
High-precision Estimation of Random Walks in
Small Space

AmirMahdi Ahmadinejad∗, Jonathan Kelner†, Jack Murtagh‡, John Peebles§, Aaron Sidford∗, Salil Vadhan‡
∗Department of Management Science & Engineering, Stanford University, Stanford, CA USA

e-mail: ahmadi@stanford.edu, sidford@stanford.edu
†Department of Mathematics, MIT, Cambridge, MA USA

e-mail: kelner@mit.edu
‡School of Engineering & Applied Sciences, Harvard University, Cambridge, MA USA

e-mail: jmurtagh@alumni.harvard.edu, salil_vadhan@harvard.edu
§Computer Science Department, Yale University, New Haven, CT USA

e-mail: john.peebles@yale.edu

Abstract—In this paper, we provide a deterministic
Õ(logN)-space algorithm for estimating random walk
probabilities on undirected graphs, and more generally
Eulerian directed graphs, to within inverse polynomial
additive error (ε = 1/poly(N)) where N is the length
of the input. Previously, this problem was known to
be solvable by a randomized algorithm using space
O(logN) (following Aleliunas et al., FOCS ‘79) and by a
deterministic algorithm using space O(log3/2 N) (Saks
and Zhou, FOCS ‘95 and JCSS ‘99), both of which
held for arbitrary directed graphs but had not been
improved even for undirected graphs. We also give
improvements on the space complexity of both of these
previous algorithms for non-Eulerian directed graphs
when the error is negligible (ε = 1/Nω(1)), generalizing
what Hoza and Zuckerman (FOCS ‘18) recently showed
for the special case of distinguishing whether a random
walk probability is 0 or greater than ε.

We achieve these results by giving new reductions
between powering Eulerian random-walk matrices and
inverting Eulerian Laplacian matrices, providing a new
notion of spectral approximation for Eulerian graphs
that is preserved under powering, and giving the
first deterministic Õ(logN)-space algorithm for invert-
ing Eulerian Laplacian matrices. The latter algorithm
builds on the work of Murtagh et al. (FOCS ‘17)
that gave a deterministic Õ(logN)-space algorithm for
inverting undirected Laplacian matrices, and the work
of Cohen et al. (FOCS ‘19) that gave a randomized
Õ(N)-time algorithm for inverting Eulerian Laplacian
matrices. A running theme throughout these contri-
butions is an analysis of “cycle-lifted graphs,” where
we take a graph and “lift” it to a new graph whose
adjacency matrix is the tensor product of the original
adjacency matrix and a directed cycle (or variants of
one).

Keywords—derandomization, space complexity, ran-
dom walks, Markov chains, Laplacian systems, spectral
sparsification, Eulerian graphs

This is an extended abstract. Please see the full version
of our paper [1] for precise statements of our results and
missing proofs.

I. Introduction

We give the first deterministic, nearly logarithmic-space
algorithm for accurately estimating random walk proba-
bilities on undirected graphs. Our algorithm extends to
Eulerian digraphs, which are directed graphs where the
indegree of a vertex v is equal to its outdegree for every
vertex v. (Note that a random walk on an undirected graph
is equivalent to a random walk on the associated Eulerian
digraph obtained by replacing each undirected edge {u, v}
with two directed edges (u, v) and (v, u).) In more detail,
our main result is as follows:

Theorem I.1 (informally stated; see [1]). There is a
deterministic, Õ(log(k · N))-space algorithm that given
an Eulerian digraph G (or an undirected graph G), two
vertices s, t, and a positive integer k, outputs the probability
that a k-step random walk in G started at s ends at t, to
within additive error of ε, where N is the length of the input
and ε = 1/poly(N) is any desired polynomial accuracy
parameter.

Estimating random walk probabilities to inverse poly-
nomial accuracy, even in general digraphs, can easily be
done by randomized algorithms running in space O(logN),
since that much space is sufficient to simulate random
walks [2]. In fact, estimating random walk probabilities
in general digraphs is complete for randomized logspace.1
The best known deterministic algorithm prior to our work
was that of Saks and Zhou [3], which runs in space
O(log3/2N), and works for general digraphs. (See the
excellent survey of Saks [4] for more discussion of the
close connection between randomized space-bounded com-

1Formally, given G, s, t, k, a threshold τ , and a unary accuracy
parameter 1a, the problem of deciding whether the k-step random
walk probability from s to t is larger than τ + 1/a or smaller than τ
is complete for the class BPL of promise problems having randomized
logspace algorithms with two-sided error. By binary search over the
threshold τ , this problem is log-space equivalent to estimating the
same probability to within error 1/a.

1

putation and random walks, as well as the state-of-art in
derandomizing such computations up to the mid-1990’s.)

For undirected graphs, Murtagh et al. [5] recently gave a
deterministic Õ(log(k ·N))-space algorithm that computes
a much weaker form of approximation for random walks:
given any subset S of vertices, the algorithm estimates, to
within a multiplicative factor of (1 ± 1/polylog(N)), the
conductance of the set S, namely the probability that a
k-step random walk started at a random vertex of S (with
probability proportional to vertex degrees) ends outside of
S. Our result is stronger because in undirected graphs, all
nonzero conductances can be shown to be of magnitude
at least 1/poly(N) and can be expressed as a sum of
at most N2/4 random walk probabilities. Consequently,
with the same space bound our algorithm can estimate
the conductance of any set S to within a multiplicative
factor of (1± 1/poly(N)).
Like [5], our work is part of a larger project, initiated in

[6], that seeks to make progress on the derandomization
of space-bounded computation by importing ideas from
the literature on time-efficient randomized algorithms for
solving graph Laplacian systems [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19] . While we consider
Theorem I.1 to be a natural derandomization result in
its own right, it and our analogous result for solving
Eulerian Laplacian systems (Theorem I.2 below) can also
be viewed as a step toward handling general directed
graphs and thereby having an almost-complete derandom-
ization of randomized logspace. Indeed, in recent years,
nearly linear-time randomized algorithms for estimating
properties of random walks on general directed graphs
(with polynomial mixing time, which also yield complete
problems for randomized logspace [20]) were obtained
by reduction to solving Eulerian Laplacian systems [16],
[17], [18]. A deterministic and sufficiently space-efficient
analogue of such a reduction, combined with our results,
would put randomized logspace in deterministic space
Õ(logN), i.e. BPL ⊆ L̃.

To achieve our main result and prove Theorem I.1,
we provide several results that may be of interest even
outside of the space-bounded derandomization context,
such as a new notion of spectral approximation and new
reductions between estimating random walk probabilities
and inverting Laplacian systems. Below we provide more
details on how our work relates to both the space-bounded
derandomization and the Laplacian solving literature, and
describe some of our other contributions.

A. Derandomization of Space-Bounded Computation
It is widely conjectured that every problem solvable

in randomized logarithmic space can also be solved in
deterministic logarithmic space (i.e. RL = L, BPL=L
for the one-sided and two-sided error versions, respec-
tively) [4]. Though this is known to follow from mild
assumptions in complexity theory (e.g. that there is a
Boolean function in DSPACE(n) that requires branching

programs of size 2Ω(n) [21]), the best known unconditional
derandomization is the aforementioned, quarter-century-
old result of Saks and Zhou [3], which places randomized
logspace in deterministic space O(log3/2N).
Most of the effort on derandomizing logspace compu-

tations over the past three decades has gone towards
the design of pseudorandom generators that fool ordered
branching programs. An ordered branching program of
width w and length k is given by a directed graph on vertex
set [k] × [w]. which we view as consisting of k layers of
w vertices. All of the edges from the ith layer go to the
(i+1)’st layer (so there are no edges entering the first layer
or exiting the last layer). We call the first vertex of the
first layer (i.e. vertex (1, 1)) the start vertex, and the first
vertex of the last layer (i.e. vertex (k, 1)) the accept vertex
t. Typically, every vertex in layers 1 to k−1 has outdegree
2, with the two edges labelled by 0 and 1. Intuitively, the
vertices in the ith layer correspond to possible states of
a space-bounded algorithm before it makes its ith coin
toss, and the two edges lead to its two possible states
after that coin toss. The acceptance probability of an
ordered branching program is exactly the probability that
a random walk from the start vertex s of length k−1 ends
at accept vertex t. Generating such a truly random walk
takes k − 1 random bits, so the goal of a pseudorandom
generator for ordered branching programs is to generate
a walk of length k − 1 using a much shorter random seed
such that the acceptance probability is preserved up to
an additive ε. Given such a pseudorandom generator, we
can obtain a deterministic algorithm for estimating the
acceptance probability by enumerating all seeds of the
pseudorandom generator.
A general O(logN)-space computation can have w =

2O(logN) = poly(N) states and toss k = poly(N) coins.
The best known pseudorandom generator for such ordered
branching programs is the classic generator of Nisan [22],
which has a seed length of O(log2N) (for any error ε ≥
1/poly(N)) and thus does not directly yield a derandom-
ization of space complexity better than O(log2N) (due
to enumerating the seeds), which can be achieved more
easily by recursively multiplying the transition matrices
between layers. (Multiplying k boolean w × w matrices
to within a final accuracy of ε can be done recursively in
space O((log k) · (logw+ log log(k/ε))).) Nisan’s generator
is also a crucial tool in the algorithm of Saks and Zhou [3].
Due to the long lack of progress in improving Nisan’s

generator, effort has turned to restricted classes of branch-
ing programs, such as those of constant width (w = O(1)),
with there being significant progress in recent years for the
case of width w = 3. [23], [24], [25]. Another restriction
that has been studied is that of regular branching pro-
grams, where every vertex in layers 2, . . . , k in the branch-
ing program has indegree 2. For this case, Braverman, Rao,
Raz, and Yehudayoff [26] give a pseudorandom generator
with seed length Õ(logN) when w ≤ polylog(N) and
ε ≥ 1/polylog(N), which again does not yield a deter-

2

ministic algorithm that improves upon recursive matrix
multiplications.

In contrast, our algorithm for Eulerian graphs can be
used to estimate the acceptance probability of a reg-
ular branching program in space Õ(logN) even when
w = poly(N) and ε = 1/poly(N). Indeed, by adding
edges from the kth layer back to the first layer, a regular
branching program can be made into an Eulerian graph,
without changing the probability that a random walk of
length k − 1 from s ends at t. In addition, our tech-
niques also yield an improved pseudorandom generator
for permutation branching programs (regular branching
programs where the labelling is constrained so that for
each b ∈ {0, 1}, the edges labelled b form perfect matchings
between the vertices in consecutive layers). Specifically,
[27] use our results to derive a pseudorandom generator
with seed length Õ(logN) for permutation branching pro-
grams (with a single accept vertex in layer k) of unbounded
width w, albeit with error only ε = 1/polylog(N). Even for
the special case of permutation branching programs, seed
length Õ(logN) was previously only achieved for width
w = polylog(N) [28], [29], [30].
It is also worth comparing our result with Reingold’s

Theorem, which gives a deterministic logspace algorithm
for deciding s-t connectivity in undirected graphs. Rein-
gold, Trevisan, and Vadhan [20] interpreted and general-
ized Reingold’s methods to obtain “pseudoconverging walk
generators” for regular digraphs where each edge label
forms a permutation of the vertices, as in the permutation
branching programs described above. These generators
provide a way to use a seed of O(logN) random bits to
generate walks of length poly(N) that converge to the
uniform distribution on the connected component of the
start vertex (just like a truly random walk would). Such
generators turn out to suffice for deciding s-t connectivity
on arbitrary Eulerian digraphs. However, these generators
are not guaranteed to closely approximate the behavior of
a truly random walk at shorter walk lengths. Indeed, even
the length of the walks needed for mixing is polynomially
larger than with a truly random walk. Nevertheless, one of
the techniques we use, the derandomized square, originated
from an effort to simplify Reingold’s algorithm and these
pseudoconverging walk generators [31].

Our work builds on recent papers of Murtagh et al. [5],
[6], which gave deterministic, nearly logarithmic-space al-
gorithms for estimating certain quantities associated with
random walks on undirected graphs. Specifically, the first
of these papers [6] gave a “Laplacian solver” (defined
below) that implied accurate (to within 1/poly(N) error)
estimates of escape probabilities (the probability that a
random walk from s visits t before visiting another vertex
v); these again refer to the long-term behavior of random
walks, rather than the behavior at a given time below
mixing. The second paper [5] dealt with random walks of
a fixed length k, but as discussed earlier, only gave a weak
approximation to the conductance of subsets of vertices.

B. Inverting Laplacian Systems
We prove Theorem I.1 by a novel reduction from esti-

mating k-step random walk probabilities to solving linear
systems given by graph Laplacians, and giving a small-
space algorithm for the latter in the case of Eulerian
graphs.
Let G be a digraph on n vertices, and let W be the n×n

transition matrix for the random walk on G. Then we will
call L = I−W the random-walk Laplacian of G.2 Solving
Laplacian systems refers to the problem of given a vector
b ∈ Rn, finding a vector x ∈ Rn such that Lx = b (if one
exists). Since the matrix L is not invertible (a stationary
distribution of the random walk on G is in the kernel), a
Laplacian system can be solved by instead computing its
pseudoinverse L+, which acts as an inverse on Image(L),
and is zero on the orthogonal complement of Image(L).
We show that we can compute the pseudoinverse of an

Eulerian Laplacian in nearly logarithmic space.

Theorem I.2 (informally stated; see [1]). There is a
deterministic, Õ(logN)-space algorithm that given an Eu-
lerian digraph G with random-walk transition matrix W,
outputs a matrix L̃+ whose entries differ from L+ by at
most an additive ε, where N is the length of the input
and ε = 1/poly(N) is any desired polynomial accuracy
parameter.

Previously, Cohen et al. [17], [18] showed how to solve
Eulerian Laplacian systems by randomized, nearly linear-
time algorithms, and Murtagh et al. [6] showed how
to solve undirected Laplacian systems by deterministic,
nearly logarithmic-space algorithms. Our proof of Theo-
rem I.2 draws on all of these works.

As explained below, the extension from undirected
graphs (handled by [6]) to Eulerian graphs (as in Theo-
rem I.2) is crucial for obtaining our high-precision estima-
tion of random walks (Theorem I.1) even for the case of
undirected graphs. In addition, as discussed earlier, this
extension can also be viewed as a step toward handling
general directed graphs and thereby having an almost-
complete derandomization of randomized logspace.

We will describe the ideas in the proof of Theorem I.2
below in Section I-C. Here we describe our reduction from
powering (Theorem I.1) to computing the pseudoinverse
of a Laplacian (Theorem I.2).

Let G be an n-vertex digraph with random-walk tran-
sition matrix W. Let Pk be the adjacency matrix of a
k-vertex directed path. Note that Pk is not stochastic,
but rather substochastic (nonnegative with column sums
at most 1), since there are no edges leaving the last vertex

2The standard Laplacian of G, which we simply refer to as the
Laplacian ofG is D−A, where D is the diagonal matrix of outdegrees
and A is the adjacency matrix (where we define (A)ij to be the num-
ber of edges from j to i in G). Notice that I−W = (D−A)D−1. For
undirected graphs, it is common to use a symmetric normalization of
the Laplacian given by D−1/2(D−A)D−1/2 = D−1/2(I−W)D1/2,
but the I−W formulation will be more convenient for us.

3

of the path (i.e. random walks “die off” when leaving that
vertex). Then the kn × kn matrix W′ = Pk ⊗W, i.e.
the Kronecker product of Pk and W, is a k × k block
matrix consisting of n×n blocks that equal W just below
the diagonal and are zero elsewhere. For example, when
k = 4, we have:

W′ = Pk ⊗W =


0 0 0 0

W 0 0 0
0 W 0 0
0 0 W 0

 .
W′ is also a substochastic matrix describing random walks
on a graph with k layers of n vertices each, where there
is a bipartite version of G going from the ith layer to the
(i+1)’st layer for each i = 1, . . . , k−1, and again there are
no edges leaving the kth layer. We call this the path-lift of
G of length k, or the path-lifted graph when G and k are
clear from context. (This construction is inspired by the
ordered branching programs that arise in space-bounded
computation, as described above.)

The “Laplacian” of this layered graph, L = Ikn −W′,
is invertible, and noting that (W′)k = 0, we can calculate
its inverse as:

L−1 = Ink + W′ + (W′)2 + · · ·+ (W′)k−1 (1)
= Ik ⊗ In + Pk ⊗W + P2

k ⊗W2 + · · ·Pk−1
k ⊗Wk−1.

(2)

Thinking of L−1 as a block matrix, the term Pj
k ⊗Wj

places a copy of Wj in each of the blocks that are in the
jth diagonal below the main diagonal. (So on the main
diagonal are blocks of In, just below the main diagonal are
blocks of W, below that W2, and so on.) For example, for
k = 4, we can write L−1 in block form as

L−1 =


I 0 0 0

W I 0 0
W2 W I 0
W3 W2 W I

 .
Thus from an accurate estimate of L−1, we can read off
accurate estimates of the powers of W. For example, entry
((`, t), (1, s)) of L−1 is exactly the probability that a length
`− 1 random walk in G started at s ends at t.

However, we can only apply Theorem I.2 directly if L is
the Laplacian of an Eulerian graph, and the above W′ is
not even stochastic. We can fix this by (a) starting with an
Eulerian graph G and (b) considering a cycle-lifted graph
instead of a path-lifted graph, i.e. considering transition
matrix Ck ⊗W. Additionally, it is convenient to collapse
all of the vertices in layer k to a single vertex v. Then
it turns out from the Laplacian pseudoinverse L+, it is
possible to read off escape probabilities — the probability
that a random walk from one vertex, say (1, s), visits
another vertex, say (`, t), before visiting a third vertex,
say v. The condition “before visiting v” allows us to not
worry about walks that traverse all the way around the

cycle, and thus we get exactly the probability that a length
`− 1 random walk in G started at s ends at t.3
Note that even if G is undirected, this reduction requires

inverting a Laplacian of a directed layered graph. Thus,
our extension of the small-space undirected Laplacian
solver of [6] to Eulerian graphs (Theorem I.2) seems
essential for obtaining high-precision estimates of powers
even for undirected graphs (Theorem I.1).
The reduction above from computing powers to invert-

ing also allows us to obtain new algorithms for general
digraphs and Markov chains:

Theorem I.3 (informally stated; see [1]). Given a Markov
chain G specified by a stochastic matrix W, two states s, t,
and a positive integer k, we can compute the probability
that a k-step random walk in G started at s ends at t, to
within an additive error of ε:

1) In randomized space O((logNk) · log(logNk(1/ε))),
or

2) In deterministic space O(log3/2(Nk) + (log(Nk)) ·
log(logNk(1/ε))).

where N is the length of the input.

This theorem generalizes one of the results from recent
work of Hoza and Zuckerman [32] that gave the same
bounds for the 1-sided version of the problem, namely
distinguishing probability 0 from probability greater than
ε. For the two-sided version of the problem that we con-
sider, a randomized algorithm using space O(log(Nk/ε))
follows from performing poly(1/ε) random walks and
counting how many end at t. For deterministic algo-
rithms, the best previous algorithm is from Saks and
Zhou [3], which uses space O(log(Nk/ε) · log1/2 k). Note
that Theorem I.3 has a doubly-logarithmic dependence
on ε rather than a singly-logarithmic one. In particular,
Saks and Zhou [3] only achieves space O(log3/2Nk) for
ε = 1/poly(Nk) whereas we achieve it for a much smaller
ε = 1/ exp(exp(

√
logNk)).

The proof of Theorem I.3 begins with the observation
that we can approximate L−1 = (Ink − Pk ⊗ W)−1

to within accuracy 1/poly(N, k) in randomized space
O(logNk) or deterministic space O(log3/2Nk). Indeed, by
Equation (1), it suffices to estimate I,W,W2, . . . ,Wk−1

up to accuracy ±1/poly(N, k).
We then use the fact that matrix inversion has a very

efficient error reduction procedure, equivalent to what is
commonly known as “preconditioned Richardson itera-
tions”. Let L̃−1 denote our approximation to L−1 with
error 1/poly(N, k). For an appropriate choice of the poly-
nomial error bound, it follows that the “error matrix”
E = Ink− L̃−1L has norm at most 1/Nk (in, say, spectral

3Alternatively (and essentially equivalently), we could note that
if D − A is the Laplacian of G, then Ik ⊗ D − Pk ⊗ A = Ik ⊗ D ·
(Ink − Pk ⊗W) is a “row-column diagonally dominant matrix” and
apply the reduction from inverting such matrices to pseudo-inverting
Eulerian Laplacian systems [16].

4

norm). Then we can obtain a more accurate estimate of
L−1 by using the identity:

L−1 = (Ink −E)−1L̃−1 = (Ink + E + E2 + E3 + · · ·)L̃−1.

Since E has norm at most 1/Nk, the series converges very
quickly, and can be truncated at O(logNk(1/ε)) terms to
achieve an approximation to within ±ε. As noted earlier,
from such an accurate estimation of L−1 = (Ink − Pk ⊗
W)−1, we can accurately estimate random walks of length
k − 1.

This same error reduction procedure is also used in our
proof of Theorem I.2 (and also throughout the literature
on time-efficient Laplacian solvers), and thus is also key
to the high precision estimates we obtain in Theorem I.1.
Although we fixed error 1/poly(N) in the statement of the
theorem, we can also achieve smaller error ε at a price of
O((logN) · log(logN (1/ε))) in the space complexity.

Interestingly, early work on randomized space-bounded
computation [33], [34], [35], [36] reduced the problem of ex-
actly computing hitting probabilities of Markov chains (the
probability that an infinite random walk from s ever hits t)
to computing (I−W)−1 for a substochastic matrix W, and
used this to show that unbounded-error and non-halting
randomized logspace is contained in deterministic space
O(log2N). As far as we know, ours is the first application
of inverting Laplacian systems to estimating finite-time
random-walk probabilities to within polynomially small
error, and consequently it is also the first application of
inverting Laplacian systems to the commonly accepted
formulation of randomized logspace (i.e. bounded error
and halting).
C. Complex spectral approximation, cycle-lifted graphs,
and powering

We now describe the techniques underlying our space-
efficient Eulerian Laplacian inverter (Theorem I.2). Let
W be the transition matrix for the random walk on
an n-vertex Eulerian graph G, for which we want to
estimate (I − W)−1. Because of (a generalization of)
the error-reduction procedure described above, it suffices
to compute a rough approximation to (I − W)−1. For
symmetric matrices (as arising from undirected graphs),
a sufficient notion of approximation is spectral approxima-
tion as introduced by Spielman and Teng [37]. Applying
the Spielman–Teng notion to symmetric Laplacians I−W
and I − W̃, we say that W̃ is an ε-approximation of W
(written W̃ ≈ε W) if ∀x ∈ Rn,∣∣∣x>(W− W̃)x

∣∣∣ ≤ ε · x>(I−W)x = ε ·
(
‖x‖2 − x>Wx

)
.

(3)
Cohen et al. [17] introduced a generalization of spectral ap-
proximation for asymmetric matrices and directed graphs:
∀x, y ∈ Rn,∣∣∣x>(W− W̃)y

∣∣∣ ≤ ε

2 ·
(
‖x‖2 + ‖y‖2 − x>Wx− y>Wy

)
.

(4)

In the case of symmetric matrices, their definition is equiv-
alent to the Spielman–Teng notion, and thus we use the
same terminology ε-approximation and notation W̃ ≈ε W
for their notion.
In this paper, we introduce a stronger notion of spectral

approximation. Specifically, we say W̃ is a unit-circle ε-
approximation of W (written W̃ ◦

≈ε W) if ∀x, y ∈ Cn∣∣∣x∗(W− W̃)y
∣∣∣ ≤ ε

2 ·
(
‖x‖2 + ‖y‖2 − |x∗Wx+ y∗Wy|

)
,

(5)
where v∗ refers to the conjugate transpose of v. Note that
we now allow the vectors to range over Cn rather than Rn.
As we show (see Section III) this in itself does not make
the definition stronger as the earlier notions of [7], [17]
have equivalent formulations using complex vectors. The
more important change is the introduction of the complex
magnitude | · | in the term |x∗Wx+ y∗Wy|.
The significance of this change can be seen by consid-

ering an eigenvector v of W whose eigenvalue λ ∈ C has
magnitude 1. Consider what happens if we set x = y = v in
both the Spielman–Teng definition (3) and our definition
(5). If λ = 1 (e.g. v is a stationary distribution of the
random walk specified by W), then the right-hand side
of the inequality in both cases is zero, so we must have
exact equality on the left-hand side, i.e. v∗W̃v = v∗Wv.
On the other hand, if λ is some other root of unity (e.g.
an eigenvalue of the k-cycle Ck, or in any random walk
with periodicity), then only our definition requires exact
equality. This also explains our terminology unit-circle
approximation. It also can be shown that W̃ ◦

≈ε W if and
only if zW̃ ≈ε zW for all complex z of magnitude 1.
That is, our definition amounts to demanding that all unit-
circle multiples of the matrices approximate each other
in the previous sense. In the case of symmetric matrices
(undirected graphs), it suffices to consider z = ±1, corre-
sponding to the fact that the eigenvalues are all real and
the only periodicity that can occur is 2.
The benefit of unit-circle approximation is that, unlike

the previous notions of spectral approximation, it is pre-
served under cycle-lifts and powers.

Lemma I.4. Suppose W̃ ◦
≈ε W. Then for all k ∈ N, we

have:
1) Ck ⊗ W̃ ◦

≈ε Ck ⊗W, and
2) W̃k ◦≈ε/(1−ε) Wk.

We note that in previous work ([6], [38]), it was
observed that for symmetric matrices, if W̃ ≈ε W and
−W̃ ≈ε −W then we do get W̃2 ≈ε W2. Lemma I.4 holds
even for asymmetric matrices and handles all powers k.
Item 1 is proven by observing that the diagonalization

of Ck (using the discrete Fourier basis, which are its
eigenvectors) has all kth roots of unity along the diagonal,
so approximation of the cycle-lifted graphs Ck ⊗ W̃ and
Ck ⊗ W amounts to requiring that the approximation
of W̃ and W is preserved under multiplication by k’th

5

roots of unity. Item 2 is derived from Item 1 by ob-
serving that the kth powers can be obtained by “short-
cutting” random walks through all but one layer of the
cycle-lifted graphs. This shortcutting amounts to taking
the Schur complements of the corresponding Laplacians,
and we show that taking Schur complements of Eulerian
Laplacians preserves spectral approximation (generalizing
analogous results for undirected and symmetrized Schur
complements [18], [39]).

Now we can sketch our algorithm that we use to prove
Theorem I.2. Given an Eulerian digraph G, we want to
approximate the pseudoinverse of the Laplacian In −W.
By standard reductions, we may assume that G is regular,
connected, and aperiodic, and therefore, it has polyno-
mial mixing time. Rather than directly approximating the
inverse of the Laplacian In − W of the original graph,
we instead approximate the inverse of the Laplacian of
the cycle-lifted graph, i.e. I2k·n −C2k ⊗W, for 2k larger
than the mixing time of W. Then the pseudoinverse of
In−W can be well-approximated by an appropriate n×n
projection of the pseudoinverse of I2k·n −C2k ⊗W.

To approximate the pseudoinverse of I2k·n−C2k⊗W, we
follow the recent approach of [18] and recursively compute
an LU factorization (i.e. a product of a lower-triangular
and upper-triangular matrix) that approximates I2k·n −
C2k ⊗ W, as LU factorizations can be easily inverted.
Each recursive step reduces the task to computing an LU
factorization of the Laplacian of the random-walk on a
chosen subset S of the vertices, where we short-cut steps
of the walk through Sc. For our algorithm, we choose
the set S to consist of every other layer of the cycle-
lifted graph, as opposed to using a randomly chosen and
pruned set of vertices as in [18]. Then shortcutting walks
through Sc yields a graph on S whose transition matrix
is equal to C2k−1 ⊗W2 — a cycle-lifted version of the
two-step random walk, with a cycle of half the length!
Unfortunately, we can’t just directly recurse, because re-
peatedly squaring W k times takes space O((k · logN)).
Thus, following [6], we utilize the “derandomized square”
of [31], which produces an explicit sparse ε-approximation
to W2 such that k iterated derandomized squares can be
computed in space O(logN + k · log(1/ε)) = Õ(logN).
(We take ε = 1/O(k) so that we can tolerate incurring
an ε error in approximation for each of the k levels of
recursion.) To make the analysis work, we prove that
for regular digraphs, the derandomized square produces
a graph W̃2 that is a unit-circle approximation to W2,
so that we can deduce that C2k−1 ⊗ W̃2 approximates
C2k−1 ⊗ W2 via Lemma I.4. Previous work [6] only
showed approximation for undirected graphs, and with
respect to the original Spielman-Teng notion of spectral
approximation. (Rozenman and Vadhan [31] showed that
for regular digraphs, the derandomized square improves
spectral expansion nearly as much as the true square, but
that is weaker than spectral approximation, as it only

refers to the 2nd singular value rather than the entire
spectrum.)
We remark that the n×n projection of the pseudoinverse

of the approximate LU factorization we obtain is exactly
the matrix we would get if we applied the repeated-
squaring-based Laplacian inversion algorithm of Peng and
Spielman [12] (or, more accurately, its space-efficient im-
plementation via derandomized squaring [6]) to the orig-
inal Laplacian I −W. Thus, another conceptual contri-
bution of our paper is connecting the LU factorization
approach of [18] to the squaring-based approach of [12]
via the cycle-lifted graph. (However, for technical reasons
in our analysis, we don’t do the n×n projection until after
applying the error-reduction procedure to obtain a highly
accurate pseudoinverse of the cycle-lifted Laplacian.)

II. Preliminaries
In this section we introduce notation and facts we use

through out the paper.

A. Notation
We denote by C the set of complex numbers. For w =

x+ yi ∈ C, we use w∗ = x− yi to denote the conjugate of
w. We use |w| =

√
x2 + y2 to denote the magnitude of w.

a) Matrices and vectors.: We use bold capital letters
to denote matrices. We use In ∈ Rn×n to denote the iden-
tity matrix. For a matrix A ∈ Cn×n we use A∗ to denote
the conjugate transpose of A and we write UA = A+A∗

2
to denote its symmetrization. We use ~1k ∈ Rk to denote
the all 1’s vector or just ~1 when k is clear from context.
We denote the conjugate transpose of a vector similarly.
We use A> to denote the transpose of a real matrix.

b) Positive Semidefinite (PSD) matrices.: For Her-
mitian matrices A,B ∈ Cn×n we say A is PSD or write
A � 0 if x∗Ax ≥ 0 for all x ∈ Cn. If A is real the condition
is equivalent to x>Ax ≥ 0 for all x ∈ Rn. Further we use
A � B to denote A − B � 0. We define �, ≺, and �
analogously.

Proposition II.1. Given a PSD matrix A ∈ Cn×n and
matrix B ∈ Cn×m

B∗AB � 0.

c) Pseudo-inverse and square root of matrices.: For
a matrix A, we use A+ to denote the (Moore-Penrose)
pseudo-inverse of A. For a PSD matrix B, we let B1/2

to denote the square root of B, which is the unique PSD
matrix such that B1/2B1/2 = B. Furthermore, we let B+/2

denote the pseudo-inverse of the square root of B.
d) Operator norms.: For any vector norm ‖·‖ defined

on Cn we define the operator semi-norm it induces on
Cn×n by ‖A‖ = maxx6=0

‖Ax‖
‖x‖ . For a PSD matrix H and

vector x we let ‖x‖H =
√
x∗Hx, and define the operator

semi-norm ‖A‖H accordingly. We can relate the ‖ · ‖H
and ‖ · ‖2 operator norms as follows. For a matrix A, we
have ‖A‖H = ‖H1/2AH+/2‖2. We use the term spectral
norm to refer to the operator norm induced by ‖ · ‖2. We

6

write ‖A|V ‖2 to denote the spectral norm restricted to a
subspace V . That is, ‖A|V ‖2 = maxx∈V,x6=0

‖Ax‖
‖x‖ .

Lemma II.2. Let M : Rn → Rn be a linear operator
and extend it to M : Cn → Cn by defining M(u + iv) =
Mu + iMv for all z = u + iv ∈ Cn. Then ‖M‖Cn→Cn =
‖M‖Rn→Rn .

e) Graphs: Throughout this paper we work with
unweighted directed multigraphs (digraphs). These graphs
can have parallel edges and self loops and can be viewed
as digraphs with integer edge weighs. We specify graphs
by G = (V,E) where V is the set of vertices and E is the
multiset of edges.

f) Adjacency and Random Walk Matrices.: The ad-
jacency matrix of a digraph G on n vertices is the matrix
A ∈ Rn×n where Aij is the number of edges from vertex
j to vertex i in G.4 The degree matrix D of a digraph
G is the diagonal matrix containing the out-degrees of
the vertices in G. The random walk matrix or transition
matrix of a digraph G is W = AD−1. Wij is the
probability that a random step from vertex j leads to i in
G. Note that ~1>W = ~1>. A matrix W ∈ Rn×n≥0 is called
substochastic if ~1>W ≤ ~1> (the inequality is entry-wise).

g) Directed Laplacians.: We follow the approach in
[18] to define graph Laplacians. A matrix L ∈ Rn×n is
a directed Laplacian if its off-diagonal entries are non-
positive, i.e. Lij ≤ 0 for i 6= j, and ~1>L = 0. Every digraph
is associated with a directed Laplacian. Occasionally we
write L = D−A to express the decomposition of L into the
degree matrix and adjacency matrix of the corresponding
digraph. The random-walk Laplacian of a digraph with
Laplacian D − A is the matrix (D − A)D−1 = I −W,
where W is the transition matrix of G. We will often write
Ck to denote the adjacency matrix of the k-vertex uni-
directional directed cycle (which is equal to its transition
matrix, as the graph is 1-regular).

h) Eulerian graphs and Eulerian Laplacians.: A di-
rected graph is Eulerian if the in-degree of every node is
equal to its out-degree. A directed Laplacian L is Eulerian
if L~1 = 0. A graph is Eulerian if and only if its Laplacian
is Eulerian.

B. Kronecker Product
Given matrices A ∈ Cn×m,B ∈ Cp×q, the Kronecker

product or tensor product of A and B denoted by A⊗B ∈
Cpn×qm is

A⊗B =

A11B A12B · · · A1mB
...

...
...

...
An1B An2B · · · AnmB

 .
Proposition II.3. Given four matrices A, B, C, and D,
if the matrix dimensions make AC and BD well-defined,
then

(A⊗B)(C⊗D) = (AC)⊗ (BD).
4Often the adjacency matrix is defined to be A> but we find the

current formulation more convenient for our purposes.

C. Schur Complement
For a matrix A ∈ Cn×n and sets F,C ⊆ [n], let AFC

denote the submatrix corresponding to the rows in F and
columns in C. Similarly, for a vector v ∈ Cn let vF ∈
C|F | be the restriction of v onto coordinates in F . If F,C
partition [n] and AFF is invertible, then we denote the
Schur complement of A onto the set C by

Sc(A, C) def= ACC −ACFA−1
FFAFC .

When it is clear from context we may reload this nota-
tion as follows to make the Schur complement dimension
consistent with A.

Sc(A, C) def=
[
0FF 0FC
0CF ACC −ACFA−1

FFAFC

]
.

III. Spectral Approximation

Since its introduction by Spielman and Teng [37],
spectral approximation of graphs and their associated
matrices [37] has served as a powerful tool for graph-
theoretic algorithm development. Below we review the
original definition and later generalizations to directed
graphs and asymmetric matrices [17], and then present
our new, stronger definition of unit-circle approximation
in several equivalent formulations.

A. Definitions
Definition III.1 (Undirected Spectral Approximation
[37]). Let W,W̃ ∈ Rn×n be symmetric matrices. We say
that W̃ is an undirected ε-approximation of W (written
W̃ ≈ε W) if ∀x ∈ Rn,

(1− ε) ·x>(I−W)x ≤ x>(I−W̃)x ≤ (1 + ε) ·x>(I−W)x

or equivalently, ∀x ∈ Rn,∣∣∣x>(W− W̃)x
∣∣∣ ≤ ε · x>(I−W)x = ε ·

(
‖x‖2 − x>Wx

)
.

Typically Definition III.1 is phrased in terms of Lapla-
cian matrices of the form I − W and approximation is
denoted by I−W̃ ≈ε I−W to indicate the multiplicative
approximation between the quadratic forms defined by
I−W̃ and I−W. However, in the more general definitions
of this paper it will be more convenient to think of spectral
approximation as a measure of approximation between W̃
and W rather than between I−W̃ and I−W. Note that
the definition is asymmetric in W̃ and W but W̃ ≈ε W
for ε < 1 implies W ≈ε/(1−ε) W̃.

Spectral approximation is a strong definition that guar-
antees the two matrices have similar eigenvalues, and their
corresponding graphs have similar cuts and random walk
behavior [37], [40]. Below we show the generalization to
directed graphs from [17].

Definition III.2 (Directed Spectral Approximation [17]).
Let W,W̃ ∈ Rn×n be (possibly asymmetric) matrices. We

7

say that W̃ is a directed ε-approximation of W (written
W̃ ≈ε W) if ∀x, y ∈ Rn,∣∣∣x>(W− W̃)y

∣∣∣
≤ ε

2 ·
(
x>(I−W)x+ y>(I−W)y

)
= ε

2 ·
(
‖x‖2 + ‖y‖2 − x>Wx− y>Wy

)
= ε

2 ·
(
‖x‖2 + ‖y‖2 − x>UWx− y>UWy

)
.

The main difference between the above and Defini-
tion III.1 is the introduction of the y vector instead of
having y = x. Indeed, using the same vector on both sides
would lose the asymmetric information in the matrices W
and W̃). However, note that the last inequality shows that
the right-hand side depends only on the symmetrization
UW.

We are justified using the same notation for undirected
and directed spectral approximation because of the follow-
ing lemma

Lemma III.3 ([5] Lemma 2.9). Let W,W̃ ∈ Rn×n be
symmetric matrices. Then W̃ is a directed ε-approximation
of W if and only if it is an undirected ε-approximation of
W.

It will be convenient for us to generalize Definition III.2
to complex matrices. In that case, we will quantify over
x, y ∈ Cn and replace the transposes with Hermitian
transposes.

Definition III.4 (Complex Spectral Approximation). Let
W,W̃ ∈ Cn×n be (possibly asymmetric) matrices. We say
that W̃ is a complex ε-approximation of W (written W̃ ≈ε
W) if ∀x, y ∈ Cn,∣∣∣x∗(W− W̃)y

∣∣∣
≤ ε

2 ·
(
‖x‖2 + ‖y‖2 − x∗UWx− y∗UWy

)
= ε

2 ·
(
‖x‖2 + ‖y‖2 − Re (x∗Wx+ y∗Wy)

)
The equality in Definition III.4 comes from the obser-

vation that for all v ∈ Cn and all matrices A ∈ Cn×n we
have

v∗UAv = 1
2 (v∗Av + v∗A∗v)

= 1
2 (v∗Av + (v∗Av)∗) = Re(v∗Av)

because the average of a complex number and its conjugate
is simply its real part. Notice that the definitions of
undirected, directed, and complex spectral approximation
are only achievable when the matrix W has the property
that Re(x∗Wx) ≤ ‖x‖2 for all vectors x ∈ Cn (when
W is real and symmetric as in the case of undirected
spectral approximation, this requirement is equivalent to
x>Wx ≤ ‖x‖2 for all x ∈ Rn). When working with these

types of approximation, we will often implicitly restrain
the matrices to have this property.
Again, we are justified in using the same notation for

complex approximation that we use for directed and undi-
rected approximations because of the following lemma.

Lemma III.5. Let W,W̃ ∈ Rn×n be (possibly asymmet-
ric) matrices. Then W̃ is a directed ε-approximation of W
if and only if W̃ is a complex ε-approximation of W.

A proof of Lemma III.5 can be found in the full version
of this paper [1]. Now we introduce our new stronger
definition, which we call unit-circle spectral approximation.

Definition III.6 (Unit-circle Spectral Approximation).
Let W,W̃ ∈ Cn×n be (possibly asymmetric) matrices. We
say that W̃ is a unit-circle ε-approximation of W (written
W̃ ◦
≈ε W) if ∀x, y ∈ Cn,∣∣∣x∗(W− W̃)y

∣∣∣ ≤ ε

2 ·
(
‖x‖2 + ‖y‖2 − |x∗Wx+ y∗Wy|

)
.

The change from Definition III.4 is that we have re-
placed the real part with the complex magnitude | · | on
the quadratic forms x∗Wx + y∗Wy on the right-hand
side. To understand what we gain from this, suppose
x = y is an eigenvector of W with eigenvalue λ such
that |λ| = 1. Then the right-hand side of the inequality
equals zero and so we must have x∗W̃y = x∗Wy. In other
words, W̃ and W must behave identically on the entire
unit circle of eigenvalues with magnitude 1. This is in
contrast to the previous definitions, which only required
exact preservation in the case where λ = 1. For example,
can an undirected bipartite graph (which has a periodicity
of 2 and an eigenvalue of −1) have a non-bipartite spectral
approximation? Under previous definitions, the answer is
yes but under unit-circle approximation, the answer is no
because we require exact preservation on all eigenvalues of
magnitude 1, not just λ = 1.
Unit circle approximation applies to a smaller class of

matrices than the previous definitions of spectral approx-
imation. While the previous definitions only required that
Re(x∗Wx) ≤ ‖x‖2 for all x ∈ Cn, unit circle approx-
imation requires that |x∗Wx| ≤ ‖x‖2 for all x ∈ Cn.
Again, we will often implicitly restrict our matrices to
have this property. Note that all complex matrices W such
that ‖W‖1 ≤ 1 and ‖W‖∞ ≤ 1 satisfy this property. In
particular, if W is the transition matrix of an Eulerian
graph, then W satisfies the property as does z ·W for all
z ∈ C such that |z| ≤ 1.
We will see in the coming sections that unit-circle ap-

proximation is preserved under powering of W̃ and W and
is useful for achieving spectral approximation of a class of
graphs we call cycle-lifted graphs, which are essential for
the analysis of our Eulerian Laplacian solver.

B. Equivalent Formulations
There are many useful equivalent formulations of Defi-

nition III.6. First we look at what our definition gives in

8

the case of real and symmetric matrices.

Lemma III.7 (Real, Symmetric Equivalence). Let
W,W̃ ∈ Rn×n be symmetric matrices. Then the following
are equivalent:

1) W̃ ◦
≈ε W.

2) W̃ ≈ε W and −W̃ ≈ε −W.
3) For all x ∈ Rn we have∣∣∣x>(W− W̃)x

∣∣∣ ≤ ε · (‖x‖2 − |x>Wx|
)
.

A proof of Lemma III.7 can be found in the full ver-
sion of this paper [1]. In the original [37] formulation of
spectral approximation as multiplicative approximation
between quadratic forms, Lemma III.7 says that in the
real, symmetric setting, unit-circle spectral approximation
is equivalent to I − W̃ approximating I −W and I + W̃
approximating I + W. This makes intuitive sense because
symmetric matrices have real eigenvalues so the only
eigenvalues that can lie on the unit circle are +1 and −1.
This “plus and minus” approximation has been studied

before in [5], [38], where it was found to be useful because
spectral approximation is preserved under squaring when
both the “plus” and “minus” approximations hold. We
will see in Section IV that even in the general directed,
complex case, unit-circle approximation is preserved under
all powering.

We now show some convenient equivalent formulations
of unit-circle spectral approximation.

Lemma III.8. Let W,W̃ ∈ Cn×n be (possibly asymmet-
ric) matrices. Then the following are equivalent

1) W̃ ◦
≈ε W

2) For all z ∈ C such that |z| = 1, z · W̃ ≈ε z ·W
3) For all z ∈ C such that |z| = 1,

• ker(UI−z·W) ⊆ ker(W̃−W) ∩ ker((W̃−W)>)
and

•
∥∥∥U+/2

I−z·W(W̃−W)U+/2
I−z·W

∥∥∥ ≤ ε
A proof of Lemma III.8 can be found in the full version

of this paper [1].

IV. Approximating Cycle-Lifted Graphs and
Powers

In this section we discuss how unit-circle spectral ap-
proximation allows us to approximate powers of random
walk matrices of digraphs and a class of graphs we call
cycle-lifted graphs, which play an essential role in our
Eulerian Laplacian solver. Preservation under powering is
a useful property for a definition of matrix approximation
but even in the case of symmetric transition matrices,
the original definition of spectral approximation does not
guarantee this, as is seen in the following proposition.

Proposition IV.1. For all rational ε ∈ (0, 1), there exist
undirected graphs with transition matrices W̃,W such that
W̃ ≈ε W but W̃2 6≈c W2 for any finite c > 0.

Lemma IV.2. Fix W̃,W ∈ Cn×n. For any matrix M ∈
Cn×n, let Vλ(M) denote the eigenspace of M of eigenvalue
λ.

1) If W̃ ≈c W for a finite c > 0, then V1(W) ⊆ V1(W̃).
If c < 1, then V1(W) = V1(W̃).

2) If W̃ ◦
≈cW for a finite c > 0, then for all λ ∈ C such

that |λ| = 1, Vλ(W) ⊆ Vλ(W̃) and if c < 1 then
Vλ(W) = Vλ(W̃).

A proof of Lemma IV.2 can be found in the full version
of this paper [1]. In previous work ([6], [38]), it was
observed that for symmetric matrices, if W̃ ≈ε W and
−W̃ ≈ε −W then we do get W̃2 ≈ε W2. Further-
more, when W is PSD we have that W̃ ≈ε W implies
−W̃ ≈ε −W. Since W2 is trivially PSD, the above can
be applied recursively to conclude that W̃2k ≈ε W2k for
all positive integers k. However, we observe that analogous
approximation guarantees do not hold for Eulerian graphs
(or even regular digraphs).

Proposition IV.3. For all rational ε ∈ (0, 1), there exist
regular digraphs with transition matrices W̃,W such that
W̃ ≈ε W and −W̃ ≈ε −W but W̃4 6≈c W4 for any finite
c.

Now we show that if a matrix is a unit-circle approx-
imation of another, then all of their powers are as well
(with small loss in approximation quality). In fact, we
show something stronger, namely that their cycle-lifted
graphs approximate each other.

Definition IV.4 (Cycle-Lifted Graph). Let Ck denote
the transition matrix of the k-vertex directed cycle. Given
a graph G = (V,E) on n vertices with transition matrix W
the cycle-lifted graph of length k, Ck(G), is a layered graph
with k layers (numbered 1 to k) of n vertices each, where
for every i ∈ [k], there is an edge from vertex u in layer
i to vertex v in layer (i+ 1) mod k with multiplicity ` if
and only if (u, v) exists with multiplicity ` in G. That is,
Ck(G) = (V ′, E′) with V ′ = [k]×V and E′ = {((i, u), (i+1
mod k, v) : (u, v) ∈ E}. The transition matrix of Ck(G) is
Ck ⊗W.

Theorem IV.5. Fix W,W̃ ∈ Cn×n and let Ck be the
transition matrix for the directed cycle on k vertices. Then
Ck⊗W̃ ≈ε Ck⊗W if and only if for all z such that zk =
1, we have z · W̃ ≈ε z ·W.

Recall that unit-circle spectral approximation requires
that for all z ∈ C with |z| = 1 we have z · W̃ ≈ε z ·W.
Theorem IV.5 then tells us that unit-circle spectral ap-
proximation implies approximations of the corresponding
cycle-lifted graphs of every length.

Corollary IV.6. Fix W,W̃ ∈ Cn×n. If W̃ ◦
≈εW then for

all positive integers k, Ck ⊗ W̃ ◦
≈ε Ck ⊗W.

Theorem IV.5 allows us to reason about approximation
under powering by observing that the kth power of a

9

matrix can be expressed in terms of the Schur complement
of its cycle-lifted graph of length k. In [39], they showed
that undirected spectral approximation is preserved under
Schur complements. Here we show that the same is true
of directed spectral approximation (with a small loss in
approximation quality).

Theorem IV.7. Fix W,W̃ ∈ Cn and suppose that W̃ ≈ε
W for ε ∈ (0, 2/3). Let F ⊆ [n] such that (I|F | −WFF) is
invertible and let C = [n] \ F . Then

I|C| − Sc(In − W̃, C) ≈ε/(1−3ε/2) I|C| − Sc(In −W, C)

A proof of Theorem IV.7 is in the full version of this
paper [1]. The expression in Theorem IV.7 has a natural
interpretation in terms of random walks. Notice that

I|C|−Sc(In−W, C) = WCC+WCF (I|F |−WFF)−1WFC .

When W is the transition matrix for a random walk, the
right-hand side above can be interpreted as the transition
matrix for the random walk induced by “short-cutting”
walks that traverse through the set of vertices in F .
In other words, walk behavior on C remains the same
(the WCC term) and walks that go from C to F (via
WFC) can instantly take arbitrary length walks in F (the
(I|F | −WFF)−1 term) before returning to C (via WCF).
The theorem above says that spectral approximation is
preserved under such “short-cutting”.

Now we get the following corollary, which says that unit-
circle approximation is preserved under powering.

Corollary IV.8. Let W, W̃ be the transition matrices
of digraphs G, G̃. If W̃ ◦

≈ε W then for all k ∈ N we have
W̃k ◦≈ε/(1−3ε/2) Wk.

Interestingly, in the case of undirected graphs, Corollary
IV.8 says that if W̃ ≈ε W and −W̃ ≈ε −W then all
kth powers approximate one another (with small loss in
approximation quality). This was not known (to the best
of our knowledge) for any k other than powers of 2.

V. Derandomized Square of Regular Digraphs
In order to achieve a space-efficient and determinis-

tic implementation of our algorithm, we need a way to
efficiently approximate high powers of regular digraphs.
Before defining such an operation, called derandomized
square, we introduce two-way labelings and rotation maps.

Definition V.1 ([31], [41]). A two-way labeling of a d-
regular directed multigraph G is a labeling of the edges in
G such that

1) Every edge (u, v) has two labels in [d], one as an
outgoing edge from u and one as an incoming edge
to v,

2) For every vertex v the labels of the d outgoing edges
from v are distinct, as are the incoming edges to v.

In a two-way labeling, each vertex v has its own labeling
from 1 to d for the d edges leaving it and its own labeling

from 1 to d for the d edges entering it. Since every edge
is incident to two vertices, each edge receives two labels,
which may or may not be the same. It is convenient to
specify a multigraph with a two-way labeling by a rotation
map:

Definition V.2 ([20], [41]). Let G be a d-regular directed
multigraph on n vertices with a two-way labeling. The
rotation map RotG : [n]×[d]→ [n]×[d] is defined as follows:
RotG(v, i) = (w, j) if the ith edge leaving vertex v leads
to vertex w and this edge is the jth edge entering w.

Now we can define the derandomized square. Recall that
the square of a graph G2 is a graph on the same vertex set
whose edges correspond to all walks of length 2 in G. The
derandomized square picks out a pseudorandom subset of
the walks of length 2 by correlating the 2 steps via edges
on an expander graph.

Definition V.3 ([31]). Let G be a d-regular multigraph
on n vertices with a two-way labeling. Let H be a c-regular
undirected graph on d vertices. The derandomized square
G s©H is a c · d-regular graph on n vertices with rotation
map RotG s©H defined as follows: For v0 ∈ [n], i0 ∈ [d], and
j0 ∈ [c], we compute RotG s©H(v0, (i0, j0)) as
1) Let (v1, i1) =RotG(v0, i0)
2) Let (i2, j1) =RotH(i1, j0)
3) Let (v2, i3) =RotG(v1, i2)
4) Output (v2, (i3, j1))

In the square of a directed graph, for each vertex v, there
exists a complete, uni-directional bipartite graph from the
in-neighbors of v, to it’s out-neighbors. This corresponds
to a directed edge for every two-step walk that has v in
the middle of it. A useful way to view the derandomized
square is that it replaces each of these complete bipartite
graphs with a uni-directional bipartite expander.

Definition V.4. Let H = (V,E) be an undirected d
vertex graph. Then Bip(H) is a bipartite graph with d
vertices on each side and an edge (u, v) from vertex u on
the left to vertex v on the right iff (u, v) ∈ E.

Note that since we’re working with multigraphs, the
incoming or outgoing neighbors to/from a vertex may form
a multi-set rather than a set due to parallel edges. So
when we say that a “copy” of Bip(H) exists from the in-
neighbors of v to its out-neighbors, we mean that if we
were to split all of the in-neighbors of v and out-neighbors
of v into two sets of d distinct vertices, place the edges
from Bip(H) across the sets, and then re-merge vertices
that correspond to a repeat neighbor of v, then a copy
of that resulting graph can be found across vertex v in
G s©H.

We show the derandomized square of a regular digraph
yields a unit-circle approximation to the true square.

Theorem V.5. Let G = (V,E) be a d-regular directed
multigraph with random walk matrix W. Let H be a c-

10

regular expander with λ(H) ≤ ε and let W̃ be the random
walk matrix of G s©H. Then

W̃ ◦
≈2·ε W2.

VI. Approximate Pseudoinverse for
Cycle-Lifted Graphs

Let I−W be the random-walk Laplacian of a strongly
connected, aperiodic, regular digraph G. Our goal is to
compute an accurate approximation of (I −W)+. To do
this we consider the Laplacian of a cycle-lifted graph L =
I2kn − C2k ⊗W for some positive integer k, and show
how to compute an accurate approximation of L+, namely
L̃+. Then we show that under some conditions, an n× n
projection of L̃+ (specifically, (~12k ⊗ In)>L̃+(~12k ⊗ In))
gives an accurate approximation for (I−W)+.
To estimate L+ we first show how to obtain a weak

approximation to it. Then we show how to get an
accurate approximation using Richardson iteration (see
Lemma VI.2). The following is the main theorem we prove
in this section. In this theorem, we only give sufficient
conditions for having an approximate pseudo-inverse of the
cycle-lifted graphs, and discuss an actual space-efficient
algorithm for computing such a matrix in the full version
of this paper [1].

Theorem VI.1. Let W be the transition matrix of a
strongly connected regular digraph with n vertices, ε ∈
(0, 1/(2k)) and suppose we have a sequence of matrices
W = W0, . . . ,Wk, such that

Wi+1
◦
≈ε W2

i ∀0 < i < k

and each Wi is a transition matrix of a strongly connected
regular digraph. We use Wi’s to define a sequence of 2kn
by 2kn matrices L(i). Then for L = I2kn −C2k ⊗W and
L̃ def= L(k), there exists a PSD matrix F such that ‖I2kn −
L̃+L‖F ≤ O(k2ε) and UL/O(k) � F � O(22kn2k5)UL.

In the above theorem L̃ is defined in a way so that it
has a nice LU factorization. This lets us efficiently compute
L̃+. Below we describe how we use Theorem VI.1. In the
full version of this paper [1], we show for k = O(logn) how
to space efficiently generate the Wi’s and compute L̃+.
The following lemma shows how we can obtain an

accurate solver by boosting the precision of an approx-
imate pseudo-inverse through the well-known method of
preconditioned Richardson iteration [12], [17].

Lemma VI.2. Given matrices A,B,F ∈ Rn×n, such that
F is PSD, and ‖I −BA‖F ≤ α for some constant α > 0.
Let Pm =

∑m
i=0(I−BA)iB. Then

‖I−PmA‖F ≤ αm+1

Since we can obtain a reasonably good approximate
pseudo-inverse for L via Theorem VI.1 and boost the
quality of that approximation with Lemma VI.2, we
can ultimately get a very accurate approximate pseudo-
inverse. This is stated rigorously in the following corollary.

Corollary VI.3. Given a transition matrix W of a regular
digraph with n vertices, and δ ∈ (0, 1/2). Let L = I2kn −
C2k ⊗W, and let L̃+ be the approximate pseudo-inverse
obtained from Theorem VI.1 by setting ε = 1

ck for a large
enough constant c. For m = O

(
k + logn+ log(1

δ)
)
, and

Pm =
∑m
i=0(I− L̃+L)iL̃+, we have

‖I−PmL‖UL ≤ δ

In the full version of the paper [1], we show how
to obtain an approximate pseudo-inverse of the original
Laplacian system, given an approximate pseudo-inverse
for the cycle-lifted graph. To get an approximate pseudo-
inverse of L we first compute an approximate LU factor-
ization of it. This is done by repeatedly eliminating blocks
of the cycle lifted graph containing every other vertex in
the cycle.

Acknowledgements
We thank William Hoza for pointing out an error

in an earlier version of Theorem IV.7. A.A. was sup-
ported by a Dantzig-Lieberman Operations Research Fel-
lowship. J.K. was supported by NSF award 1565235. J.M.
was supported by NSF grant CCF-1763299. J.P. was
supported by Swiss National Science Foundation Grant
#200021_182527. A.S. was supported by NSF CAREER
Award CCF-1844855. S.V. was supported by NSF grant
CCF-1763299 and a Simons Investigator Award.

References
[1] A. Ahmadinejad, J. Kelner, J. Murtagh, J. Peebles, A. Sidford,

and S. Vadhan, “High-precision estimation of random walks
in small space,” CoRR, Tech. Rep. arXiv:1912.04524 [cs.CC],
December 2019. [Online]. Available: https://arxiv.org/abs/
1912.04524

[2] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rack-
off, “Random walks, universal traversal sequences, and the
complexity of maze problems,” in 20th Annual Symposium on
Foundations of Computer Science (San Juan, Puerto Rico,
1979). New York: IEEE, 1979, pp. 218–223.

[3] M. Saks and S. Zhou, “BPHSPACE(S) ⊆ DSPACE(S3/2),”
Journal of Computer and System Sciences, vol. 58, no. 2, pp.
376–403, 1999.

[4] M. E. Saks, “Randomization and derandomization in space
bounded computation,” in IEEE Conference on Computational
Complexity, 1996, pp. 128–149.

[5] J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan,
“Deterministic approximation of random walks in small
space,” in Proceedings of the 23rd International Conference
on Randomization and Computation (RANDOM ‘19), ser.
LIPIcs, D. Achlioptas and L. A. Végh, Eds., vol. 145.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp.
42:1–42:22. [Online]. Available: https://doi.org/10.4230/LIPIcs.
APPROX-RANDOM.2019.42

[6] J. Murtagh, O. Reingold, A. Sidford, and S. P. Vadhan,
“Derandomization beyond connectivity: Undirected laplacian
systems in nearly logarithmic space,” in 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, 2017, pp. 801–812.
[Online]. Available: https://doi.org/10.1109/FOCS.2017.79

[7] D. A. Spielman and S.-H. Teng, “Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving linear
systems,” in Proceedings of the thirty-sixth annual ACM sym-
posium on Theory of computing. ACM, 2004, pp. 81–90.

[8] I. Koutis, G. L. Miller, and R. Peng, “Approaching optimality
for solving sdd systems. march 2010.”

11

https://arxiv.org/abs/1912.04524
https://arxiv.org/abs/1912.04524
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://doi.org/10.1109/FOCS.2017.79

[9] ——, “A nearly-m log n time solver for sdd linear systems,”
in Foundations of Computer Science (FOCS), 2011 IEEE 52nd
Annual Symposium on. IEEE, 2011, pp. 590–598.

[10] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu, “A simple,
combinatorial algorithm for solving sdd systems in nearly-linear
time,” in Proceedings of the forty-fifth annual ACM symposium
on Theory of computing. ACM, 2013, pp. 911–920.

[11] Y. T. Lee and A. Sidford, “Efficient accelerated coordinate de-
scent methods and faster algorithms for solving linear systems,”
in Foundations of Computer Science (FOCS), 2013 IEEE 54th
Annual Symposium on. IEEE, 2013, pp. 147–156.

[12] R. Peng and D. A. Spielman, “An efficient parallel solver for
SDD linear systems,” STOC, 2014.

[13] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng,
A. B. Rao, and S. C. Xu, “Solving SDD linear systems in nearly
mlog1/2n time,” in Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, 2014, pp.
343–352.

[14] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A. Spiel-
man, “Sparsified cholesky and multigrid solvers for connection
laplacians,” in Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing. ACM, 2016, pp. 842–
850.

[15] R. Kyng and S. Sachdeva, “Approximate gaussian elimination
for laplacians - fast, sparse, and simple,” in IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey,
USA, 2016, pp. 573–582.

[16] M. B. Cohen, J. Kelner, J. Peebles, R. Peng, A. Sidford, and
A. Vladu, “Faster algorithms for computing the stationary
distribution, simulating random walks, and more,” in Founda-
tions of Computer Science (FOCS), 2016 IEEE 57th Annual
Symposium on. IEEE, 2016, pp. 583–592.

[17] M. B. Cohen, J. Kelner, J. Peebles, R. Peng, A. B. Rao,
A. Sidford, and A. Vladu, “Almost-linear-time algorithms for
markov chains and new spectral primitives for directed graphs,”
in Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing. ACM, 2017, pp. 410–419.

[18] M. B. Cohen, J. Kelner, R. Kyng, J. Peebles, R. Peng, A. B. Rao,
and A. Sidford, “Solving directed laplacian systems in nearly-
linear time through sparse lu factorizations,” in 2018 IEEE
59th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 2018, pp. 898–909.

[19] A. Ahmadinejad, A. Jambulapati, A. Saberi, and A. Sidford,
“Perron-frobenius theory in nearly linear time: Positive eigen-
vectors, m-matrices, graph kernels, and other applications,” in
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, 2019, pp. 1387–1404.

[20] O. Reingold, L. Trevisan, and S. Vadhan, “Pseudorandom walks
in regular digraphs and the RL vs. L problem,” in Proceedings
of the 38th Annual ACM Symposium on Theory of Computing
(STOC ‘06), 21–23 May 2006, pp. 457–466, preliminary version
as ECCC TR05-22, February 2005.

[21] A. R. Klivans and D. van Melkebeek, “Graph nonisomorphism
has subexponential size proofs unless the polynomial-time
hierarchy collapses,” SIAM Journal on Computing, vol. 31,
no. 5, pp. 1501–1526 (electronic), 2002. [Online]. Available:
http://dx.doi.org/10.1137/S0097539700389652

[22] N. Nisan, “Pseudorandom bits for constant depth circuits,”
Combinatorica, vol. 11, no. 1, pp. 63–70, 1991.

[23] J. Síma and S. Zák, “Almost k-wise independent sets establish
hitting sets for width-3 1-branching programs,” in CSR, ser.
Lecture Notes in Computer Science, A. S. Kulikov and N. K.
Vereshchagin, Eds., vol. 6651. Springer, 2011, pp. 120–133.

[24] P. Gopalan, R. Meka, O. Reingold, L. Trevisan, and S. Vadhan,
“Better pseudorandom generators via milder pseudorandom re-
strictions,” in Proceedings of the 53rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS ‘12). IEEE, 20–23
October 2012.

[25] R. Meka, O. Reingold, and A. Tal, “Pseudorandom generators
for width-3 branching programs,” in Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing.
ACM, 2019, pp. 626–637.

[26] M. Braverman, A. Rao, R. Raz, and A. Yehudayoff, “Pseudo-
random generators for regular branching programs,” in FOCS.
IEEE Computer Society, 2010, pp. 40–47.

[27] W. Hoza, E. Pyne, and S. Vadhan, “Pseudorandom generators
for unbounded-width permutation branching programs,” Un-
published manuscript, April 2020.

[28] M. Koucký, P. Nimbhorkar, and P. Pudlák, “Pseudorandom
generators for group products: extended abstract,” in STOC,
L. Fortnow and S. P. Vadhan, Eds. ACM, 2011, pp. 263–272.

[29] A. De, “Pseudorandomness for permutation and regular branch-
ing programs,” in IEEE Conference on Computational Complex-
ity. IEEE Computer Society, 2011, pp. 221–231.

[30] T. Steinke, “Pseudorandomness for permutation branching
programs without the group theory,” Electronic Colloquium
on Computational Complexity (ECCC), Tech. Rep. TR12-083,
July 2012. [Online]. Available: http://eccc.hpi-web.de/report/
2012/083/

[31] E. Rozenman and S. Vadhan, “Derandomized squaring of
graphs,” in Proceedings of the 8th International Workshop on
Randomization and Computation (RANDOM ‘05), ser. Lecture
Notes in Computer Science, no. 3624. Berkeley, CA: Springer,
August 2005, pp. 436–447.

[32] W. Hoza and D. Zuckerman, “Simple optimal hitting sets
for small-success RL,” in 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, 2018, pp. 59–64. [Online]. Available:
https://doi.org/10.1109/FOCS.2018.00015

[33] J. Gill, “Computational complexity of probabilistic Turing ma-
chines,” SIAM Journal on Computing, vol. 6, no. 4, pp. 675–695,
1977.

[34] J. Simon, “On tape-bounded probabilistic Turing machine
acceptors,” Theoretical Computer Science, vol. 16, no. 1, pp.
75–91, 1981. [Online]. Available: https://doi-org.ezp-prod1.hul.
harvard.edu/10.1016/0304-3975(81)90032-3

[35] A. Borodin, S. Cook, and N. Pippenger, “Parallel computation
for well-endowed rings and space-bounded probabilistic
machines,” Information and Control, vol. 58, no. 1-3, pp.
113–136, 1983. [Online]. Available: https://doi-org.ezp-prod1.
hul.harvard.edu/10.1016/S0019-9958(83)80060-6

[36] H. Jung, “Relationships between probabilistic and deterministic
tape complexity,” in Mathematical foundations of computer sci-
ence, 1981 (Štrbské Pleso, 1981), ser. Lecture Notes in Comput.
Sci. Springer, Berlin-New York, 1981, vol. 118, pp. 339–346.

[37] D. A. Spielman and S.-H. Teng, “Spectral sparsification of
graphs,” SIAM Journal on Computing, vol. 40, no. 4, pp. 981–
1025, 2011.

[38] D. Cheng, Y. Cheng, Y. Liu, R. Peng, and S.-H. Teng, “Spec-
tral sparsification of random-walk matrix polynomials,” arXiv
preprint arXiv:1502.03496, 2015.

[39] G. L. Miller and R. Peng, “Approximate maximum flow on
separable undirected graphs,” in Proceedings of the twenty-
fourth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 2013, pp. 1151–
1170.

[40] J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng,
“Spectral sparsification of graphs: theory and algorithms,” Com-
munications of the ACM, vol. 56, no. 8, pp. 87–94, 2013.

[41] O. Reingold, S. Vadhan, and A. Wigderson, “Entropy waves,
the zig-zag graph product, and new constant-degree expanders,”
Annals of Mathematics, vol. 155, no. 1, January 2001.

12

http://dx.doi.org/10.1137/S0097539700389652
http://eccc.hpi-web.de/report/2012/083/
http://eccc.hpi-web.de/report/2012/083/
https://doi.org/10.1109/FOCS.2018.00015
https://doi-org.ezp-prod1.hul.harvard.edu/10.1016/0304-3975(81)90032-3
https://doi-org.ezp-prod1.hul.harvard.edu/10.1016/0304-3975(81)90032-3
https://doi-org.ezp-prod1.hul.harvard.edu/10.1016/S0019-9958(83)80060-6
https://doi-org.ezp-prod1.hul.harvard.edu/10.1016/S0019-9958(83)80060-6

	Introduction
	Derandomization of Space-Bounded Computation
	Inverting Laplacian Systems
	Complex spectral approximation, cycle-lifted graphs, and powering

	Preliminaries
	Notation
	Kronecker Product
	Schur Complement

	Spectral Approximation
	Definitions
	Equivalent Formulations

	Approximating Cycle-Lifted Graphs and Powers
	Derandomized Square of Regular Digraphs
	Approximate Pseudoinverse for Cycle-Lifted Graphs
	References

