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EFFICIENCY IMPROVEMENTS IN CONSTRUCTING
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Abstract. We give a new construction of pseudorandom generators from any one-way function.
The construction achieves better parameters and is simpler than that given in the seminal work
of H̊astad, Impagliazzo, Levin, and Luby [SIAM J. Comput., 28 (1999), pp. 1364–1396]. The key
to our construction is a new notion of next-block pseudoentropy, which is inspired by the notion
of “inaccessible entropy” recently introduced in [I. Haitner, O. Reingold, S. Vadhan, and H. Wee,
Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), 2009, pp. 611–
620]. An additional advantage over previous constructions is that our pseudorandom generators are
parallelizable and invoke the one-way function in a nonadaptive manner. Using [B. Applebaum,
Y. Ishai, and E. Kushilevitz, SIAM J. Comput., 36 (2006), pp. 845–888], this implies the existence
of pseudorandom generators in NC0 based on the existence of one-way functions in NC1.
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1. Introduction. The result of H̊astad et al. [18] that one-way functions imply
pseudorandom generators is one of the centerpieces of the foundations of cryptography
and the theory of pseudorandomness.

From the perspective of cryptography, it shows that a very powerful and use-
ful cryptographic primitive (namely, pseudorandom generators) can be constructed
from the minimal assumption for complexity-based cryptography (namely, one-way
functions). With this starting point, numerous other cryptographic primitives can
also be constructed from one-way functions, such as private-key cryptography [6, 27],
bit-commitment schemes [28], zero-knowledge proofs for NP [9], and identification
schemes [4].

From the perspective of pseudorandomness, their result provides strong evidence
that pseudorandom bits can be generated very efficiently, with smaller computational
resources than the “distinguishers” to whom the bits should look random. Such
kinds of pseudorandom generators are needed, for example, for hardness results in
learning [35] and the natural proofs barrier for circuit lower bounds [29]. Moreover,
the paper of H̊astad et al. [18] introduced concepts and techniques that now permeate
the theory of pseudorandomness, such as pseudoentropy and the leftover hash lemma.

A drawback of the construction of H̊astad et al. [18], however, is that it is quite
complicated. While it utilizes many elegant ideas and notions, the final construction
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combines these in a rather ad hoc and indirect fashion due to various technical issues.
In addition to being less satisfactory from an aesthetic and pedagogical perspec-
tive, the complexity of the construction also has a significant impact on its effi-
ciency. Indeed, it is too inefficient to be implemented even for very modest settings
of parameters.

In the last few years, progress has been made on simplifying the construction of
H̊astad et al. (see [20]) and improving its efficiency (see [13]). These constructions,
however, still retain the overall structure of the H̊astad et al. construction and thus
retain some of the complex and ad hoc elements.

In this paper, we present a significantly more direct and efficient construction of
pseudorandom generators from one-way functions. The key to our construction is a
new notion of next-block pseudoentropy, which is inspired by the recently introduced
notion of “inaccessible entropy” [17].

1.1. H̊astad–Impagliazzo–Levin–Luby construction. Informally, a func-
tion f : {0, 1}n → {0, 1}n is a one-way function (OWF) if it is easy to compute
(in polynomial time) and hard to invert even on random inputs. (See section 2 for
formal definitions.) A polynomial-time computable function G : {0, 1}n → {0, 1}m(n)

is a pseudorandom generator (PRG) if it is stretching (i.e., m(n) > n) and its output
distribution is pseudorandom (i.e., G(Un) is computationally indistinguishable from
Um(n)). The theorem of H̊astad et al. [18] relates these notions.

Theorem 1.1. If there exists a one-way function, then there exists a pseudoran-
dom generator.

The key notion underlying their construction is the following generalization of
pseudorandomness.

Definition 1.2 (pseudoentropy, informal). A random variable X has pseudoen-
tropy at least k if there exists a random variable Y such that

1. X is computationally indistinguishable from Y ;
2. H(Y ) ≥ k, where H(·) denotes Shannon entropy.1

A pseudoentropy generator (PEG)2 is a polynomial-time computable function G :
{0, 1}n → {0, 1}m(n) such that X = G(Un) has pseudoentropy at least H(G(Un)) +
Δ(n) for some Δ(n) ≥ 1/ poly(n). We refer to Δ(n) as the entropy gap of G.

That every pseudorandom generator G : {0, 1}n → {0, 1}m(n) is a pseudoentropy
generator can be seen by taking Y = Um(n) and noting that H(Y ) = m(n), but
H(G(Un)) ≤ H(Un) = n. Pseudoentropy generators are weaker in that Y may be
very far from uniform and may even have H(Y ) < n (as long as H(G(Un)) is even
smaller).

The construction of pseudorandom generators from one-way functions proceeds
roughly in the following steps:
OWF to PEG: Given a one-way function f : {0, 1}n → {0, 1}n, H̊astad et al.

[18] define PEG(x, h, i) = (f(x), h, h(x)1,...,i), where h is an appropriate
hash function and h(x)1,...,i denotes the first i bits of h(x). PEG can be
shown to be a pseudoentropy generator with an entropy gap of roughly
Δ = logn/n: Whenever i = log |f−1(x)|+Θ(log n) (which happens with prob-
ability Θ(logn/n)), the first ≈ log |f−1(x)| bits of h(x) extract all the entropy

1The Shannon entropy of a random variable X is defined to be E
x

R←X
[log(1/Pr[X = x])].

2H̊astad et al. [18] refer to such a generator as a false entropy generator and require a pseudoen-
tropy generator to have output pseudoentropy (at least) n+Δ(n), rather than just H(G(Un))+Δ(n).
For the informal discussion here, however, we prefer not to introduce the additional term “false
entropy.”
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of x, and then we get Θ(logn) bits of pseudoentropy by the Goldreich–Levin
hardcore-bit theorem [8].

Converting Shannon entropy to min-entropy and amplifying the gap:
Next, H̊astad et al. use a direct product construction PEG′(x1, . . . , xt) =
(PEG(x1), . . . ,PEG(xt)) to convert pseudoentropy into pseudo-min-entropy
and increase the entropy gap to be ω(logn). This turns out to require taking
t = Õ(n/Δ)2 copies.

Randomness extraction: By hashing, H̊astad et al. extract pseudorandom bits
from the pseudo-min-entropy achieved so far. By also hashing the seed x to
extract any remaining entropy, they obtain a pseudorandom generator. Specif-
ically, they show that G(x, h1, h2) = (h1, h2, h1(PEG

′(x)), h2(x)) is a pseudo-
random generator if the output lengths of h1 and h2 are chosen appropriately.
The choice of output lengths depends on the amount of min-entropy in the
output of PEG′, which in turn depends on the amount of entropy in the out-
put of PEG. Unfortunately, these quantities may be infeasible to compute;
this is handled by the next step.

Enumeration: H̊astad et al. enumerate over all u = O(n/Δ) possible values k
for the output entropy of PEG (up to an accuracy of Δ/2), construct a
pseudorandom generator Gk for each, use composition to make each Gk

stretch its seed by a factor greater than u, and then take G(x1, . . . , xu) =
G1(x1)⊕ · · · ⊕Gu(xu) as their final pseudorandom generator.

The total seed length in this informal description is n · t · u = Õ(n4/Δ3) = Õ(n7).
In fact, we have been cheating a bit in order to present the construction in a more
modular way than in [18]. (The issues we ignored have to do with handling uniform
adversaries, for which the (non)samplability of source Y in Definition 1.2 is an issue.)
The actual seed length in the main construction presented in [18] is of O(n10) (and
the construction involves additional complications). A construction of seed length
O(n8) is outlined in [18] and has been formalized and proved in [20].

Above we see three main sources of inefficiency in the construction: (1) the en-
tropy gap Δ being fairly small, (2) the conversion of Shannon entropy to min-entropy,
and (3) enumerating guesses for the output entropy of the initial pseudoentropy gen-
erator. Haitner, Harnik, and Reingold [13] show how to save a factor of n in the
enumeration step (by constructing a pseudoentropy generator in which more is known
about how the entropy is distributed) to obtain a seed length of O(n7), but still all
of the steps remain.

A further complication in the construction of H̊astad et al. [18] is that the reduc-
tions demonstrating the correctness of the construction are much more complex for
uniform adversaries. This aspect of the proof has recently been simplified and made
much more modular via Holenstein’s uniform hardcore lemma [19, 20].

In case the one-way function is secure against exponential running time (2Ω(n))
adversaries, Holenstein [20] showed how to reduce the seed length to Õ(n4) (or O(n5)
to obtain a pseudorandom generator with exponential security), which was then im-
proved by Haitner, Harnik, and Reingold [11] to Õ(n) (or O(n2) to obtain a pseudo-
random generator with exponential security).3

3In more detail, Holenstein’s construction generalizes [18] for one-way functions of “any
hardness,” while Haitner, Harnik, and Reingold [11] take a totally different route (based on
the“randomized iterate” of a function introduced by Goldreich, Krawczyk, and Luby [7]) and ob-
tain constructions based on exponentially hard one-way functions, as well as on (unknown-)regular
one-way functions.
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1.2. Our approach. Our construction is based on a generalization of the no-
tion of a pseudoentropy generator. It is similar in spirit to the Blum–Micali notion
of next-bit unpredictability [2], which was shown by Yao [36] to be equivalent to
his (now standard) definition of pseudorandomness. In one form, this equivalence
says that the pseudorandomness of a random variable X is equivalent to each bit
of X being indistinguishable from uniform given the previous ones. That is, X =
(X1, . . . , Xn) is computationally indistinguishable from Un = (Y1, . . . , Yn) if and
only if for every i, (X1, X2, . . . , Xi−1, Xi) is computationally indistinguishable from
(X1, X2, . . . , Xi−1, Yi). It is thus natural to consider what happens if we require not
that Xi be pseudorandom given the previous bits, but only that Xi have pseudoen-
tropy given the previous bits. More generally, we can allow the Xi’s to be blocks
instead of bits.

Definition 1.3 (next-block pseudoentropy, informal). A random variable X =
(X1, . . . , Xm) has next-block pseudoentropy at least k if there exists a set of random
variables Y = {Y1, . . . , Ym}, each jointly distributed with X, such that the following
hold:

1. For every i, (X1, X2, . . . , Xi−1, Xi) is computationally indistinguishable from
(X1, X2, . . . , Xi−1, Yi).

2.
∑

iH(Yi|X1, . . .Xi−1) ≥ k.
A next-block pseudoentropy generator (NBPEG) is a polynomial-time computable
function G : {0, 1}n → ({0, 1}�)m such that (X1, . . . , Xm) = G(Un) has next-block
pseudoentropy at least H(G(Un))+Δ(n), where again Δ(n) is called the entropy gap.

That is, in total, the bits of X “look like” they have k bits of entropy given the
previous ones. Note that the case of one block (m = 1) amounts to the definition of
a pseudoentropy generator. Also note that, when m > 1, allowing Y to be correlated
with X in this definition is essential: For example, if all the blocks of X are always
equal to each other (and have noticeable entropy), then there is no way to define Y
that is independent of X and satisfies the first condition.

With this notion, our construction proceeds as follows.
OWF to NBPEG: Given a one-way function f , we define G(x, h) = (f(x), h, h(x)1,

h(x)2, . . . , h(x)n), where h : {0, 1}n → {0, 1}n is an appropriate hash function
and h(x)i is the ith bit of h(x). Note that this is the same as the construction
of H̊astad et al. [18], except that we do not randomly truncate the output.
At first, this seems problematic; by revealing all of h(x), it becomes easy for
an adversary to compute x, and thus the pseudoentropy of output equals its
real entropy (i.e., we have zero entropy gap). We show, however, that it does
indeed have next-block pseudoentropy at least n+ logn, which is even larger
than the seed length of G. We have gained in two ways here. First, the
entropy gap is now Δ = logn instead of Δ = logn/n. Second, we know the
total amount of entropy in the output (though not the amount contributed
by the individual blocks). These two advantages improve the complexity and
security of the rest of the construction. Furthermore, the fact that the next-
block pseudoentropy is larger than the seed length simplifies the construction,
as we do not need to extract any additional entropy from the seed.

Entropy equalization: Here we use a technique from [17] to convert our knowledge
about the total entropy (summed over all blocks) into knowledge about the
entropy in the individual blocks. We evaluate G on u = O(n/Δ) independent

seeds and concatenate the outputs, but randomly shifted by i
R← [n] coordi-

nates. This increases our seed length and our entropy by a multiplicative
factor of approximately u, but now almost all the blocks have pseudoentropy



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EFFICIENCY IMPROVEMENTS IN PSEUDORANDOM GENERATORS 1409

at least the average pseudoentropy of the blocks of G.
Converting Shannon entropy to min-entropy and amplifying the gap: This

works the same as in [18]. Again we take t = Õ(n/Δ)2 copies but concatenate
them within each block to obtain an m-block generator G′. Now each of the
m blocks is indistinguishable from having high min-entropy conditioned on
the previous ones. Thus, what we have is a computational analogue of a block
source [3], which is a random source in which each block has high min-entropy
conditioned on the previous ones.

Randomness extraction: For this step, we use a known method for block-source
extraction [3, 37] and define G(x, h) = (h, h(G′(x)1), . . . , h(G′(x)m)), where
h is a universal hash function. Since we know how much pseudo-min-entropy
is in each block, there is no difficulty in choosing the output length of h.

In total, our seed length is O(n ·u · t) = Õ(n4). For the case of exponentially hard
one-way functions, we can obtain Δ = Ω(n) and thus achieve seed Õ(n) matching [11]
(but, unlike in [11], our construction uses nonadaptive calls to the one-way function).

In addition, our pseudorandom generator makes q = u · t invocations of the one-
way functions and achieves additive stretch s = Ω(u · t ·Δ) = Ω(q · logn). The ratio
s/q = Ω(logn) is optimal for black-box constructions, as shown by Gennaro et al. [5],
and was not achieved by any previous construction from general one-way functions.

Note that our construction involves no “guessing” of entropies, neither in the
construction of the initial NBPEG G, nor in an enumeration step at the end. While
the entropy equalization “costs” the same (namely, u = O(n/Δ)) as enumeration did,
it is actually doing more for us. Enumeration handled our lack of knowledge of a
single entropy value (for which there were only O(n/Δ) choices), but here equaliza-
tion is handling lack of knowledge for approximately n entropy values (one for each
block), for which there are exponentially many choices. Moreover, enumeration re-
quired composing the pseudorandom generators to increase their stretch, resulting
in a construction that is highly sequential and makes adaptive use of the one-way
function. Our pseudorandom generators make nonadaptive use of the one-way func-
tion and are parallelizable (e.g., in NC1) for getting pseudorandom generators with
small stretch. Using Applebaum, Ishai, and Kushilevitz [1], this implies the existence
of pseudorandom generators in NC0 based on the existence of one-way functions
in NC1.

1.3. Relation to inaccessible entropy. The notion of next-block pseudoen-
tropy generators was inspired by the notion of inaccessible entropy generators in [17].
These are generators G that also produce m blocks (x1, . . . , xm) with the property
that it is infeasible for an adversary to generate a sequence of blocks (x1, . . . , xm)
that are consistent with the output of G in such a way that entropy of the individ-
ual blocks xi is high (conditioned on the state of the adversary after generating the
previous blocks). Thus, in a computational sense, the output of G has low entropy.
For this reason, the notions of next-block pseudoentropy generators and inaccessible
entropy generators seem to be dual to each other.

The initial construction of an inaccessible entropy generator in [17] is G(x) =
(f(x)1, . . . , f(x)n, x), which is very similar to our construction of a next-block pseu-
doentropy generator except that there is no hashing and the bits of f(x) instead of
h(x) are treated as separate blocks. This initial step is followed by entropy equaliza-
tion and gap amplification steps that are exactly the same as those we use (but are
analyzed with respect to dual notions). The final hashing step in [17] (to construct
statistically hiding commitment schemes) is more complex than ours and is necessarily
interactive.
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Interestingly, the notion of an inaccessible entropy generator was introduced in
an attempt to make the construction of statistically hiding commitment schemes from
one-way functions “as simple” as the construction of pseudorandom generators from
one-way functions, via manipulating notions of computational entropy. (The previ-
ous construction, from [14], was extremely complex.) In return, that effort has now
inspired our simplifications and improvements to the construction of pseudorandom
generators.

1.4. Subsequent work. A subsequent paper by Vadhan and Zheng [34] im-
proves our results in two ways. First, they remove the hashing from our construction
of a next-bit pseudoentropy generator. Specifically, they show that if f : {0, 1}n →
{0, 1}n is a one-way function, then G(x) = (f(x), x1, . . . , xn) is already a next-block
pseudoentropy generator (as we conjectured in oral presentations of our work). Sec-
ond, they show how to avoid the seed-length blow-up due to entropy equalization and
thereby reduce the seed length from Õ(n4) to Õ(n3) (at the price of making adaptive
calls to the one-way function).

A new paper by Holenstein and Sinha [23] shows that any black-box construction
of a pseudorandom generator from a one-way function on n-bit inputs must invoke the
one-way function Ω(n/ logn) times. Their lower bound also applies to regular one-way
functions (of unknown regularity) and is tight in this case (due to the constructions
of [7, 13]). Our construction from general one-way functions, as well as the improved
version in [34], invokes the one-way function Õ(n3) times. It remains an open question
whether or not the superlinear number of invocations or the superlinear seed length
is necessary, or the constructions can be furthered improved.

1.5. Paper organization. Notation and definitions used through this paper are
given in section 2, while the new notion of a next-block pseudoentropy generator is
formally defined in section 3. In section 4 we present our construction of a next-block
pseudoentropy generator from one-way functions, while in section 5 we show how to
use next-block pseudoentropy generators to get a pseudorandom generator. Finally,
in section 6 we use the above reductions to prove the main result of this paper.

2. Preliminaries.

2.1. Random variables. Let X and Y be random variables taking values in
a discrete universe U . We adopt the convention that when the same random vari-
able appears multiple times in an expression, all occurrences refer to the same in-
stantiation. For example, Pr[X = X ] is 1. The support of a random variable X is

Supp(X) := {x : Pr[X = x] > 0}. We write x
R← X to indicate that x is selected

according to X . Similarly, given a finite set S, we let s
R← S denote that s is selected

according to the uniform distribution on S.
We write Δ(X,Y ) to denote the statistical difference (also known as variation

distance) between X and Y ; i.e.,

Δ(X,Y ) = max
T⊆U
|Pr[X ∈ T ]− Pr[Y ∈ T ]| .

If Δ(X,Y ) ≤ ε (resp., Δ(X,Y ) > ε), we say that X and Y are ε-close (resp., ε-far).

2.2. Entropy measures. We refer to several measures of entropy in this work.
The relation and motivation of these measures are best understood by considering
a notion that we refer to as the sample-entropy: For a random variable X and x ∈
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Supp(X), we define the sample-entropy of x with respect to X to be the quantity

HX(x) := log(1/Pr[X = x]).

The sample-entropy measures the amount of “randomness” or “surprise” in the spe-
cific sample x, assuming that x has been generated according to X . Using this notion,
we can define the Shannon entropy H(X) and min-entropy H∞(X) as follows:

H(X) := E
x

R←X

[HX(x)],

H∞(X) := min
x∈Supp(X)

HX(x).

Flattening Shannon entropy. It is well known that the Shannon entropy of a
random variable can be converted to min-entropy (up to a small statistical distance)
by taking independent copies of this variable.

Lemma 2.1.

1. Let X be a random variable taking values in a universe U , let t ∈ N, and let

ε > 0. Then with probability at least 1− ε− 2−Ω(t) over x
R←Xt,

|HXt(x)− t ·H(X)| ≤ O(
√

t · log(1/ε) · log(|U| · t)).
2. Let X,Y be jointly distributed random variables, where X takes values in a

universe U , let t ∈ N, and let ε > 0. Then with probability at least 1−ε−2−Ω(t)

over (x, y)
R← (Xt, Y t) := (X,Y )t,∣∣HXt|Y t(x|y)− t ·H(X |Y )

∣∣ ≤ O(
√

t · log(1/ε) · log(|U| · t)).
Proof.

1. For x = (x1, . . . , xt), we have HXt(x) =
∑t

i=1 HX(xi). Thus, when x
R←

Xt, HXt(x) is the sum of t independent random variables HX(xi), and thus
we can obtain concentration around the expectation (which is t · H(X)) via
Chernoff–Hoeffding bounds. These random variables HX(xi) are not bounded
(as is required to apply the standard Chernoff–Hoeffding bound), but they
are unlikely to be much larger than O(log |U|). Specifically, for every τ > 0
we have

Pr
xi

R←X

[HX(xi) ≥ log(|U|/τ)] ≤
∑

xi∈U :HX (xi)≥log(|U|/τ)
Pr[X = xi]

≤ |U| · 2− log(|U|/τ)

= τ.

A Chernoff bound for random variables with such exponentially vanishing
tails follows from [32], and it says that the probability that the sum de-
viates from the expectation by at least Δ · (log(|U|/τ)) + 2τt is at most
exp(−Ω(Δ2/t)) + exp(−Ω(τt)), provided that τ ∈ [0, 1]. An appropriate
choice of Δ = O(

√
t log(1/ε)) and τ = min{1, O(log(1/ε)/t)} completes the

proof.
2. The proof of part 2 follows by similar reasons, noting that HXt|Y t(x|y) =∑t

i=1 HX|Y (xi|yi).
2.3. One-way functions and pseudorandom generators. We recall the

standard definitions of one-way functions and pseudorandom generators.
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Definition 2.2 (one-way functions). Let f : {0, 1}n 	→ {0, 1}m be a polynomial-
time computable function, where n is a security parameter and m = m(n). For
T = T (n) and ε = ε(n), we say that f is a (T, ε)-one-way function if for every
probabilistic algorithm A running in time T and all sufficiently large n, we have

Pr[A(Y ) ∈ f−1(Y )] ≤ ε,

where the probability is taken over Y = f(Un) and the coin tosses of A. We say that
f is a one-way function if it is a (p(n), 1/p(n))-one-way function for every polyno-
mial p.

Definition 2.3 (pseudorandom generators). Let X be a random variable, de-
pending on a security parameter n and taking values in {0, 1}m for m = m(n). For
T = T (n) and ε = ε(n), we say that X is (T, ε)-pseudorandom if for every probabilistic
distinguisher D running in time T and all sufficiently large n, we have

|Pr[D(X) = 1]− Pr[D(Um) = 1]| ≤ ε.

A polynomial-time computable function G : {0, 1}n 	→ {0, 1}m with m = m(n) > n is
a (T, ε)-pseudorandom generator if G(Un) is (T, ε)-pseudorandom.

We say that X is pseudorandom if it is (p(n), 1/p(n))-pseudorandom for every
polynomial p. Similarly, G is a pseudorandom generator G if G(Un) is pseudorandom.

3. Next-block pseudoentropy. In this section we formally define the new no-
tion of next-block pseudoentropy for the cases of both Shannon entropy and min-
entropy. The definitions differ from the informal definition given in the introduction
(Definition 1.3) in the following two ways, both of which are important for the treat-
ment of uniform adversaries:

• We require indistinguishability even against algorithms that have an oracle
for sampling from the joint distribution (X,Yi). (This enables us to show,
using a hybrid argument, that pseudoentropy increases when we are taking
many independent copies of X . In the case of nonuniform adversaries, no
oracle for sampling from (X,Yi) is needed, as the samples can be nonuni-
formly hardwired into the adversary.)
• In order to achieve the first item, we allow the random variables Yi to depend
on the distinguisher.

Similar issues arise for treating uniform adversaries with standard pseudoentropy.
Definition 3.1 (next-block (Shannon) pseudoentropy). Let X be a random

variable taking values in Um, where X, U , and m may all depend on a security
parameter n. For T = T (n), k = k(n), and ε = ε(n), we say that X has (T, ε) next-
block pseudoentropy at least k if for every oracle-aided distinguisher D(·) of running
time at most T , there exists a set of random variables {Y1, . . . , Ym} over U such that

1.
∑m

i=1 H(Yi | X1, . . . , Xi−1) ≥ k, and
2. E

i
R←[m]

[
Pr[DOX,Y (X1, . . . , Xi) = 1]− Pr[DOX,Y (X1, . . . , Xi−1, Yi) = 1]

] ≤ L·
ε, where OX,Y (i), for i ∈ [m], samples according to the joint distribution
(X,Yi), and L = L(n) is a bound on the number of calls made by D to OX,Y

(including the challenge itself).
We say that X has next-block pseudoentropy at least k if it has (p(n), 1/p(n))-next-
block pseudoentropy at least k for every polynomial p. We say that every block of X
has (T, ε)-next-block pseudoentropy at least α = α(n) if condition 1 above is replaced
with H(Yi | X1,...,i−1) ≥ α for every i ∈ [m].

Note that in the informal description given in the introduction we required that
(X1, . . . , Xi) be indistinguishable from (X1, . . . , Xi−1, Yi) for every i. This would be
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equivalent to putting absolute values inside the indistinguishability condition (con-
dition 2) above (and below). This is purely for technical convenience, as D can use
O((m/ε)2) random samples from its oracle to test whether the (signed) advantages
inside the expectation are positive or negative to within an accuracy of ±ε/2m and
negate itself for some values of i in order to ensure a positive advantage of at least
Lε/2.

Definition 3.2 (next-block pseudo-min-entropy). Let X be a random variable
taking values in Um, where X, U , and m may all depend on a security parameter n.
For T = T (n), α = α(n), and ε = ε(n), we say that every block of X has (T, ε)-
next-block pseudo-min-entropy α if for every oracle-aided distinguisher D(·) running
in time at most T (n), there exists a set of random variables {Y1, . . . , Ym} over U such
that

1. H∞(Yi | X1,...,i−1) ≥ α, and
2. E

i
R←[m]

[
Pr[DOX,Y (X1, . . . , Xi) = 1]− Pr[DOX,Y (X1, . . . , Xi−1, Yi) = 1]

] ≤ L·
ε, where OX,Y and L are as in Definition 3.1.

We say that every block of X has next-block pseudo-min-entropy α if every block of
X has (p(n), 1/p(n))-next-block pseudo-min-entropy α for every polynomial p.

Unless explicitly stated otherwise, in the following sections we view a distribution
over {0, 1}t as a t-block distribution. When we refer to the next-block pseudoentropy
properties of a function G : {0, 1}n → {0, 1}m, these refer to the random variable
G(Un).

4. One-way functions to next-block pseudoentropy generator. This sec-
tion shows how to construct a next-block pseudoentropy generator Gnb

f out of a
one-way function f : {0, 1}n 	→ {0, 1}n.

Theorem 4.1 (next-block pseudoentropy generator from one-way functions).
Let n be a security parameter and f : {0, 1}n 	→ {0, 1}n be a polynomial-time com-
putable function. Then there exists a polynomial-time computable generator Gnb :
{0, 1}d 	→ {0, 1}m, with d = d(n) ∈ O(n) and m = m(n) ∈ O(n), such that the
following hold:

Security. Assume that f is a (T, ε)-one-way function for some T = T (n) and
ε = ε(n). Then for any poly(n)-time computable value of ε′ = ε′(n) > 2−n/4, Gnb

has (T ·(ε′/n)O(1), ε′)-next-block-pseudoentropy k = d+log(1/ε)−O(logn). Moreover,
the reduction from the security of Gnb to that of f is fully black-box.4

Complexity. Gnb is computable in NC1 with one (uniformly random5) oracle call
to f .

When f is a standard one-way function, we can take T = 1/ε = nc′ for an arbitrar-
ily large constant c′ and set ε′ = 1/nγc′ for a small universal constant γ, to deduce that
Gnb has (n

Ω(c′), 1/nΩ(c′))-next-block pseudoentropy at least k = d+c′ logn−O(logn).
In particular, Gnb has next-block pseudoentropy at least k = d+ log n.

Our construction employs a family of hash functions Q = {Qn = {q : {0, 1}n 	→
{0, 1}n}}. We will shortly discuss the properties needed fromQ. Given an appropriate
family Q, we can define Gnb

f quite easily.
Construction 4.2. On security parameter n, define the algorithm Gnb on do-

main {0, 1}n×Qn, for Qn = {q : {0, 1}n 	→ {0, 1}n}, and oracle f : {0, 1}n → {0, 1}n

4That is, the proof of security treats both f and a possible adversary as black boxes (i.e., as
oracles). See [30] for more details.

5Here and similarly throughout the paper, we mean that when Gnb is evaluated on a uniformly
random seed, its oracle call to f is uniformly random.
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as follows:

Gnb
f (s, q) := (f(s), q, q(s)1, . . . , q(s)n),

where s is n bits long and q(s)i denotes the ith bit of q(s). (Note that we abuse
notation and write q for both the function and its description.)

The following properties regarding the efficiency of Gnb
f are immediate.

Lemma 4.3. If Q is in NC1, then Gnb
f is in NC1 with one oracle call to f . If

the description length of Qn is O(n), then the input length of Gnb
(·) is linear in its

first argument (as |q| = O(|s|). Finally, Gnb
f invokes f exactly once (and thus is

nonadaptive with respect to f).
On a uniformly random seed for Gnb, the single invocation of f is on a uniformly

random input as well.
Indeed, we define Q that is both efficient and has a short description. The main

requirement from Q, however, has to do with ensuring that Gnb
f is a next-block

pseudoentropy generator. Let us start by presenting the following strategy showing
that the entropy gap (i.e., k−d) is at least logn when f is a standard one-way function.
Let Df(y) := log |{x ∈ {0, 1}n : f(x) = y}|, and let S be uniformly distributed over
{0, 1}n. Then the distribution of S conditioned on y = f(S) still has Df (y) bits of
entropy. We would like Q to extract these bits and in addition to extract logn bits
of pseudoentropy. More concretely, we ask that the first Df (y)+ logn bits of q(S) be
pseudorandom even given y = f(S) and q (to simplify notation, we ignore round-off
errors and treatDf(y) as an integer). Given such a Q, we are essentially done (at least

when considering nonuniform security6). Consider the distributions X = Gnb
f (S,Q)

and the distribution (Y1, . . . , Yn) := (f(S), Q,R1, . . . Rk, Q(S)K+1, . . . , Q(S)n), where
S and Q are uniformly distributed, K := Df (f(S))+logn, and the Ri’s are uniformly
random bits. By the above discussion, X and Y (more formally, X and {Yi}) are next-
block indistinguishable. In addition, we have

m∑
i=1

H(Yi | X1,...,i−1) ≥ H(f(S)) + H(Q) + H(R1, . . . , RK |f(S))

= H(f(S)) + H(Q) + E[Df (f(S)) + logn]

= n+ log |Qn|+ logn,

and therefore Gnb
f is indeed a next-block pseudoentropy generator.

The first remaining challenge is to construct such a familyQ. As we discuss below,
it is easy to obtain all the above properties with hash functions that have description
length n2. For better efficiency, we settle on Q with slightly weaker properties (where
the pseudorandom bits extracted by q ∈ Q are pseudorandom up to advantage 1/n
rather than an arbitrary inverse polynomial advantage). An additional challenge is
achieving next-block pseudoentropy in the (more standard) uniform setting. The
difficulty is that we need X and Y to be next-block indistinguishable even given
oracles that sample these distributions. While X is efficiently samplable (and thus an
oracle that samples X is easy to implement), Y may not be (as Df(y) may be hard
to compute). To overcome this difficulty we employ Holenstein’s uniform hardcore
lemma [19]. Employing the hardcore lemma also closes the gap between the properties
of Q we obtain and the stronger properties in the discussion.

6That is, the distinguisher is nonuniform and does not get oracle access to OX,Y .
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4.1. The family Q and unpredictability. A family Q with the above proper-
ties, but with description length n2, can be obtained by defining q(s) to be As, where
A is a uniformly chosen n×n matrix over GF(2). For a random y = f(S), the leftover
hash lemma [25] yields that the first Df(y)− c logn bits of Q(S) are statistically close
to uniform up to statistical distance 1/nΩ(c). An additional (c + 1) · logn bits are
pseudorandom by reduction to the Goldreich–Levin hardcore predicate [8]. An inter-
esting open problem is to come up with a family Q that has similar properties and
in addition has description length n. Instead, in this paper we relax the requirements
from Q.

Defining q(s) = As is equivalent to selecting each one of the output bits of q(s)
to be a uniformly selected location of the Hadamard encoding of s. If instead we
let each bit be a location in a polynomially long encoding of s, we get description
length n logn. As long as this encoding possesses good list-decoding properties, such
a construction still suffices for our purposes. To save the final logn factor, we look
at an encoding of x into logarithmically long symbols (and thus need only n/ logn
symbols as the output of q(s)). The following lemma formalizes the properties of the
encoding we use. As with the Hadamard code, the code we use satisfies both the role
of extracting Df (y)−O(log n) truly random bits via the leftover hash lemma and the
role of extracting O(log n) pseudorandom bits similarly to a hardcore function.

Lemma 4.4. There exists an NC1 algorithm Enc such that, on input s ∈ {0, 1}n,
the algorithm Enc produces t = poly(n) symbols Enc(s)1,Enc(s)2, . . . ,Enc(s)t with
each Enc(s)i ∈ {0, 1}� for � = 
logn� and such that the following properties hold:

Almost 2-universal. For every two distinct n-bit strings s �= s′ it holds that

Pr
i∈[t]

[Enc(s)i = Enc(s′)i] ≤ 2−� · (1 + 1/(2n5)).

List decoding. There exists a polynomial-time algorithm Dec that, on input 1n

and given oracle access to a function Ã : [t]×{0, 1}�→ {0, 1}, outputs a list of poly(n)
strings that includes every s ∈ {0, 1}n satisfying the following:

Pr
i
R←[t]

[Ã(i,Enc(s)i) = 1]− Pr
i
R←[t],z

R←{0,1}�
[Ã(i, z) = 1] > 1/5n2.

Note that the oracle Ã has a domain of size t · 2� = poly(n), so Dec has enough
time to query it on all inputs (i.e., “local decoding” is not needed).

Proof. Enc can be taken to be the concatenation of the Reed–Solomon code of
degree d = n− 1 over F = GF(2c�) with the Hadamard code over F′ = GF(2�), where
� = 
logn� and c ∈ N is a sufficiently large constant to be determined below. That
is, codewords are of length t = |F|2 = poly(n), and for s = (s0, . . . , sn−1) ∈ {0, 1}n
and (a, b) ∈ F

2, we set Enc(s)a,b = (
∑

i=0 sia
i) b ∈ F

′, where  denotes dot product
(viewing elements of F as c-dimensional vectors over F′).

The almost-universality property follows from a standard argument: the probabil-
ity that Enc(s)a,b = Enc(s′)a,b is bounded by the probability that two corresponding
symbols in (the same) random location of two distinct Reed–Solomon codewords agree
(which is at most d/|F| < n/nc) plus the probability that two corresponding symbols
in (the same) random location of two distinct Hadamard codewords agree (which is
1/|F′| = 1/2�). By taking c sufficiently large, we get the desired property.

For the list-decoding property, given Ã : [t]×{0, 1}� → {0, 1} that can distinguish
a random symbol of some (unknown) codeword Enc(s) from uniform with advantage
greater than 1/5n2, we show how to obtain from Ã a list k = poly(n) of “received
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words” r1, . . . , rk ∈ ({0, 1}�)t such that Enc(s) agrees with one of the ri’s in more than
an α = (1 + 1/5n2)/2� fraction of positions. By applying the list-decoding algorithm
of [10, Thm. 7] to each of the ri’s, we are guaranteed to recover each such s, provided
that

α ≥ 1

|F′| +
√

d

|F| +O

(
1

t

)
.

Since α = 1/|F′| + Ω(1/n3) and
√
d/|F| + O(1/t) = O(

√
1/nc−1), the inequality is

satisfied for a sufficiently large choice of the constant c.
We still need to show how to obtain the received words r1, . . . , rk from Ã. For

this, we use the standard transformation from distinguishers to predictors [36]. For
each pair u, v ∈ F

′, we define

ru,v[i] =

{
u if Ã(i, u) = 1,

v otherwise.

Now consider any s such that

Pr
i
R←[t]

[Ã(i,Enc(s)i) = 1]− Pr
i
R←[t],z

R←{0,1}�
[Ã(i, z) = 1] > 1/5n2.

Let’s analyze the expected agreement between s and ru,v, when u and v are uniformly
random distinct elements of {0, 1}�:

Pr
u,v,i

[ru,v[i] = Enc(s)i]

= Pr
u,v,i

[u = Enc(s)i ∧ Ã(i,Enc(s)i) = 1] + Pr
u,v,i

[v = Enc(s)i ∧ Ã(i, u) = 0]

=
1

2�
· Pr

i
[Ã(i,Enc(s)i) = 1] +

1

2�
· Pr
i,u
=Enc(s)i

[Ã(i, u) = 0]

=
1

2�
·
(
Pr
i
[Ã(i,Enc(s)i) = 1] + 1− Pr

i,u
=Enc(s)i
[Ã(i, u) = 1]

)
>

1

2�
·
(
1 + Pr

i
[Ã(i,Enc(s)i) = 1]− Pr

i,u
[Ã(i, u) = 1]

)
>

1 + 1/5n2

2�
.

Construction 4.5. Let n, Enc, t, and � be as in Lemma 4.4. The description of
a random hash function q ∈ Qn is composed of 
n/�� random indices i1, . . . , i�n/�� ∈
[t]. On input s, define q(s) = Enc(s)i1 , . . . ,Enc(s)i�n/�� (which for simplicity is as-
sumed to be exactly n bits long).

Lemma 4.6. Let n be a security parameter, let Q be as in Construction 4.5, let
Gnb be the oracle-aided algorithm for Construction 4.2 (with respect to Q), and let
f : {0, 1}n → {0, 1}n be a (T, ε)-one-way function for T = T (n) ≥ n, ε = ε(n). Then
there exists a constant c > 0 such that

n−1∑
i=0

Pr[P (f(S), Q,Q(S)1, . . . , Q(S)i) �= Q(S)i+1] ≥ n−H(f(S)) + log(1/ε)− c logn

2
,

even when P is allowed to run in time T/nc, where S and Q are uniformly distributed
over {0, 1}n and Qn, respectively.
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Note that above (and below) Q(S)1, . . . , Q(S)i+1 refer to individual bits of Q(S),
not �-bit blocks.

Proof. Consider the following two distributions:
• X := (f(S), Q,Q(S)1, . . .Q(S)K), where K is the random variable Df (f(S))
+ log(1/ε)− c′ logn, and
• Y := (f(S), Q,R1, . . . , RK), where R1, . . . , RK are uniformly random and
independent bits.

We show that, for a sufficiently large choice of the constant c′, no algorithm
with running time T ′ = T/nc′ can distinguish X from Y with advantage better
than 1/n. The lemma then follows by observing that the sum of the error probabil-
ities in predicting the bits R1, . . . , RK is at least E[K]/2. In more detail, first note
that K is always smaller than n, because if Df (t) ≥ n − log(1/ε) for some t, then
Pr[Un ∈ f−1(t)] ≥ ε, which gives rise to a trivial inversion algorithm that succeeds
with probability at least ε. Thus,

n−1∑
i=0

Pr[P (f(S), Q,Q(S)1, . . . , Q(S)i) �= Q(S)i+1]

≥
n−1∑
i=0

Pr[i < K ∧ (P (f(S), Q,Q(S)1, . . . , Q(S)i) �= Q(S)i+1)]

≥
n−1∑
i=0

(Pr[i < K ∧ (P (f(S), Q,R1, . . . , Ri) �= Ri+1)]− 1/n)

≥
n−1∑
i=0

(Pr[i < K]/2− 1/n)

= E[K]/2− 1

= (n−H(f(S)) + log(1/ε)− c′ logn− 2)/2.

We assume for simplicity that � always divides both Df(t) and log(1/ε). Let A =
Df (f(S))/� and a′ = log(1/ε)/�. Then recall that q(s) is defined to be (Enc(s)i1 , . . . ,
Enc(s)i�n/��). Therefore, we need to prove that (Enc(S)I1 , . . . ,Enc(S)IA+a′−c′ ) is 1/n-
pseudorandom even given f(S) and Q = (I1, . . . , I�n/��). To prove this, we introduce
a hybrid distribution Z, defined as follows:

• Z := (f(S), Q,Enc(S)I1 , . . . ,Enc(S)IA−5 , ZA−4, . . . , ZA+a′−c′), where Z1, . . . ,
ZA+a′−c′ are uniformly random and independent elements of {0, 1}�.

First we argue that Z has statistical distance at most 1/10n2 from Y = (f(S), Q,
Z1, . . . , ZA+a′−c′). Let’s condition on any fixed value f(S) = t. This also determines
that A = Df (t)/� =: a. The distribution of S conditioned on f(S) = t still has min-
entropyDf(t) = a·�. As Enc is almost universal (see the first property in Lemma 4.4),
for every two distinct n-bit strings s �= s′ we have that

Pr[Enc(s)I1 , . . . ,Enc(s)Ia−5 = Enc(s′)I1 , . . . ,Enc(s
′)Ia−5 ] ≤ 2−(a−5)� · (1 + 1/100n4).

Therefore, the leftover hash lemma [25, 26] yields that (conditioned on f(S) = t) the
prefix (Q,Enc(S)I1 , . . . ,Enc(S)IA−5) is δ-close to uniform for δ = 1/2·

√
2−5� + 1/100n4

≤ 1/10n2.
Now we argue that there is no algorithm B that runs in time T ′ and distin-

guishes X = (f(S), Q,Enc(S)I1 , . . . ,Enc(S)IA+a′−c′ ) from Z with advantage better
than 9/10n. Assume that there is such an algorithm A. By a hybrid argument,
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we get that for a random index J between A − 4 and A + a′ − c′, the algorithm B
distinguishes with advantage at least 9/10n2 the distributions HJ and HJ+1, where

• Hj = (f(S), Q,Enc(S)I1 , . . . ,Enc(S)Ij−1 , Zj, . . . , ZA+a′−c′).
Now, by a Markov argument, it holds that, with probability at least 1/2n2 over

fixing B’s coin tosses and all components of HJ and HJ+1 other than IJ , Enc(S)IJ ,
and ZJ , B distinguishes (IJ ,Enc(S)IJ ) from (IJ , ZJ) with advantage at least 2/5n2.
Thus, if we can generate those components given a value of f(S), we can plug B into
the decoder Dec guaranteed by Lemma 4.4 to recover S and hence invert f . We will
not generate the components exactly but closely enough so that the inversion still
succeeds with nonnegligible probability.

The inverter gets as input t = f(S) and operates as follows:

1. Guess the value of a
R← [n/�].

2. Sample uniformly at random coin tosses for B.

3. Sample uniformly at random i1, . . . , ia−5
R← [t] and z1, . . . , zia−5

R←{0, 1}�.
4. Select at random j

R← {a− 4, . . . , a+ a′ − c′}.
5. Sample uniformly at random ia−4, . . . , ij−1, ij+1, . . . , ia+a′−c′

R←[t] and za−4, . . . ,
zj−1, zj+1, . . . , za+a′−c′

R← {0, 1}�.
6. We have fixed all of the inputs of B aside from ij and zij . Denote the resulting

algorithm after all of these fixings as B̃.

7. Invoke DecB̃(1n), where Dec is as in Lemma 4.4.

8. Select at random an element in the list returned by DecB̃.
Let’s examine how the distribution of B’s inputs that are fixed by the inverter

differs from that in HJ and HJ+1:
• The inverter chooses a uniformly at random. This value is correct (i.e., equal
to � ·Df (t)) with probability at least 1/n.
• The inverter chooses z1, . . . , zia−5 uniformly at random, whereas in HJ these
are distributed according to (Enc(S)I1 , . . . ,Enc(S)Ia−5). However, by the
indistinguishability of Z and Y , the latter distribution is (1/10n2)-close to
uniform (given f(S) and Q). Thus, this reduces the probability of a good
fixing by at most 1/10n2, from 1/2n2 to 2/5n2.
• The inverter chooses za−4, . . . , zj−1 uniformly at random, whereas in HJ

these are distributed according to (Enc(S)IA−4 , . . . ,Enc(S)IJ−1). However,
this amounts to guessing at most u = (a′+5− c′) · � bits, and hence is correct
with probability at least 2−u ≥ ε · nc′/n5.

In total, the list-decoding algorithm successfully recovers S (among a list of poly(n)
possibilities) with probability at least (1/n) · (2/5n2) · (ε · nc′/n5) = ε · nc′/ poly(n).
Choosing at random from the list of decodings reduces the inversion probability by
another factor of poly(n). Taking c′ sufficiently large, the inverter succeeds with
probability at least ε. We note that the inverter runs in time poly(n) making at
most 2� · t = poly(n) queries to B. Thus if B runs in time T (n)/nc for a sufficiently
large constant c, the inverter runs in time at most T (n), contradicting the security
of f .

4.2. Proving next-block pseudoentropy via hardcore lemma. Lemma 4.6
shows that the output of Gnb (after f(S) and Q) satisfies a weak next-bit unpre-
dictability. In this section, we use Holenstein’s uniform variant of Impagliazzo’s
hardcore lemma [24] to translate this weak next-bit unpredictability into next-bit
pseudoentropy, thereby proving Theorem 4.1.

The hardcore lemma translates weak unpredictability (of a single bit) into strong
unpredictability on a noticeable fraction of inputs, as shown next.
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Proposition 4.7 (see [21]). Let n be a security parameter, and let h : {0, 1}n 	→
{0, 1}�(n) and V : {0, 1}n 	→ {0, 1} be polynomial-time computable functions. Let δ0 =
δ0(n) ∈ [0, 1], δ = δ(n) ∈ [δ0, 1], and γ = γ(n) ∈ [0, 1] > 2−n/3. Assume that

Pr[M(δ0, γ, h(Un)) = V (Un)] ≤ 1− δ/2

for every probabilistic algorithm M running in time T = T (n) and large enough n.
Then for every oracle-aided predictor P running in time T · (γδ0/n)O(1) and all suf-
ficiently large n, there exists a set L ⊆ {0, 1}n of density at least δ such that

Pr
W

R←L

[PχL(h(W )) = V (W )] < (1 + γ)/2,

where χL is the characteristic function of L, provided that all the queries of P to χL

are computed independently of the input h(W ). Furthermore, the reduction is fully
black-box.

The above differs from Holenstein’s hardcore lemma in that it does not require
that δ be known to M , but requires only a lower bound δ0 on δ. However, the above
can be readily deduced from Holenstein’s version; see the appendix.

We now reinterpret Holenstein’s hardcore lemma in terms of conditional pseu-
doentropy, similarly to the reinterpretation of Impagliazzo’s hardcore lemma in [31].

Proposition 4.8. Let n be a security parameter, δ0 = δ0(n) ∈ [0, 1], δ = δ(n) ∈
[δ0, 1], and γ = γ(n) ∈ [0, 1] > 2−n/3. Let (A,B) be a poly(n)-time samplable random
variable over {0, 1}�(n) × {0, 1} such that

Pr[M(δ0, γ, A) = B] ≤ 1− δ/2

for every probabilistic algorithm M running in time T = T (n) and large enough n.
Then for every oracle-aided distinguisher D running in time T ′ = T · (δ0γ/n)O(1) and
all sufficiently large n, there is a random variable C, jointly distributed with (A,B),
such that

1. H(C|A) ≥ δ;
2. Pr[DOA,B,C (A,B) = 1]− Pr[DOA,B,C (A,C) = 1] ≤ γ,

where OA,B,C is an oracle that samples according to the joint distribution (A,B,C).
Proof. Let (h, V ) : {0, 1}n → {0, 1}�(n) × {0, 1} be the poly-time sampling algo-

rithms for (A,B), i.e., (h(Un), V (Un)) = (A,B). (By renaming the security parameter
n, we may assume that the sampling algorithms use n coin tosses.) Thus we may apply
Proposition 4.7 to the pair (h, V ). For any given subset L ⊆ {0, 1}n of density δ, we
define a probabilistic function VL : {0, 1}n → {0, 1}, where

VL(r) =

{
V (r) if r /∈ L,

a random bit if r ∈ L.

From this we get a random variable CL jointly distributed with (A,B), defined by
(A,CL) = (h(Un), VL(Un)). Notice that H(CL|A) is at least the density of L, namely δ.
We show that taking C = CL for some L suffices. Suppose for contradiction that we
have an oracle-aided distinguisher D running in time T ′ such that, for every L of
density δ, Pr[DOA,B,CL (A,B) = 1]− Pr[DOA,B,CL (A,CL) = 1] > γ. Since B and CL

are identical when Un /∈ L, we have

Pr[DOA,B,CL (A,B) = 1|Un ∈ L]− Pr[DOA,B,CL (A,CL) = 1|Un ∈ L] > γ.
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Since CL is a uniformly random bit when Un ∈ L, we can apply the standard reduction
from distinguishing to predicting to obtain an oracle-aided predictor P , running in
time T ′ +O(1) such that

(1) Pr[PχL(A) = B|Un ∈ L] > (1 + γ)/2.

Specifically, on input x, P generates a random bit b
R←{0, 1}, runs DOA,B,CL (x, b), out-

puts b if D outputs 1, and outputs ¬b if D outputs 0. P can simulate random samples

from the oracle OA,B,CL by choosing r
R← {0, 1}n and outputting (h(r), V (r), VL(r)),

which can be efficiently computed using P ’s oracle access to χL. Equation (1) can be
rewritten as

Pr
W

R←L

[PχL(h(W )) = V (W )] > (1 + γ)/2.

This contradicts Proposition 4.7.
We now use this form of the hardcore lemma to deduce Theorem 4.1 from

Lemma 4.6.
Theorem 4.9 (Theorem 4.1, restated). Let n be a security parameter, and let

f : {0, 1}n 	→ {0, 1}n be a polynomial-time computable function. Then there exists a
polynomial-time computable generator Gnb : {0, 1}d 	→ {0, 1}m, with d = d(n) ∈ O(n)
and m = m(n) ∈ O(n), such that the following hold:

Security. Assume that f is a (T, ε)-one-way function for some T = T (n) and
ε = ε(n). Then for any poly(n)-time computable value of ε′ = ε′(n) > 2−n/4, Gnb

has (T ·(ε′/n)O(1), ε′)-next-block-pseudoentropy k = d+log(1/ε)−O(logn). Moreover,
the reduction from the security of Gnb to that of f is fully black-box.

Complexity. Gnb is computable in NC1 with one (uniformly random7) oracle call
to f .

Proof of Theorem 4.9. Let W = (Q,S) be uniformly distributed over the domain
of Gnb (i.e., {0, 1}n × Qn), let X = Gnb(W ), and denote the length of X by m =
m(n) = 2n+ log |Qn|. Assume that the theorem does not hold. In particular, there
exists an oracle-aided algorithm D whose running time is bounded by T ′ = T ′(n),
and the following holds for every set of distributions {Yi}i∈[m] over {0, 1}, jointly
distributed with X , with

∑m
i=1 H(Yi | X1, . . . , Xi−1) ≥ k = d+ log(1/ε)− c · logn:

E
i
R←[m]

[
Pr[DOX,Y (X1, . . . , Xi) = 1]− Pr[DOX,Y (X1, . . . , Xi−1, Yi) = 1]

]≥ L · ε′ ≥ ε′,
(2)

where L is the number of oracle queries made byD and c is the constant of Lemma 4.6.
Recall that X = (f(S), Q,Q(S)1, . . . , Q(S)n). By Lemma 4.6, if we take A =

(f(S), Q,Q(S)1, . . . , Q(S)I−1) and B = Q(S)I for I uniformly random over [n], we
have

Pr[M(ε′, A) = B] ≤ 1− δ/2(3)

for

δ =
n−H(f(S)) + log(1/ε)− c logn

n

7Here and throughout the paper, when we say that Gnb makes a uniformly random call to f , we
refer to the distribution of the call when we run Gnb on a uniformly random seed.
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and any algorithm M running in time T/nc − p(n) ≤ T/2 · nc, where p ∈ poly is
the computing time of ε′, and for the inequality we assume without loss of generality
that T > 2p(n) · nc (otherwise the conclusion of the theorem holds trivially). In the
following we use Proposition 4.8 for showing that (3) is in contradiction to (2).

Let C be any random variable, jointly distributed with A, such that H(C|A) ≥ δ.
We can use any such C to define a set {Yi} of random variables jointly distributed
with X :

Yi|X=(x1,...,xm) =

{
xi if i ≤ n+ log |Q|,
C|I=i,X=(x1,...,xn) otherwise.

Then

m∑
i=1

H(Yi|X1, . . . , Xi−1) =
n+log |Q|∑

i=1

H(Xi|X1, . . . , Xi−1) +
n∑

i=1

H(C|A, I = i)

= H(f(S), Q) + n ·H(C|A)
≥ H(f(S)) + H(Q) + n−H(f(S)) + log(1/ε)− c logn

= d+ log(1/ε)− c logn = k,

where d is the seed length of Gnb. Therefore (2) holds; i.e., D is a next-block dis-
tinguisher for X and {Yi} with advantage ε′. Observe that D has zero advantage
when i ≤ n+ log |Q| (because then Yi = Xi) and thus must gain its entire advantage
when i > n+ log |Q|. In the latter case, D is distinguishing (A,B) from (A,C) with
advantage ε′. Moreover, each of D’s oracle queries to OX,Y (i) can be simulated with
O(n) queries to OA,B,C . (It may take an expected O(n) trials to get a sample in
which I has the desired value.) Thus, we obtain an algorithm D0 running in time

T0 = O(T ′ · n) such that D
OA,B,C

0 distinguishes (A,B) from (A,C) with advantage
greater than ε′ for any C such that H(C|A) ≥ δ. Proposition 4.8 yields the existence
of an algorithmM of running time T0 ·(n/ε′)O(1) such that Pr[M(ε′, A) = B] > 1−δ/2
for infinitely many n’s. (We can set δ0 = 1/n, since if δ < 1/n, the conclusion of the
theorem holds trivially.) Setting the constant in the definition of T ′ to a large enough
value (recall that T ′ = T · (ε′/n)O(1)) yields that the running time of M is bounded
by T/2 · nc, in contradiction to (3).

5. From next-block pseudoentropy to pseudorandom generators. In this
section we show how to transform a next-block pseudoentropy generator into a pseu-
dorandom generator.

Theorem 5.1 (next-block pseudoentropy generator to pseudorandom generator).
Let n be a security parameter, and let m = m(n), Δ = Δ(n) ∈ [1/ poly(n), n],
and κ = κ(n) ∈ {1, . . . , n} be poly(n)-time computable. For every polynomial-time
computable, m-block generator Gnb : {0, 1}n 	→ {0, 1}m, there exists a polynomial-time
computable generator G : {0, 1}d → {0, 1}d·(1+Ω(Δ/n)) with seed length

d = d(n) = O

(
n2 ·m2 · κ · log2 n

Δ3

)
such that the following hold:

Security. If Gnb has (T, ε)-next-block pseudoentropy at least n+Δ, for T = T (n),
ε = ε(n), then G is a (T−nO(1), nO(1) ·(ε+2−κ))-pseudorandom generator. Moreover,
the reduction is fully black-box.
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Complexity. G is computable in NC1 with O(d/n) (uniformly random) oracle
calls to Gnb.

In Theorem 5.1, it may be convenient to view κ(n) as the security parameter
of the construction. In particular, when κ(n) is logarithmic in 1/ε(n), we get that
(T (n), ε(n))-next-block pseudoentropy turns into a (T (n)/ poly(n), poly(n) · ε(n))-
pseudorandom generator.

We prove Theorem 5.1 via the following sequence of reductions:
1. In section 5.1 we show how to get a better handle on the output distribution

of the Gnb—specifically, we apply a generic transformation on Gnb to get
a generator for which the (conditional) pseudoentropy of each of its output
blocks is the same (i.e., (n+Δ)/m).

2. In section 5.2 we consider a direct product of the latter next-block pseu-
doentropy generator and show that this action both increases the absolute
gap between the next-block pseudoentropy of the generator and its real en-
tropy (i.e., its input length) and transforms its next-block pseudoentropy into
next-block pseudo-min-entropy.

3. In section 5.3 we show how to extract pseudorandomness from the output of
the latter type of generators.

4. In section 5.4, we put the above parts together to prove Theorem 5.1.
To simplify notation, we prove the first three steps with respect to arbitrary

next-block pseudoentropy distributions. Given a distribution X over Um, a set of
distributions Y = {Yi}i∈[m] over U , and an oracle-aided algorithmD(·), we let δDX,Y :=

E
i
R←[m(n)]

[
δDX,Y,i := Pr[DOX,Y (X1, . . . , Xi) = 1] − Pr[DOX,Y (X1, . . . , Xi−1, Yi) = 1]

]
,

where OX,Y (i) samples according to the joint distribution (X,Yi) (see Definition 3.1).
Finally, in all of the following claims we assume that the description of the “universe”
U is polynomial in n.

5.1. Entropy equalization. In this section we show how to manipulate a given
distribution to gain a better characterization of its next-block pseudoentropy, without
losing “too much” pseudoentropy. The following transformation is closely related to
a similar reduction from [17]. The idea is the following: Consider an m-block random
variable X over Um with next-block pseudoentropy k. Now generate m · � blocks by
concatenating � independent copies one after the other. Finally, for a random j ∈ [m],

erase the first j blocks and the last m − j blocks. We now have a new variable X̃
with m · (� − 1) blocks, and for every location i the block in the ith location of X̃
is a block of X in a random location. It is not hard to prove (as we do below) that
the next-block pseudoentropy of each block is at least k/m. On the other hand, the

real entropy of X̃ is at most � times that of X . Taking large enough �, we get that
the (relative) difference between next-block pseudoentropy and real entropy has not
significantly decreased.

For j ∈ [m] and z(1), . . . , z(�) ∈ Um, we let

Equalizer(j, z(1), . . . , z(�)) := (z
(1)
j , . . . , z(1)m , . . . , z

(�)
1 , . . . , z

(�)
j−1).

Lemma 5.2. Let n be a security parameter, and let m = m(n) = poly(n) and
� = �(n) = poly(n) be poly(n)-time computable integer functions, where �(n) > 1.
Let X be a random variable over Um with (T, ε)-next-block pseudoentropy at least k
for T = T (n), ε = ε(n), and k = k(n). Let J be uniformly distributed over [m], and

let X̃ = Equalizer(J,X(1), . . . , X(�)), where the X(i)’s are independent and identically

distributed (i.i.d.) copies of X. Then every block of X̃ has (T −O(� ·m · log |U|), � ·ε)-
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next-block pseudoentropy at least k/m. Moreover, the reduction between the security

of X̃ and X is fully black-box.
Proof. Let m′ = (� − 1) · m, and let Y = {Y1, . . . , Ym} be a set of random

variables jointly distributed with X . In the following we think of Y as a single
random variable Y = (Y1, . . . , Ym) jointly distributed with X , though we sample only
a single entry Yi per instance of Y . Let Y (1), . . . , Y (�) be i.i.d. copies of Y , and let
Ỹ = Equalizer(J, Y (1), . . . , Y (�)) be jointly distributed with X̃ in the natural way—

J takes the same value as in X̃ , and for every j ∈ [�], Y (j) is jointly distributed

with X(j) according to the joint distribution (X,Y ). Notice that Ỹi = YJ+i−1 mod m

(where we define m mod m to equal m rather than 0) and that J + i− 1 is uniformly
distributed in [m].

Thus, for every i ∈ [m′] we have that

H(Ỹi | X̃1,...,i−1) ≥ H(YJ+i−1 mod m|X1, . . . , X(J+i−1 mod m)−1)(4)

= E
i′ R←[m]

[H(Yi′ | X1, . . . , Xi′−1)].

Let D̃ be an adversary that violates the next-block pseudoentropy of X̃. We define D
for breaking the next-block pseudoentropy of X as follows: On input (x1, . . . , xi−1, z),
D generates a random sample x′ = (x′1, . . . , x

′
m′) from X̃ (using OX,Y ). It then selects

i′ ∈ [m′] uniformly at random such that i′ = j + i − 1 mod m, where j is the value

of J in the generation of x′, and returns D̃O
˜X, ˜Y (x′1, . . . , x

′
i′−i, x1, . . . , xi−1, z), while

answering D̃’s queries to O
˜X,˜Y using OX,Y .

We note that D makes at most � times more oracle queries than D̃, and that D
can be implemented in the running time of D̃ plus O(� ·m · log |U|).

For every Y as above with
∑

i∈[m]H(Yi | X1,...,i−1) ≥ k, (4) yields that Ỹ is a

random variable that D̃ should be able to next-block distinguish from X̃. Since the
query to D̃ done by D is distributed identically to a random challenge to D̃ with
respect to the joint distribution (X̃, Ỹ ), it follows that

δ
˜D
˜X,˜Y

= δDX,Y ≤ L · ε = L̃ · (�ε),

where L and L̃ are the number of oracle calls made by D and D̃, respectively. This is
in contradiction to the assumption about the next-block pseudoentropy of X .

5.2. Next-block pseudoentropy converts to pseudo-min-entropy. In this
section we show how to transform next-block (Shannon) pseudoentropy to next-block
pseudo-min-entropy, while increasing the overall entropy gap. The transformation
of X is simply a t-fold parallel repetition of X (i.e., every block of the new random
variable Xt is composed of t corresponding blocks of t independent copies of X). This
generalizes an analogous transformation that was used by H̊astad et al. [18] in the
context of standard (i.e., single-block) pseudoentropy.

Given an m-block random variable V taking values in Um and an integer t > 0,

we let V t = ((V
(1)
1 , . . . , V

(t)
1 ), . . . , (V

(1)
m , . . . , V

(t)
m )) ∈ (U t)m, where the V (i)’s are i.i.d.

copies of V .
Lemma 5.3. Let n be a security parameter, let m = m(n) = poly(n) and t =

t(n) = poly(n) be poly(n)-time computable functions, and let X be a random variable
over Um, where every block of X has (T, ε)-next-block pseudoentropy at least α for
T = T (n), ε = ε(n), α = α(n). Then for every κ = κ(n) > 0, it holds that every block
of Xt has (T ′, ε′)-next-block pseudo-min-entropy α′, where
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• T ′ = T ′(n) = T −O(m · t · log |U|),
• ε′ = ε′(n) = t2 · (ε+ 2−κ + 2−c·t) for a universal constant c > 0, and
• α′ = α′(n) = t · α− Γ(t, κ, |U|) for Γ(t, κ, |U|) ∈ O(

√
t · κ · log(|U| · t)).

Furthermore, the reduction between the security of Xt and X is fully black-box.
Note that the t·α term is the largest we could hope for the pseudoentropy—getting

α bits of pseudoentropy per copy. However, since we wish to move from a pseudoform
of Shannon entropy (measuring randomness on average) to a pseudoform of min-
entropy (measuring randomness with high probability), we may have a deviation that
grows like

√
t. By taking t large enough, this deviation becomes insignificant.

In more detail, consider the case that X has next-block pseudoentropy at least α
with polynomial security; i.e., T and 1/ε can be taken to be arbitrarily large polyno-
mials in n. We would like to deduce that Xt has next-block pseudo-min-entropy α′

with polynomial security. Moreover, assume U = {0, 1}. Then we should take κ and t
to be arbitrarily large multiples of logn, and we have α′ = t·(α−O(

√
(logn)/t)·log t).

So if we would like to have pseudo-min-entropy at least t · (α− δ), we should take t to
be polylog(n)/δ2. In our application, we have δ = Θ(Δ/n) = Θ(logn/n), so we take
t = Õ(n2) copies.

Proof. For a random variable Yi over U jointly distributed with X , we define
the (jointly distributed with Xt) variable (Yi)

t = ((Yi)
(1), . . . , (Yi)

(t)), where for
each j ∈ [t] the entry (Yi)

(j) is jointly distributed with the entry X(j) in Xt ac-
cording to the joint distribution (X,Yi). Given an adversary Dt that violates the
next-block pseudo-min-entropy of Xt, we define D for breaking the next-block pseu-
doentropy of X as follows: Given an input (x1, . . . , xi−1, z) and oracle access to OX,Y ,

D first samples j
R← [t] and (xt, yt) from (Xt, (Yi)

t) (using OX,Y ). Then it replaces
(xt

j,1 . . . , x
t
j,i−1) (the (i − 1) prefix of the jth column of xt) with (x1, . . . , xi−1), sets

z[j] = (xt
i,1, . . . , x

t
i,j−1, z, y

t
j+1, . . . , y

t
t), and returns D

OXt,(Yi)
t

t (xt
1,...,i−1, z

[j]), while an-
swering Dt’s queries to OXt,(Yi)t using OX,Y . That is, D queries Dt on the jth hybrid
between (Xt

1,...,i−1, (Yi)
t) and Xt

1,...,i.
We note that D makes at most t times more oracle calls than Dt, and that it can

be implemented in the same time as D plus O(t ·m · log |U|).
Assuming that H(Yi | X1,...,i−1) ≥ α for i ∈ [m], Lemma 2.1 yields that there ex-

ists a random variable W over U t, jointly distributed with Xt, such that the following
hold:

1. Δ((Xt
1,...,i−1, (Yi)

t), (Xt
1,...,i−1,W )) ≤ 2−κ + 2−c·t for a universal constant

c > 0, and
2. H∞(W | x1,...,i−1) ≥ α− Γ(t, κ, |U|) for every x ∈ Supp(Xt).

For j ∈ [t], let Z [j] = ((Xt
i )1,...,j, (Yi)

t
j+1,...,t) (i.e., the jth hybrid between Xt

i and
(Yi)

t). It follows that for each i ∈ [m], we have

δDX,Y,i

:=
1

t
·
∑
j∈[t]

(
Pr[D

OXt,(Yi)
t

t (Xt
1,...,i−1, Z

[j]) = 1]− Pr[D
OXt,(Yi)

t

t (Xt
1,...,i−1, Z

[j−1]) = 1]
)

=
1

t
· (Pr[DOXt,(Yi)

t

t (Xt
1,...,i−1, Z

[t]) = 1]− Pr[D
OXt,(Yi)

t

t (Xt
1,...,i−1, Z

[0]) = 1]
)

=
1

t
· (Pr[DOXt,(Yi)

t

t (Xt
1,...,i−1, X

t
i ) = 1]− Pr[D

OXt,(Yi)
t

t (Xt
1,...,i−1, (Yi)

t) = 1]
)

≥ 1

t
· (Pr[DOXt,W

t (Xt
1,...,i−1, X

t
i ) = 1]− Pr[D

OXt,W

t (Xt
1,...,i−1,W ) = 1]

− L′ · (2−κ − 2−c·t)
)
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=:
1

t
· (δDt

Xt,W,i − L′ · (2−κ − 2−c·t)
)
,

where L′ is a bound on the number of oracles calls made by Dt. Taking expectations

over i
R← [m], we have

δDX,Y ≥
1

t
·
(
δDt

Xt,W − L′ · (2−κ + 2−c·t)
)

≥ 1

t
· (t2 · L′ · (ε+ 2−κ + 2−c·t)− L′ · (2−κ + 2−c·t)

)
≥ L′ · t · ε = Lε,

where L = t ·L′ is a bound on the number of oracle calls made by D. Since this holds
for all {Yi} such that H(Yi | X1,...,i−1) ≥ α, this contradicts the assumption about
the next-block pseudoentropy of X .

5.3. Next-block pseudo-min-entropy to pseudorandomness. For our final
step, we assume that X is such that each of the m blocks of X has large next-
block pseudo-min-entropy α. Using a two-universal independent hash function S, we
extract almost all its pseudo-min-entropy of each block individually. The result is
a sufficiently long pseudorandom bit sequence. This is a computational analogue of
block-source extraction in the literature on randomness extractors [3, 37].

Lemma 5.4. Let n be a security parameter, and let m = m(n) = poly(n),
t = t(n) = poly(n), α = α(n) ∈ [t(n)], and κ = κ(n) ∈ [α(n)] be poly(n)-time
computable integer functions. There exists an efficient procedure Ext ∈ NC1 that, on
input x ∈ ({0, 1}t)m and s ∈ {0, 1}t, outputs a string y ∈ {0, 1}t+m·(α−κ) such that
the following holds.

Let X be a random variable over ({0, 1}t)m such that every block of X has (T, ε)-
next-block pseudo-min-entropy α for T = T (n) and ε = ε(n); then Ext(X,Ut) is
(T −m · tO(1),m · (ε + 2−κ/2)) pseudorandom. Moreover, the reduction between the
pseudorandomness of Ext(X,Ut) and the security X is fully black-box.

Proof. Let Ext(x, s) := (s, s(x1), . . . , s(xm)), where s is interpreted as a member
of a family of two-universal hash functions from t bits to α− κ bits in NC1 (such as
s(x) := s · x over GF(2t) truncated to α− κ bits). Let DPRG be an adversary for
the pseudorandomness of Ext(X,Ut), and let δPRG be its distinguishing advantage.
We define D for breaking the next-block pseudoentropy of X as follows: On input
(x1, . . . , xi−1, z), D returns DPRG(s, s(x1), . . . , s(xi−1), s(z), U(α−κ)·(m−i)), where s is
uniformly chosen from {0, 1}t.

We note that D makes no oracle calls (and thus we count its query complexity as
one) and that its running time is at most that of DPRG plus m · poly(t).

Let Z [i](W ) := (S, S(X1), . . . , S(Xi−1), S(W ), U(α−κ)·(m−i)) for a uniformly dis-
tributed hash function S. Let Y = {Y1, . . . , Ym} be a set of random variables over
U jointly distributed with X , with H∞(Yi | X1,...,i−1 = x1,...,i−1) ≥ α for every
x ∈ Supp(X) and i ∈ [m]. The leftover hash lemma [25, 26] yields that Z [i](Yi) has
statistical difference at most 2−κ/2 from Z [i−1](Xi−1). Thus

δPRG = Pr[DPRG(Z
[m](Xm)) = 1]− Pr[DPRG(Z

[0](X0)) = 1]

=

m∑
i=1

(
Pr[DPRG(Z

[i](Xi)) = 1]− Pr[DPRG(Z
[i−1](Xi−1)) = 1]

)
≤

m∑
i=1

(
Pr[DPRG(Z

[i](Xi)) = 1]− Pr[DPRG(Z
[i](Yi)) = 1] + 2−κ/2

)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1426 I. HAITNER, O. REINGOLD, AND S. VADHAN

= m · (δDX,Y + 2−κ/2)

≤ m · (ε+ 2−κ/2).

5.4. Putting it together. We are now ready to prove Theorem 5.1.
Theorem 5.5 (Theorem 5.1, restated). Let n be a security parameter, and let

m = m(n), Δ = Δ(n) ∈ [1/ poly(n), n], and κ = κ(n) ∈ {1, . . . , n} be poly(n)-
time computable. For every polynomial-time computable, m-block generator Gnb :
{0, 1}n 	→ {0, 1}m, there exists a polynomial-time computable generator G : {0, 1}d →
{0, 1}d·(1+Ω(Δ/n)) with seed length

d = d(n) = O

(
n2 ·m2 · κ · log2 n

Δ3

)
such that the following hold:

Security. If Gnb has (T, ε)-next-block pseudoentropy at least n+Δ, for T = T (n),
ε = ε(n), then G is a (T−nO(1), nO(1) ·(ε+2−κ))-pseudorandom generator. Moreover,
the reduction is fully black-box.

Complexity. G is computable in NC1 with O(d/n) (uniformly random) oracle
calls to Gnb.

Proof. Let X = Gnb(Un). Without loss of generality, we may assume that
the number m of output blocks (=bits) of Gnb is a power of 2 (by padding with
zeros if necessary). X can be generated using n random bits and has next-block
pseudoentropy k = n+Δ.

We now set � = 
2(n + Δ + logm)/Δ� = O(n/Δ) and apply entropy equaliza-

tion (Lemma 5.2) to obtain X̃ := Equalizer(J,X(1), . . . , X(�)), where J is uniformly

distributed over [m] and the X(i)’s are i.i.d. copies of X . X̃ can be generated using

d� = logm+ � · n random bits and has m′ = (�− 1) ·m blocks. Every block of X̃ has
(T� = T −O(� ·m), ε� = � · ε)-next-block pseudoentropy at least α� = k/m. Thus the

total next-block pseudoentropy in X̃ is at least

m′ · α� = m · (� − 1) · k/m
= (n+Δ) · (� − 1)

≥ n · �+ logm+Δ�/2

= d� +Δ�/2,

where the inequality follows from the setting of �.
Next we apply t-fold parallel repetition (Lemma 5.3) to obtain (X̃)t for a param-

eter t = poly(n) to be set below. (X̃)t can be generated using dt = t · d� random bits

and has m′ blocks of t bits each. Every block of (X̃)t has (Tt = T� − O(m′ · t), εt =
t2 · (ε� + 2−κ + 2−Ω(t)))-next-block pseudo-min-entropy αt = t · α� − Γ(t, κ).

Finally, we apply Lemma 5.4, extracting αt − 2κ bits from each block of (X̃)t

using a seed of length t. This yields our final output Ext((X̃)t, Ut), which is (T ′, ε′)-
pseudorandom, for

T ′ = Tt −m′ · tO(1) = T − poly(n),

ε′ = m′ · (εt + 2−κ) = poly(n) · (ε+ 2−κ + 2−Ω(t)).

Ext((X̃)t, Ut) can be generated using a seed of length

d = dt + t = t · d� + t = O(t · � · n),
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and it has an output length of

d′ = m′ · (αt − κ) + t

= m′ · (t · α� − Γ(t, κ)− κ) + t

≥ t · d� + tΔ�/2−m′ · (Γ(t, κ) + κ) + t

= d+ tΔ�/2−m′ ·O(
√
tκ · log t+ κ)

≥ d+ tΔ�/4 = (1 + Ω(Δ/n)) · d,

where the last inequality follows from an appropriate setting of

t = O

((
m′

Δ�

)2

· κ · log2
(
m′κ
Δ�

))
= O

(
m2 · κ · log2 n

Δ2

)
.

Finally, we can bound the seed length d by

d = O(t · n · �) = O

(
n2 ·m2 · κ · log2 n

Δ3

)
.

6. Deducing the main results. We are now ready to prove the main result of
the paper.

Theorem 6.1 (pseudorandom generators from one-way functions). Let n be a
security parameter and f : {0, 1}n 	→ {0, 1}n a polynomial-time computable function.
For all poly(n)-time computable functions ε = ε(n) ≤ 1/nc (where c is a universal
constant) and κ = κ(n) ∈ [n/4], there exists an efficient generator G from strings of
length d = d(n) = O(n4 ·κ·log2 n/ log3(1/ε)) to strings of length d·(1+Ω(log(1/ε))/n)
such that the following hold:

Security. Assume that f is a (T, ε)-one-way function for T = T (n). Then for
every poly(n)-time computable function ε′ = ε′(n) ≥ 2−κ, G is a (T · (ε′/n)O(1), ε′ ·
nO(1))-pseudorandom generator. Moreover, the reduction is fully black-box.

Complexity. G is computable in NC1 with O(d/n) (uniformly random) oracle
calls to f .

Proof. We let c be the constant of Theorem 4.1. We start by applying Theorem
4.1 on f to get a generator Gnb : {0, 1}d1 	→ {0, 1}m1 that has (T · (ε′/n)O(1), ε′)-next-
block-pseudoentropy k = d1 + log(1/ε)/2, where d1,m1 ∈ O(n).

In the next step we apply Theorem 5.1 with respect to the above Gnb, κ, and
Δ := log(1/ε)/2 to get an efficient generator from strings of length

d = O

(
d21 ·m2

1 · κ · log2 n
Δ3

)
= O

(
n4 · κ · log2 n
log3(1/ε)

)
to strings of length d · (1 + Ω(log(1/ε))/n) that is (T · (ε′/n)O(1) − nO(1), (ε1 + 2−κ) ·
nO(1)) = (T · (ε′/n)O(1), ε′ · nO(1))-pseudorandom.

The above theorem yields the following important corollaries.
Corollary 6.2 (pseudorandom generator from one-way functions—polynomial

security case). Let n be a security parameter and f : {0, 1}n 	→ {0, 1}n a one-way
function. Then there exists a pseudorandom generator G from strings of length d =
d(n) ∈ Õ(n4) to strings of length d · (1 + Ω((log n)/n)).

Furthermore, the reduction is fully black-box. G is computable in NC1 with O(d/n)
(uniformly random) oracle calls to f .
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Proof. Applying Theorem 6.1 on f , ε = 1/nc, and κ = log2 n, we get an ef-
ficient generator G of the stated input and output lengths. Assume now that G
is not a pseudorandom generator. Namely, there exists p ∈ poly such that G is
not (p(n), 1/p(n))-pseudorandom. Therefore, G is not (T · (ε′/n)O(1), ε′ · poly(n))-
pseudorandom for ε′ := 1/p(n) ·poly(n) > 2−κ and T = poly(n) ·p(n). It follows that
f is not a (T, ε)-one-way function, in contradiction.

Corollary 6.3 (pseudorandom generator from one-way functions—exponential
hardness case). Let f : {0, 1}n 	→ {0, 1}n be a (2Ω(n), 2−Ω(n))-one-way function. Then

1. there exists a (2Ω(n), 2−Ω(log2 n))-pseudorandom generator G from strings of
length d = d(n) ∈ Õ(n) to strings of length d · (1 + Ω(1)), and

2. there exists a (2Ω(n), 2−Ω(n))-pseudorandom generator G from strings of length
d = d(n) ∈ Õ(n2) to strings of length d · (1 + Ω(1)).

Furthermore, in both cases it holds that the reduction is fully black-box, and G is
computable in NC1 with O(d/n) (uniformly random) oracle calls to f .

Proof. The proof is immediate from Theorem 6.1, taking κ = log2(n) and κ ∈
Ω(n) in the first and second cases, respectively, and ε′ = 2−κ.

Appendix. The uniform hardcore lemma. In this section, we show how
to deduce our version of the uniform hardcore lemma (Proposition 4.7) from what
Holenstein proves. Holenstein’s statement of the hardcore lemma requires the func-
tions γ(n) and δ(n) to be computable in time poly(n) and to be at least 1/ poly(n).
However, the same proof yields the following, where we give δ and γ as inputs to the
algorithm M and allow a loss of (δγ)O(1) in the running time.

Proposition A.1 (see [21, Thm. 6.8]). Let n be a security parameter, and
let h : {0, 1}n 	→ {0, 1}�(n) and V : {0, 1}n 	→ {0, 1} be polynomial-time computable
functions. Let δ = δ(n) ∈ [δ0, 1] and γ = γ(n) ∈ [0, 1] > 2−n/3. Assume that

Pr[M(δ, γ, h(Un)) = V (Un)] ≤ 1− δ/2 + γ2δ5/8192

for every probabilistic algorithm M running in time T = T (n) and large enough n.
Then for every oracle-aided predictor P running in time T · (γδ/n)O(1) and all suffi-
ciently large n, there exists a set L ⊆ {0, 1}n of density at least δ such that

Pr
W

R←L

[PχL(h(W )) = V (W )] < (1 + γ)/2,

where χL is the characteristic function of L, provided that all the queries of P to χL

are computed independently of the input h(W ). Furthermore, the reduction is fully
black-box.

Note that the hypothesis of Holenstein’s lemma is slightly stronger in that it
works even if the success probability of M is slightly higher than 1− δ/2; this slack-
ness is convenient for deducing Proposition 4.7, which we do now.

Proof of Proposition 4.7. Assume that

(5) Pr[M(δ0, γ, h(Un)) = V (Un)] ≤ 1− δ/2

for every probabilistic algorithm M running in time T = T (n) and large enough n.
Then we will argue that

(6) Pr[M ′(δ′, γ, h(Un)) = V (Un)] ≤ 1− δ′/2 + α

for every probabilistic algorithm M ′ running in time T ′ = T (n) · (δ0γ)O(1) and large
enough n, where δ′ is the smallest multiple of α = δ50γ

2/8192 that is at least as
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large as δ (so δ′ ≤ δ + α). Suppose for contradiction that there is an M ′ violating
inequality (6). Then we can obtain an M violating inequality (5) by trying δ′ = i · α
for each i = 0, . . . , �1/α�, estimating the success probability to within accuracy α/3
(by random sampling), and finally running M ′ with the value of δ′ that achieves
maximum estimated success probability.

Since α ≤ (δ′)5γ2/8192, we can apply Proposition A.1 to obtain, for every predic-
tor P running in time T ′ · (γδ′/n)O(1) = T · (γδ0/n)O(1), a hardcore set L of density
δ′ ≥ δ.
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