler
is Θ(min{1/ε2δ, 2m}). (Essentially, Chebychev’s Inequality is tight for such functions.)
However, there is a nonadaptive sampler with sample complexity O(log(1/δ)/ε2), namely
the median-of-averages sampler, which outputs the median of O(log(1/δ)) averages, with
each average being on O(1/ε2) samples.

This example suggests two areas of investigation. First, can we gain further benefits
in seed length by considering further generalizations of PRGs that are allowed to estimate
acceptance probability with more general functions than linear combinations (or possibly
even with adaptive queries)? Some examples are the line of work on converting hitting-set
generators for circuits [3, 4, 11, 18] or ordered branching programs [13] into deterministic
samplers. Second, is there a benefit in the study of samplers in restricting attention to ones
that output linear combinations like WPRGs? Perhaps these still retains some of the useful
composition properties and connections to other pseudorandom objects that are enjoyed by
averaging samplers (cf. [36, 34, 1]), while allowing for gains in sample and/or randomness
complexity.
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