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Abstract. We consider (uniform) reductions from computing a func-
tion f to the task of distinguishing the output of some pseudorandom
generator G from uniform. Impagliazzo and Wigderson [I0] and Tre-
visan and Vadhan [24] exhibited such reductions for every function f in
PSPACE. Moreover, their reductions are “black box,” showing how to
use any distinguisher T', given as oracle, in order to compute f (regard-
less of the complexity of T'). The reductions are also adaptive, but with
the restriction that queries of the same length do not occur in different
levels of adaptivity. Impagliazzo and Wigderson [I0] also exhibited such
reductions for every function f in EXP, but those reductions are not
black-box, because they only work when the oracle T" is computable by
small circuits.
Our main results are that:

— Nonadaptive black-box reductions as above can only exist for func-
tions f in BPPNF (and thus are unlikely to exist for all of PSPACE).

— Adaptive black-box reductions, with the same restriction on the
adaptivity as above, can only exist for functions f in PSPACE (and
thus are unlikely to exist for all of EXP).

Beyond shedding light on proof techniques in the area of hardness
vs. randomness, our results (together with [I0I24]) can be viewed in a
more general context as identifying techniques that overcome limitations
of black-box reductions, which may be useful elsewhere in complexity
theory (and the foundations of cryptography).
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1 Introduction

A central goal in the theory of computation is to identify relations between
the complexities of different computational tasks. Indeed, some of the greatest
discoveries in computational complexity (and the foundations of cryptography)
are surprising connections between the complexities of tasks that seem very
different in nature. The traditional way of showing such relations is by various
forms of “black-box” reductions. That is, the proofs exhibit an efficient (oracle)
algorithm R that when given oracle access to any function f that solves task 77,
RS solves task Ty. Such an algorithm R proves that if 77 has an efficient solution
then so does task T5. In complexity theory, such algorithms R are often referred
to as just “reductions” (or “Cook reductions”), but here we use “black box” to
emphasize that R only has oracle access to the function f solving task T and
is required to work regardless of the complexity of this oracle.

There are also a number of negative results about black-box reductions, show-
ing that for certain pairs of tasks T, T5, it is unlikely that such an algorithm R
exists. The natural interpretation of such negative results is that proving the de-
sired relation between T and T5 may be a difficult task that is beyond the reach
of “current techniques.” However, black-box reductions are not the only way
computational relations can be obtained, and by now there are several proofs of
relations that are unlikely to be provable using black-box reductions. A classic
example is the result that an efficient algorithm for SAT implies an efficient al-
gorithm for every language in the polynomial-time hierarchy; this is proven via a
non-black-box argument and indeed a black-box reduction showing this relation
seems unlikely (as it would imply the collapse of the polynomial-time hierarchy).
It is useful to isolate and identify techniques like this, which overcome limitations
of black-box reductions, because they may enable overcoming barriers elsewhere
in complexity theory.

In this paper, we study black-box reductions in the area of hardness vs.
randomness (i.e. constructing pseudorandom generators from hard functions).
Specifically, we take T3 to be the task of distinguishing the output distribution
of a pseudorandom generator G from the uniform distribution, and 7% to be the
task of computing some supposedly ‘hard’ function g, and we are interested in
reductions R such that R computes g if f is any function distinguishing G from
uniform. We show limitations of such black-box reductions, and together with
[10/24] (which do show that such connections exist), point to two ways in which
black-box limitations can be overcome:

— Allowing the reduction R to make adaptive queries to its oracle f. We show
that a relation established in [T0J24] using an adaptive reduction is unlikely
to be provable using a nonadaptive reduction. This may be interpreted as
a hope to overcome other barriers known for nonadaptive reductions, such
as worst-case/average-case connections for NP [4] and strong hardness am-
plification for constant-depth circuits [22]. (We mention though that for the
latter connection, even adaptive black-box reductions are ruled out, unless
they are highly non-uniform [5].)
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— Using the efficiency of the oracle f in the analysis of the reduction R. Namely,
we consider redcutions that use f as an oracle, but their analysis relies on
the fact that f can be computed efﬁcientlyEl We observe that a reduction
of this type is implicit in [I0], and we show that it is unlikely to have an
analogous reduction that works regardless of the complexity of the oracle.
(A similar separation was given in the context of worst-case/average-case
reductions for NP [6/7].)

We hope that these realizations will prove useful in obtaining stronger results
in hardness vs. randomness and in overcoming limitations elsewhere in complex-
ity theory.

Hardness vs. Randomness. We start with some background on hardness vs.
randomness and the use of reductions in this area. The hardness versus ran-
domness paradigm, first developed by Blum, Micali, Yao, Nisan, and Wigderson
[BI26/16], is one of the most exciting achievements of the field of computational
complexity. It shows how to use the hardness of a function f (computable in
exponential time) to construct a pseudorandom generator G, which can then be
used to derandomize probabilistic algorithms. By now there are many varieties
of such results, trading off different assumptions on the function f, different
types of probabilistic algorithms (e.g. BPP algorithms or AM proof systems),
and different levels of derandomization.

For many years, all of the results of this type (based on the hardness of an
arbitrary exponential-time computable function) required the function f to be
hard for even nonuniform algorithms, e.g. f ¢ P/poly. Nearly a decade ago, Im-
pagliazzo and Wigderson [I0] overcame this barrier, showing how to construct
pseudorandom generators assuming only the existence of an exponential-time
computable function f that is hard for uniform probabilistic algorithms, i.e. as-
suming EXP # BPPI] This result and some work that followed it have raised
the hope that we may be able to prove an equivalence between uniform and
nonuniform hardness assumptions (since in some cases derandomization implies
non-uniform lower bounds [IT2I]]), or even obtain unconditional derandomiza-
tion and new lower bounds.

The work of Impagliazzo and Wigderson [10], as well as the subsequent ones on
derandomization from uniform assumptions, have used a number of ingredients
that were not present in earlier works on hardness vs. randomness. In this paper,
following [24], we explore the extent to which these new ingredients are really
necessary. The hope is that such an understanding will help point the way to

! Here the reduction does not need to use the code of the algorithm for f, but just the
fact that an efficient algorithm exists. This is in contrast to the example of SAT vs.
PH mentioned above.

2 The generator of [10], as well as other generators that are based on uniform hardness
assumptions, are weaker than those that are based on nonuniform assumptions, in
the sense that they only fool (uniform) Turing machines and hence only imply an
average-case derandomization of probabilistic classes.
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even stronger resultsE and also, as we mentioned above, highlight techniques
that might be used to overcome barriers in other parts of complexity theory. We
now describe the new ingredients introduced by Impagliazzo and Wigderson [10].

Black-box reductions. Classic results on hardness vs. randomness can be formu-
lated as “black box” constructions. That is, they are obtained by providing two
efficient oracle algorithms G and R. The construction G uses oracle access to
a (supposedly hard) function f to compute a generator G, which stretches a
short seed to a long sequence of bits. The reduction R is meant to show that the
output of Gf is pseudorandom if the function f is hard. Specifically, we require
that for every statistical test T that distinguishes the output of G from uni-
form, there exists an “advice string” z such that R”(z,-) computes the function
f. Note that if T is efficient, then by hardwiring z, we obtain a small circuit
computing f. Put in the contrapositive, this says that if f cannot be computed
by small circuits, then there cannot exist an efficient test 7' distinguishing the
output of G/ from uniform.

Note that the above notion require both the construction G' and the reduc-
tion R to be black box, and requires that they work for every function f and
statistical test T, regardless of the complexity of f and T'. In the taxonomy of
[1I7], these are referred to as fully black-box constructions. The advice string z
that we provide to the reduction R is what makes the reduction nonuniform,
and thereby require a nonuniform hardness assumption on the function f to
deduce that G7 is pseudorandom. If the advice string could be eliminated, then
we would immediately get results based on uniform assumptions, like those of
[10]. Unfortunately, as shown in [24], it is impossible to have a fully black-box
construction of a pseudorandom generator without a significant amount of ad-
vice. Thus the Impagliazzo-Wigderson construction necessarily deviates from
the fully black-box framework.

The most obvious way in which the Impagliazzo-Wigderson [10] construction
is not fully black box is that it is not proven to work for every function f,
and rather the construction (and its proof of correctness) makes use of the fact
that f is in EXP or some other complexity class such as P#¥ or PSPACE [24].
For example, in the case of P#P or PSPACE, it uses the fact that f can be
reduced to a function f’ that is both downward self-reducible and self-correctible
(e.g. f’ is the PERMANENT), which is then used to construct the pseudorandom
generator. That is, the construction algorithm G is not black box. Whether
the Impagliazzo-Wigderson reduction algorithm R is or is not black box (i.e.
works for every test T' given as oracle) depends on which class f is taken from.
For functions in P#F or PSPACE, R is black box. But if we are only given
a function in EXP, then the reduction relies on the fact that the test 7' is
efficiently computable. Another interesting aspect of the reduction R is that it
makes adaptive queries to the statistical test T', whereas earlier reductions this

3 A seemingly modest but still elusive goal is a “high-end” version of [I0], whereby
one can construct a pseudorandom generator with exponential stretch from the as-
sumption that EXP does not have subexponential-time probabilistic algorithms.
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area were nonadaptive. (There are subsequent reductions, due to Shaltiel and
Umans [21125], that are also adaptive.)

Our results. Our main results provide evidence that some of these new ingredi-
ents are necessary. Specifically, we consider arbitrary (non-black-box) construc-
tions of a pseudorandom generator G from a function f, and uniform reductions
R (i.e. with no advice) from computing f to distinguishing the output of G from
uniform. For simplicity, we also assume that the generator G is computable in
time exponential in its seed length and that it stretches by a factor of at least
4. More general statements are given in the body of the paper (See Theorems [1]
and [§)).

Our first result shows that adaptivity is likely to be necessary unless we assume
the function is in PH (rather than PSPACE or EXP).

Theorem 1 (informal). If there is a nonadaptive, uniform, black-box reduction
R from distinguishing a generator G to computing a function f, then f is in
BPP.

Next, we consider reductions R that are adaptive, but with the restriction that
all the queries of a particular length must be made simultaneously (they may
depend on answers of the statistical test on queries of other lengths). (We call
this I-adaptive later in the paper, as a special case of a more general notion (see
Definition [).) The Impagliazzo-Wigderson reduction for functions f in P#¥ or
PSPACE is 1-adaptive. We show that this property is unlikely to extend to EXP.

Theorem 2 (informal). If there is a 1-adaptive, uniform, black-box reduction
R from distinguishing a generator G to computing a function f, then f is in
PSPACE.

Thus, to obtain a result for arbitrary functions f in EXP, the reduction must
either be non-black-box or “more adaptive.” Impagliazzo and Wigderson exploit
the former possibility, giving a non-black-box reduction, and their method for
doing so turns out to have a substantial price — a statistical test running in time
t(n) yields an algorithm computing f that runs in time roughly ¢(¢(n)), rather
than something polynomially related to ¢, which is what is needed for a “high
end” result (See [24]). Theorem [2 suggests that their result might be improved
by employing reductions with greater adaptivity, such as [2125]. Alternatively,
it would be interesting to rule out such an improvement by strengthening The-
orem [2 to hold for arbitrary adaptive reductions.

Finally, we consider “how non-black-box” the Impagliazzo—Wigderson reduc-
tion is for EXP. Specifically, we observe that even though the analysis of the reduc-
tion R relies on the fact that 7" is efficient (i.e. computable by small size circuits),
the reduction itself only needs oracle access to T' (i.e., it does not need the descrip-
tion of the circuits). We call such reductions size-restricted black-box reductions.
Reductions of this type were recently studied by Gutfreund and Ta-Shma MH

4 There are subtle differences between the reductions that we consider and the ones in
[7], see the remark following Definition
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They exhibited such a reduction (based on [6]) for a worst-case/average-case con-
nection that cannot be established via standard black-box reductions. Theorem[2]
together with Theorem[Blbelow (which is implicit in [I0]), provides another exam-
ple of a size-restricted black-box reduction that bypasses black-box limitations.
For technical reasons, we state the [10] result in terms of hitting-set generators,
which are a natural weakening of pseudorandom generators that suffice for deran-
domizing probabilistic algorithms with 1-sided error (i.e. RP rather than BPP).
Theorems [ and ] above can be strengthened to apply also to hitting-set
generators.

Theorem 3 (implicit in [10], informal). For every function f in EXP, there
is a generator G and a I-adaptive, uniform, size-restricted black-box reduction
from distinguishing G as a hitting set to computing f.

A final result of ours is an “infinitely-often” version of the Impagliazzo—Wigderson
reduction [10]. The original versions of their reductions are guaranteed to compute
f correctly on all input lengths assuming that the statistical test T" successfully
distinguishes the generator on all input lengths. Unlike most other results in the
area, it is not known how to obtain reductions that compute f correctly on infi-
nitely many input lengths when the test T is only guaranteed to succeed on in-
finitely many input lengths. We observe that such a result can be obtained for
constructing hitting-set generators (and derandomizing RP) from hard problems
in PSPACE rather than constructing pseudorandom generators (and derandomiz-
ing BPP) from hard problems in EXP as done in [I0]. Due to space limitations, the
statement and proof of this result is deferred to the full version of this paper [8].

Perspective. As discussed above, one motivation for studying the limitations of
black-box reductions is to help identify potential approaches to overcoming ap-
parent barriers. Another motivation is that black-box reductions sometimes have
advantages over non-black-box reductions, and thus it is informative to know
when these advantages cannot be achieved. For example, Trevisan’s realization
that fully black-box constructions of pseudorandom generators yield randomness
extractors [23] yielded substantial benefits for both the study of pseudorandom
generators and extractors. Similarly, Klivans and van Melkebeek [T4] observed
that black-box constructions of pseudorandom generators extend naturally to
derandomize classes other than BPP, such as AM.

Unfortunately, as we have mentioned, results showing the limitations of black-
box reductions are often interpreted as saying that proving certain results are
outside the reach of “current techniques”. We strongly disagree with these kinds
of interpretations, and indeed hope that our results together with [10] will serve
as another reminder that such limitations can be overcome.

2 Preliminaries

We assume that the reader is familiar with standard complexity classes such as
EXP, BPP, the polynomial-time hierarchy etc., as well as standard models of
computation such as probabilistic Turing Machines and Boolean circuits.
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For a class C of algorithms, we denote by i0 — C the class of languages L such
that an algorithm from C correctly decides L for infinitely many input lengths.

For n € N, we denote by U, the uniform distribution over {0,1}". For a
distribution D, we denote by x « D that x is a sample drawn from D.

2.1 Pseudorandom Generators and Hardness vs. Randomness

Definition 4. Let b: N — N be such that for every a, b(a) > a. Let G = {G, :
{0,1}* — {0,1}*@},en be a sequence of functions, and let T = {T : {0,1}* —
{0,1}} be a family of Boolean functions (which we call statistical tests). For
6 > 0 we say that,

1. G is a sequence of pseudorandom generators (PRGs for short) that é-fools
T i.0. (infinitely often), if for every T € T, there are infinitely many a € N
such that

Pr [T(Ga(y)) =1 - Pr [T(z)=1]]<é (1)
y—Ua z—Up(a)
2. G is a sequence of hitting-set generators (HSGs for short) that 6-hits 7 i.0.,
if for every T € T, there are infinitely many a € N such that

Pr [T(z)=0]>é= Pr [T(Gu.(y)) =0]>0 (2)
z—Up(a) y—U,

If a function T : {0,1}* — {0,1} violates (@) (respectively (2)), we say that
it 6-distinguishes G from uniform a.e. (almost everywhere).

6-fooling (respectively O-hitting) a.e. and §-distinguishing i.o. are defined anal-
ogously with the appropriate changes in the quantification over input lengths.

Note that if G is a PRG that é-fools 7 i.0. (respectively a.e.) then it is also a
HSG that é-hits 7 i.o. (respectively a.e.).

Definition 5. A (uniform) black-box reduction from deciding a language L to
b-distinguishing a.e. a family of (either pseudorandom or hitting-set) generators
G ={G,:{0,1}* — {0,1}*@)} ,cn, is a probabilistic polynomial-time oracle Tur-
ing Machine (TM) R, such that for every statistical test T thatl §-distinguishes
G a.e., for every large enough n € N and for every x € {0,1}",

Pr[RT (z) = L(2)] > 2/3

where the probability is over the random coins of R, and R (x) denotes the
execution of R on input x and with oracle access to T'.

We say that such a reduction asks single-length queries if for every n, there
exist a = a(n) such that on every execution of R on instances of length n, all
the queries that R makes are of length exactly b(a).

We say that the reduction has k = k(n) levels of adaptivity if on every execu-
tion of R on inputs of length n and every statistical test T', the queries to T can
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be partitioned to k+1 subsets (which are called the levels of adaptivity), such that
each query in the i’th set is a function of the input x, the randomness of R, the
index of the query within the i’th set (as well as i itself), and the answers that T
gives on queries in the sets 1,...,i — 1. We say that a reduction is nonadaptive
if it has zero levels of adaptivity.

Finally, we say that the reduction is k(a,n)-adaptive if for every statistical
test T, every instance of length n and every a, there are at most k(a,n) levels of
adaptivity in which queries of length b(a) appear with positive probability (over
the randomness of R when it is given oracle access to T).

We now define a different notion of reductions that still only have oracle access
to the distinguishers, however the correctness of the reduction is only required
to hold when the distinguisher is restricted to be a function that is computable
by polynomial-size circuits.

Definition 6. A (uniform) size-restricted black-box reduction from deciding a
language L to é-distinguishing a.e. a family of (pseudorandom or hitting-set)
generators G = {Gy : {0,1}% — {0,1}*@}.cn, is a probabilistic polynomial-
time oracle TM R, such that for every statistical test T that 6-distinguishes G
a.e., and is computable by a sequence of quadratic-size circuitsﬁ, for every large
enough n € N and for every x € {0,1}™,

Pr[R” (z) = L(2)] > 2/3

where the probability is over the random coins of R.
Quantifiers over query length and adaptivity are defined as in the black-box
case.

A remark about the quadratic size bound. The quadratic bound on the circuit
size of the distinguishers is arbitrary and can be any (fixed) polynomial. The
reason for our quadratic choice is that restricting the attention to distinguishers
of this size is enough for derandomization.

A comparison to the definition of [7]. The restricted black-box reductions that
we consider here run in any arbitrary polynomial time bound, which in partic-
ular can be larger than the fixed (quadratic) polynomial bound on the size of
the distinguishers. In contrast, the notion of class-specific black-box reductions
defined in [7], considers reductions that run in a fixed polynomial-time that is
independent of the running time (or the circuit size) of the oracle (i.e. the oracle
function can be computed by algorithms that run in arbitrary polynomial time).

3 Nonadaptive Reductions

In this section we show that any black-box nonadaptive reduction from deciding
a language L to distinguishing a generator implies that L is in the polynomial-
time hierarchy.

5 Recall that the distinguishers’ circuit size is measured with respect to their input
length, which is the output length of the generator.
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Theorem 7. Let L C {0,1}* be a language, and let G = {G, : {0,1}* —
{0,1}2()} ,cn be a family of hitting-set generators such that G, is computable in
time 29(®) | and b(a) > 4a. If there is a nonadaptive black-box reduction R from
L to é—distinguishing G a.e., then L is in BPPNY. If we remove the time bound
condition on computing G then L is in PN /poly.

Proof outline. We give here the main ideas in the proof. For the formal details
refer to the full version of this paper [8]. Let us concentrate on the single-length
case. We describe a BPPNY algorithm that decides L. Fix an input z € {0,1}™,
and let @ € N be such that R queries its oracle on instances of length b = b(a)
when given inputs of length n.

The basic idea is to define, based on =z, a statistical test T (that may not be
efficiently computable) with the following properties:

1. T }-distinguishes G,. This means that RT decides L correctly on every
instance of length n.

2. There is a function 7" that can be computed in BPPNY| such that R” and
RT' behave almost the same on the input . This means that RT" decides
correctly the membership of z in L (since so does R”), but now the procedure
together with the oracle computations can be implemented in BPPNF .

Before we explain how to construct T" and 7", we want to stress that these
functions depend on the specific input 2, and the fact that RT and RT behave
almost the same is only guaranteed when we run them on that z. L.e. every
instance determines different functions 7" and T’ (we avoid using the notation
T, and T because in the proof there are other parameters involved and the
notations become cumbersome). The point is that given any instance x, the
answers of the oracle 7", that is determined by x, can be computed (from scratch)
in BPPNP,

Now, if G, were computable in time poly(b(a)), we could simply take T =T’ =
Im(G,). Indeed, Im(G,,) is the optimal distinguisher for G, and membership in
Im(G,) can be decided in nondeterministic polynomial time if G, is efficiently
computable (by guessing a corresponding seed). However, as in [T6/10], we allow
the generator to run in time 2°() > b(a), since this suffices when pseudorandom
generators are used for derandomization. In such a case, deciding membership
in Im(G,) may not be feasible in the polynomial hierarchy. So instead we will
take T = Im(G,) U H and T" = H where H is a “small” set defined so that RT
and RT" behave almost the same.

To construct such a set H, we classify queries that R makes on input x, accord-
ing to the probability that they come up in the reduction (where the probability
is over R’s randomness). (A similar idea appears in [4].) We call a query heavy
if the probability it comes up is at least 27 and light otherwise, where t is the
average of a and b = b(a). Note that the classification to heavy/light is well de-
fined and is independent of any oracle that R may query, because the reduction
is nonadaptive. We define H to be the set of heavy queries.

First, we argue that 7' = H U Im(G,) é—distinguishes G,. This is because
clearly it is always 1 on a sample taken by G,. On the other hand, the number
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of elements for which T is 1 is small relative to the universe {0,1}°. This is
because there are only 2 elements in the image of G,, and at most 2! heavy
elements. Recall that both a and ¢ are smaller than b.

Next, we argue that the behavior of R (z) is roughly the same as RT (z),
where T’ = H. Note that the only difference between T and T’ is on light
elements in the image set of G, (T gives them the value 1, while 7" gives them
the value 0). When we run R on input z, the probability that such elements
appear is small because their number is small (at most 2%) and each one appears
with small probability (because it is light). So R, on input x, behaves roughly
the same when it has oracle access to either T' or T”. We therefore conclude that
RT" decides correctly the membership of « in L.

Finally, to show that 7" = H is computable in BPPNY | we use the fact that
approximate counting can be done in BPPNP [T920/TT], which allows us to
approximate the weight of queries made by R and thus simulate its run with the
oracle T". Since for every query we only get an approximation of its weight, we
cannot handle a sharp threshold between heavy and light queries. To that end,
instead of defining the threshold ¢ to be the average of a and b, we define two
thresholds (both of which are a weighted average of a and b), such that those
queries with weight below the low threshold are considered light, those with
weight above the high threshold are considered heavy, and those in between can
be classified arbitrarily. We now need more subtle definitions of T" and T”, but
still the outline described above works.

4 Adaptive Reductions

In this section we show that any black-box reduction, from a language L to
distinguishing a generator, that is adaptive with the restriction that queries of
the same length do not appear in too many different levels, implies that L is in
PSPACE.

Theorem 8. Let L C {0,1}* be a language, and let G = {G, : {0,1}* —
{0,132 ey be a family of hitting-set generators such that G, is computable
in time 2°(%) | and b(a) > 4a. If there is a £(a,n)-adaptive black-box reduction R
from L to %—distinguishing G a.e., where £(a,n) < Z((ﬁz)gz for a > 15logn, then
L is in PSPACE. If we remove the time bound condition on computing G, then
L is in PSPACE/poly.

Proof outline. We give here the main ideas in the proof. For the formal details
refer to the full version of this paper [8]. Our starting point is the proof of
Theorem [7] (see proof outline in Section B]). Our aim is to construct, based on an
input x, the functions T and T" as before. The problem that we face when trying
to implement the same ideas is that now, because the reduction is adaptive, the
property of a query being light or heavy depends on the oracle that R queries
(this is because queries above the first level depend on answers of the oracle).
We therefore cannot define T' in the same manner (such a definition would be
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circular). Instead, we classify queries to light and heavy separately for each level
of adaptivity (i.e. a query can be light for one level and heavy for another). We do
that inductively as follows. For the first level we set a threshold 271 (where ¢; is a
weighted average of @ and b = b(a)). We then define light and heavy with respect
to this threshold. The distribution over queries at the first level is independent
of any oracle, so the classification is well defined. We then define a function T
to be 1 on queries that are heavy for the first level and 0 otherwise. We can
now proceed to define light and heavy for the second level when considering
the distribution over queries at the second level when running R(x) with oracle
access to 17 at the first level. We continue with this process inductively to define
light /heavy at level i, with respect to the distribution obtained by running R(x)
with oracles T4, ...,T;—1 (each at the corresponding level). Here T} is defined
to be 1 on queries that are heavy for at least one of levels from the j’th down
(and 0 otherwise). For each level i we define a different threshold 27% with the
property that the thresholds gradually increase with the levels (the reason for
this will soon be clear).

We now define the statistical test 7' to be 1 on elements that are heavy for
at least one of the levels as well as on elements in the image set of G, (and 0
otherwise). The argument showing that T é—distinguishes G, is similar to the
one in the proof of Theorem [

In the next step, instead of defining a T as in the proof of Theorem [, we
directly compare the outcomes of running R(z) with 7" as an oracle and running
R(x) with oracles Ty,...,T; (where £ is the number of adaptivity levels), each
at the corresponding level. We argue that the two runs should be roughly the
same (in the sense that the distributions over the outputs will be close). To do
that, we observe that at each level i, the answer of T on a query ¢ differs from
the answer of T; on this query if one of the following occurs:

1. q is in the image set of G, and it is light for levels 1,...,1.
2. q is light for all levels 1,...,7 but heavy for at least one of the levels ¢ +
1,..., ¢

In both cases T will give g the value 1, while T; the value 0. We bound the
probability that queries as above are generated by R(z) when it is given the oracles
Ty, ...,Ty. The argument that bounds the probability that queries of the first type
are generated is similar to the argument in the proof of Theorem[l The probability
that queries of the second type are generated at the 7’th level is bounded as follows:
the total number of heavy elements for levels above the i’th is small (it is at most
the reciprocal of their weight, which is high). Of these elements, those that are light
at level ¢ have small probability to be generated at level ¢ by virtue of them being
light for that level. When we take the union bound over all such queries we still
get a small probability of at least one of them being generated. The point is that
the number of elements in the union bound is computed according to thresholds
of levels above the i’th, while their probability is taken according to the threshold
of the i’th level. By the fact that thresholds increase with the levels, we get that
the number of elements in the union bound is much smaller than the reciprocal of
their probabilities, and therefore the overall probability of such an event is small.
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We conclude that the output distributions of running R with oracle access to T’
and running R(x) with oracle access to T, . .., Ty are very close, and therefore the
latter decides correctly the membership of z in L.

Finally we show that 71, ..., Ty can be implemented in PSPACE and thus the
whole procedure of running R(x) and computing these oracles is in PSPACE. To
compute the answers of the oracle T; (at level i) we compute the exact weight
of the query. We do that by a recursive procedure that computes the exact
weights of all the queries (at levels below the i’th) that appear along the way.
The fact that T; only depends on 7} for 1 < j < 4 allows this procedure to run
in polynomial-space.

5 Comparison to Known Reductions

In this section we contrast our negative results regarding black-box reductions to
known relations between deciding languages and distinguishing pseudorandom
(and hitting-set) generators. Impagliazzo and Wigderson [I0] showed such a
reduction from every language in the class P#P. This was extended by Trevisan
and Vadhan [24] to languages in PSPACE. These reductions are black-box and
adaptive (1-adaptive to be precise, see Definition ().

Theorem 9. [10[2]] For every language L in PSPACE there exists a polyno-
mial function k(-) such that for every polynomial function b(-), there is a uni-
form black-box reduction from deciding L to distinguishing a certain family of
pseudorandom generators G = {G, : {0,1}* — {0,1}*},en a.e., where G,
is computable in time 209 . The reduction is 1-adaptive and has k(n) levels of
adaptivity.

We conclude by Theorem [Tl that the black-box reduction from the theorem above
is inherently adaptive, unless PSPACE = BPPNF,

Next we turn our attention to reductions from languages in the class EXP.
Such a reduction was given by Impagliazzo and Wigderson [10]. Their reduction is
not black-box but rather size-restricted black-box (see Definition [fl). We refer the
reader to the full version of this paper [§] where we explain how the fact that the
distinguisher can be computed by small-size circuits plays a role in this reduction.

Theorem 10. (implicit in [10]) For every language L in EXP and polynomial
function b(+), there is a polynomial function k(-) and a uniform size-restricted
black-box reduction from deciding L to distinguishing a certain family of hitting-
set generators G = {G, : {0,1}* — {0,1}%} en a.e., where Gy, is computable
in time 2°(®)  The reduction is 1-adaptive and has k(n) levels of adaptivity.

Theorem [ should be contrasted with Theorem [ which says that any reduction
that is 1-adaptive cannot be black box (unless EXP = PSPACE). That is, the
‘size-restricted” aspect of Theorem [I0] cannot be removed.

A remark about reductions from computing a function on the average. Typi-
cally, constructions of pseudorandom (resp. hitting-set) generators from hard
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functions (both against uniform and non-uniform classes) combine two reduc-
tions: the first reduces the task of computing f (the supposedly hard function)
on every instance to computing some related function f on the average. The
second reduces computing f on the average to distinguishing the generator. In
particular, the proof of [I0] takes this form. We mention that our negative results
about black-box reductions can be strengthened to show the same limitations
for reductions from computing a function on the average to distinguishing a gen-
erator from the uniform distribution. In other words, it is really the fact that
we reduce to distinguishing a generator that makes it impossible to do with
black-box reductions, and not the fact that we start from a worst-case hard-
ness assumption. In fact, nonadaptive (and uniform, black-box) worst-case to
average-case reductions for PSPACE-complete and EXP-complete functions are

known [TI2124].
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