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Abstract—In this paper, we introduce a new, spectral notion of
approximation between directed graphs, which we call singular
value (SV) approximation. SV-approximation is stronger than
previous notions of spectral approximation considered in the
literature, including spectral approximation of Laplacians for
undirected graphs [ST04], standard approximation for directed
graphs [CKP+17], and unit-circle (UC) approximation for di-
rected graphs [AKM+20]. Further, SV approximation enjoys
several useful properties not possessed by previous notions of
approximation, e.g., it is preserved under products of random-
walk matrices and bounded matrices.

We provide a nearly linear-time algorithm for SV-sparsifying
(and hence UC-sparsifying) Eulerian directed graphs, as well
as ℓ-step random walks on such graphs, for any ℓ ≤ poly(n).
Combined with the Eulerian scaling algorithms of [CKK+18],
given an arbitrary (not necessarily Eulerian) directed graph
and a set S of vertices, we can approximate the stationary
probability mass of the (S, Sc) cut in an ℓ-step random walk
to within a multiplicative error of 1/polylog(n) and an additive
error of 1/poly(n) in nearly linear time. As a starting point for
these results, we provide a simple black-box reduction from SV-
sparsifying Eulerian directed graphs to SV-sparsifying undirected
graphs; such a directed-to-undirected reduction was not known
for previous notions of spectral approximation.

Index Terms—graph algorithms

I. INTRODUCTION

Random walks on graphs play a central role in theoretical
computer science. In algorithm design, they have found a wide
range of applications including, maximum flow [CKM+11],
[LRS13], [KLOS14], [vdBGJ+22], [vdBLL+21], sampling
random spanning trees [KM09], [MST15], and clustering and
partitioning [AM85], [KVV04], [ACL06], [OSV12]. Corre-
spondingly, new algorithmic results on efficiently accessing
properties of random walks have the potential for broad
implications. In particular, in complexity theory, such algo-
rithms have attracted attention as a promising approach to
derandomizing space-bounded computation [SZ99], [Rei08],
[RTV06], [AKM+20].

In this paper we consider the well-studied problem of
estimating the ℓ-step random walk on a directed graph. Given
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a strongly connected, weighted, directed graph G = (V,E,w),
its associated random walk matrix W ∈ RV×V , and an
integer ℓ > 0, we seek to approximate key properties of
the ℓ-step random walk, Wℓ, more efficiently than we could
computing Wℓ explicitly. For example, we may wish to
estimate individual entries of Wℓ, the conductance or cut
probabilities of subsets of vertices, or (expected) hitting times
between pairs of vertices.

In recent years, graph sparsification has emerged as a
powerful approach for efficiently solving such problems. When
the graph is undirected, we look for spectral sparsifiers of the
Laplacian L = D − A, where D is the diagonal matrix of
degrees and A is the adjacency matrix. It is known that for
all ϵ ∈ (0, 1), that there exist ϵ-spectral sparsifiers with sparsity
Õ(|V |ϵ−2); that is, a Laplacian matrix L̃ with Õ(|V |ϵ−2) non-
zero entries such that

(1− ϵ)x⊤Lx ≤ x⊤L̃x ≤ (1 + ϵ)x⊤Lx for all x ∈ RV . (1)

Spectral sparsifiers can be computed in nearly linear
time [ST04], [SS08], [BSS12], [PS14]. Normalizing such a
sparsifier L̃ by D−1/2 on both sides, we obtain a spectral
approximation of the normalized Laplacian D−1/2LD−1/2,
which directly gives information about random walks because
it is equivalent (up to a change of basis) to the random-
walk Laplacian, LD−1 = I −W. Indeed, from any spectral
sparsifier L̃ satisfying Equation (1), we can approximate any
desired cut (S, Sc) in the original graph in nearly linear time
by evaluating x⊤L̃x for x equal to the indicator vector of
S. Furthermore, there are nearly linear-time algorithms for
computing sparse ϵ-spectral sparsifiers corresponding to the ℓ-
step random walk, i.e., sparsifiers of the weighted graph whose
random-walk Laplacian is I−Wℓ, for any polynomial length
ℓ [CCL+15], [MRSV21].

Obtaining analogous results for sparsifying I−Wℓ for di-
rected graphs has been more challenging. For a directed graph,
we consider the directed Laplacian [CKP+16] L = Dout−A⊤

where Dout is the associated diagonal matrix of out-degrees
and A⊤ is the transpose of the associated weighted adjacency
matrix, A. In comparison to their symmetric counterparts for
undirected graphs, nearly linear-time sparsification algorithms
(which approximate more than the associated undirected
graph) were developedl more recently [CKP+17], [CGP+18]
and have yet to be extended to handle long random walks.



Here we describe challenges in sparsifying I−Wℓ for directed
graphs.

a) Unknown Stationary Distribution.: While the kernel
of an undirected Laplacian matrix is the all ones vector, com-
puting the kernel of a directed Laplacian matrix L corresponds
to computing the stationary distribution π of the random walk
on the directed graph (LD−1

outπ = 0). Without explicitly
knowing the kernel, it is not known how to efficiently perform
any kind of useful sparsification or approximately solve linear
systems in L. This difficulty was overcome in [CKP+16],
[AJSS19] which provide reductions from solving general
directed Laplacian systems to the case where the graph is
Eulerian, meaning that every vertex has the same in-degree
as out-degree. In Eulerian graphs, the stationary distribution
is simply proportional to the vertex degrees and the all ones
vector is both the left and right kernels of the associated
directed Laplacian.

b) Defining Approximation.: Undirected Laplacians L
are symmetric and positive semidefinite (PSD), i.e., x⊤Lx ≥ 0
for all x. This leads to the natural Spielman–Teng [ST04]
definition of multiplicative approximation given in Equa-
tion (1). That is, we say that L̃ is an ε-approximation of
L if (1 − ϵ)L ⪯ L̃ ⪯ (1 + ϵ)L, where ⪯ is the Löwner
order on PSD matrices. However, even though Laplacians of
directed graphs are potentially asymmetric, the quadratic form
x⊤Lx depends only on a symmetrization of the Laplacian
(x⊤Lx = x⊤((L + L⊤)/2)x). Consequently, the quadratic
form discards key information about the associated directed
graph (e.g. the quadratic form of a directed cycle and an
undirected cycle are the same). Thus, defining approximation
for directed graphs (even Eulerian ones) is more challenging
than for undirected graphs and a more complex notion of
approximation was introduced in [CKP+16]. This additional
complexity requires designing new sparsification algorithms
that take into account the directedness of the graph.

c) Preservation under Powering.: Even for undirected
graphs, the standard definition of spectral approximation in
Equation (1) is not preserved under powering. That is, I−W̃ ≈
I − W does not imply that I − W̃2 ≈ I − W2. Indeed,
in graphs that are bipartite (and connected), I − W2 has a
two-dimensional kernel, corresponding to the ±1 eigenvalues
of W, whereas I − W has only a one-dimensional kernel.
Standard spectral approximation requires perfect preservation
of the kernel of I −W, but not of I −W2. Graphs that are
nearly bipartite (i.e., where W has an eigenvalue near −1)
can also experience a large loss in quality of approximation
when squaring.

Cheng et al. [CCL+15] addressed this issue by (implic-
itly) strengthening spectral approximation to require that
I + W̃ ≈ I + W in addition to I − W̃ ≈ I − W. This
notion of approximation enabled algorithms for sparsifying
I−Wℓ for undirected graphs in randomized near-linear time
[CCL+15], [MRSV21] and deterministic logspace [MRSV21],
[DMVZ20]. For directed graphs, the problem comes not just
from bipartiteness, but general periodic structures (e.g. a
directed cycle), which give W complex eigenvalues on or

near the unit circle. This led Ahmadenijad et al. [AKM+20] to
propose the notion of unit-circle (UC) approximation, which
amounts to requiring that I − zW̃ approximate I − zW for
all complex numbers z of magnitude 1, with respect to the
standard notion of approximation for directed graphs proposed
in [CKP+16]. UC approximation has the property that it is
preserved under taking arbitrary powers, with no loss in the
approximation error. As such, sparsification techniques for UC
and stronger notions must exactly preserve periodicity.

d) Preservation of Periodic Structures.: Sparsifying di-
rected graphs under UC approximation is more challenging
due to the need to preserve periodic structures in the graph,
which can be easily lost or introduced by common sparsifica-
tion techniques such as random sampling [SS08] or patching
to fix degrees. Thus in [AKM+20], it was only shown how
to partially sparsify the square of a graph; that is obtain a
graph with random-walk matrix W̃2 such that I − W̃2 UC-
approximates I−W2, but has fewer edges than the true square
W2. Still, the number of edges in W̃2 is larger than in W
by at least a constant factor, so if we iterate to obtain a
sparse approximation of Wℓ, the number of edges will grow
by a factor of clog ℓ = poly(ℓ) and our approximations will
quickly become dense. This was affordable in the deterministic
logspace algorithms of [AKM+20], but is not in our setting
of nearly linear time.

Our Work: In this paper we provide several tools for
overcoming these challenges, advancing both algorithmic and
structural tools regarding graphs sparsification. First, we in-
troduce a new notion of directed graph approximation called
singular value (SV) approximation. We then show that that
this notion of approximation strictly strengthens unit-circle
approximation and show that it has a number of desirable
properties, such as preservation under not only powers but
arbitrary products of random-walk matrices, and implying
approximation of stationary probabilities of all cuts. Then
we provide an efficient near linear-time randomized algorithm
for computing nearly linear-sized SV-sparsifiers for arbitrary
Eulerian directed graphs; this implies the first proof that
nearly linear-sized UC-sparsifiers exist for Eulerian directed
graphs. As a starting point for this result, we provide a simple
reduction from SV-sparsifying Eulerian directed graphs to SV-
sparsifying undirected graphs; no such reduction was known
for the previous, weaker forms of spectral approximation
of directed graphs, and shows that SV approximation is a
significant strengthening even for undirected graphs.

Combined with the Eulerian scaling algorithms of
[CKK+18], we obtain an algorithm for approximating the
stationary probabilities of cuts (as well as “uncuts”) in random
walks on arbitrary directed graphs, which we define as follows:

Definition I.1 (Cut values). For a strongly connected,
weighted digraph G on n vertices, let µ be the unique
stationary distribution of the random walk on G, and let µedge

be the stationary distribution on edges (i, j) of G (i.e., pick i
according to µ and j by following an edge from i proportional
to its weight). For subsets S and T of vertices, define:



• CutG(S, T ) = Pr(i,j)∼µedge
[i ∈ S, j ∈ T ],

• CutG(S) = CutG(S, S
c) = (CutG(S, S

c) +
CutG(S

c, S))/2, and
• UncutG(S) = (CutG(S, S) + CutG(S

c, Sc))/2.
If G has random-walk matrix W, we may write CutW and
UncutW instead of CutG and UncutG.

Definition I.2 (Powering). For a weighted digraph G with
adjacency matrix A, out-degree matrix Dout, and random-
walk matrix W = AD−1

out, we write Gℓ for the weighted
digraph with adjacency matrix (AD−1

out)
ℓ ·Dout (and thus out-

degree matrix Dout and random-walk matrix Wℓ).

With these definitions, the main application of our SV
sparsification results is the following:

Theorem I.3 (informal). There is a randomized algorithm
that, given a strongly connected n-node m-edge directed
graph G with integer edge weights in [1, U ], a walk length
ℓ, an error parameter ε > 0, and lower bound s on the
minimum stationary probability of the random walk on G,
runs in time O((m + nε−2) · poly(log(Uℓ/s)) and outputs
an O(nε−2 · poly(log(Uℓ/s)))-edge graph H such that for
every two sets S, T of vertices, we have:

|CutH(S, T )− CutGℓ(S, T )|

≤ ε

2
·
√
min {CutGℓ(S),UncutGℓ(S)}

·
√

min {CutGℓ(T ),UncutGℓ(T )}.

In particular:

(1− ε) · CutGℓ(S) ≤ CutH(S) ≤ (1 + ε) · CutGℓ(S),

and

(1− ε) ·UncutGℓ(S) ≤ UncutH(S) ≤ (1 + ε) ·UncutGℓ(S).

Note that when U, ℓ ≤ poly(n), s ≥ 1/poly(n), and ε ≥
1/poly(log n), our algorithm runs in time Õ(m). For compari-
son, note that, given a set S, we can estimate the cut value for
S using random walks in time roughly Õ(ℓ/(ε2CutG(S))),
which is slower when ℓ/CutG(S) is m1+Ω(1). (Note that
CutG(S) can be as small as 1/m.)

It is also worth comparing to the following approaches
that yield high-precision estimates (i.e. replacing multiplicative
error ε with polynomially small additive error):

• Use matrix powering via repeated squaring to compute
Wℓ. This takes time nω · log(ℓ), where ω is the matrix
multiplication exponent. This is slower than our algorithm
assuming ω > 2 or m ≤ n2−Ω(1).

• Use the algorithm of [CKK+18] to obtain a high-
precision estimate of the stationary distribution µ of G in
time Õ(m), and then use repeated matrix-vector multi-
plication to compute Wℓµ. This takes time Õ(mℓ), so is
slower than our algorithm except when ℓ = polylog(n).

• Use the algorithm of Ahmadenijad et al. [AKM+20].
This also gives high-precision estimates of Wℓ, and does
so in nearly logarithmic space, but the running time
is superpolynomial. A running time of Ω(m · ℓ) seems

inherent in the approach as it works by reducing to
solving a directed Laplacian system of size m · ℓ.

It remains an interesting open problem to estimate any desired
entry of Wℓ to high precision in nearly linear time.

e) Other Work on SV Approximation.: The definition of
SV approximation and some of our results on it (obtained in
collaboration between Jack Murtagh and the authors) were
first presented in the first author’s PhD thesis [Ahm20] in
August 2020. Independently, Kelley [Kel21] used a variant of
SV approximation to present an alternative proof of a result
of [HPV21], who used unit-circle approximation to prove
that the Impagliazzo-Nisan–Wigderson pseudorandom genera-
tor [INW94] fools permutation branching programs. Golowich
and Vadhan [GV22] used SV approximation and some of
our results (presented in the aforementioned thesis) to prove
new pseudorandomness properties of expander walks against
permutation branching programs. Most recently, Chen, Lyu,
Tal, and Wu [CLTW22] have used a form of SV approximation
to present alternative proofs of the results of [AKM+20],
[PV21].

A. Singular-Value Approximation

In this paper, we present a stronger and more robust
notion for addressing the challenge of defining approximation
between directed graphs. Specifically, we introduce a novel
definition of approximation for asymmetric matrices, which
we call singular-value approximation (or SV approximation).

For simplicity in the rest of this introduction, we focus
on the case of regular directed graphs, i.e. directed graphs
where for some value d ≥ 0, every vertex has in-degree d and
out-degree d. (In the case of digraphs with non-negative edge
weights, we obtain the in- and out-degrees by summing the in-
coming or out-going edge weights at each vertex.) However,
all of our results generalize to Eulerian digraphs and some
generalize to wider classes of complex matrices.

To introduce SV approximation, let A be the adjacency
matrix of a d-regular digraph, i.e., A is a non-negative real
matrix where every row and column sum equals d. Then the
(in- and out-) degree matrix is simply dI. Dividing by d, it is
equivalent to study approximation of the random-walk matrix
W = A/d, which is doubly stochastic, and has degree matrix
I.

Definition I.4 (SV approximation for doubly stochastic ma-
trices). For doubly stochastic matrices W, W̃ ∈ Rn×n we
say that W̃ is an ε-singular-value (SV) approximation of W,
written W̃

sv
≈ε W, if for all “test vectors” x, y ∈ Rn, we have∣∣∣x⊤(W̃ −W)y

∣∣∣ (2)

≤ ε

4
·
[
x⊤(I−WW⊤)x+ y⊤(I−W⊤W)y

]
. (3)

This formulation of SV-approximation is one of several
equivalent formulations we provide in the full paper. We
can equivalently define SV approximation between doubly
stochastic matrices by requiring Equation (3) to hold for all



complex test vectors x, y ∈ Cn. SV-approximation can also
be defined equivalently by replacing condition (3) with∣∣∣x⊤(W̃ −W)y

∣∣∣ (4)

≤ ε

4
·
√
[x⊤(I−WW⊤)x] · [y⊤(I−W⊤W)y]. (5)

These two formulations, (3) and (5), differ only in using
the geometric mean or the arithmetic mean of the terms
involving x and y on the right-hand side. The formulation
in terms of the geometric mean implies the one in terms
of the arithmetic mean (since the geometric mean is no
larger than the arithmetic mean); the converse follows by
optimizing over scalar multiples of x and y (as was done
in e.g. [CKP+17], [AKM+20]). Both formulations can be
rewritten more simply by noting that x⊤(I − WW⊤)x =
∥x∥2−∥x⊤W∥2 and y⊤(I−W⊤W)y = ∥y∥2−∥Wy∥2, but
the description in terms of quadratic forms will be more conve-
nient for comparison with previous notions of approximation.
In the full paper, we provide more general definitions of
SV approximation which also apply to unnormalized directed
Laplacians and even to complex matrices.

We prove that SV approximation is strictly stronger than
previous notions of spectral approximation considered in the
literature, even for undirected graphs, and enjoys several useful
properties not possessed by the previous notions. Most notably,
there is a simple black-box reduction from SV-sparsifying
Eulerian directed graphs to SV-sparsifying undirected graphs;
no such reduction is known for prior notions of asymmetric
spectral approximation.

Furthermore, we give efficient algorithms for working with
SV approximation. These include nearly linear-time algo-
rithms for SV-sparsifying undirected and hence also Eulerian
directed graphs (Theorem I.11), as well as random-walk
polynomials of directed graphs (Theorem I.11). We also show
that a simple repeated-squaring and sparsification algorithm
for solving Laplacian systems also works for Eulerian di-
graphs whose random-walk matrix is normal (i.e., unitarily
diagonalizable), if we use SV-sparsification at each step (The-
orem I.12). Prior Laplacian solvers for Eulerian graphs are
more complex. We elaborate on these results in the next several
subsections.

B. Comparison to Previous Notions of Approximation

Let us compare Theorem I.4 to previous definitions of
approximation.

a) Undirected spectral approximation.: Let’s start with
the undirected case, where W = W⊤. In this case, it can be
shown that we can without loss of generality restrict Theo-
rem I.4 to x = y, obtaining the following: W̃

sv
≈ε W requires

that for all x ∈ Rn,∣∣∣x⊤(W̃ −W)x
∣∣∣ ≤ ε

2
·
[
x⊤(I−W2)x

]
. (6)

In contrast, the standard definition of spectral approximation
(introduced by Spielman and Teng [ST04]), which we denote

by W̃ ≈ε W, is equivalent to requiring that for all x ∈ Rn,
we have ∣∣∣x⊤(W̃ −W)x

∣∣∣ ≤ ε ·
[
x⊤(I−W)x

]
. (7)

To compare inequalities (6) and (7), we write x =
∑

i civi,
where v1, . . . , vn is an orthonormal eigenbasis for W with
associated eigenvalues λ1, . . . , λn. Since W is stochastic,
|λi| ≤ 1 for all i ∈ [n], the right-hand side of SV inequality (6)
becomes

ε

2
·
∑
i∈[n]

c2i · (1− λ2
i ),

whereas the right-hand side of ST inequality (7) becomes

ε ·
∑
i∈[n]

c2i · (1− λi).

Since each |λi| ≤ 1, the fact that SV approximation implies
ST approximation then follows from

(1− λ2
i ) = (1− λi)(1 + λi) ≤ 2(1− λi).

However, we also see that inequality (6) can be much stronger
than inequality (7) when W has eigenvalues λi close to -1
(e.g. in a bipartite graph with poor expansion) because then
1 − λ2

i is close to 0, but 1 − λi is bigger than 2. More
generally, inequality (6) requires that W̃ approximates W
very well on every test vector x that is concentrated on the
eigenvectors whose eigenvalues have magnitude close to 1,
whereas inequality (7) only requires close approximation on
the (signed) eigenvalues that are close to 1.

We remark that another way of ensuring W̃ preserves unit
singular values is to replace W2 in the SV inequality (6) with
the matrix |W| where we replace all eigenvalues of W with
their absolute value rather than their square,1 so that we have:

x⊤(I− |W|)x =
∑
i∈[n]

c2i · (1− |λi|).

Using |W| instead of W2 results in an equivalent definition
up to a factor of 2 in ε, and W2 turns out to be convenient
to work with.2 This viewpoint also explains why we stop at
W2 in the definition and don’t explicitly use higher powers;
it is simply a convenient proxy for |W|, which captures all
powers. Indeed, for all k ∈ N

I−W2 ⪯ 2 · (1− |W|) ⪯ 2 ·
(
I−Wk

)
.

b) Directed spectral approximation.: Turning to previous
notions of spectral approximation for directed graphs, standard
approximation [CKP+17] generalizes the definition of Spiel-
man and Teng [ST04] by saying W̃ ≈ε W if for all x, y ∈ Rn∣∣∣x⊤(W̃ −W)y

∣∣∣ ≤ ε

2
·
[
x⊤(I−W)x+ y⊤(I−W)y

]
. (8)

1Another way of describing |W| is as the psd square root of the psd matrix
W2.

2|W| = (W2)1/2, i.e., |W| is the PSD square root of W2. In
Definition I.4, we could similarly replace WW⊤ and W⊤W with their
PSD square roots and obtain a definition that is equivalent up to a factor of
2 in ε.



Equivalently, we can require that for all x, y ∈ Rn,∣∣∣x⊤(W̃ −W)y
∣∣∣ ≤ ε ·

√
[x⊤(I−W)x] · [y⊤(I−W)y]. (9)

It can be shown that for undirected graphs, standard approx-
imation is equivalent to the condition of Equation 7, so we
will also refer to it as standard approximation.

The use of different left and right test vectors x and y
on the left-hand side is crucial for capturing the asymmetric
information in W̃ and W. As before, if x or y is concentrated
on eigenvectors of W whose eigenvalues are close to 1,
then the right-hand side of ST inequality (9) is close to 0
and W̃ must approximate W very well. However, like the
standard undirected ST inequality (7), not much is required
on eigenvalues near -1. Moreover, asymmetric matrices can
have eigenvalues that are not real and are equal to or close
to complex numbers of magnitude 1. For example, the eigen-
values of a directed n-cycle are the complex n’th roots of
unity.

To address this issue, unit-circle (UC) approxima-
tion [AKM+20], written W̃

◦
≈ε W, requires that for all

complex test vectors x, y ∈ Cn, we have∣∣∣x∗(W̃ −W)y
∣∣∣ ≤ ε

2
·
[
∥x∥2 + ∥y∥2 − |x∗Wx+ y∗Wy|

]
.

(10)
That is, we take the complex magnitude of the terms involving
W on the right-hand side of ST inequality (8). That way, if
x and y are concentrated on eigenvectors of W that have
eigenvalue near some complex number µ of magnitude 1,
we require that W̃ approximates W very well. For example,
consider the case where W is normal, i.e., has an orthonormal
basis of complex eigenvectors v1, . . . , vn and with corre-
sponding complex eigenvalues λ1, . . . , λn. Then if we write
x =

∑
i civi and y =

∑
i divi, the right-hand side of UC

inequality (10) becomes:

ε

2
·
∑
i∈[n]

(|ci|2 + |di|2)−

∣∣∣∣∣∣
∑
i∈[n]

(|ci|2 + |di|2) · λi

∣∣∣∣∣∣ . (11)

If x and y are concentrated on eigenvalues λi ≈ µ where
|µ| = 1, then this expression will be close to 0. Unit-circle
approximation has valuable properties not enjoyed by standard
approximation, in particular being preserved under powering:
If W̃ is an ε-UC approximation of W, then for every positive
integer k, W̃k is an O(ε)-UC approximation of Wk; note
that the quality of approximation does not degrade with k.
This property was crucial for the results of [AKM+20].

However, UC approximation has two limitations compared
to SV approximation. First, UC expression (11) is only small
if x and/or y is concentrated on eigenvalues that are all close
to the same point µ on the complex unit circle. Even in the
undirected case, if x and y are mixtures of eigenvectors with
eigenvalue close to 1 and eigenvalue close to -1, then there
will be cancellations in the second term of UC expression (11)
and the result will not be small. Second, some properties of
asymmetric matrices are more directly captured by singular

values than eigenvalues, since singular values treat the domain
and codomain as distinct. For example, the second-largest
singular value of W equals 1 if and only if there is a
probability distribution π on vertices that does not mix at all
in one step (i.e., ∥Wπ − u∥ = ∥π − u∥, where u = 1⃗/n
and π ̸= u), but the latter can hold even when all nontrivial
eigenvalues have magnitude strictly smaller than 1.

To see how SV approximation addresses these limita-
tions, let σ1, . . . , σn ≥ 0 be the singular values of W, let
u1, u2, . . . , un ∈ Cn the corresponding left-singular vectors of
W, and let v1, . . . , vn ∈ Cn the corresponding right-singular
vectors. If we write x =

∑
i ciui and y =

∑
i divi, then the

right-hand side of SV inequality (3) becomes:

ε

4
·

∑
i∈[n]

(|ci|2 + |di|2) · (1− σ2
i )

 . (12)

Consequently, SV-approximation requires high-quality approx-
imation if x is concentrated on left-singular vectors of singular
value close to 1 and/or y is concentrated on right-singular
vectors of singular value close to 1. (For the “or” interpre-
tation, use the formulation of SV approximation in terms of
inequality (5).) To compare with UC expression (11), let us
consider what happens with a normal matrix, where ui = vi
and σi = |λi|. In this case, SV expression (12) amounts
to bringing the absolute value of UC expression (11) inside
the summation (and squaring, which only makes a factor of
2 difference), to avoid cancellations between eigenvalues of
different phases.

Furthermore, for non-normal matrices, SV approximation
retains the asymmetry of W even on the right-hand side,
by always using x on the left of W (thus relating to its
decomposition into left singular vectors) and y on the right
of W (thus relating to its decomposition into right singular
vectors). Indeed, this feature allows us to even extend the
definition of SV approximation to non-square matrices.

Following the above intuitions, we prove that SV approxi-
mation is indeed strictly stronger than the previous notions of
approximation, even for undirected graphs:

Theorem I.5. For all doubly stochastic matrices W and W̃,
if W̃

svn
≈ ε W, then W̃

◦
≈ε W (and hence W̃ ≈ε W). On the

other hand, for every n ∈ N there exist random walk matrices
W̃,W for n-node undirected graphs such that W̃

◦
≈O(1/

√
n)

W, but it is not the case that W̃
svn
≈ .3 W.

Since UC approximation implies standard approximation,
we likewise separate SV from standard approximation. Finally,
we note that our separation implies that several useful proper-
ties enjoyed by SV approximation, such as preservation under
products, are not satisfied by UC approximation.

C. Properties of SV Approximation

SV approximation enjoys a number of novel properties not
known to be possessed by previous notions of spectral approx-
imation. Most striking is the fact that directed approximation



reduces to undirected approximation. To formulate this, we
define the symmetric lift of a matrix:

Definition I.6. Given W ∈ Cm×n, let the symmetric lift of
W be defined as

slift (W)
def
=

[
0n×n W∗

W 0m×m

]
.

Graph theoretically, the symmetric lift of W is the following
standard operation: Given our directed graph G on n vertices
with random-walk matrix W, we lift G to an undirected
bipartite graph H with n vertices on each side, where we
connect left-vertex i to right-vertex j if there is a directed
edge from i to j in G. Then slift (W) is the random-walk
matrix of H .

Theorem I.7. Let W and W̃ be doubly stochastic matrices.
Then W

sv
≈ε W̃ if and only if slift

(
W̃

)
sv
≈ε slift (W).

Thus, for the first time (as far as we know), sparsification of
directed graphs reduces directly to sparsification of undirected
graphs. It would be very interesting to obtain a similar reduc-
tion for other algorithmic problems in spectral graph theory,
such as solving Laplacian systems.

Another novel property of SV approximation is that it is
preserved under products:

Theorem I.8. Let W1, . . . ,Wk and W̃1, . . . ,W̃k be doubly
stochastic matrices such that W̃i

sv
≈ε Wi for each i ∈ [k].

Then W̃1W̃2 · · ·W̃k
sv
≈ε+O(ε2) W1W2 · · ·Wk.

Notably the approximation error does not grow with the
number k of matrices being multiplied. This property does
not hold for UC approximation, only the weaker property of
preservation under powering, i.e., W1 = W2 = · · · = Wk

and W̃1 = W̃2 = · · · = W̃k.
In addition, SV approximation is preserved under multipli-

cation on the left and right by arbitrary matrices of bounded
spectral norm. Indeed, it can be seen as the “closure” of
standard approximation under this operation (up to a factor
of 2).

Theorem I.9. The following hold for all doubly stochastic
matrices W and W̃:

1) If W̃
sv
≈ε W then for all complex matrices U and V of

spectral norm at most 1, we have UW̃V
sv
≈ε UWV,

and hence UW̃V ≈ε UWV.
2) If for all complex matrices U and V of spectral norm

at most 1, we have UW̃V ≈ε UWV then W̃
sv
≈2ε W.

Since UWV and UW̃V need not be doubly stochastic
matrices, Theorem I.9 uses the generalization of SV approx-
imation to more general matrices, which can be found in the
full version of the paper.

Recall that standard spectral sparsifiers [ST04] are also cut
sparsifiers [BK00]. That is, if G̃ is an ε-approximation of G,
then for every set S of vertices, the weight of the cut S in G̃
is within a (1± ε) factor of the weight of S in G. Indeed, if

we take the test vector x to be the characteristic vector of the
set S in inequality (7), we obtain∣∣CutG̃(S)− CutG(S)

∣∣ ≤ ε · CutG(S), (13)

where Cut(·) is as in Theorem I.1.
Similarly, we can obtain a combinatorial consequence of SV

approximation, by taking x to be a characteristic vector of a
set S of vertices and taking y to be a characteristic vector of
a set T of vertices. This yields:

Proposition I.10. Let W̃ and W be doubly stochastic n ×
n matrices and suppose that W̃

sv
≈ε W. Then for every two

subsets S, T ⊆ [n], we have∣∣Cut
W̃
(S, T )− CutW(S, T )

∣∣
≤ ε

2
·
√

CutWW⊤(S) · CutW⊤W(T ).

Note that W⊤W (resp., WW⊤) is the transition matrix
for the forward-backward walk (resp. backward-forward walk),
namely where we take one step using a forward edge of the
graph followed by one step using a backward edge.

Let us interpret Proposition I.10. First, consider the case
that W = J, the matrix with every entry equal to 1/n (the
random-walk matrix for the complete graph with self-loops).
Then the distribution µedge on pairs (i, j) in the definition of
CutW (Theorem I.1) has i and j as uniform and independent
vertices, and the same is true for CutWW⊤ and CutW⊤W.
Thus, Proposition I.10 says:∣∣Cut

W̃
(S, T )− µ(S) · µ(T )

∣∣
≤ ε

2
·
√

µ(S) · (1− µ(S)) · µ(T ) · (1− µ(T )),

where µ(S) = |S|/n and µ(T ) = |T |/n are the stationary
probabilities of S and T , respectively. This amounts to a
restatement of the Expander Mixing Lemma (cf., [Vad12,
Lemma 4.15]); indeed W̃

sv
≈ε J if and only if W̃ is a spectral

expander with all nontrivial singular values at most ε/2.
Next, let’s consider the case that T = Sc. Since

CutWW⊤(S) = CutWW⊤(Sc), SV approximation implies
that:∣∣Cut

W̃
(S)− CutW(S)

∣∣ ≤ ε

2
·
√
CutWW⊤(S) · CutW⊤W(S)

(14)
We claim that (14) is stronger than the standard notion of

a cut approximator (13). Indeed, it can be shown that

CutWW⊤(S) ≤ 2 · CutW(S),

and similarly for CutW⊤W(T ). The reason is that if a
backward-forward walk crosses between S and Sc, then it
must cross between S and Sc in either the first step or in the
second step. Similar reasoning shows that

CutWW⊤(S) ≤ 2 ·UncutW(S),

and similarly for CutW⊤W(T ). Thus SV approximation also
implies:∣∣UncutG̃(S)−UncutG(S)

∣∣ ≤ ε ·UncutG(S), (15)



Thus, we conclude that an SV-approximator not only approx-
imates every cut to within a small additive error that is scaled
by the weight of the cut edges (as in (13)), but also scaled by
the weight of the uncut edges.

D. Algorithmic Results

Even though SV approximation is stronger than previously
considered notions of spectral approximation, we show that it
still admits sparsification:

Theorem I.11. There is a randomized nearly-linear time
algorithm that given a regular directed graph G with n
vertices and m edges, integer edge weights in [0, U ], and
random-walk matrix W, and ε > 0, whp outputs a weighted
graph G̃ with at most O(nε−2 · poly(log(nU))) edges such
that its random-walk matrix W̃ satisfies W̃

sv
≈ε W.

A more general theorem that also applies to Eulerian
digraphs is stated in the full version of the paper. Prior to
this work, it was open whether or not even UC-sparsifiers
with O(n · poly(log n, 1/ε)) edges existed for all unweighted
regular digraphs. Instead, it was only known how to UC-
sparsify powers of a random walk matrix in such a way that
the number of edges increases by at most a polylogarithmic
factor compared to the original graph (rather than decrease the
number of edges) [AKM+20].

By Theorem I.7, it suffices to prove Theorem I.11 for
undirected bipartite graphs. We obtain the latter via an undi-
rected sparsification algorithms based on expander partition-
ing [ST04]. It remains an open question whether algorithms
based on edge sampling can yield SV approximation or unit
circle approximation, even in undirected graphs. The standard
approach to spectral sparsification of undirected graphs via
sampling, namely keeping each edge independently with prob-
ability proportional to its effective resistance [SS08], does not
work for SV or UC approximation. For example, this method
does not exactly preserve degrees, which we show is necessary
for SV sparsification.3

However, we remark that the work of Chu, Gao, Peng,
Sawlani, and Wang [CGP+18] does yield something closer
to sparsification via degree preserving sampling for standard
approximation [CKP+17] but not unit circle approximation.
They show that if one has a directed graph and decomposes it
into short “cycles” without regard for the direction of the edges
on the cycle, then one can sparsify by randomly eliminating
either the clockwise or counterclockwise edges on each such
cycle. We build on their procedure and use it to obtain SV
sparsification (and hence, unit circle) by showing that this
technique obtains SV approximation, even if the cycles are
not short, as long as (a) all the cycles are within expanding
subgraphs, and (b) the cycles alternate between forward and
backward edges. (Note that such alternating cycles in a di-

3Unlike standard spectral approximation, degrees cannot be fixed just by
adding self loops; indeed, self-loops ruin bipartiteness and periodicity, which
are properties that UC and SV approximation retain (as they are captured by
eigenvalues like -1 or other roots of unity).

rected graph correspond to ordinary cycles in the undirected
lift given by Theorem I.7.)

Given Theorem I.11, we obtain our algorithm for longer
walks (Theorem I.3) as follows:

1) First, we show that we can SV-sparsify the squares of
random-walk matrices of Eulerian digraphs; we follow
the approach of [CKK+18] by locally sparsifying the
bipartite complete graphs that form around each vertex
when squaring, and then applying Theorem I.11 to
globally sparisfy further. We likewise show the “de-
randomized square” approach used in [RV05], [PS14],
[MRSV21], [AKM+20] gives a square sparsifier.

2) Then we SV-sparsify arbitrary powers of 2 by repeatedly
squaring and sparsifying, using the fact that SV approxi-
mation is preserved under powering. During this process,
we need to ensure that the ratio between the largest and
smallest edge weights remains bounded. We do this by
restricting to graphs that have second-largest singular
value bounded away from 1 by 1/poly(nUℓ), which
allows us to discard edge weights that get too small and
make small patches to preserve degrees. We can achieve
this assumption on the second-largest singular value by
adding a small amount of laziness to our initial graph.

3) Then to sparsify arbitrary powers Wℓ, we can multiply
sparsifiers for the powers of 2 appearing in the binary
representation of ℓ. For example, to get a sparsifier for
W7, we multiply sparsifiers for W4, W2, and W1,
sparsifying and eliminating small edge weights again in
each product. The use of SV approximation plays an
important role in the analysis of this algorithm, because
it has the property that the product of the approximations
of the powers still approximates the product of the true
powers (Theorem I.8).

4) Given Theorem I.11, we obtain Theorem I.3 for general
directed graphs by using [CKK+18] to compute a high-
precision estimate of the stationary distribution, which
allows us to construct an Eulerian graph whose random-
walk matrix closely approximates that of the original
graph. SV-sparsifying the ℓ’th power of the Eulerian
graph gives us a graph all of whose Cut and Uncut val-
ues approximate the ℓ’th power of our input graph. The
use of [CKK+18] to estimate the stationary distribution
and the introduction of laziness to W both incur a small
additive error δ, but we can absorb that into ε by setting
δ = 1/poly(nU/s) and observing that CutGℓ(S) and
UncutGℓ(S) are at least 1/poly(nU/s) (if nonzero).

Our final contribution concerns algorithms for solving di-
rected Laplacian systems. The recursive identities used for
solving undirected Laplacian systems, while behaving nicely
with respect to PSD approximation, do not behave as nicely
with respect to the previous approximation definitions for
directed graphs. This led to different, more sophisticated re-
cursions with a more involved analysis of the error [CKP+17],
[CKK+18], [AKM+20], [KMG22]. We make progress to-
wards simplifying the recursion and analysis of solving di-



rected Laplacian linear systems in the following way. We
show that a simpler recursion, a variant of the one used
by Peng and Spielman [PS14] (Equation (17) below), and a
simpler analysis suffice if the directed Laplacian is normal
(i.e., unitarily diagonalizable) and we perform all sparsification
with respect to SV approximation. Note that this result is the
only result in our paper that relies on a normality assumption;
the aforementioned sparsification results hold for all Eulerian
directed graphs.

Theorem I.12. For a doubly stochastic normal matrix W ∈
Rn×n with ∥W∥ ≤ 1, let W = W0, . . . ,Wk−1 be a
sequence of matrices such that for ε ≤ 1/4k we have

Wi
sv
≈ϵ W

2
i−1 ∀0 < i < k, (16)

and

Pi =
1

2
[I+ (I+Wi)Pi+1(I+Wi)] ∀0 ≤ i < k (17)

defining the Peng-Spielman squaring recursion.
Then, for a matrix Pk, such that∥∥∥(I−W2k)

1
2

[
Pk − (I−W2k)+

]
(I−W2k)

1
2

∥∥∥ ≤ O(kϵ),
we have

∥P0(I−W)− I∥B
=

∥∥∥(I−W)
1
2

[
P0 − (I−W)+

]
(I−W)

1
2

∥∥∥ ≤ O(k2ϵ)

where B = ((I−W)1/2)∗(I−W)1/2.

Theorem I.12 says that that we can compute a good precon-
ditioner P0 for the Laplacian I−W by repeatedly computing
SV-approximate squares (eq. 16) and use the simple recurrence
(eq. 17, starting with a preconditioner Pk for a sufficiently
large power of W. Generally, Pk is easy to obtain for a large
enough k = O(log n) since W2k is well-approximated by a
complete graph (assuming the original graph is connected and
aperiodic).

E. Open Problems

One open problem is to determine whether or not it is
possible to obtain linear-sized sparsifiers. Recall that undi-
rected graphs have sparsifiers with respect to standard spec-
tral approximation that have only O(n/ε2) nonzero edge
weights [BSS12]. If this result could be extended to obtain
linear-sized SV-sparsifiers of undirected graphs, we would
also have linear-sized sparsifiers for directed graphs by The-
orem I.7, which would be a new result even for standard
approximation [CKP+17].
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