
Concurrent Zero Knowledge without Complexity Assumptions

Daniele Micciancio∗ Shien Jin Ong† Amit Sahai‡ Salil Vadhan§

August 23, 2005

Abstract

We provide unconditional constructions of concurrent statistical zero-knowledge proofs for
a variety of non-trivial problems (not known to have probabilistic polynomial-time algorithms).
The problems include Graph Isomorphism, Graph Nonisomorphism, Quadratic Resid-

uosity, Quadratic Nonresiduosity, a restricted version of Statistical Difference, and
approximate versions of the (coNP forms of the) Shortest Vector Problem and Closest

Vector Problem in lattices.
For some of the problems, such as Graph Isomorphism and Quadratic Residuosity, the

proof systems have provers that can be implemented in polynomial time (given an NP witness)
and have Õ(logn) rounds, which is known to be essentially optimal for black-box simulation.

To our best of knowledge, these are the first constructions of concurrent zero-knowledge pro-
tocols in the asynchronous model (without timing assumptions) that do not require complexity
assumptions (such as the existence of one-way functions).

Keywords: concurrent zero-knowledge proofs, problem-dependent commitments, quadratic resid-
uosity, graph isomorphism, statistical difference.

∗Computer Science and Engineering Department, University of California, San Diego, 9500 Gilman Drive, Mail
Code 0404, La Jolla, CA 92093-0404. E-mail: daniele@cs.ucsd.edu. Supported by NSF grant 0313241 and an Alfred
P. Sloan Research Fellowship.

†Division of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge, MA 02138.
E-mail: shienjin@eecs.harvard.edu. Supported by ONR grant N00014-04-1-0478.

‡Computer Science Department, University of California, Los Angeles, 3731E Boelter Hall, Los Angeles, CA 90095.
E-mail: sahai@cs.ucla.edu. Part of this research was done while author was at Princeton University. Supported by
NSF ITR and Cybertrust programs, an equipment grant from Intel, and an Alfred P. Sloan Foundation Fellowship.

§Division of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge, MA 02138.
E-mail: salil@eecs.harvard.edu. URL: http://eecs.harvard.edu/˜salil/. Supported by NSF grants CNS-0430336
and CCR-0205423.

Electronic Colloquium on Computational Complexity, Report No. 93 (2005)

ISSN 1433-8092

1 Introduction

In the two decades since their introduction [GMR89], zero-knowledge proofs have taken on a central
role in the study of cryptographic protocols, both as a basic building block for more complex proto-
cols and as a testbed for understanding important new issues such as composability (e.g., [GK96])
and concurrency (e.g., [DNS98]). The “classic” constructions of zero-knowledge proofs came pri-
marily in two flavors. First, there were direct constructions of zero-knowledge proofs for specific
problems, such as Quadratic Residuosity [GMR89] and Graph Isomorphism [GMW91]. Sec-
ond, there were general constructions of zero-knowledge proofs for entire classes of problems, such
as all of NP [GMW91].1 Both types of results have played an important role in the development
of the field.

The general results of the second type show the wide applicability of zero knowledge, and are
often crucial in establishing general feasibility results for other cryptographic problems, such as
secure multiparty computation [Yao86, GMW91] and CCA-secure public-key encryption [NY90,
DDN01, Sah99]. However, they typically are too inefficient to be used in practice. The specific
results of the first type are often much more efficient, and are therefore used in (or inspire) the
construction of other efficient cryptographic protocols, e.g., identification schemes [FFS88] and
again CCA-secure public-key encryption [CS98, ES02, CS04]. Moreover, the specific constructions
typically do not require any unproven complexity assumptions (such as the existence of one-way
functions), and yield a higher security guarantee (such as statistical zero-knowledge proofs).2 The
fact that the proof systems are unconditional is also of conceptual interest, because they illustrate
the nontriviality of the notion of zero knowledge even to those who are unfamiliar with (or who do
not believe in the existence of) one-way functions.3

Concurrent zero knowledge. In recent years, a substantial effort has been devoted to under-
standing the security of cryptographic protocols when many executions are occurring concurrently
(with adversarial scheduling). As usual, zero-knowledge proofs led the way in this effort, with early
investigations of concurrency for relaxations of zero knowledge dating back to Feige’s thesis [Fei90],
and the recent interest being sparked by the work of Dwork, Naor, and Sahai [DNS98], which first
defined the notion of concurrent zero knowledge. Research on concurrent zero knowledge has been
very fruitful, with a sequence of works leading to essentially tight upper and lower bounds on round
complexity for black-box simulation [RK99, KPR98, KP01, Ros00, CKPR03, PRS02], and partly
motivating the first non-black-simulation zero-knowledge proof [Bar01]. However, these works are
primarily of the second type mentioned above. That is, they are general feasibility results, giving
protocols for all of NP. As a result, these protocols are fairly inefficient (in terms of computation
and communication), rely on unproven complexity assumptions, and only yield computational zero
knowledge (or, alternatively, computational soundness).

There have been a couple of works attempting to overcome these deficiencies. Di Crescenzo [DiC00]
gave unconditional constructions of concurrent zero-knowledge proofs in various timing models.

1See the textbook [Gol01] and survey [Gol02] by Oded Goldreich for a thorough introduction to zero-knowledge
proofs.

2Of course, this partition into two types of zero-knowledge protocols is not a precise one. For example, there are
some efficient zero-knowledge proofs for specific problems that use complexity assumptions (e.g., [GMR98] and there
are some general results that are unconditional (e.g., [Oka00, GSV98, Vad04]).

3It should be noted that the results of [Ost91, OW93] show that the existence of a zero-knowledge proof for a
problem outside BPP implies some weak form of one-way function. Still, appreciating something like the perfect
zero-knowledge proof system for Graph Isomorphism [GMW91] only requires believing that there is no worst-case

polynomial-time algorithm for Graph Isomorphism, as opposed to appreciating notions of average-case complexity
as needed for standard one-way functions.

1

That is, his protocols assume that the honest parties have some synchronization and may employ
delays in the protocol, and thus do not work in the standard, asynchronous model (and indeed he
states such a strengthening as an open problem). Micciancio and Petrank [MP03] gave an efficient
(in terms of computation and communication) transformation from honest-verifier zero-knowledge
proofs to concurrent zero-knowledge proofs. However, their transformation relies on the Decisional
Diffie–Hellman assumption, and yields only computational zero knowledge.

Our Results. We give the first unconditional constructions of concurrent zero-knowledge proofs
in the standard, asynchronous model. Our proof systems are statistical zero knowledge and statisti-
cally sound (i.e. they are interactive proofs, not arguments [BCC88]). Specifically, our constructions
fall into two categories:

1. Efficient proof systems for certain problems in NP, including Quadratic Residuosity,
Graph Isomorphism and a restricted form of quadratic nonresiduosity for Blum integers,
which we call Blum Quadratic Nonresiduosity. These proof systems all have prover
strategies that can be implemented in polynomial time given an NP witness and have Õ(log n)
rounds, which is essentially optimal for black-box simulation [CKPR03].

2. Inefficient proof systems for other problems, most of which are not known to be in NP. These
include Quadratic Nonresiduosity, Graph Nonisomorphism, the approximate versions
of the complements of the Closest Vector Problem and Shortest Vector Problem

in lattices, and a restricted version of Statistical Difference (the unrestricted version
is complete for statistical zero knowledge [SV03]). These proof systems, with the exception
for Quadratic Nonresiduosity, have a polynomial number of rounds, and do not have
polynomial-time prover strategies. These deficiencies arise from the fact that our construction
begins with a public-coin, honest-verifier zero-knowledge proof for the problem at hand, and
the only such proofs known for the problems listed here have a polynomial number of rounds
and an inefficient prover strategy.

Techniques. One of the main tools for constructing zero-knowledge proofs are commitment
schemes, and indeed the only use of complexity assumptions in the construction of zero-knowledge
proofs for all of NP [GMW91] is to obtain a commitment scheme (used by the prover to commit
to the NP witness, encoded as, e.g., a 3-coloring of a graph). Our results rely on a relaxed notion
of commitment, called a problem-dependent commitment scheme, which is implicit in [BMO90] and
formally defined in [IOS97, MV03, Vad04]. Roughly speaking, for a language L (or, more generally,
a promise problem), a problem-dependent commitment scheme for L is a commitment protocol
where the sender and receiver algorithms also depend on the instance x. The security requirements
of the protocol are relaxed so that the hiding property is only required when x ∈ L, and the binding
property is only required when x /∈ L (or vice-versa).

As observed in [IOS97], many natural problems, such as Graph Isomorphism and Quadratic

Residuosity, have simple, unconditional problem-dependent commitment schemes. This is useful
because in many constructions of zero-knowledge proofs (such as that of [GMW91]), the hiding
property of the commitment scheme is only used to establish the zero-knowledge property and the
binding property of the commitment scheme is only used to establish soundness. Since, by definition,
the zero-knowledge property is only required when the input x is in the language, and the soundness
condition is only required when x is not in the language, it suffices to use a problem-dependent
commitment scheme. Specifically, if a language L ∈NP (or even L ∈ IP) has a problem-dependent
commitment scheme, then L has a zero-knowledge proof [IOS97] (see also [MV03, Vad04]).

2

Existing constructions of concurrent zero-knowledge proofs [KPR98, CKPR03, PRS02] also
rely on commitment schemes (and this is the only complexity assumption used). Thus it is natural
to try to use problem-dependent commitments to construct them. However, these protocols use
commitments not only from the prover to the verifier, but also from the verifier to the prover.
Naturally, for the latter type of commitments, the roles of the hiding and binding property are
reversed from the above — the hiding property is used to prove soundness and the binding property
is used to prove (concurrent) zero knowledge. Thus, it seems that we need not only a problem-
dependent commitment as above, but also one where the security properties are reversed (i.e.
binding when x ∈ L, and hiding when x /∈ L).

Our first observation is that actually we only need to implement the commitment schemes
from the verifier to the prover. This is because the concurrent zero-knowledge proof system of
Prabhakaran, Rosen and Sahai [PRS02] is constructed by a general compiler that converts any
public-coin zero-knowledge proof into a concurrent zero-knowledge proof, and this compiler only
uses commitments from the verifier to the prover. (Intuitively, the verifier commits to its messages
in an initial “preamble” stage, which is designed so as to allow concurrent simulation.) Since all
the problems we study are unconditionally known to have public-coin zero-knowledge proofs, we
only need to implement the compiler. So we are left with the task finding problem-dependent
commitments that are binding when x ∈ L and hiding when x /∈ L. Thus, for the rest of the paper,
we use this as our definition of problem-dependent commitment.

This idea works directly for some problems, such as Graph Nonisomorphism and Quadratic

Nonresiduosity. For these problems, we have problem-dependent commitments with the desired
security properties, and thus we can directly use these commitments in the compiler of [PRS02]. Un-
fortunately, for the complement problems, such as Graph Isomorphism and Quadratic Residu-

osity, we only know of problem-dependent commitments that are hiding when x ∈ L, and binding
when x /∈ L.

Thus, for some of our results, we utilize a more sophisticated variant of problem-dependent
commitments, due to Bellare, Micali, and Ostrovsky [BMO90]. Specifically, they construct some-
thing like a problem-dependent commitment scheme for the Graph Isomorphism problem, but
both the hiding and binding properties are non-standard. For example, the binding property is as
follows: they show that if x ∈ L and the sender can open a commitment in two different ways, then
it is possible for the sender to extract an NP witness for x ∈ L. Thus we call these witness-binding
commitments. Intuitively, when we use such commitments, we prove concurrent zero knowledge
by the following case analysis: either the verifier is bound to its commitments, in which case we
can simulate our proof system as in [PRS02], or the simulator can extract a witness, in which case
it can be simulated by running the honest prover strategy. In reality, however, the analysis does
not break into such a simple case analysis, because the verifier may break the commitment scheme
in the middle of the protocol. Thus we require that, in such a case, an already-begun simulation
can be “continued” once we are given an NP witness. Fortunately, the classic (stand-alone) proof
systems for Graph Isomorphism and Quadratic Residuosity turn out to have the needed
“witness-completable simulation” property.

An additional contribution of our paper is to provide abstractions and generalizations of all of
the above tools that allow them to be combined in a modular way, and may facilitate their use in
other settings. First, we show how the “preamble” of the Prabhakaran–Rosen–Sahai concurrent
zero-knowledge proof [PRS02] can be viewed as a way to transform any commitment scheme into
one that is “concurrently extractable,” in the sense that we are able to simulate the concurrent
execution of many sessions between an adversarial sender and the honest receiver in a way that
allows us to extract the commitments of the sender in every session. This may be useful in

3

constructing other concurrently secure protocols (not just proof systems). Second, we provide
general definitions of witness-binding commitment schemes as well as witness-completable zero-
knowledge proofs as possessed by Graph Isomorphism and Quadratic Residuosity and as
discussed above.

Perspective. The recent works of Micciancio and Vadhan [MV03] and Vadhan [Vad04] hypoth-
esized that every problem that has a statistical (resp., computational) zero-knowledge proof has
a problem-dependent commitment scheme.4 There are several pieces of evidence pointing to this
possibility:

1. A restricted form of a complete problem for statistical zero knowledge has a problem-dependent
commitment scheme [MV03].

2. If problem-dependent commitments exist for all problems with statistical zero-knowledge
proofs, then problem-dependent commitments exist for all of problems with (general, compu-
tational) zero-knowledge proofs [Vad04].

3. Every problem that has (general, computational) zero-knowledge proofs also has inefficient
problem-dependent commitments. These commitments are inefficient in the sense that the
sender algorithm is not polynomial-time computable [Vad04]. Unfortunately we cannot use
these commitments in our protocols in this paper, because our verifier plays the role of the
sender.

If the above hypotheses turn out to be true, then our work suggests that we should be able
prove that any problem that has a zero-knowledge proof has a concurrent zero-knowledge protocol:
simply plug the hypothesized problem-dependent commitment scheme into our constructions. (We
do not claim this as a theorem because for in this paper, we restrict our attention to problem-
dependent commitment schemes that are noninteractive and perfectly binding for simplicity, but
the hypotheses mentioned above make no such restriction.)

Outline. Section 2 covers the basic definitions, the various notions of zero knowledge, and the
computational problems that we consider in later parts of the paper. In Section 3, we present a
modularization of the preamble stage in the Prabhakaran-Rosen-Sahai concurrent zero-knowledge
protocol [PRS02, Section 3.1], which we call the concurrently-extractable commitment scheme. This
commitment scheme is a basic building block for our unconditional concurrent zero-knowledge
protocols in Section 4, where the problem-dependent commitments used are of the perfectly-binding
type, and also in Section 5, where the problem-dependent commitments used are of the witness-
binding type.

2 Preliminaries

2.1 Basic notations

Let X be a random variable taking values in a finite set T . We write x← X to indicate that x is
selected according to X. For a finite set S, we write x← S to indicate that x is selected uniformly

4Actually, the works of [MV03] and [Vad04] refer to problem-dependent commitments where the hiding property
holds on yes instances and the binding property on no instances, which is opposite of what we use. For statistical
zero knowledge, this does not matter because the class of problems having statistical zero-knowledge proofs is closed
under complement [Oka00]. But for computational zero knowledge, it means that outline presented here might yield
a concurrent zero-knowledge argument system rather than a proof system.

4

amongst all the elements of S.
A negligible function, denoted by neg(·), is a function that grows slower than any inverse

polynomial. That is, for all c ∈ N, neg(n) < n−c for sufficiently large n.
Let I be a countable set. A probability ensemble of a sequence of random variables indexed by

I is denoted as {Xi}i∈I . We say that two ensembles {Xi}i∈I and {Yi}i∈I are computationally indis-
tinguishable (w.r.t. security parameter n) if for every polynomial-sized circuit C, and all sufficiently
long i ∈ I, we have that

|Pr[C(Xi, i) = 1]− Pr[C(Yi, i) = 1]| < neg(n).

Typically, we set n to be the input or index length. If the above inequality holds for all circuits
C (instead of just polynomial-sized ones), the two ensembles {Xi}i∈I and {Yi}i∈I have a stronger
property of being statistically indistinguishable. We use the notation ≈c and ≈s to denote compu-
tational and statistical indistinguishability of ensembles respectively. Note that for computational
indistinguishability, we focus on indistinguishability against nonuniform circuits, as is standard in
the study of zero-knowledge proofs.

For a probabilistic algorithm A, we write A(x; r) to denote the output of A on input x and
coin tosses r. A(x), or more precisely [A(x; r)]r←{0,1}∗ , is the random variable denoting the output
distribution of A on input x with uniformly selected coin tosses r.

For an interactive protocol (A,B), we denote 〈A,B〉(x) to be the random variable representing
the output of B after interaction with A on common input x. In addition, we denote viewA

B(x)
to be the random variable representing the content of the random tape of B together with the
messages received by B from A during the interaction on common input x.

Promise problems. Although all our results apply to languages, for convenience and generality,
we state and prove all our results in term of promise problems. A promise problem Π is a pair
(ΠY,ΠN) of disjoint sets of strings, corresponding to the yes instances and the no instances,
respectively. This yields the following computational task: Given a string x in ΠY ∪ ΠN, decide
whether x ∈ ΠY or x ∈ ΠN. Strings in ΠY ∪ΠN are called instances of the problem Π.

For a problem Π ∈ NP, we say that RΠ is an NP-relation for Π if RΠ = {(x,w) : M(x,w) = 1},
where M is an NP-machine for Π.

Statistical difference. The statistical difference between two distributions D1 and D2 over
{0, 1}n is defined as ∆(D1, D2) = maxT⊆{0,1}n |Pr[D1 ∈ T]−Pr[D2 ∈ T]|. For a circuitX : {0, 1}m →
{0, 1}n, the probability distribution induced by X is the output distribution of X when fed a ran-
dom input, i.e., X(r)r←{0,1}m . We define the statistical difference between two circuits to be the
statistical difference between the distributions induced by the circuits.

2.2 Zero knowledge

We use the standard definition of zero-knowledge proofs [GMR89, Gol01], noting the following
points.

1. We extend the definition to promise problems Π = (ΠY,ΠN) in a natural way, i.e., conditions
previously required for inputs in the language (e.g., completeness and zero knowledge) are
now required for all yes instances, and conditions previously required for inputs out of the
language (e.g., soundness) are now required for all no instances.

5

2. The class PZK (resp., SZK and CZK) denotes the class of promise problems having perfect
(resp., statistical and computational) zero-knowledge proofs.

3. A zero-knowledge protocol is called black-box zero knowledge if the simulator uses the ad-
versarial verifier only as an oracle. All protocols presented in this paper are black-box zero
knowledge.

4. For a problem Π ∈ NP, we say a zero-knowledge protocol has an efficient prover if the
prover’s algorithm can be implemented in probabilistic polynomial-time given any witness w
of the instance x.

5. There are two equivalent formulation of zero knowledge (against any general adversarial
efficient verifier) for an interactive protocol (P, V):

(a) For all probabilistic polynomial-time adversary V ∗, there exists a probabilistic polynomial-
time simulator S such that

{
S(x)

}
x∈Π
≈

{
〈P, V ∗〉(x)

}
x∈Π

,

where 〈P, V ∗〉(x) is the random variable representing the output of V ∗ after interaction
with P on common input x.

(b) For all probabilistic polynomial-time adversary V ∗, there exists a probabilistic polynomial-
time simulator S such that

{
S(x)

}
x∈Π
≈

{
viewP

V ∗(x)
}

x∈Π
,

where viewP
V ∗(x) is the random variable representing the content of the random tape of

V ∗ together with the messages received by V ∗ from P during the interaction.

6. A concurrent interaction between a prover P and an adversarial verifier V ∗, can be thought
of as the following interaction. The adversary V ∗ sends a pair (s, v)—interpreted as sending
message v in session s—and the prover P responses by sending the corresponding prover
message p for session s. (The prover P behaves independently in all sessions.) This continues
until the verifier sends (end, α), where α is the output. Thus a transcript of a concurrent
interaction is of the form ((s1, v1), p1, (s2, v2), p2, ..., (st, vt), pt, α, end). For a commitment
scheme (S,R), we can similarly define a concurrent interaction between a receiver R and
multiple senders, controlled by a single adversary Ŝ.

A protocol is concurrent zero knowledge if it remains zero knowledge in a concurrent interac-
tion between the prover P and any probabilistic polynomial-time verifier strategy V ∗. This
is a much stronger security requirement compared to the standard definition of stand-alone
zero-knowledge protocols, where the zero-knowledge guarantee is only for a single execution
with a single verifier. For an equivalent formulation, we refer the reader to [DNS98].

In addition to the standard notion of zero-knowledge protocols, which remain secure against
any efficient adversarial verifier, we consider other notions of zero-knowledge protocols which are
guaranteed secure against only a selective subset of adversarial verifiers.5 We begin with a weak
version of zero knowledge that is secure only against the honest verifier.

5In the settings where only a selective subset of adversarial verifiers are considered, we will have to require that
the simulator’s output be indistinguishable to the view of the verifier, not just indistinguishable to the verifier’s
output. The previously mentioned equivalence in the formulation of zero knowledge works only in the case of general
adversaries.

6

Definition 2.1 (honest-verifier zero knowledge). An interactive proof (P, V) for (promise) problem
Π is perfect (resp., statistical and computational) honest-verifier zero knowledge (HVZK) if there

exists a probabilistic polynomial-time simulator S such that the ensembles
{

viewP
V (x)

}
x∈ΠY

and
{
S(x)

}
x∈ΠY

are perfectly (resp., statistically and computationally) indistinguishable.

We also consider interactive protocols where the honest verifier’s strategy is to send random
coins as its messages.

Definition 2.2 (public-coin proofs [BM88]). An interactive proof is public-coin if the honest veri-
fier’s messages consists of random coin tosses, uniform and independent of the previous messages.

Prabhakaran, Rosen and Sahai [PRS02], in their works on concurrent zero knowledge, showed
that adding a Õ(log n)-round preamble to a specific form of zero-knowledge protocol (the Hamil-
tonicity protocol) results in a concurrent zero-knowledge proof system, assuming the existence
of a collection of claw-free functions. Alon Rosen, in his PhD thesis, noted that the preamble
can be added to a more general form of zero-knowledge protocol, which he informally defines as
challenge-response zero knowledge [Ros03, Section 4.8.1]. We formalize this definition and call it
committed-verifier zero knowledge.

Definition 2.3 (committed-verifier zero knowledge). Let m = (m1,m2, . . . ,mk). A committed
verifier Vm is a deterministic verifier that always sends mi as its i-th round message.

An interactive proof (P, V) for (promise) problem Π is perfect (resp., statistical, computational)
committed-verifier zero knowledge (CVZK) if there exists a probabilistic polynomial-time simulator

S such that for all committed verifier Vm, the ensembles
{

viewP
Vm

(x)
}

x∈ΠY

and
{
S(x,m)

}
x∈ΠY

are perfectly (resp., statistically, computationally) indistinguishable.

The following lemma shows that the notion of committed-verifier zero knowledge (CVZK) is
closely related to honest-verifier zero knowledge (HVZK).

Lemma 2.4. A promise problem Π has public-coin (perfect/statistical/computational) CVZK proofs
if and only if it has public-coin (perfect/statistical/computational) HVZK proofs.

Proof. The forward implication is easy since the honest-verifier simulator S(x) can be obtained
from the committed-verifier simulator S ′(x,m) by choosing a random m.

For the reverse implication, consider the honest-verifier zero-knowledge protocol (P, V) with
honest-verifier simulator S. Without loss of generality, we assume that the verifier V always
sends the first message and that the verifier’s messages in each iteration are of length `. In it-
eration i, the verifier V sends random coin tosses mi ← {0, 1}`, and prover P responds with
πi = P (x,m1, . . . ,mi; rP).

We modify the original protocol (P, V) to the following protocol (P ′, V ′): In iteration i,

P ′ → V ′: Send random coin tosses m′i ← {0, 1}`.
V ′ → P ′: Send random coin tosses mi ← {0, 1}`.
P ′ → V ′: Send π′i = P (x,m′1 ⊕m1, . . . ,m

′
i ⊕mi; rP).

This modified protocol (P ′, V ′) preserves the completeness of the original protocol (P, V).
Soundness is also preserved because for any fixed m′i, choosing a random mi (done by the ver-
ifier V ′) will result in m′i⊕mi being a random message. In addition the number of rounds increases
by at most 1, since consecutive prover’s messages π ′i and m′i+1 can be collapsed into a single round.

7

Given committed-verifier V ′m, wherem = (m1, . . . ,mk), our committed-verifier simulator S ′(x,m)
will run the honest-verifier simulator S(x) to get the transcript (r1, π1, . . . , rk, πk). The output of
S′ is (r1 ⊕m1,m1, π1, . . . , rk ⊕mk,mk, πk).

We claim that S ′(x,m) is a proper committed-verifier simulator for (P ′, V ′). To prove our
claim, define the function fm : (r1, π1, . . . , rk, πk) 7→ (r1 ⊕ m1,m1, π1, . . . , rk ⊕ mk,mk, πk). Note
that fm is polynomial-time computable. Thus, since S(x) and viewP

V (x) are indistinguishable, so
are S′(x,m) ≡ fm(S(x)) and viewP

V ′
m

(x) ≡ fm(viewP
V (x)). �

2.3 Computational Problems

We list the computational problems for which we provide unconditional concurrent statistical zero-
knowledge proofs.

Quadratic Residuosity. A number x is a quadratic residue in the group Z∗n
def
= {a ∈ {1, 2, . . . , n−

1} : gcd(a, n) = 1} if there exists a y ∈ Z∗n such that y2 ≡ x (mod n). Otherwise, x is a quadratic
nonresidue in Z∗n.

The language of quadratic residuosity is defined as follows: Quadratic Residuosity =
{(x, n) : x is a quadratic residue in Z∗n}. The language Quadratic Nonresiduosity is the com-
plement of Quadratic Residuosity. In the later sections, we consider a variant of quadratic
residuosity restricted to Blum integers, which we call Blum Quadratic Nonresiduosity. Recall
that a Blum integer n is a product of two distinct primes p and q, with p ≡ q ≡ 3 (mod 4). For-
mally, we define Blum Quadratic Nonresiduosity = Quadratic Nonresiduosity∩{(x, n) :
n is a Blum integer and x ∈ Z∗n}.

Graph Isomorphism. Two graphs G0 and G1 are isomorphic if there exists a permutation
π of nodes in G0 that would result in G1, i.e., π(G0) = G1, in which case we write G0

∼= G1.
The language Graph Isomorphism consists of all pairs of graphs that are isomorphic, that is
Graph Isomorphism = {(G0, G1) : G0

∼= G1}. The language Graph NonIsomorphism is the
complement of Graph Isomorphism.

Statistical Difference. The Statistical Difference problem is the computational task of
distinguishing whether the probability distributions induced by the two circuits X and Y are
statistically close or far apart. With parameters α and β satisfying 0 ≤ β < α ≤ 1, the instances of
the promise problem SDα

β are pairs of circuits (X,Y). Pair (X,Y) is a yes instance if ∆(X,Y) ≥ α,

and a no instance if ∆(X,Y) ≤ β. The promise problem SD
2/3
1/3 is SZK-complete [SV03]. In

Section 4, we provide an unconditional concurrent statistical zero-knowledge proof for a relaxed
version of this complete problem, namely SD1

1/2. Currently, we do not know if our result extends

to SD
2/3
1/3, which if true, would then automatically extend to all of SZK.

Approximate Lattice Problems. Let Rm be the m-dimensional Euclidean space. A lattice
in Rm is the set of all integral combinations of n linearly independent vectors b1, . . . ,bn ∈ Rm.
Denoting the matrix B = [b1 · · ·bn], the lattice generated by basis matrix B is L(B) = {Bx : x ∈
Zn}. The open ball of radius r centered at point a is B(a, r) = {x : ‖x− a‖ < r}.

Two computational lattice problems that have been widely studied are the approximate versions
of the Closest Vector Problem and Shortest Vector Problem. We capture the compu-
tational task of approximating the closest lattice point to a given vector by the promise problem

8

GapCVPγ . Instances of this promise problem are pairs (B,y, t), where B is a lattice basis, y ∈ Zm

and t ∈ Q. The yes instances are (B,y, t) such that ‖Bx − y‖ ≤ t for some x ∈ Zn, while the no

instances are (B,y, t) such that ‖Bx − y‖ > γt for all x ∈ Zn.
Similarly, we capture the computational task of approximating the shortest lattice point (ex-

cluding the origin) to the origin by the promise problem GapSVPγ . Instances of this promise
problem are pairs (B, t), where B is a lattice basis, and t ∈ Q. The yes instances are (B, t) such
that ‖Bx‖ ≤ t for some x ∈ Zn \ {0}, while the no instances are (B, t) such that ‖Bx‖ > γt for all
x ∈ Zn \ {0}.

For both these problems, a central parameter of interest is γ, the gap between the yes instances
and the no instances. For γ = Ω(

√
(n/ log n)), the problems GapCVPγ and GapSVPγ , and their

complements, co-GapCVPγ and co-GapSVPγ , are known to be in SZK [GG00] (uncondition-
ally).6

3 Concurrently-Extractable Commitment Scheme

A key component in our concurrent zero-knowledge protocols is a commitment scheme with a con-
current extractability property. We call this scheme concurrently-extractable commitment scheme.
The notion of concurrent extractability informally means that we are able to simulate the concur-
rent execution of many sessions between an adversarial sender and the honest receiver in a way
that allows us to extract the commitments of the sender in every session.

This notion of concurrent extractability is inspired by the rewinding and simulation strategy of
the Prabhakaran-Rosen-Sahai (PRS) [PRS02] concurrent zero-knowledge protocol. The PRS proto-
col essentially consists of two stages, the preamble (first) stage and the main (second) stage [PRS02,
Section 3.1]. The concurrent zero knowledge feature of the protocol comes from the preamble stage,
in which the verifier is required to commit to the messages that it will use in the main stage. Our
goal in designing a concurrently-extractable commitment scheme is to modularize the PRS protocol
by abstracting this key feature (preamble stage) that allows for concurrent security.

In our concurrent zero-knowledge protocol, the verifier V plays the role of the sender S and the
prover P plays the role of the receiver R. This approach essentially allows us to easily add various
other components when designing concurrent zero-knowledge protocols for specific problems, as
done in Sections 4 and 5.

We begin with a generic (noninteractive) commitment scheme and show how to transform it
into a new scheme with the concurrent extractability property.

Definition 3.1. A generic (noninteractive) commitment scheme is a circuit Com : {0, 1}×{0, 1}n →
{0, 1}n, with n being the security parameter. We define:

1. The commitment to a bit b to be Com(b; r), where r ← {0, 1}n is a uniformly chosen random
key.

2. The decommitment of c to a bit b to be a pair (b, r) such that c = Com(b; r).

Note that this definition only refers to the syntax of a commitment scheme and does not impose
any security requirements (i.e. hiding and binding).

6Goldreich and Goldwasser [GG00] actually showed an honest-verifier PZK proof for co-GapCVPγ and
co-GapSVPγ , but the stated results follow from the closure of SZK and also that honest-verifier SZK =
SZK [Oka00, SV03, GV99, GSV98]. Moreover, Micciancio and Vadhan [MV03] gave a direct construction of an
efficient-prover SZK protocol for both GapCVPγ and GapSVPγ .

9

The concurrently-extractable (interactive) commitment scheme (S,R) consists of two phases,
the commit phase and the decommit phase, and is presented below.

Protocol 3.2. Concurrently-extractable commitment scheme (S,R).

Input:

• Parameters k and n (given in unary), where n is the security parameter.

• A generic commitment scheme Com : {0, 1} × {0, 1}n → {0, 1}n (given as
a circuit).

• A message m ∈ {0, 1}, to be committed to, given as a private input to
sender S.

Commit phase:

S → R: For all 1 ≤ i ≤ n and 1 ≤ j ≤ k, do the following:

(i) Secret share message m into random shares m0
i,j and m1

i,j

such that m0
i,j ⊕m1

i,j = m.

(ii) Select random and independent keys r0
i,j, r

1
i,j ← {0, 1}n.

(iii) Send c0i,j = Com(m0
i,j ; r

0
i,j) and c1i,j = Com(m1

i,j; r
1
i,j).

For j = 1, . . . , k, do the following:

R→ S: Send b1,j, . . . , bk,j ← {0, 1}.
S → R: Send (m

b1,j

1,j , r
b1,j

1,j), . . . , (m
bk,j

k,j , r
bk,j

k,j), which are decommitments

of c
b1,j

1,j , . . . , c
bk,j

k,j respectively.

Decommit phase:

S → R: To decommit to message m, send m together with(
(m

1−b1,j

i,j , r
1−bi,j

i,j)
)

1≤i≤n,1≤j≤k
.

R : Accept the decommitment if the following verification passes:
Verify that for all i and j, c0i,j = Com(m0

i,j; r
0
i,j), c1i,j =

Com(m1
i,j ; r

1
i,j), and m0

i,j ⊕m1
i,j = m.

Typically, we set the the parameter k to be slightly superlogarithmic, namely k = Õ(log n). In
this case, the commit phase has 2k + 1 = Õ(log n) rounds.

Next, we show that the above concurrently-extractable commitment scheme has three proper-
ties, namely hiding, binding, and concurrent extractability. The hiding and binding properties are
inherited from the generic commitments Com. To avoid confusion between the generic commitment
scheme and the concurrently-extractable commitment scheme, we call the decommitments to the
former, minor decommitments, and to the latter, major decommitments.

10

3.1 Hiding Property

In order for the concurrently-extractable commitment scheme to be used as a building block for our
concurrent zero-knowledge protocols, we will need to demonstrate that this concurrently-extractable
commitment scheme maintains the hiding property. Specifically, we show that if the generic com-
mitment scheme used is hiding, then the message committed to by the sender S will remain hidden

even after interacting with any (dishonest) receiver R∗. Let view
S(m)
R∗ (Com, 1k, 1n) be a random

variable representing the messages received by R∗ from S(m) in the commit phase only.

Lemma 3.3. Assume the generic commitment scheme Com : {0, 1} × {0, 1}n → {0, 1}n is statisti-
cally hiding, that is the ensembles {Com(0)}n∈N and {Com(1)}n∈N are statistically indistinguishable.
Then for any (dishonest) receiver R∗, for all k ≤ poly(n), we have that

{
view

S(0)
R∗ (Com, 1k, 1n)

}
n∈N

≈s

{
view

S(1)
R∗ (Com, 1k, 1n))

}
n∈N

.

Proof. Let � be any total ordering on the set T = {(i, j)}1≤i≤n,1≤j≤k ∪ {(0, 0)} with the property
that (0, 0) and (n, k) are the least and largest elements respectively.

Define the following hybrid senders {Sα,β}(α,β)∈T : Sα,β acts like S with the only exception that
during the first message of the commit phase, it chooses independent random shares m0

i,j and m1
i,j

of 0 when (i, j) � (α, β), and independent random shares m0
i,j and m1

i,j of 1 when (i, j) � (α, β).
Observe that Sα,β does not have any private input, and that S0,0 = S(0) and Sn,k = S(1).

Note that since k ≤ poly(n), the size of set T is nk + 1 ≤ poly(n). Using a hybrid argument,
it is sufficient to show that for any (α, β) and its immediate successor (γ, δ), it is the case that

view
Sα,β

R∗ ≈s view
Sγ,δ

R∗ , dropping the common inputs (Com, 1k, 1n) for simplicity of notation.
The only difference between Sα,β and Sγ,δ is that the former chooses independent random shares

m0
α,β and m1

α,β of 0, while the latter chooses independent random shares m0
α,β and m1

α,β of 1. Since
the generic commitment scheme Com is statistically hiding, and both Sα,β and Sγ,δ only reveal one

of their random shares, we have that view
Sα,β

R∗ ≈s view
Sγ,δ

R∗ . �

Committing to multi-bit messages. The concurrently-extractable commitment scheme, pre-
sented as Protocol 3.2, is for a single-bit message; to commit to a `-bit message, we repeat the above
protocol ` times in parallel. It is important to note that even if we do so, the multi-bit message will
remain hidden before the decommit phase. This fact can be proven by extending Lemma 3.3 with
a standard hybrid argument on the multi-bit message. Specifically, to show indistinguishability of
committed `-bit messages M and M ′, we construct `+1 different hybrid senders with the first and
last having M and M ′ as their private inputs respectively, and each neighboring hybrid senders
having private inputs differing by only a single bit.

Furthermore, when we commit to multi-bit messages, we can decommit in multiple steps, one for
each committed bit. This is because the decommit phase for each bit of the message is independent
of the other decommit phases for the rest of the message.

3.2 Binding Property

We demonstrate the binding property of the concurrently-extractable commitment scheme via a
reduction analysis. Informally stated, we show that if a dishonest sender S ∗ can major-decommit
to two different messages, then we can break the binding property of the generic commitment
scheme Com (which is impossible if Com is binding). In fact, we will prove (and use) a stronger
statement, which, instead of requiring two inconsistent major decommitments, only requires one

11

major decommitment together with minor decommitments for one of the k2 sharings of the message
m = m0

i,j ⊕m1
i,j. (Recall that a major decommitment consists of minor decommitments for all k2

sharings.) The following lemma states this precisely.

Lemma 3.4. For all dishonest sender S∗, let C = viewS∗

R (Com, 1k, 1n) be the transcript of the
commit phase. For some i and j, let d0

i,j = (m0
i,j, r

0
i,j) and d1

i,j = (m1
i,j, r

1
i,j) be minor decommitments

of c0i,j and c1i,j contained in C. Specifically, c0i,j = Com(m0
i,j; r

0
i,j) and c1i,j = Com(m1

i,j ; r
1
i,j), and

both c0i,j and c1i,j are part of the sender’s first message in C.

Let m = m0
i,j ⊕ m1

i,j. If there exist a major decommitment D of C to a different message

m̃ 6= m, then from the values of D, C, d0
i,j and d1

i,j, we can efficiently compute an r and r′ such
that Com(0; r) = Com(1; r′).

Proof. Since D is a valid major decommitment for C, from these values, we obtain minor de-
commitments (m̃0

i,j, r̃
0
i,j) and (m̃1

i,j, r̃
1
i,j) of c0i,j and c1i,j respectively, for all i and j. In addition,

m̃ = m̃0
i,j ⊕ m̃1

i,j, for all i and j.

However, it is also the case that d0
i,j = (m0

i,j, r
0
i,j) and d1

i,j = (m1
i,j , r

1
i,j) are minor decommitments

of c0i,j and c1i,j, for some i and j. Since m0
i,j ⊕m1

i,j = m 6= m̃ = m̃0
i,j ⊕ m̃1

i,j, either m0
i,j 6= m̃0

i,j or

m1
i,j 6= m̃1

i,j. In both cases, we have two different minor decommitments to the same commitment

(either c0i,j or c1i,j). �

3.3 Concurrent Extractability Property

Recall that the prover P and adversarial verifier V ∗ (in our concurrent zero-knowledge protocols)
will play the role of the receiver R and concurrent adversarial sender, denoted as Ŝ, respectively.
Therefore, we will need to exhibit a simulation strategy for R against any adversarial sender Ŝ
concurrently interacting with it. Doing so by itself is trivial since R only sends random coin
tosses and thus does not leak knowledge. However, in order to use the concurrently-extractable
commitment scheme as a building block for our concurrent zero-knowledge protocols, a key property
required is the ability of this simulator to also determine the initial committed message of Ŝ in all
sessions. We call this the concurrent extractability property, a notion that we will later formalize.
First, we make certain simplifying assumptions on Ŝ.

Assumptions on the concurrent adversary. Without loss of generality, we impose certain
restrictions on the concurrent adversarial sender Ŝ. These restrictions will aid in simplifying our
proofs of concurrent security (in Sections 4 and 5).

• Ŝ is a deterministic algorithm. As in the usually done in the analysis of zero-knowledge
protocols, the adversary’s random coin tosses can be fixed in advanced.

• Ŝ executes exactly Q concurrent sessions, for some parameter Q that is typically bounded
by poly(n). This assumption can be made because we can easily upper bound the number
of sessions by the running time of Ŝ. And if Ŝ executes less than Q sessions, we can easily
modify Ŝ to send dummy messages in the sessions that it does not execute, making it execute
exactly Q sessions.

• For each sender round j = 1, . . . , k in the commit phase, Ŝ always either sends valid decom-
mitments or the message error. This is because a decommitment (b, r) to a commitment c
can be easily checked for validity by testing if Com(b; r) = c.

12

• Ŝ only interacts with R in the commit phase. This is because our simulation only deals with
that phase.

• Ŝ commits to an `-bit message. Although our concurrently-extractable commitment scheme
handles only single-bit messages, as stated previously, we can repeat the protocol in parallel
to get a multi-bit commitment scheme. Since our simulator handles concurrent interaction,
parallel repetition is just a special case and will not pose a problem. Later, it will be more
convenient to think of Ŝ as committing to an `-bit message per session, rather than `-senders
committing to a single-bit message each. Hence, we will include ` as an additional parameter
to the simulator.

Simulator for the concurrently-extractable commitment scheme. We denote the simu-
lator for the commit phase of Protocol 3.2 as CEC-Sim, with the term CEC being an acronym for
concurrently-extractable commitments. Simulator CEC-Sim has access to oracle Ŝ and is given the
following inputs:

• Generic commitment schemes COM = (Com1,Com2, . . . ,ComQ), where Coms : {0, 1}×{0, 1}n →
{0, 1}n is the commitment scheme used for session s and is given as a circuit.

• Parameters `, k, n and Q, all given in unary. Note that n is the security parameter and Q is
the number of sessions executed by Ŝ.

The concurrently extractability property of the simulator will restrict the way in which CEC-Sim

queries Ŝ. Before providing a formal definition, we define the following notions of valid commit
phase transcript and compatibility.

Valid commit phase. For a transcript T of the commit phase interaction between S and R, let
T [s] denote the messages in session s. T [s] is a valid commit phase transcript if there exist
a major decommitment D such that R(T [s], D) = accept. In particular, this implies that
all of the sender’s minor decommitments in the commit phase T [s] are valid (i.e. the sender
never sends error), which is the only property of valid commit phase transcripts that is used
in Lemma 3.6 below.

Compatibility. Message M = (m,m0
i,j, r

0
i,j ,m

1
i,j, r

1
i,j) is compatible with T [s] if

(i) m = m0
i,j ⊕m1

i,j, and

(ii) Coms(m
0
i,j; r

0
i,j) = c0i,j and Coms(m

1
i,j; r

1
i,j) = c1i,j , with c0i,j [s] and c1i,j [s] being part of the

first message in T [s].

Observe that M contains a potential committed message m of the sender in session s, together
with minor decommitments of shares of m. By Lemma 3.4, it is impossible for the sender
to major-decommit to a message different from m without breaking the binding property of
Com. Thus we call m the extracted message.

Definition 3.5 (simulator with concurrent extraction). Simulator CEC-Sim
bS has the concurrent

extraction property if for every query T it makes to Ŝ, it also provides (on a separate output tape)
an array of messages (M1,M2, . . . ,MQ) with the following property:

For every session s ∈ {1, 2, . . . , Q}, if T [s] is a valid commit phase transcript, then Ms

is compatible with T [s].

13

A simulator that has the concurrently extractable property is also called a concurrently-extractable
simulator.

Using the simulation and rewinding techniques in [PRS02], we obtain a concurrently-extractable
simulator (for Protocol 3.2) that runs in probabilistic polynomial time. Recall that 〈R, Ŝ〉 denotes
the output of Ŝ after concurrently interacting with R, and that Ŝ can be a computationally un-
bounded adversary.

Lemma 3.6 (implicit in [PRS02]). There exists a probabilistic polynomial-time concurrently-extractable
simulator CEC-Sim such that for all generic commitment schemes COM and all concurrent adver-
sarial sender Ŝ, for settings of parameter ` = poly(n), k = Õ(log n), and Q = poly(n), we have the

ensembles
{

CEC-Sim
bS(COM, 1`, 1k, 1n, 1Q)

}
n∈N

and
{
〈R, Ŝ〉(COM, 1`, 1k, 1n, 1Q)

}
n∈N

are statis-

tically indistinguishable.

Remark 3.7. Simulator CEC-Sim has essentially the same rewinding strategy as the simulator
in [PRS02], which we call the PRS simulator. Our definition of concurrently-extractable simulators
is motivated by the following fact:

Whenever the PRS simulator completes a simulation of a session s (that is, T [s] is
a complete commit phase), with high probability, it solves the session by providing
decommitments to c0i,j and c1i,j , for some i and j.

In the case when the PRS simulator fails to solve the session (and this happens with negligible
probability), our simulator CEC-Sim will halt and not query Ŝ.

Another difference between the PRS simulator and CEC-Sim is that the former is only required
to provide compatible messages for the most recently completed commit phase, whereas CEC-Sim

is required to provide compatible messages for every completed commit phase. However, since the
PRS simulator has already solved the previous sessions in prior simulation steps, it actually has the
ability to provide compatible messages for every completed commit phase (though not explicitly
stated in [PRS02]).

4 Unconditional Concurrent Zero-Knowledge Proofs for Problems

with Perfectly-Binding Commitments

In this section, we demonstrate a generic technique of transforming stand-alone public-coin zero-
knowledge protocols for certain coNP problems into concurrent zero-knowledge protocols. In doing
so, we construct the first known unconditional concurrent zero-knowledge protocols for non-trivial
problems like Quadratic Nonresiduosity, Graph NonIsomorphism, the statistical difference
problem SD1

1/2 and approximate lattice problems.
The main tool used in the transformation is a problem-dependent commitment scheme, formally

defined in Definition 4.1. Later in Section 5, we demonstrated a modified transformation that works
for certain NP problems.

4.1 Perfectly-Binding Problem-Dependent Commitments

In order to prevent the adversarial verifier from deviating widely from the original protocol spec-
ification, the previous constructions of concurrent zero-knowledge protocols require the verifier to
commit to certain messages in advance [RK99, KP01, PRS02]. While these commitments can be

14

constructed from one-way functions [Nao91, HILL99], proving the existence of one-way functions
remains a major open problem in complexity theory.

To achieve concurrent security without relying on unproven assumptions, we observe that the
standard verifier’s commitments used in [PRS02] can be replaced by problem-dependent commit-
ments [IOS97] (cf., [MV03]). A problem-dependent commitment, roughly speaking, is a commit-
ment protocol that takes the problem instance x as an additional input, is binding on the yes

instances (x ∈ ΠY), and is hiding on the no instances (x ∈ ΠN). Standard commitments, by
contrast, are required to always be both hiding and binding regardless of the problem instance.

Because the hiding and binding properties of problem-dependent commitments depend on the
problem instance, we can construct problem-dependent commitments that both perfectly binding
(on the yes instances) and statistically hiding (on the no instances).7 We give a simplified, non-
interactive definition of problem-dependent commitments that suffices for our applications in this
section.

Definition 4.1 (noninteractive problem-dependent commitment). A promise problem Π = (ΠY,ΠN)
has a perfectly-binding problem-dependent commitment if there exists a polynomial-time algorithm
PD-Com such that the following holds.

1. Algorithm PD-Com takes as input the problem instance x, a bit b, and a random key r, and
produces a commitment c = PD-Comx(b; r). The running time of PD-Com is bounded by a
polynomial in |x|, and without loss of generality we can assume that |c| = |r| = poly(|x|).

2. (perfectly binding on yes instances) For all x ∈ ΠY, the distributions PD-Comx(0) and
PD-Comx(1) have disjoint supports. That is, there does not exist strings r and r ′ such that
PD-Comx(0; r) = PD-Comx(1; r′).

3. (statistically hiding on no instances) For all x ∈ ΠN, the commitments to 0 and 1 are
statistically indistinguishable. In other words, the distributions PD-Comx(0) and PD-Comx(1)
are statistically indistinguishable (w.r.t. |x|, the length of the instance).

The commitment c can be decommitted to by sending the committed bit b and random key r. Since
both parties have access to the problem instance x, this decommitment can be verified by checking
that c = PD-Comx(b; r).

Consider the statistical difference problem SD1
1/2. This problem involves deciding whether

two distributions are statistically close or are disjoint. The perfectly-binding problem-dependent
commitment for SD1

1/2, due to Micciancio and Vadhan [MV03], is essentially as follows: Let x =

(X0, X1) be an instance of SD1
1/2. To commit to bit b, select a random r and send Xb(r) as the

commitment. To decommit, send b and r. Because the distributions induced by X0 and X1 are
disjoint for the yes instances, the commitment is binding on those instances. In the case of the no

instances, the statistical distance between the two distributions are at most 1/2. This value can be
further reduced to 2−|x|, a negligible value, by an XOR Lemma [SV03].

Observe that any problem that has a perfectly-binding problem-dependent commitment in
the sense of Definition 4.1 is in coNP; the witness for the no instances is (r, r ′) such that
PD-Comx(0; r) = PD-Comx(1; r′). In fact, there is a tight characterization between perfectly-
binding problem-dependent commitments and the statistical difference problem SD1

1/2 ∈ coNP.

Lemma 4.2 ([MV03]). Promise problem Π has a perfectly-binding problem-dependent commitment
if and only if Π reduces to SD1

1/2.

7By contrast, standard commitments cannot be both statistically binding and statistically hiding.

15

To accommodate problems outside coNP, it is possible to relax the definition of problem-
dependent commitments (Definition 4.1) to allow for interaction, and also to allow for computational
binding on the yes instances (because the commitment is being used by polynomial-time bounded
verifier). We consider both these relaxations in Section 5.1 (where we construct a modified problem-
dependent commitment scheme for certain NP problems). Nevertheless, the efficiency of the sender
in the commitment scheme is crucial because our protocols will require the verifier (acting as the
sender) to do the problem-dependent commitments. Thus, although Vadhan [Vad04] constructed
problem-dependent commitments for all of zero knowledge, we cannot use those commitments
because they utilize an inefficient sender.

As we will later show, being binding on the yes instances and hiding on the no instances is
exactly the property of the verifier’s commitment that we need in our unconditional concurrent
zero-knowledge protocol. This property of our commitment scheme is very similar to the definition
of positively transparent and negatively opaque commitments in [IOS97, Definitions 2.1 & 2.2],
and to that used in an earlier work of [BMO90] which implicitly uses a form of problem-dependent
commitments to prove an unconditional constant-round PZK protocol for Graph Isomorphism.

Some other works, like [MV03, Vad04] and [IOS97, Section 4.1], that have employed the use
of problem-dependent commitments defined these commitments to have exactly the opposite prop-
erty, namely hiding on the yes instances and binding on the no instances. This is because their
protocols require the prover to do the problem-dependent commitments, whereas our protocols
and that of [BMO90] and [IOS97, Section 4.2] require the verifier to do the problem-dependent
commitments.

4.2 Main Results

Before presenting the our unconditional concurrent zero-knowledge protocol, we state our main
results for this section.

Theorem 4.3. If promise problem Π has a public-coin CVZK proof system (P0, V0) and also a
perfectly-binding problem-dependent commitment, then Π has a proof system (P, V) with the fol-
lowing properties:

1. Zero-knowledge guarantee is preserved. That is, if (P0, V0) is statistical (resp., computational)
zero knowledge, then (P, V) is concurrent statistical (resp., computational) zero knowledge.

2. Prover P is black-box simulatable in strict polynomial time.

3. The round complexity of (P, V) increases only by an additive factor of Õ(log n), with n being
the security parameter, compared to the original protocol (P0, V0).

4. The completeness of (P, V) is exactly the same as that of (P0, V0), while the soundness error
increases by only a negligible additive term (as a function of n).

5. The prover strategy P can be implemented in probabilistic polynomial-time with oracle access
to P0. In particular, if P0 is efficient, so is P .

Note that the requirement of Π having public-coin CVZK is equivalent to having public-coin
HVZK (by Lemma 2.4). We provide a full proof of Theorem 4.3 in Sections 4.3 and 4.4. The follow-
ing corollary of Theorem 4.3 follows from the fact that SD1

1/2 exactly characterizes problems with

perfectly-binding problem-dependent commitments (Lemma 4.2), and has public-coin statistical
zero-knowledge proofs [Oka00, SV03].

16

Corollary 4.4. If promise problem Π has perfectly-binding problem-dependent commitment, then
Π has a concurrent statistical zero-knowledge proof.

Furthermore, any problem that reduces to SD1
1/2 has concurrent statistical zero-knowledge

proofs, by Lemma 4.2 and the above corollary. Several natural problems that fit into this cat-
egory are Quadratic Nonresiduosity, Graph NonIsomorphism, and the approximate lattice
problems, co-GapCVPγ and co-GapSVPγ (these reductions are implicit in [GMR89, GMW91,
GG00, SV03, MV03]).

Corollary 4.5. The following problems have concurrent statistical zero-knowledge proofs:

• The statistical difference problem SD1
1/2.

• The languages Quadratic Nonresiduosity and Graph NonIsomorphism.

• The lattice problems co-GapCVPγ and co-GapSVPγ, for γ = Ω(
√

(n/ log n)).

The above corollary does not guarantee a polynomial-time prover strategy (with auxiliary input)
nor round efficiency. The reason is that the public-coin honest-verifier zero-knowledge proof sys-
tems known for these problems do not have a polynomial-time prover nor a subpolynomial number
of rounds. For Blum Quadratic Nonresiduosity, however, we can start with the noninter-
active statistical zero-knowledge proof8 of [BDMP91], whose prover is polynomial time (given the
factorization of the modulus), and obtain the following:

Corollary 4.6. The language Blum Quadratic Nonresiduosity has a concurrent statistical
zero-knowledge proof systems with Õ(log n) rounds and a prover that can be implemented in poly-
nomial time given the factorization of the input modulus.

We note that we do not expect to obtain efficient provers for Graph NonIsomorphism or
SD1

1/2, since these problems are not known to be in NP (or MA), which is a prerequisite for an

efficient-prover proof system. However, Quadratic Nonresiduosity is in NP (the factorization
of the input is a witness), as are co-GapCVPγ and co-GapSVPγ for larger approximation factors
γ = Ω(

√
n) [AR04], so we could hope to obtain an efficient prover. The bottleneck is finding public-

coin honest-verifier zero-knowledge proofs with a polynomial-time prover for these problems. (Such
private-coin proof systems are known [GMR89, GG00, AR04].)

4.3 Our Concurrent Zero-Knowledge Protocol

A high-level description of our unconditional concurrent zero-knowledge protocol is as follows:
We begin with a public-coin CVZK protocol. We make it concurrent zero knowledge by forc-
ing the verifier to commit in advance to its (public-coin) messages in the CVZK protocol using
the concurrently-extractable commitment scheme (Protocol 3.2). Finally, we replace the verifier’s
standard commitments with problem-dependent commitments, hence not requiring any complexity
assumption.

Now, let us formally describe our concurrent zero-knowledge protocol. Let (P0, V0) be a public-
coin CVZK proof system for Π with q(|x|) rounds on common input x. Denote the messages

sent by V0 in the protocol as m = (m(1), . . . ,m(q)), and let `
def
= |m| be the verifier-to-prover

communication complexity. Let PD-Comx : {0, 1} × {0, 1}n → {0, 1}n, where n = poly(|x|), be a

8Noninteractive zero knowledge implies (in fact is equivalent to) 2-round honest-verifier zero knowledge since the
honest verifier just sends the common random string in the first round, and the prover sends the single-message proof
in the second round.

17

perfectly-binding problem-dependent commitment for Π. The full description of our concurrent
zero-knowledge protocol (P, V) is next.

Protocol 4.7. Our unconditional concurrent zero-knowledge protocol (P, V)
for problem Π with perfectly-binding problem-dependent commitments.

Input: Instance x of Π.

Preamble stage (using problem-dependent commitments)

V selects a random message m ← {0, 1}`, and runs the concurrent com-
mitment scheme (Protocol 3.2) ` times in parallel, with V as the sender
and P as the receiver. The inputs are the message m, commitment scheme
PD-Comx : {0, 1} × {0, 1}n → {0, 1}n, and parameters k = Õ(log|x|) and
n = poly(|x|). The full description of the protocol follows.

V → P : Send the message "start session".

V → P : Select a random message m = (m(1),m(2), . . . ,m(q(|x|))← {0, 1}`.
For all 1 ≤ i, j ≤ k, do the following:

(i) Secret share message m into random shares m0
i,j and m1

i,j such

that m0
i,j ⊕m1

i,j = m.

(ii) Select random and independent keys r0
i,j, r

1
i,j ← {0, 1}n.

(iii) Send c0i,j = PD-Comx(m0
i,j ; r

0
i,j) and c1i,j = PD-Comx(m1

i,j; r
1
i,j).

For j = 1, . . . , k, do the following:

P → V : Send b1,j, . . . , bk,j ← {0, 1}k .

V → P : Send (m
b1,j

1,j , r
b1,j

1,j), . . . , (m
bk,j

k,j , r
bk,j

k,j), which are decommitments of

c
b1,j

1,j , . . . , c
bk,j

k,j respectively.

Main stage (stand-alone zero-knowledge protocol)

V → P : Send the message "start main stage".

P : Select randomness rP0 ← {0, 1}∗ for the original prover P0.

For t = 1, . . . , q(|x|), do the following:

V → P : Send m(t) and decommit to all the secret shares of m(t), other than
those decommitted in the preamble stage. Specifically, decommit to

{m(t)
1−bi,j

i,j }ki,j=1.

P → V : Verify that the decommitments are all valid and that m(t) =

m(t)
1−bi,j

i,j ⊕ m(t)
bi,j

i,j , for all i, j ∈ [1, k]. If verification fails, halt
and abort. Otherwise, answer as the original prover P0 would, that
is, send πt = P0(x,m(1), . . . ,m(t); rP0).

Verifier V accepts if the original verifier V0 accepts on
(m(1), π1,m(2), π2, . . . ,m(q), πq).

18

From the Protocol 4.7, we can easily derive the prover efficiency, round complexity and com-
pleteness claims of Theorem 4.3. In addition, the soundness follows from the hiding property of the
concurrently-extractable commitment scheme (Lemma 3.3). This is because a cheating prover will
not know the committed messages of the verifier until the verifier decommits to all secret shares of
m(t) (in round t of the main stage). We summarize our results in the following lemma, deferring
the proof of concurrent zero knowledge claim to Section 4.4.

Lemma 4.8. The interactive protocol (P, V), given in Protocol 4.7, has the following properties
(with the numbering consistent with Theorem 4.3):

3. The round complexity of (P, V) increases only by an additive factor of Õ(log n), with n being
the security parameter, compared to the original protocol (P0, V0).

4. The completeness of (P, V) is exactly the same as that of (P0, V0), while the soundness error
increases by only a negligible additive term (as a function of n).

5. The prover strategy P can be implemented in probabilistic polynomial-time with oracle access
to P0. In particular, if P0 is efficient, so is P .

4.4 Our Simulator

The goal of this subsection is to design a simulator for Protocol 4.7. In the next lemma, we
summarize the results contained in this subsection.

Lemma 4.9. The interactive protocol (P, V), given in Protocol 4.7, has the following properties
(with the numbering consistent with Theorem 4.3):

1. Zero-knowledge guarantee is preserved. That is, if (P0, V0) is statistical (resp., computational)
committed-verifier zero knowledge, then (P, V) is concurrent statistical (resp., computational)
zero knowledge.

2. Prover P is black-box simulatable in strict polynomial time.

Observe that Lemma 4.9 combined with Lemma 4.8 from the previous subsection, yield Theo-
rem 4.3. Let us get back to the task of designing a simulator for Protocol 4.7. Observe that the
prover’s strategy can be broken into two parts, Ppre and Pmain,

9 denoting the preamble and the
main stage, respectively. Both Ppre and Pmain use independent randomness. The simulation pro-
cedure for our concurrent zero-knowledge protocol (Protocol 4.7) is broken into three main steps,
which we outline now and detail in the following subsections.

1. First, we analyze the concurrent interaction of P and V ∗ in the context of the concurrently-
extractable commitment scheme (Protocol 3.2). To do so, we define a new adversarial sender
Ŝ that takes V ∗ and Pmain as oracles and only returns the preamble messages of V ∗. The
preamble stage prover Ppre acts as the honest receiver. By Lemma 3.6, we can simulate the

output of Ŝ (after interaction with Ppre), while having the additional property of being able
to extract the commitments.

By virtue of the way we define Ŝ, its output after concurrently interacting with Ppre is
equivalent to the output of V ∗ after concurrently interacting with P . Nevertheless, this
simulation is inefficient because Ŝ uses an oracle for Pmain.

9The difference between Pmain, the prover strategy in the main stage, and P0, the original CVZK prover, is that
Pmain checks for the validity of the decommitments before responding as P0 would. For the remainder of this section,
we will focus on Pmain instead of P0.

19

2. Since we can extract the commitments, we are able to determined the verifier’s main stage
messages in advance. Hence, we can replace the adaptive queries to Pmain by a single query
made to a new oracle, called OP , at the start of each main stage.

3. However, OP is still not an efficiently implementable oracle. In the final step, we replace
oracle OP with a committed-verifier zero knowledge (CVZK) simulator SCVZK to obtain an
efficient simulation strategy.

We will show that the simulation in Step 1 is indistinguishable from 〈P, V ∗〉, and that in Steps 2
and 3, the output of the simulation in that step is indistinguishable to the previous. We formalize
these ideas below.

4.4.1 First simulation procedure

Before presenting our first simulator, we would need to consider different kinds of transcripts and
the operation of the concurrent adversarial sender Ŝ.

Preamble and full transcripts. A preamble transcript, denoted as Tpre, is a (partial) transcript
of the concurrent interaction between P and V ∗, with the main stage messages removed. Hence,
it only consists of preamble stage messages and is compatible with the transcript of the commit
phase interaction between R and Ŝ.

A full transcript, denoted as Tfull, is a (partial) transcript of the concurrent interaction between
P and V ∗, with all the messages intact. Note that preamble and full transcripts are allowed to
capture only a partial interaction between P and V ∗.

We say a (preamble or full) transcript is complete if it captures the entire concurrent interaction
between P and V ∗. In the case of complete preamble transcripts, the main stage messages are
removed, but all preamble stage interaction are present.

It is important to note that the adversarial verifier V ∗ operates on full transcripts, whereas the
adversarial sender Ŝ, defined next, operates on preamble transcripts.

Concurrent adversarial sender Ŝ. Let F(·; ·) be a truly random function, that is over a random
choice of rF , F(·; rF) is a random function. We are required to simulate the concurrent interaction
between P and V ∗. We analyze this interaction in the context of the concurrently extractable
commitment scheme (Protocol 3.2). In doing so, we view the preamble stage prover Ppre as the

honest receiver R, and define a new adversarial sender Ŝ that takes V ∗ and Pmain as oracles and
only returns the preamble messages of V ∗. The inputs to Ŝ are transcript T and randomness rF
(the random key for the truly random function F).

We give a high-level explanation on the role of Ŝ. It is designed to mimic V ∗, but only outputs
its preamble messages. To simulate the main stage messages in some session s ∈ {1, 2, . . . , Q}, Ŝ
uses oracle Pmain with prover randomness rP0 = F((v1[s], s); rF), where v1[s] is the first preamble
message in session s. The inputs to Ŝ are a preamble transcript Tpre and randomness rF (for
the truly random function F). We will first need to convert Tpre into a full transcript Tfull with
main stage messages. To do so, for every session s, we use oracle Pmain (with prover randomness
rP0 = F((v1[s], s); rF)) to obtain the prover main stage messages, and use V ∗ to determine the
verifier’s main stage messages as well as the scheduling of the messages. A formal definition of Ŝ
is given next.

20

ŜPmain,V ∗
(Tpre; rF):

1. Let Tpre = ((s1, v1), p1, (s2, v2), p2, . . . , (st, vt), pt).

2. Initialize Tfull = () and j = 1.

3. Query oracle V ∗ on Tfull to obtain (s, v) = V ∗(Tfull). Depending on the value of v, s,
and t, do the following.

Case 1: v is a preamble stage message and j = t+ 1. In this case, send (s, v).

Case 2: (s, v) = (end, α) and j = t+ 1. In this case, output α and halt.

Case 3: v is a preamble stage message, j ≤ t, and (s, v) = (sj, vj). In this case,
update Tfull = Tfull ◦ ((sj , vj), pj) and j = j + 1. Repeat Step 3.

Case 4: v is a main stage message. Proceed as follows.

(a) Let T [s] denote all the messages of session s in Tfull, and let v1[s] be the
verifier’s first preamble message in T [s].

(b) Set the main stage prover’s randomness rP0 = F((v1[s], s); rF).

(c) Query oracle Pmain to obtain p = Pmain(x, T [s] ◦ v; rP0).

(d) Update Tfull = Tfull ◦ ((s, v), p), and repeat Step 3.

Case 5: Otherwise, halt and output fail, indicating that Tpre was not a valid pream-
ble transcript.

First simulator. We are now ready to present our first simulation procedure. Observe that
Ŝ (with rF fixed) can be thought of as a deterministic oracle taking preamble transcripts Tpre

as queries. In order to simplify notation, we write Ŝ[rF](·) to represent the deterministic oracle
ŜPmain,V ∗

(·; rF).

Sim-OnePmain,V ∗

(x; rF):

1. Let Q be the bound on the number of concurrent sessions executed by V ∗. Set COM =
{Com1,Com2, . . . ,ComQ}, where Coms = PD-Comx (the problem-dependent commit-
ment) for all s ∈ {1, 2, . . . , Q}.

2. Output CEC-Sim
bS[rF](COM, 1`, 1k, 1n, 1Q).

For the rest of the section, we simplify notations by representing CEC-Sim
bS[rF](COM, 1`, 1k, 1n, 1Q)

with a shorter notation CEC-Sim
bS[rF], and avoid repeating common inputs (COM, 1`, 1k, 1n, 1Q).

Lemma 4.10. If the number of concurrent sessions Q is bounded by poly(|x|), then the output of the

first simulator
{

Sim-OnePmain,V ∗

(x)
}

x∈ΠY

(over random coin tosses rF ← {0, 1}∗) is statistically

indistinguishable from
{
〈P, V ∗〉(x)

}
x∈ΠY

.

Proof. With settings of parameters k = ω(log|x|), ` = poly(|x|), n = poly(|x|) and Q = poly(|x|),
by Lemma 3.6, we have that for every string rF ,

CEC-Sim
bS[rF] ≈s 〈Ppre, Ŝ[rF]〉.

For every session s, the main stage prover’s randomness for that session is given by rP0 =
F((v1[s], s); rF). If rF is chosen uniformly at random, the value of rP0 will be independent and

21

uniform for each session s. Hence, for uniformly chosen coin tosses rF , the output of Ŝ[rF] after
concurrently interacting with Ppre is equivalent to the output of V ∗ after concurrently interacting
with P . Stated formally, [

〈Ppre, Ŝ[rF]〉
]
rF←{0,1}∗

≡ 〈P, V ∗〉(x).

Finally we have,

[
Sim-OnePmain,V ∗

(x; rF)
]
rF←{0,1}∗

def
=

[
CEC-Sim

bS[rF]
]
rF←{0,1}∗

≈s

[
〈Ppre, Ŝ[rF]〉

]
rF←{0,1}∗

≡ 〈P, V ∗〉(x),

completing our proof. �

4.4.2 Second simulation procedure

The inefficiency in the first simulator Sim-One stems from the implementation of the adversarial
sender ŜPmain,V ∗

(T ; rF). The adversarial sender uses Pmain as well as a truly random function F
whose key rF is exponentially long. To overcome that inefficiency, we will mimic the implementation
of Ŝ without using Pmain or F , but by employing the use of a probabilistic oracle OP defined below.

Oracle OP : On query m = (m(1), . . . ,m(q)), do the following.

1. Select randomness rP0 ← {0, 1}∗.
2. Output all of the original prover P0’s responses to m,

namely (πt = P0(x,m(1), . . . ,m(t); rP0))1≤t≤q.

Each new query to oracle OP results in choosing independent random coin tosses rP0 .

Note that the only use of rF by Ŝ is in generating the main stage prover’s randomness rP0 =
F((v1[s], s); rF). Since F is a truly random function, the randomness rP0 can be generated on-the-
fly without the need for choosing the very long random string rF .

Furthermore, we can determine the V ∗’s main stage messages in advance because CEC-Sim is
a concurrently-extractable simulator. Whenever it queries Ŝ on Tpre, it also provides messages
Ms for each complete session T [s]. Note that each Ms contains an m that should be V ∗’s main
stage message in session s. Hence, we can query OP on m to obtain (π1, . . . , πq) instead of doing
multiple queries to Pmain. In order to give consistent main stage prover responses when we rewind
the simulation, we record these responses in an array, denoted as Prover-Msg. We formalize these
ideas in our second simulator.

Sim-TwoOP ,V ∗

(x):

1. (Similar to Sim-One) Let Q be the bound on the number of concurrent sessions executed
by V ∗. Set COM = {Com1,Com2, . . . ,ComQ}, where Coms = PD-Comx (the problem-
dependent commitment) for all s ∈ {1, 2, . . . , Q}.

2. Initialize the array of main stage prover responses Prover-Msg[(v1[s], s)] =⊥ for all pairs
(v1[s], s).

22

3. Without using oracle Pmain and randomness rF , run CEC-Sim
bS until CEC-Sim queries Ŝ

on some Tpre. When this happens, do the following:

(a) Freeze the execution of CEC-Sim
bS .

(b) Let T [s] denote all the preamble stage messages of session s in Tpre, and let v1[s] be
the verifier’s first (preamble) message in T [s]. If Prover-Msg[(v1[s], s)] 6=⊥, then let
(π1, . . . , πq) = Prover-Msg[(v1[s], s)], and proceed to Step 3d.

(c) For every s such that T [s] is a valid commit phase transcript, simulator CEC-Sim

provides an extracted message m. Using m, query OP (m) to obtain the prover
responses (π1, . . . , πq). Update Prover-Msg[(v1[s], s)] = (π1, . . . , πq).

(d) Instead of querying oracle Pmain directly, check that the decommitments provided
by Ŝ in session s are all valid. If they are all valid, use πt to answer the query to
Pmain for the t-th round prover response in the main stage of session s.

(e) Continue the execution of CEC-Sim
bS as in Step 3.

By virtue of the way we defined Sim-Two, it acts exactly like Sim-One.

Lemma 4.11. For all x ∈ ΠY, we have that

[
Sim-OnePmain,V ∗

(x; rF)
]
rF←{0,1}∗

≡ Sim-TwoOP ,V ∗

(x).

Furthermore, Sim-Two is a probabilistic polynomial-time algorithm with oracle access to OP and
V ∗.

Proof. The fact that Sim-Two is a probabilistic polynomial-time algorithm is easy to check. We will
show that Sim-Two perfectly mimics the execution of Sim-One. The only times when the execution
of Sim-Two could potentially differ from Sim-One is when we freeze the execution of CEC-Sim (in
Sim-Two) because ŜPmain,V ∗

(T ; rF) requires an answer from oracle Pmain to simulate the prover’s
main stage messages in some session s.

In that case, T [s] is a valid commit phase transcript, and CEC-Sim provides an extracted message
m = (m(1), . . . ,m(q)) for that session s. By the binding property of the concurrently-extractable
commitments (Lemma 3.4) and by the fact that PD-Comx is perfectly binding (for x ∈ ΠY), the
message m = (m(1), . . . ,m(q)) must be the V ∗ main stage messages in session s.10

Given that we know the verifier’s main stage messages to be m = (m(1), . . . ,m(q)), and that
F is a truly random function, the following two random processes result in equivalent output
distributions: (i) querying Pmain multiple times to obtain (πt = P0(x,m(1), . . . ,m(t); rP0))1≤t≤q ,
with rP0 = F((v1[s], s); rF) and uniformly chosen random coins rF ← {0, 1}∗, and (ii) querying
OP once to obtain (πt = P0(x,m(1), . . . ,m(t); rP0))1≤t≤q , with uniformly chosen random coins
rP0 ← {0, 1}∗. In addition, in process (ii), we keep a history of the main stage prover responses
that we have used in the array Prover-Msg to avoid giving a different set of prover responses for
the same pair (v1[s], s). This is important because in process (i), the value of (v1[s], s) determines
the prover’s randomness, and hence the prover responses.

Consequently, in the case when Sim-Two queries oracle Pmain, we can use oracle OP to supply
identically distributed answers. This completes our proof. �

10If the verifier halts during step t in the main stage of session s, the prior messages must be (m(1), . . . , m(t− 1)).

23

4.4.3 Replacing the oracle OP

We now proceed to replace the oracle OP with a committed-verifier zero knowledge simulator SCVZK

for Π. To do so, we define the following probabilistic oracle OCVZK.

Oracle OCVZK: On query m, do the following.

1. Select randomness rS ← {0, 1}∗.
2. Let the output of SCVZK(x,m; rS) be (m(1), π1, . . . ,m(q), πq), wherem = (m(1), . . . ,m(q)).

3. Output only the simulated prover responses (π1, . . . , πq).

By the definition of CVZK, we have that for all x ∈ ΠY and messages m, the distribution of the
transcript 〈P0, Vm〉(x) is indistinguishable from S(x,m). Hence, the two oracles OP and OCVZK

produce indistinguishable answers when asked the same query. The final step is to show that the
simulation Sim-TwoOP ,V ∗

(x) is indistinguishable from Sim-TwoOCVZK,V ∗

(x). To do so, we employ
the following lemma, whose proof follows from a standard hybrid argument.

Lemma 4.12. Let n denote the security parameter, and let A and B be probabilistic oracles. If
[A(q; rA)]rA←{0,1}∗ ≈s [B(q; rB)]rB←{0,1}∗ for all query q, then for all DO that queries its oracle O
at most poly(n) number of times, we have DA ≈s D

B.
When the two oracles produce only computationally indistinguishable answers, the above state-

ment will hold as long as D is an efficient algorithm and one of the two oracles, say A, is efficient.
Naturally, the resulting distributions DA and DB will only be computationally indistinguishable.

Since Sim-Two runs in polynomial time (Lemma 4.11), it queries its oracles at most polynomially

many times. Hence we have that
{

Sim-TwoOP ,V ∗

(x)
}

x∈ΠY

≈
{

Sim-TwoOCVZK,V ∗

(x)
}

x∈ΠY

, with

the strength of the indistinguishability (statistical or computational) depending on the type of
CVZK protocol we started from.

4.4.4 Final simulator

Our final simulator for Protocol 4.7 is Sim-ThreeV ∗

(x)
def
= Sim-TwoOCVZK,V ∗

(x). By Lemmas 4.10 and

4.11, we have that
{

Sim-ThreeV ∗

(x)
}

x∈ΠY

≈
{
〈P, V ∗〉(x)

}
x∈ΠY

. Since SCVZK is a probabilistic

polynomial-time algorithm, oracle OCVZK is efficiently computable. Therefore, Sim-Three is a black-
box simulator that runs in strict polynomial time. This proves Lemma 4.9, thus completing our
proof of Theorem 4.3.

24

5 Unconditional Concurrent Zero-Knowledge Proofs for Problems

with Witness-Binding Commitments

Here we extend the techniques in Section 4 to obtain unconditional concurrent statistical zero-
knowledge proofs for certain problems like Quadratic Residuosity and Graph Isomorphism.

5.1 Witness-Binding Problem-Dependent Commitments

Based on the techniques used in Section 4, the first natural step towards constructing concurrent
zero-knowledge protocols would be to construct problem-dependent commitments. Consider the
naive commitment scheme for Graph Isomorphism specified as follows: Let (G0, G1) be an
instance of the problem. To commit to bit b, send a random isomorphic copy of Gb.

This commitment is perfectly hiding on the yes instances (when G0
∼= G1) and perfectly

binding on the no instances (when G0 � G1). However, this is exactly the opposite of what we
require in a problem-dependent commitment (see Definition 4.1). In fact, every problem satisfying
Definition 4.1 is in coNP, but Graph Isomorphism is not known to be in coNP.

To overcome this apparent difficulty, we will make use of an additional setup phase to do
problem-dependent commitments. Let S be the sender, the party that commits, and R be the
receiver, the party that receives the commitment. Consider the following commitment scheme,
which is similar to that used in [BMO90].

Protocol 5.1. Witness-binding problem-dependent commitment scheme for
Graph Isomorphism (implicit in [BMO90]).

To commit to bit b using problem instance (G0, G1), proceed as follows.

Index generation stage

R→ S: Let H1 be a random isomorphic copy of G0, and send H1. That is,
H1 = σ(G0) for a random permutation σ of the vertices of G0. In
addition, both parties set H0 = G0.

Commitment stage

S → R: To commit to bit b, send F , a random isomorphic copy of Hb.

Decommitment stage

S → R: To decommit, send b together with the isomorphism between Hb and
F .

Verification stage
After the decommitment stage, the receiver R proves that H1, sent in the
index generation stage, is isomorphic to G0 by sending the isomorphism
σ between G0 and H1.

As we will later prove, the above commitment scheme is perfectly hiding on every instance (in
particular the no instances) if H1 is generated correctly, that is if H1

∼= G0. On the yes instances,
the scheme is “computationally binding” in that breaking the scheme is as hard as finding an NP-

25

witness (an isomorphism between G0 and G1). This scheme can be generalized to many other NP
languages, and we do so by abstracting the key properties of Protocol 5.1.

Definition 5.2. A witness-binding problem-dependent commitment scheme for a promise problem
Π ∈ NP is a collection of five polynomial-time algorithms (Generate,Verify,WB-Com,Simulate,Extract)
as described below.

Generate(x; rS) takes an instance x of Π and randomness rS , and produces a pair (z, π) (where z
is an index, and π is “proof” that z is a good index).

WB-Comx,z(b; rC) takes an instance x of Π, an index z, a bit b and coin tosses rC , and outputs a
commitment c.

Verify(x, z, π) takes an instance x of Π, an index z and a proof π, and outputs accept or reject.

Simulate(x; rE) takes an instance x of Π and coin tosses rE , and outputs some index z.

Extract(x, d, d′, rE) takes a string x, decommitments d and d′, and coin tosses of the Simulate

algorithm rE, and outputs a string w (which is hopefully an NP-witness for x).

We require the following properties.

1. (Honest setup passes verification) For every x ∈ ΠY and rS , if (z, π) = Generate(x; rS), then
Verify(x, z, π) = accept.

2. (Statistically hiding on no instances if index string is good) For every x ∈ ΠN and z, if
there exists π such that Verify(x, z, π) = accept, then the distributions WB-Comx,z(0) and
WB-Comx,z(1) are statistically indistinguishable (w.r.t. |x|).

3. (Simulated index string looks real on yes instances) For every x ∈ ΠY, taking z ← Simulate(x)
is distributed identically to the first component of Generate(x).

4. (Non-binding commitments yield an NP-witness) For every x ∈ ΠY, if z = Simulate(x; rE)
and WB-Comx,z(0, rC) = WB-Comx,z(1, r

′
C), then w = Extract(x, (0, rC), (1, r′C), rE) is an

NP-witness for x.

We observe that Protocol 5.1, the problem-dependent commitment scheme for Graph Isomor-

phism, is indeed witness-binding.

Lemma 5.3. The language Graph Isomorphism has witness-binding problem-dependent commit-
ments.

Proof. The Generate, WB-Com and Verify algorithms follow directly from Protocol 5.1. We first
prove that Property 2 of Definition 5.2 is satisfied, namely WB-Com is statistically hiding (on every
instance) if the index string is good. Let Sn be the symmetric permutation group. If there exists
a π such that Verify((G0, G1),H1, π) accepts, i.e., H1 is isomorphic to G0, then observe that

[
WB-Com((G0 ,G1),H1)(0;π0)

]
π0←Sn

≡ [π0(G0)]π0←Sn

≡ [π1(H1)]π1←Sn
(since H1 is isomorphic to G0)

≡
[
WB-Com((G0 ,G1),H1)(1;π1)

]
π1←Sn

26

To prove that non-binding commitments yield an NP-witness (Property 4), we define the
Simulate and Extract algorithms. The Simulate algorithm takes (G0, G1) and a permutation γ,
and outputs H1 = γ(G1). If the commitment is not binding, then there exists permutations π0

and π1 such that π0(H0) = F = π1(H1) (using the same notations as in Protocol 5.1). Note
that H0 = G0 and we have chosen H1 = γ(G1). The Extract algorithm takes (G0, G1), the de-
commitments π0 and π1, and coins γ used by the Simulate algorithm, to produce an isomorphism
γ̃ = π−1

0 π1γ between G0 and G1, specifically G0 = γ̃(G1).
The other properties, namely Properties 1 and 3, can be easily check. �

Lemma 5.4. The language Quadratic Residuosity has witness-binding problem-dependent
commitments.

Proof. We present a witness-binding commitment scheme for Quadratic Residuosity.

To commit to bit b using problem instance (x, n), proceed as follows.

Index generation stage

R→ S: Select a random α← Z∗n, and send β = α2 (mod n).

Commitment stage

S → R: To commit to bit b, select a random r ← Z∗n, and send c = xβbr2

(mod n).

Decommitment stage

S → R: To decommit, send (b, r).

Verification stage
After the decommitment stage, the receiver R proves that β, sent in the
index generation stage, is a quadratic residue in Z∗n by sending the square
root α. The sender S checks that β ≡ α2 (mod n).

Similar to the proof of Lemma 5.3, the Generate, WB-Com and Verify algorithms follow directly
from the above protocol. We first prove that Property 2 of Definition 5.2 is satisfied, namely
WB-Com is statistically hiding (on every instance) if the index string is good. If there exists an
α ∈ Z∗n such that Verify((x, n), β, α) accepts, i.e., β ≡ α2 (mod n) for some α ∈ Z∗n, then observe
that

[WB-Comx,β(0; r)]r←Z∗
n
≡

[
xr2 (mod n)

]
r←Z∗

n

≡
[
x(αr̃)2 (mod n)

]
r̃←Z∗

n
(multiplication by α is a permutation in Z∗n)

≡
[
xβr̃2 (mod n)

]
r̃←Z∗

n

≡ [WB-Comx,β(1; r̃)]r̃←Z∗
n

To prove that non-binding commitments yield an NP-witness (Property 4), we define the
Simulate and Extract algorithms. The Simulate algorithm takes (x, n) and an integer α ∈ Z∗n,
and outputs β ≡ α2x−1 (mod n). If the commitment is not binding, then there exists integers r
and r̃ such that

xr2 (mod n) = WB-Comx,β(0; r) = WB-Comx,β(1; r̃) = xβr̃2 (mod n).

27

When we use the simulated β ≡ α2x−1 (mod n), observe that x ≡ xβr̃2r−2 ≡ α2r̃2r−2 (mod n),
and hence a square root of x in Z∗n is αr̃r−1 (mod n).

With this in mind, the Extract algorithm takes (x, n), the decommitments (0, r) and (1, r̃), and
coins used by the Simulate algorithm α, to produce a square root of x, namely αr̃r−1 (mod n). This
proves that non-binding commitments yield an NP-witness, satisfying Property 4 of Definition 5.2.

The other properties, namely Properties 1 and 3, can be easily check. �

5.2 Witness-Completable CVZK

In Section 4, we transformed public-coin CVZK protocols into concurrent zero-knowledge protocols
using perfectly-binding problem-dependent commitment. To obtain unconditional concurrent zero-
knowledge proofs using only witness-binding commitments, we require the underlying stand-alone
protocol to have a stronger property of being witness-completable CVZK. The additional witness-
completable property, informally stated, gives our simulator the ability to complete the simulation
even when the verifier sends a message different from its committed one, if we provide our simulator
with a valid witness. For simplicity, we restrict our definition to the special case of 3-round protocols.

Definition 5.5 (witness-completable CVZK). An 3-round interactive proof (P, V) for (promise)
problem Π is statistical witness-completable committed-verifier zero knowledge (wCVZK) if the
following three conditions hold.

1. P is an efficient prover, that is, the prover algorithm can be implemented in probabilistic
polynomial-time given a valid witness w of x ∈ ΠY.

2. For all valid witness w, (P (w, r), V) is a statistical CVZK protocol. Specifically, letting
SCVZK denote the CVZK simulator, we have that for all x ∈ ΠY and any corresponding

NP-relation RΠ, and all committed verifier Vm, the ensembles
{

view
P (w,r)
Vm

(x)
}

(x,w)∈RΠ

and
{
SCVZK(x,m)

}
x∈ΠY

are statistically indistinguishable.

3. There exists a probabilistic polynomial-time witness-completable simulator Swc taking as
input the instance x, witness w, committed message m, actual verifier message m ′ and ran-
domness of the CVZK simulator r̃, and outputs the second simulated message of the prover
(on verifier message m′).

Formally, we have that for all x ∈ ΠY, any valid witness w of x, every message m, and every
circuit D, ∣∣∣∣∣

Prr[D
P2(x,w,·,r)(view

P (w,r)
Vm

(x)) = 1] −
Prr̃[D

Swc(x,w,m,·,r̃)(SCVZK(x,m, r̃)) = 1]

∣∣∣∣∣ = neg(n),

where P2(w, ·, r) is the second message of the prover on witness w and randomness r, given as

a oracle-function of the verifier’s message. The notation view
P (w,r)
Vm

(x) denotes the transcript
of a single execution of the prover P , using witness w and randomness r, with a committed-
verifier Vm.

We define 3-round computational wCVZK in an analogous fashion, with the requirements relaxed
to allow for (P (w, r), V) to be computational CVZK, and distinguishing circuit D to be polynomial
size.

28

The main additional security property of wCVZK protocols over their CVZK counterpart is

the requirement that view
P (w,r)
Vm

(x) and SCVZK(x,m, r̃) remain indistinguishable even when the
distinguisher D has oracle access to P2(x,w, ·, r) and Swc(x,w,m, ·, r̃) respectively. Next, we show
that both Graph Isomorphism and Quadratic Residuosity have public-coin perfect wCVZK
proofs.

Lemma 5.6. The language Graph Isomorphism has an efficient prover, public-coin, perfect
wCVZK proof system.

Proof. Consider the standard interactive proof for Graph Isomorphism [GMW91].

Input: Graphs (G0, G1) given as common input to both P and V , and per-
mutation φ given as a private input to P . The witness is a permutation
φ such that G0 = φ(G1).

P → V : Select a random permutation π, and send H = π(G0).

V → P : Send a random bit b← {0, 1}.
P → V : If b = 0, send ψ = π. Else if b = 1, send ψ = π ◦ φ.

V : Verifier V accepts if only if H = ψ(Gb).

Clearly, P has an efficient prover strategy. The proof that (P, V) is a perfect zero-knowledge
protocol [GMW91] can be easily modified to show that it is also committed-verifier perfect zero
knowledge. Specifically, simulator SCVZK on inputs (G0, G1) and b, selects a random permutation
π and outputs (H = π(Gb), b, π).

Our witness-completable simulator Swc takes instance (G0, G1), witness φ, message b, alternate
message b̄ and CVZK simulator randomness π, and outputs π if b̄ = b, π ◦ φ if b̄ 6= b = 0, or
π ◦ φ−1 if b̄ 6= b = 1. We can check that both SCVZK and Swc satisfy the requirements of being
witness-completable CVZK (see Definition 5.5). �

Lemma 5.7. The language Quadratic Residuosity has an efficient prover, public-coin, perfect
wCVZK proof system.

Proof. Consider the standard interactive proof for Quadratic Residuosity [GMR89].

Input: Integers (x, n) given as common input to both P and V , and integer y
given as a private input to P . The witness is a y ∈ Z∗n such that y2 ≡ x
(mod x).

P → V : Select a random integer r ← Z∗n, and send α = r2 (mod n).

V → P : Send a random bit b← {0, 1}.
P → V : If b = 0, send β = r. Else if b = 1, send β = yr (mod n).

V : Verifier V accepts if only if β2 ≡ αxb (mod n).

29

Clearly, P has an efficient prover strategy. The proof that (P, V) is a perfect zero-knowledge
protocol [GMR89] can be easily modified to show that it is also committed-verifier perfect zero
knowledge. Specifically, simulator SCVZK on inputs (x, n) and b, selects a integer r ← Z∗n and
outputs (r2x−b (mod n), b, r).

Our witness-completable simulator Swc takes instance (x, n), witness y, message b, alternate
message b̄ and CVZK simulator randomness r, and outputs r if b̄ = b, ry (mod n) if b̄ 6= b = 0,
or ry−1 (mod n) if b̄ 6= b = 1. We can check that both SCVZK and Swc satisfy the requirements of
being witness-completable CVZK (see Definition 5.5). �

5.3 Main Results

Our main result for this section can be summarized by the following theorem.

Theorem 5.8. If promise problem Π has a 3-round, public-coin, wCVZK proof system (P0, V0) and
also a witness-binding problem-dependent commitment, then Π has a concurrent zero-knowledge
proof system (P, V) with the following properties:

1. Zero-knowledge guarantee is preserved. That is, if (P0, V0) is statistical (resp., computational)
zero knowledge, then (P, V) is concurrent statistical (resp., computational) zero knowledge.

2. Prover P is black-box simulatable in expected polynomial time.

3. The round complexity of (P, V) increases only by an additive factor of Õ(log n), with n being
the security parameter, compared to the original protocol (P0, V0).

4. The completeness of (P, V) is exactly the same as that of (P0, V0), while the soundness error
increases by only a negligible additive term (as a function of n).

5. The prover strategy P can be implemented in probabilistic polynomial-time with oracle access
to P0. In particular, if P0 is efficient, so is P .

We provide a full proof of Theorem 5.8 in Sections 5.4 and 5.5. The following theorem follows
from Theorem 5.8, together with Lemmas 5.3, 5.4, 5.6 and 5.7.

Theorem 5.9. Both languages Graph Isomorphism and Quadratic Residuosity have con-
current statistical zero-knowledge proof systems with Õ(log n) rounds and efficient provers. The
simulator for both protocols runs in expected polynomial-time.

Although the stand-alone wCVZK protocol for both Graph Isomorphism and Quadratic

Residuosity has high soundness error of 1/2, we can reduce the error to negligible (while main-
taining the round complexity) in the resulting concurrent zero-knowledge protocol via parallel rep-
etition. This parallelized protocol remains concurrent zero knowledge because parallel repetition is
a special case of concurrent interaction.

Finally, note that the round complexity of Õ(log n) for the concurrent zero-knowledge protocols
of both Graph Isomorphism and Quadratic Residuosity is essentially optimal for black-box
simulation [CKPR03].

5.4 Our Modified Concurrent zero-knowledge protocol

We modify Protocol 4.7, our concurrent zero-knowledge protocol in Section 4.3, to accommodate
witness-binding commitments. Let (P0, V0) be a 3-round, public-coin witness-completable CVZK

30

proof system for Π. On common input x, let m be the single message sent by V0 in the protocol,

and let `
def
= |m| be the verifier’s communication complexity. Let WB-Comx,z : {0, 1} × {0, 1}n →

{0, 1}n, where n = poly(|x|), be a witness-binding problem-dependent commitment for Π. The full
description of our concurrent zero-knowledge protocol (P, V) is next.

Protocol 5.10. Our unconditional concurrent zero-knowledge protocol for
problem Π with witness-binding commitments.

Input: Instance x of Π.

V → P : Send the message "start session".

Index generation stage

P → V : Choose a random rS , and let (z, π) = Generate(x; rS). Send z.

Preamble stage (using witness-binding commitments)

V selects a random message m ← {0, 1}`, and runs the concurrent com-
mitment scheme (Protocol 3.2) ` times in parallel, with V as the sender
and P as the receiver. The inputs are the message m, commitment scheme
WB-Comx,z : {0, 1}×{0, 1}n → {0, 1}n, and parameters k = Õ(log|x|) and
n = poly(|x|).

Main stage (stand-alone zero-knowledge protocol)

V → P : Send the message "start main stage".

P → V : Select randomness rP0 ← {0, 1}∗ for the original prover P0. Send
π1 = P0(x; rP0).

V → P : Send m and decommit to all the secret shares of m, other than
those decommitted in the preamble stage. Specifically, decommit to

{m1−bi,j

i,j }ki,j=1.

P → V : Verify that the decommitments are all valid and that m = m
1−bi,j

i,j ⊕
m

bi,j

i,j , for all i, j ∈ [1, k]. If verification fails, halt and abort. Other-
wise, send π2 = P0(x,m; rP0).

Verification stage

V → P : Send the message "start final stage".

P → V : Send π to prove that z, sent in the initial setup stage, is a good
index string.

Verifier V accepts if the original verifier V0 accepts on (π1,m, π2) and
Verify(x, z, π) = accept.

From the Protocol 5.10, we can easily derive the prover efficiency, round complexity and com-
pleteness claims of Theorem 5.8. In addition, the soundness follows from the hiding property of the
concurrently-extractable commitment scheme (Lemma 3.3). This is because a cheating prover will

31

not know the committed messages of the verifier until the verifier decommits to all secret shares
of m. We summarize our results in the following lemma, deferring the proof of concurrent zero
knowledge claim to Section 5.5.

Lemma 5.11. The interactive protocol (P, V), given in Protocol 5.10, has the following properties
(with the numbering consistent with Theorem 5.8):

3. The round complexity of (P, V) increases only by an additive factor of Õ(log n), with n being
the security parameter, compared to the original protocol (P0, V0).

4. The completeness of (P, V) is exactly the same as that of (P0, V0), while the soundness error
increases by only a negligible additive term (as a function of n).

5. The prover strategy P can be implemented in probabilistic polynomial-time with oracle access
to P0. In particular, if P0 is efficient, so is P .

5.5 Our Simulator

We follow closely the proof structure of Lemma 4.9 in Section 4.4. The proof techniques used in
this section are more complicated than the previous, hence we will maintain compatible notations
whenever possible and introduce new notations when needed. We begin by summarizing the results
contained in this subsection. When combined with Lemma 5.11 from the previous subsection, these
results yield Theorem 5.8.

Lemma 5.12. The interactive protocol (P, V), given in Protocol 5.10, has the following properties
(with the numbering consistent with Theorem 5.8):

1. Zero-knowledge guarantee is preserved. That is, if (P0, V0) is statistical (resp., computational)
zero knowledge, then (P, V) is concurrent statistical (resp., computational) zero knowledge.

2. Prover P is black-box simulatable in strict polynomial time.

5.5.1 First simulation procedure

The prover strategy is decomposed into four parts, the index generation, preamble, main and final
stages. Since the index generation, preamble and verification stages can be implemented efficiently,
we will focus on the main stage prover Pmain. Note that Pmain’s randomness is independent of the
other stages.

Concurrent adversarial sender Ŝ. We have two extra stages as compared to the previous case
in Section 4.4.1, nevertheless it turns out that we will only need to slightly modify the adversarial
sender Ŝ by providing auxiliary messages11 [(zs, πs)]s∈[1,Q] as additional input.

The definition of a full transcript will now include all messages from the index generation,
preamble, main and verification stages. To convert preamble transcript Tpre into a full transcript,
we use a similar technique as in Section 4.4.1. For every session s, we use oracle Pmain (with prover
randomness rP0 = F((v1[s], s); rF)) to obtain the prover main stage messages, use auxiliary inputs
[(zs, πs)]s∈[1,Q] to obtain prover messages in the index generation and verification stages (namely
zs and πs for each session s), and use V ∗ to determine the verifier’s main stage messages as well as
the scheduling of the messages. A formal definition of Ŝ is given next.

11These auxiliary messages are used for the index generation and verification stages of the witness-binding com-
mitments (refer to Definition 5.2).

32

ŜPmain,V ∗
(Tpre; rF , [(zs, πs)]s∈[1,Q]):

1. Let Tpre = ((s1, v1), p1, (s2, v2), p2, . . . , (st, vt), pt).

2. Initialize Tfull = () and j = 1.

3. Query oracle V ∗ on Tfull to obtain (s, v) = V ∗(Tfull). Depending on the value of v, s,
and t, do the following.

Case 1: v is a preamble stage message and j = t+ 1. In this case, send (s, v).

Case 2: (s, v) = (end, α) and j = t+ 1. In this case, output α and halt.

Case 3: v is a preamble stage message, j ≤ t, and (s, v) = (sj, vj). In this case,
update Tfull = Tfull ◦ ((sj , vj), pj) and j = j + 1. Repeat Step 3.

Case 4: v is a main stage message. Proceed as follows.

(a) Let T [s] denote all the messages of session s in Tfull, and let v1[s] be the
verifier’s first preamble message in T [s].

(b) Set the main stage prover’s randomness rP0 = F((v1[s], s); rF).

(c) Query oracle Pmain to obtain p = Pmain(x, T [s] ◦ v; rP0).

(d) Update Tfull = Tfull ◦ ((s, v), p), and repeat Step 3.

Case 5: v = "start session". In this case, update Tfull = Tfull ◦ ((s, v), zs), and
repeat Step 3.

Case 6: v = "start final stage". In this case, update Tfull = Tfull ◦ ((s, v), πs),
and repeat Step 3.

Case 7: Otherwise, halt and output fail, indicating that Tpre was not a valid pream-
ble transcript.

The main difference between Ŝ, as defined above, compared to that defined previously in Sec-
tion 4.4.1 is the additional handling of the index generation and verification stages (refer to Cases
5 and 6 above).

First simulator. Similar to what we did in Section 4.4.1, we write Ŝ[rF , [(zs, πs)]](·) to represent
the deterministic oracle ŜPmain,V ∗

(·; rF , [(zs, πs)]s∈[1,Q]). Our first (inefficient) simulator is very
similar in structure.

Sim-OnePmain,V ∗

(x; rF , [(zs, πs)]s∈[1,Q]):

1. Set COM = {Com1,Com2, . . . ,ComQ}, where Coms = WB-Comx,zs (the witness-binding
problem-dependent commitment) for all s ∈ {1, 2, . . . , Q}.

2. Output CEC-Sim
bS[rF ,[(zs,πs)]](COM, 1`, 1k, 1n, 1Q).

As done in Section 4.4, we simplify notations by writing CEC-Sim
bS[rF ,[(zs,πs)]] to represent

CEC-Sim
bS[rF ,[(zs,πs)]](COM, 1`, 1k, 1n, 1Q), and avoid repeating common inputs (COM, 1`, 1k, 1n, 1Q).

We write [(zs, πs)]← Generate(x) to denote taking Q independent samples, one for each pair (zs, πs),
from the probabilistic algorithm Generate(x). We have the following lemma.

Lemma 5.13. If the number of concurrent sessions Q is bounded by poly(|x|), then output of the

first simulator
{

Sim-OnePmain,V ∗

(x)
}

x∈ΠY

(over random coin tosses rF ← {0, 1}∗ and [(zs, πs)]←

Generate(x)) is statistically indistinguishable from
{
〈P, V ∗〉(x)

}
x∈ΠY

.

The proof of the above lemma is similar to the proof of Lemma 4.10 and hence omitted.

33

5.5.2 Second simulation procedure.

We will define a stateful probabilistic oracle OP (w)[state], with w being any valid witness of x ∈ ΠY,
to substitute oracle Pmain and the exponentially long random key rF . Unlike Section 4 where
we had perfectly-binding problem dependent commitments, stateful oracles are needed because
witness-binding commitments are not necessarily binding (even when x ∈ ΠY). The state of the
oracle, represented as an array, is used to record the coin tosses of the CVZK simulator SCVZK,
which will be needed by the witness-completable simulator Swc to complete the simulation (in the
case when the commitments are not binding).

Stateful probabilistic oracle OP (w)[state](q): There are two types of queries.

Query q = m (where m is a possible verifier message):
Let j denote the least integer such that state[j] =⊥. Select randomness r← {0, 1}∗, and
set π1 = P0(x,w, r) and π2 = P0(x,w,m, r). Output (π1,m, π2, j). Update the state by
setting state[j] = (r,m).

Query q = (m′, i):
If state[i] =⊥, output ⊥. Else, let (r,m) = state[i] and set π ′2 = P0(x,w,m

′, r). Output
π′2.

The initial state of the oracle is the empty array, i.e., state[j] =⊥ for all j.

Using the same argument as in Section 4.4.1, we now observe that with the recorded main stage

prover responses Prover-Msg, we can mimic the execution of CEC-Sim
bS[rF ,[(zs,πs)]] (in Section 5.5.1)

without using oracle Pmain or the exponentially long random key rF . Specifically, instead of querying
Pmain to obtain p = Pmain(x, T [s] ◦ v;F((v1[s], s); rF)), we let (π1,m, π2, j) = Prover-Msg[(v1[s], s)]
and use π1 and π2 as the first and second main stage prover responses, respectively.

However, because the commitments are no longer perfectly binding, we will need to employ the
use oracle OP (w) to supply the second main stage prover message π2 when the verifier’s message
differs from the extracted message m provided by CEC-Sim. In this case, we query OP (w)(m

′, j) to
obtain the prover’s response to m′.

Sim-TwoOP (w),V
∗

(x, [(zs, πs)]s∈[1,Q]):

1. (Similar to Sim-One) Set COM = {Com1,Com2, . . . ,ComQ}, where Coms = WB-Comx,zs

(the witness-binding problem-dependent commitment) for all s ∈ [1, Q].

2. Initialize the array of main stage prover responses Prover-Msg[(v1[s], s)] =⊥ for all pairs
(v1[s], s).

3. Without using oracle Pmain and randomness rF , run CEC-Sim
bS until CEC-Sim queries Ŝ

on some Tpre. When this happens, do the following:

(a) Freeze the execution of CEC-Sim
bS .

(b) Let T [s] denote all the preamble stage messages of session s in Tpre, and let v1[s] be
the verifier’s first (preamble) message in T [s]. If Prover-Msg[(v1[s], s)] 6=⊥, then let
(π1,m, π2, j) = Prover-Msg[(v1[s], s)], and proceed to Step 3d.

(c) For every s such that T [s] is a valid commit phase transcript, CEC-Sim provides
an extracted message m. Using m, query OP (w)(m) to obtain the prover responses
(π1,m, π2, j). Update Prover-Msg[(v1[s], s)] = (π1,m, π2, j).

34

(d) Use (π1,m, π2, j) and possibly an additional query to OP (w) to answer queries to
oracle Pmain instead of querying Pmain directly. Specifically, do the following:

• If the query is for the first prover’s main stage message, answer the query with
π1.

• If the query is for the second prover’s main stage message in response to verifier’s
message m, answer the query with π2.

• If the query is for the second prover’s main stage message in response to a
different verifier’s message m′ 6= m, query OP (w)(m

′, j) to obtain π′2 and answer
the query with π′2.

(e) Continue the execution of CEC-Sim
bS[rF ,[(zs,πs)]] as in Step 3.

As in the case of the second simulation procedure in Section 4.4.2, Sim-Two acts exactly like
Sim-One.

Lemma 5.14. For all x ∈ ΠY, all valid witness w of x, and all [(zs, πs)]s∈[1,Q], we have that

[
Sim-OnePmain,V ∗

(x, rF , [(zs, πs)])
]
rF←{0,1}∗

≡ Sim-TwoOP (w),V
∗

(x, [(zs, πs)]).

Furthermore, Sim-Two runs in polynomial time when given access to oracles OP (w) and V ∗.

A notable difference in the execution of Sim-TwoOP (w),V
∗

(x, [(zs, πs)]s∈[1,Q]) compared to the
previous Sim-Two in Section 4.4.2 is the use of witness-binding commitments (instead of perfectly-
binding ones), hence necessitating an augmentation of OP to the stateful oracle OP (w). Otherwise,
the proof of the above lemma is similar to the proof of Lemma 4.11 in Section 4.4.2, and hence
omitted.

5.5.3 Replacing the oracle OP (w)

We are given that (P0, V0) is a wCVZK protocol. Let SCVZK be the CVZK simulator and Swc be
the witness-completable simulator for (P0, V0). Let w be any valid witness of instance x ∈ ΠY. We
note that unlike Section 4.4.3, we still use a witness since Swc requires it. In order to replace oracle
OP (w)[state] with these simulators, we define a new stateful probabilistic oracle (that uses these
simulators as subroutine).

Stateful probabilistic oracle OwCVZK(w)[state](q): There are two types of queries.

Query q = m:
Let j denote the least integer such that state[j] =⊥. Select randomness r ← {0, 1}∗,
and set (π1,m, π2) = SCVZK(x,m, r). Output (π1,m, π2, j). Update the state by setting
state[j] = (r,m).

Query q = (m′, i):
If state[i] =⊥, output ⊥. Else, let (r,m) = state[i] and set π ′2 = Swc(x,m

′, w,m, r).
Output π′2.

The initial state of the oracle is the empty array, i.e., state[j] =⊥ for all j.

The next lemma states that the oracles OwCVZK(w) and OP (w) are indistinguishable to circuits
that queries its oracle at most

35

Lemma 5.15. If (P0, V0) is a computational (resp., statistical) wCVZK protocol, then for all

polynomial-size12circuit D, the ensembles
{
DOwCVZK(w)(x)

}
(x,w)∈RΠ

and
{
DOP (w)(x)

}
(x,w)∈RΠ

are

computationally (resp., statistically) indistinguishable.

Proof. Assume that circuit DO(x) queries its oracle at most t ≤ poly(|x|) times. For each oracle
OwCVZK(w) and OP (w), we define the following auxiliary oracles (Aj)1≤j≤t and (Bj)1≤j≤t, respec-
tively.

Oracle Aj(m): Begin with oracle OwCVZK(w)[state] in the following state: state[j] =⊥, and for all
i < j, state[i] 6=⊥.

First query: Output OwCVZK(w)(m).

Subsequent queries: Output OwCVZK(w)((m, j)).

Oracles (Bj)1≤j≤t are defined similarly, with every occurrence of OwCVZK(w) substituted withOP (w).

Oracle Bj(m): Begin with oracle OP (w)[state] in the following state: state[j] =⊥, and for all i < j,
state[i] 6=⊥.

First query: OutputOP (w)(m).

Subsequent queries: Output OP (w)((m, j)).

Observe that by the definition of statistical wCVZK (Definition 5.5), for every 1 ≤ j ≤ t, we
have that for all circuit D,

DAj (x) ≈s D
Bj (x). (1)

This is because the first query to Aj corresponds to (SCVZK(x,m, r̃), j), and the subsequent queries

correspond to Swc(x,w,m, ·, r̃). Likewise, the first query to Bj corresponds to (view
P (w,r)
Vm

(x), j),
and the subsequent queries correspond to P2(x,w, ·, r).

By virtue of the way we defined the auxiliary oracles, the t oracles (A1, . . . ,At) can perfectly
mimic the oracle OwCVZK(w). Specifically, asking OwCVZK(w) a query of the type q = m for the j-th
time is equivalent to querying oracle Aj on m. In addition, asking a query of the type q = (m′, i)
is equivalent to querying oracle Ai on m′ (if we have previously queried Ai), or to answering ⊥ (if
we have not previously queried Ai). The same argument applies to oracle OP (w) and its t auxiliary
oracles (B1, . . . ,Bt).

Therefore, it remains to be shown that for all circuit D,

DA1A2···At(x) ≈s D
B1B2···Bt(x).

The above statement can be proven using a standard hybrid argument. Specifically, consider a

new distinguisher D̃O
def
= DA1···Aj−1OBj+1···Bt , noting that D̃ is only a polynomial factor bigger than

D since the auxiliary oracles, Aj’s and Bj’s, are be implementable by a polynomial-sized circuit
(with witness w hardwired).

12In the case of statistically indistinguishability, we need not restrict D to be polynomial-size, but it has to query
its oracle at most polynomial times. For the purposes of this paper, D is the simulator Sim-Two

O,V ∗

, which runs in
polynomial time (assuming V ∗ does too).

36

For all 1 ≤ j ≤ t, we have that

DA1···Aj−1AjBj+1···Bt(x) = D̃Aj (x)

≈s D̃Bj (x) [from Equation (1)]

= DA1···Aj−1BjBj+1···Bt(x).

This completes our proof of Lemma 5.15. �

Observe that Sim-Two runs in polynomial-time (with oracle queries), hence it can only query
its oracles polynomial times. By Lemma 5.15, we can replace oracle OP (w) with OwCVZK(w) and
obtain an indistinguishable simulation. That is for all fixed [(zs, πs)]s∈[1,Q] and valid witness w,

Sim-TwoOwCVZK(w),V
∗

(x, [(zs, πs)]) ≈ Sim-TwoOP (w),V
∗

(x, [(zs, πs)])

Consequently, the above fact together with Lemmas 5.13 and 5.14 gives us the following.

Lemma 5.16. If (P0, V0) is a computational (resp., statistical) wCVZK protocol, then the ensembles{
Sim-TwoOwCVZK(w) ,V

∗

(x)
}

(x,w)∈RΠ

and
{
〈P, V ∗〉(x)

}
x∈ΠY

are computationally (resp., statistically)

indistinguishable.

5.5.4 Obtaining a valid witness

The simulator Sim-TwoOwCVZK(w),V
∗

(x, [(zs, πs)]) is still not efficiently implementable because it
requires a valid witness w for the oracle OwCVZK(w). Note however that OwCVZK(w) needs a valid
witness only when it needs to answer a query of the form (m′, i). This happens when V ∗ breaks the
binding property of the witness-binding commitments, in which case, we should be able to extract
a witness (see Definition 5.2). Specifically, we propose the following witness extraction procedure.

Witness-Extractor(x):

1. Select a random index j ← [1, Q]. Select rE ← {0, 1}∗, and set zj = Simulate(x; rE) and
πj = ε (where ε represents an empty string). For k 6= j, set (zk, πk)← Generate(x).

2. With the selected values of [(zs, πs)], run Sim-TwoOwCVZK(w) ,V
∗

(x, [(zs, πs)]s∈[1,Q]), with
an empty witness w = ε (since we do not need a valid witness to begin the simulation).

3. If during the execution, Sim-Two asks oracle OwCVZK(w) a query of the form (m′, i), it
is the case that we can find two decommitments in some session s that is associated
with the same commitment.13 Specifically, let the decommitments d0 = (x, zs, 0; rC)
and d1 = (x, zs, l; r

′
C) be such that WB-Comx,zs(0; rC) = WB-Comx,zs(1; r

′
C). If s = j,

then output w = Extract(x, rC , r
′
C , rE). Otherwise, halt and abort.

It is clear that Witness-Extractor(x) runs in polynomial time since Sim-Two and all the witness-
binding commitment algorithms (Generate,WB-Com,Verify,Simulate,Extract) run in polynomial
time. In addition, Witness-Extractor(x) also produces a witness with a reasonable probability,
as shown in the next lemma.

Lemma 5.17. Let p denote the probability that Sim-TwoOwCVZK(w),V
∗

(x, [(zs, πs)]) (over [(zs, πs)]←
Generate(x)) asks oracle OwCVZK(w) a query of the form (m′, i). The algorithm Witness-Extractor(x)
outputs a valid witness of x with probability greater or equal to p/Q.

13This is due to the binding property of the concurrently-extractable commitments (Lemma 3.4), and the fact that
simulator CEC-Sim gives a compatible message Ms for each valid commit phase transcript T [s].

37

Proof. We compare the following two executions:

(A) The execution of Witness-Extractor(x).

(B) The execution of Sim-TwoOwCVZK(w),V
∗

(x, [(zs, πs)]) when it is given a valid witness w and
[(zs, πs)]← Generate(x).

Since taking zj ← Simulate(x) has the same exact distribution as the first component of
Generate(x) (Property 3 in Definition 5.2) and the witness w does not matter until a query of
the form (m′, i) is asked, (A) and (B) will execute in a similar manner until the first query of that
form (m′, i) is asked. If and when this happens, there is a probability of 1/Q that our guess j will
equal the current session s. (The probability of 1/Q is due to the fact that j is independent of the
event that a query of the form (m′, i) is asked, and of the first session s in which such a query is
asked.)

If we guessed the right session j = s, then w = Extract(x, rC , r
′
C , rE) must be a valid witness of

x (Property 4 in Definition 5.2). Therefore, the probability of obtaining a valid witness is greater
or equal to (1/Q) · p = p/Q. �

5.5.5 Final simulator

Consider the following mental experiment: Run Witness-Extractor(x) repeatedly (with each run
done with independent randomness) until we obtain a valid witness w. With w in hand, select
[(zs, πs)]← Generate(x) and output Sim-TwoOwCVZK(w) ,V

∗

(x, [(zs, πs)]).
Because witness w is generated independently from the rest of the execution, the output of

the mental experiment will be statistically indistinguishable from 〈P, V ∗〉(x) (by Lemma 5.16).
However, the mental experiment’s running time could be exponential (because we expect to run
Witness-Extractor(x) Q/p times, where p is the probability that the verifier breaks the commitment
in the execution of Sim-Two).

To overcome this problem, our final simulator will only use the witness extraction algorithm
when needed.

Sim-ThreeV ∗

(x):

1. Select [(zs, πs)]← Generate(x) and output Sim-TwoOwCVZK(w) ,V
∗

(x, [(zs, πs)]).

2. If a valid witness is needed (to answer queries of the form (m′, i)), do the following:

(a) Freeze the execution of Sim-Two.

(b) Run Witness-Extractor(x) repeatedly (with each run done with independent random-
ness) until we obtain a valid witness w.

(c) Using witness w, continue the frozen execution of Sim-Two and output it.

Clearly, Sim-ThreeV ∗

(x)’s output is identical to that of the mental experiment, hence it is
statistically indistinguishable from 〈P, V ∗〉(x). Its expected running time is stated in the following
lemma.

Lemma 5.18. The simulator Sim-ThreeV ∗

runs in expected polynomial-time.

Proof. Let p be the probability that the execution of Step 1 in the description of Sim-ThreeV ∗

(x)
will require a valid witness (to answer queries of the form (m′, i)). When Step 1 does not require
a witness, the running time is poly(|x|).

38

In the case when Step 1 requires a witness, we will need to run Step 2. By Lemma 5.17,
Witness-Extractor(x) outputs a valid witness with probability greater or equal to p/Q. We analyze
the expected total running time as follows.

E[running time of Sim-ThreeV ∗

(x)] = Pr[Step 1 requires a witness] ·E[running time of Step 2]

+poly(|x|)
≤ p · ((Q/p) · poly(|x|)) + poly(|x|)
≤ poly(|x|),

with the final inequality following from the fact that the number of concurrent sessions Q ≤
poly(|x|). �

We have shown that Sim-Three is an expected polynomial-time black-box simulator for Proto-
col 5.10. This proves Lemma 5.12, thus completing our proof of Theorem 5.8.

6 Acknowledgements

We thank Alon Rosen for helpful discussions.

39

References

[AR04] Dorit Aharonov and Oded Regev. Lattice problems in NP ∩ coNP. In Proc. 45th FOCS,
pages 362–371, 2004.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In Proc. 42nd FOCS,
pages 106–115, 2001.

[BCC88] Gilles Brassard, David Chaum, and Crepeau Crepeau. Minimum disclosure proofs of
knowledge. Journal of Computer and System Sciences, 37(2):156–189, 1988.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zero-knowledge. SIAM Journal on Computing, 20(6):1084–1118, 1991.

[BM88] László Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system
and a hierarchy of complexity classes. Journal of Computer and System Sciences,
36:254–276, 1988.

[BMO90] M. Bellare, S. Micali, and R. Ostrovsky. Perfect zero-knowledge in constant rounds. In
Proc. 22nd STOC, pages 482–493, 1990.

[CKPR03] Ran Canetti, Joe Kilian, Erez Petrank, and Rosen Rosen. Black-box concurrent zero-
knowledge requires (almost) logarithmically many rounds. SIAM Journal on Comput-
ing, 32(1):1–47, 2003.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Proc. CRYPTO ’98, pages 13–25, 1998.

[CS04] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2004.

[DDN01] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2001.

[DiC00] Giovanni Di Crescenzo. Removing complexity assumptions from concurrent zero-
knowledge proofs. In COCOON: Annual International Conference on Computing and
Combinatorics, pages 426–435, 2000.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In Proc.
30th STOC, pages 409–418, 1998.

[ES02] Edith Elkind and Amit Sahai. A unified methodology for constructing public-key en-
cryption schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint
Archive, Report 2002/042, 2002. http://eprint.iacr.org/.

[Fei90] Uriel Feige. Alternative models for zero knowledge interactive proofs. PhD thesis,
Weizmann Institute of Science, Israel, 1990.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of
Cryptology, 1(2):77–94, 1988.

40

[GG00] Oded Goldreich and Shafi Goldwasser. On the limits of nonapproximability of lattice
problems. Journal of Computer and System Sciences, 60(3):540–563, 2000.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal on Computing, 25(1):169–192, 1996.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMR98] Rosario Gennaro, Daniele Micciancio, and Tal Rabin. An efficient non-interactive sta-
tistical zero-knowledge proof system for quasi-safe prime products. In Proc. of the 5th
ACM Conference on Computer and Communications Security (CCS-98), pages 67–72,
1998.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM,
38(1):691–729, 1991.

[Gol01] Oded Goldreich. Foundations of cryptography, volume 1. Cambridge University Press,
Cambridge, UK, 2001.

[Gol02] Oded Goldreich. Zero-knowledge twenty years after its invention. http://www.wisdom.
weizmann.ac.il/~oded/zk-tut02.html, 2002.

[GSV98] Oded Goldreich, Amit Sahai, and Salil Vadhan. Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge. In Proc. 30th STOC, pages 399–
408, 1998.

[GV99] Oded Goldreich and Salil Vadhan. Comparing entropies in statistical zero knowledge
with applications to the structure of SZK. In Proc. 14th IEEE Conference on Compu-
tational Complexity, pages 54–73, 1999.

[HILL99] Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[IOS97] Toshiya Itoh, Yuji Ohta, and Hiroki Shizuya. A language-dependent cryptographic
primitive. Journal of Cryptology, 10(1):37–49, 1997.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-
logarithm rounds. In Proc. 33rd STOC, pages 560–569, 2001.

[KPR98] J. Kilian, E. Petrank, and C. Rackoff. Lower bounds for zero knowledge on the Internet.
In Proc. 39th FOCS, pages 484–492, 1998.

[MP03] Daniele Micciancio and Erez Petrank. Simulatable commitments and efficient concur-
rent zero-knowledge. In Proc. EUROCRYPT ’03, pages 140–159, 2003.

[MV03] Daniele Micciancio and Salil Vadhan. Statistical zero-knowledge proofs with efficient
provers: lattice problems and more. In Proc. CRYPTO ’03, pages 282–298, 2003.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–
158, 1991.

41

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attack. In Proc. 22nd STOC, pages 427–437, 1990.

[Oka00] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. Journal
of Computer and System Sciences, 60(1):47–108, 2000.

[Ost91] Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In Proceedings of the Sixth Annual Structure in Complexity Theory
Conference, 1991.

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way functions are essential for non-trivial
zero-knowledge. In Second Israel Symposium on Theory of Computing Systems, pages
3–17, 1993.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In Proc. 43rd FOCS, pages 366–375, 2002.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In Proc. EUROCRYPT ’99, pages 415–431, 1999.

[Ros00] Alon Rosen. A note on the round-complexity of concurrent zero-knowledge. In Proc.
CRYPTO ’00, pages 451–468, 2000.

[Ros03] Alon Rosen. The Round-Complexity of Black-Box Concurrent Zero-Knowledge. PhD
thesis, Weizmann Institute of Science, Israel, 2003.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In Proc. 40th FOCS, pages 543–553, 1999.

[SV03] Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge.
Journal of the ACM, 50(2), 2003.

[Vad04] Salil Vadhan. An unconditional study of computational zero knowledge. In Proc. 45th
STOC, pages 176–185, 2004.

[Yao86] Andrew C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS, pages
162–167, 1986.

42

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

