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Abstract

We give an improved explicit construction of highly unbalanced bipartite expander graphs with ex-
pansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the
degree and the number of right-hand vertices are polynomially close to optimal, whereas the previous
constructions of Ta-Shma, Umans, and Zuckerman (STOC ‘01) required at least one of these to be
quasipolynomial in the optimal. Our expanders have a short and self-contained description and analysis,
based on the ideas underlying the recent list-decodable error-correcting codes of Parvaresh and Vardy
(FOCS ‘05).

Our expanders can be interpreted as near-optimal “randomness condensers,” that reduce the task of
extracting randomness from sources of arbitrary min-entropy rate to extracting randomness from sources
of min-entropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain
a new, self-contained construction of randomness extractors that is optimal up to constant factors, while
being much simpler than the previous construction of Lu et al. (STOC ‘03) and improving upon it when
the error parameter is small (e.g. 1/poly(n)).
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1 Introduction

One of the exciting developments in the theory of pseudorandomness has been the discovery of intimate
connections between a number of fundamental and widely studied objects — expander graphs, random-
ness extractors, list-decodable error-correcting codes,pseudorandom generators, and randomness-efficient
samplers. Indeed, substantial advances have been made in our understanding of each of these objects by
translating intuitions and techniques from the study of oneto the study of another. In this work, we continue
in this tradition. Specifically, we use ideas from recent breakthrough constructions of list-decodable codes,
due to Parvaresh and Vardy [PV], to give improved and simplified constructions of both unbalanced bipartite
expander graphs and randomness extractors.

1.1 Unbalanced expander graphs

Expanders are graphs that are sparse yet very highly connected. They have a wide variety of applications in
theoretical computer science, and there is a rich body of work on constructions and properties of expanders.
(See the survey [HLW]). The classic measure of the connectivity of an expander isvertex expansion, which
asks that every setS of vertices that is not too large have significantly more than|S| neighbors. This property
is formalized for bipartite graphs through the following definitions.

Definition 1.1. A bipartite (multi)graphwith N left-vertices,M right-vertices, and left-degreeD is specified
by a functionΓ : [N ] × [D] → [M ], whereΓ(x, y) denotes they’th neighbor ofx. For a setS ⊆ [N ], we
write Γ(S) to denote its set of neighbors{Γ(x, y) : x ∈ S, y ∈ [D]}.

Definition 1.2. A bipartite graphΓ : [N ] × [D] → [M ] is a (K,A) expanderif for every setS ⊆ [N ] of
sizeK, we have|Γ(S)| > A ·K. It is a (6Kmax , A) expanderif it is a (K,A) expander for allK 6 Kmax .

The typical goals in constructing expanders are to maximizethe expansion factorA and minimize the
degreeD. In this work, we are also interested minimizing the the sizeM of the right-hand side, soM � N
and the graph is highly unbalanced. Intuitively, this makesexpansion harder to achieve because there is less
room in which to expand. Using the probabilistic method, it can be shown that very good expanders exist —
with expansionA = (1 − ε) · D, degreeD = O(log(N/M)/ε), andM = O(KmaxD/ε) = O(Kmax A/ε)
right vertices. Thus, ifM 6 N c for some constantc < 1, then the degree is logarithmic inN , and
logarithmic degree is in fact necessary ifM = O(Kmax A).1 However, applications of expanders require
explicit constructions— ones where the neighbor functionΓ is computable in polynomial time (in its input
length,log N + log D) — and the best known explicit constructions still do not match the ones given by the
probabilistic method.

Most classic constructions of expanders, such as [Mar1, GG,LPS, Mar2], focus on the balanced (or
non-bipartite) case (i.e.M = N ), and thus are able to achieve constant degreeD = O(1). The expan-
sion properties of these constructions are typically proven by bounding the second-largest eigenvalue of
the adjacency matrix of the graph. While such ‘spectral’ expansion implies various combinatorial forms
of expansion (e.g., vertex expansion) and many other usefulproperties, it seems insufficient for deducing
vertex expansion beyondD/2 [Kah] or for obtaining highly imbalanced expanders with polylogarithmic
degree [WZ]. This is unfortunate, because some applications of expanders require these properties. A

1More generally, the degree must be at leastΩ(log(N/Kmax )/ log(M/(KmaxA))), as follows from the lower bounds on the
degree of dispersers [RT].
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beautiful example of such an application was given by Buhrman et. al. [BMRV]. They showed that a
(6Kmax , A) expander withN left-vertices,M right-vertices, and expansionA = (1− ε)D yields a method
for storing any setS ⊆ [N ] of size at mostKmax/2 in anM -bit data structure so that membership inS can
be probabilistically tested by reading onlyone bitof the data structure. An optimal expander would give
M = O(Kmax log N), only a constant factor more than what is needed to representan arbitrary set of size
Kmax/2 (even without supporting efficient membership queries).

Explicit constructions of expanders with expansionA = (1 − ε)D were obtained by Ta-Shma, Umans,
and Zuckerman [TUZ] for the highly imbalanced (and nonconstant-degree) case and Capalbo et al. [CRVW]
for the balanced (and constant-degree) case. The constructions of Ta-Shma et al. [TUZ] can make either one
of the degree or right-hand side polynomially larger than the nonconstructive bounds mentioned above,
at the price of making the other quasipolynomially larger. That is, one of their constructions givesD =

poly(log N) andM = quasipoly(KmaxD)
def
= exp(poly(log(KmaxD))), whereas the other givesD =

quasipoly(log N) andM = poly(Kmax D). The quasipolynomial bounds were improved recently in [TU],
but remained superpolynomial.

We are able to simultaneously achieveD = poly(log N) andM = poly(KD), in fact with a good
tradeoff between the degrees of these two polynomials.

Theorem 1.3. For all constantsα > 0: for everyN ∈ N, Kmax 6 N , andε > 0, there is an explicit
(6Kmax , (1 − ε)D) expanderΓ : [N ] × [D] → [M ] with degreeD = O((log N)(log Kmax )/ε)1+1/α and
M 6 D2 · K1+α

max
.

The construction of our expanders is based on the recent list-decodable codes of Parvaresh and Vardy [PV],
and can be described quite simply. The proof of the expansionproperty is inspired by the list-decoding al-
gorithm for the PV codes, and is short and self-contained. Anoverview of this ‘list-decoding approach’ to
proving expansion is provided in Section 2.1.

1.2 Randomness extractors

One of the main motivations and applications of our expanderconstruction is the construction ofrandomness
extractors. These are functions that convert weak random sources, which may have biases and correlations,
into almost-perfect random sources. For general models of weak random sources, this is impossible, so the
extractor is also provided with a short ‘seed’ of truly random bits to help with the extraction [NZ]. This seed
can be so short (e.g. of logarithmic length) that one can often eliminate the need for any truly random bits by
enumerating all choices for the seed. For example, this allows extractors to be used for efficiently simulating
randomized algorithms using only a weak random source [Zuc1, NZ]. Extractors have also found a wide
variety of other applications in theoretical computer science beyond their original motivating application,
and thus a long body of work has been devoted to providing efficient constructions of extractors. (See the
survey of Shaltiel [Sha].)

To formalize the notion of an extractor, we need a few definitions. Following [CG, Zuc1], the ran-
domness in a source is measured bymin-entropy: a random variableX has min-entropy at leastk iff
Pr[X = x] 6 2−k for all x. Sometimes we refer to such a random variable as ak-source. A random
variableZ is ε-closeto a distributionD if for all eventsA, Pr[Z ∈ A] differs from the probability ofA
under the distributionD by at mostε. Then an extractor is defined as follows:

Definition 1.4 ([NZ]) . A functionE : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) extractorif for everyX
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with min-entropy at leastk, E(X,Y) is ε-close to uniform, whenY is uniformly distributed on{0, 1}d. An
extractor isexplicit if it is computable in polynomial time.

The competing goals when constructing extractors are to obtain a short seed length and to obtain a
long output length. Nonconstructively, it is possible to simultaneously have a seed lengthd = log n +
2 log(1/ε) + O(1) and an output length ofm = k + d − 2 log(1/ε) − O(1), and both of these bounds are
optimal up to additive constants (fork 6 n/2) [RT]. It remains open to match these parameters with an
explicit construction.

Building on a long line of work, Lu et al. [LRVW] achieved seedlength and output length that are
within constant factors of optimal, provided that the errorparameterε is not too small. More precisely,
they achieve seed lengthd = O(log n) and output lengthm = (1 − α)k for ε > n−1/ log(c) n, where
α and c are any two positive constants. For generalε, they pay with either a larger seed length ofd =
O((log∗ n)2 log n + log(1/ε)), or a smaller output length ofm = k/ log(c) n for any constantc.

In this work, we also achieve extractors that are optimal up to constant factors, but are able to handle the
full range of error parametersε.

Theorem 1.5. For every constantα > 0, and all positive integersn, k and all ε > 0, there is an explicit
construction of a(k, ε) extractorE : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n + log(1/ε)) and
m > (1 − α)k.

Our extractor is also substantially simpler than that of [LRVW], which is a complex recursive construc-
tion involving many tools. The key component in our construction is the interpretation of our expander
graph as arandomness condenser:

Definition 1.6. A functionC : {0, 1}n × {0, 1}d → {0, 1}m is an k →ε k′ condenserif for everyX

with min-entropy at leastk, C(X,Y) is ε-closeto a distribution with min-entropyk′, whenY is uniformly
distributed on{0, 1}d. A condenser isexplicit if it is computable in polynomial time. A condenser is called
losslessif k′ = k + d.

Observe that ak →ε k′ condenser with output lengthm = k′ is an extractor, because the unique distri-
bution on{0, 1}m with min-entropym is the uniform distribution. Condensers are a natural stepping-stone
to constructing extractors, as they can be used to increase theentropy rate(the ratio of the min-entropy in
a random variable to the length of the strings over which it isdistributed), and it is often easier to construct
extractors when the entropy rate is high. Condensers have also been used extensively in less obvious ways
to build extractors, often as part of complex recursive constructions (e.g., [ISW, RSW, LRVW]). Noncon-
structively, there existlosslesscondensers with seed lengthd = log n + log(1/ε) + O(1), and output length
m = k + d + log(1/ε) + O(1).

As shown by [TUZ], lossless condensers are equivalent to bipartite expanders with expansion close to
the degree. Applying this connection to Theorem 1.3, we obtain the following condenser:

Theorem 1.7. For all constantsα ∈ (0, 1): for everyn ∈ N, k 6 n, and ε > 0, there is an explicit
k →ε k + d (lossless) condenserC : {0, 1}n × {0, 1}d → {0, 1}m with d = (1 + 1/α) · (log n + log k +
log(1/ε)) + O(1) andm 6 2d + (1 + α)k.

Consider the case thatα is a constant close to 0. Then the condenser has seed lengthO(log(n/ε))
and output min-entropy rate roughly1/(1 + α). Thus, the task of constructing extractors for arbitrary
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seed lengthd output length Thm.
log n + O(log(k/ε)) (1 − γ)k 4.19
log n + O(log k · log(k/ε)) k + d − 2 log(1/ε) − O(1) 4.21

Figure 1: Extractors in this paper for min-entropyk and errorε. Above,γ ∈ (0, 1) is an arbitrary constant.

seed lengthd output length output entropy Thm.
(1 + γ) log(nk/ε) + O(1) (1 + 1/γ)k + 2d k + d (lossless) 4.3
log(nk/ε) + O(1) d · (k + 2) k + d (lossless) 4.4

Figure 2: Condensers in this paper for min-entropyk and errorε. Above,γ > 0 is an arbitrary constant.

min-entropy is reduced to that of constructing extractors for min-entropy rate close to 1, which is a much
easier task. Indeed, whenε is constant, we can use a well-known and simple extractor based on expander
walks. Whenε is sub-constant, we can use Zuckerman’s extractor for constant entropy rate [Zuc2] to obtain
the proper dependence onε as long asε > exp(−k/2O(log∗ k)). Moreover, by combining our condenser
with ideas from the early constructions of extractors (the Leftover Hash Lemma, block-source extraction,
and simple compositions), we are able to give a completely self-contained proof of Theorem 1.5 with no
constraint on the error parameterε at all.

Our main extractors and condensers are summarized in Figures 1 and 2.

1.3 Organization and pointers to main results

We begin with a high level overview of our construction and proof method in Section 2. We describe and
analyze our expander construction in Section 3 (our main Theorem 1.3 concerning expanders is proved as
Theorem 3.5). We then interpret our expander as a lossless condenser and use it to obtain our extractors in a
self-contained way in Section 4 (our main Theorem 1.5 concerning extractors is proved as Theorem 4.19).

In Section 6, we analyze a variant of our main condenser that has a simpler description in terms of just
Reed-Solomon codes and is a univariate analogue of [SU], andwhose analysis is based on [GR]. We give
two variants of such condensers, both of which have parameters slightly worse than our main condenser.
Specifically, one is lossless but limited to achieving entropy rate1/2, and the other can achieve entropy
rate close to 1 but loses a constant fraction of the source min-entropy. The latter is analyzed using a list-
decoding view of lossy condensers that we describe in Section 5. In Section 7, we describe an application
of our lossless expanders to dictionary data structures foranswering set membership queries in the bitprobe
model, following [BMRV] who first made this beautiful connection. Finally we conclude in Section 8 with
some open problems.

1.4 Notation

Throughout this paper, we use boldface capital letters for random variables (e.g., “X”), capital letters
for indeterminates, and lower case letters for elements of aset. Also throughout the paper,Ut is the

random variable uniformly distributed on{0, 1}t. The supportof a random variableX is supp(X)
def
=
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{x : Pr [X = x] > 0}. Thestatistical distancebetween random variables (or distributions)X andY is
maxT |Pr [X ∈ T ]−Pr [Y ∈ T ] |. We sayX andY areε-closeif their statistical distance is at mostε. All
logs are base 2.

2 Overview of our approach

In this section we give a high level overview of our construction and the proof technique.

2.1 Expansion via list-decoding

Before explaining our approach, we briefly review the basicsof list-decodable codes. Acodeis mapping
C : [N ] → [M ]D, encoding messages of bit-lengthn = log2 N to D symbols over the alphabet[M ].
(Contrary to the usual convention in coding theory, we use different alphabets for the message and the
encoding.) Therate of such a code isρ = n/(D log2 M). We say thatC is (ε,K) list-decodableif for

everyr ∈ [M ]D, the setLIST(r, ε)
def
= {x : Pry[C(x)y = ry] > ε} is of size at mostK. We think of

r as areceived wordobtained by corrupting all but anε fraction of symbols in some codeword. The list-
decodability property says that there are not too many messagesx that could have led to the received word
r. The goal in constructing list-decodable codes is to optimize the tradeoff between the agreementε and
the rateρ, which are typically constants independent of the message lengthn. Both the alphabet sizeM
and the list-sizeK should be relatively small (e.g. constant orpoly(n)). Computationally, we would like
efficient algorithms both for computingC(x) givenx and for enumerating the messages inLIST(r, ε) given
a received wordr.

The classic Reed-Solomon codes were shown to achieve these properties with polynomial-time list-
decoding in the seminal work of Sudan [Sud]. The tradeoff betweenε andρ was improved by Guruswami
and Sudan [GS], and no better result was known for a number of years. Indeed, their result remains the best
known for decoding Reed-Solomon codes. Recently, Parvaresh and Vardy [PV] gave an ingenious variant
of Reed-Solomon codes for which the agreement-rate tradeoff is even better, leading finally to theoptimal
tradeoff (namely,ρ = ε − o(1)) achieved by Guruswami and Rudra [GR] using “folded” Reed-Solomon
codes.

Our expanders are based on the Parvaresh-Vardy codes. Specifically, for a left-vertexx ∈ [N ] and
y ∈ [D], we define they’th neighbor ofx to be Γ(x, y) = (y,C(x)y), whereC : [N ] → [M ]D is a
Parvaresh-Vardy code with a somewhat unusual setting of parameters. (Note that here we take the right-
hand vertex set to be[D] × [M ].) To prove that this graph is an expander, we adopt a ‘list-decoding’ view
of expanders. Specifically, for a right-setT ⊆ [D] × [M ], we define

LIST(T )
def
= {x ∈ [N ] : Γ(x) ⊆ T}.

Then the property ofΓ being a(K,A) expander can be reformulated as follows:

for all right-setsT of size less thanAK, we have|LIST(T )| < K.

We note that a similar formulation of expansion appears in [GT] (where it is restricted to setsT of the form
Γ(S) for setsS ⊆ [N ] of size at mostK).
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Let us compare this to the standard list-decodability property for error-correcting codes. Notice that for
a received wordr ∈ [M ]D,

LIST(r, ε) = {x : Pr
y

[C(x)y = ry] > ε}

= {x : Pr
y

[Γ(x, y) ∈ Tr] > ε},

whereTr = {(y, ry) : y ∈ [D]}. Thus, the two list-decoding problems are related, but havethe following
key differences:

• In the coding setting, we only need to consider setsT of the formTr. In particular, these sets are all
very small — containing onlyD of the possibleDM right vertices.

• In the expander setting, we only need to bound the number of left-vertices whose neighborhood is
entirely contained inT , whereas in the coding setting we need to consider left-vertices for which even
anε fraction of neighbors are inTr.

• In the coding setting, it is desirable for the alphabet sizeM to be small (constant orpoly(n)), whereas
our expanders are most interesting and useful whenM is in the range between, say,nω(1) and2n/2.

• In the coding setting, the exact size ofLIST(r, ε) is not important, and generally anypoly(n/ε)
bound is considered sufficient. In the expander setting, however, the relation between the list size and
the size ofT is crucial. A factor of 2 increase in the list size (forT of the same size) would change
our expansion factorA from (1 − ε)D to (1 − ε)D/2.

For these reasons, we cannot use the analysis of Parvaresh and Vardy [PV] as a black box. Indeed, in light
of the last item, it is somewhat of a surprise that we can optimize the bound on list size to yield such a tight
relationship between|T | and|LIST(T )| and thereby provide near-optimal expansion.

This list-decoding view of expanders is related to the list-decoding view of randomness extractors that
was implicit in Trevisan’s breakthrough extractor construction [Tre] and was crystallized by Ta-Shma and
Zuckerman [TZ]. There one considersall setsT ⊆ [D]×[M ] (not just ones of bounded size) and bounds the

size ofLIST(T, µ(T )+ε) = {x : Pry[Γ(x, y) ∈ T ] > µ(T )+ε}, whereµ(T )
def
= |T |/(DM) is the density

of T . Indeed, our work began by observing a strong similarity between a natural ‘univariate’ analog of the
Shaltiel–Umans extractor [SU] and the Guruswami–Rudra codes [GR], and by hoping that the list-decoding
algorithm for the Guruswami–Rudra codes could be used to prove that the univariate analog of the Shaltiel–
Umans construction is indeed a good extractor (as conjectured in [KU]). However, we were only able to
bound|LIST(T, ε)| for “small” setsT , which led to constructions oflossycondensers, as in the preliminary
version of our paper [GUV1]. In the present version, we instead bound the size ofLIST(T ) = LIST(T, 1),
and this bound is strong enough to yield expanders with expansion (1 − ε) · D and thus directly implies
lossless condensers, as discussed above. (We still consider lossy condensers in Section 5 of this paper for
the purpose of analyzing a variant of our main construction.)

It is also interesting to compare our construction and analysis to recent constructions of extractors based
on algebraic error-correcting codes, namely those of Ta-Shma, Zuckerman, and Safra [TZS] and Shaltiel and
Umans [SU]. Both of those constructions use multivariate polynomials (Reed–Muller codes) as a starting
point, and rely on the fact that these codes arelocally decodable, in the sense that any bit of the message can
be recovered by reading only a small portion of the received word. While the advantage of local decodability
is clear in the computational setting (i.e., constructionsof pseudorandom generators [STV, SU, Uma]),
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where it enables efficient reductions, it is less clear why itis needed in the information-theoretic setting of
extractors, where the ‘decoding’ only occurs in the analysis. Indeed, Trevisan’s extractor [Tre] corresponds
to the pseudorandom generator construction of [STV], but with the locally list-decodable code replaced by a
standard list-decodable code. However, the extractor analyses of [TZS] and [SU] seem to rely essentially on
multivariate polynomials and local (list-)decodability.Our construction works with univariate polynomials
and the analysis does not require any local decoding – indeed, univariate polynomial (Reed-Solomon) codes
are not locally decodable.

2.2 Parvaresh-Vardy codes and the proof technique

Our constructions are based on Parvaresh-Vardy codes [PV],which in turn are based on Reed-Solomon
codes. A Reed-Solomon codeword is a univariate degreen − 1 polynomialf ∈ Fq[Y ], evaluated at all
points in the field. A Parvaresh-Vardy codeword is a bundle ofseveral related degreen − 1 polynomials
f0, f1, f2, . . . , fm−1, each evaluated at all points in the field. The evaluations ofthe variousfi at a given field
element are packaged into a symbol from the larger alphabetFqm. The purpose of this extra redundancy is
to enable a better list-decoding algorithm than is possiblefor Reed-Solomon codes.

The main idea in [PV] is to view degreen − 1 polynomials as elements of the extension fieldF =
Fq[Y ]/E(Y ), whereE is some irreducible polynomial of degreen. Thefi (now viewed as elements ofF)
are chosen so thatfi = fhi

0 for i > 1, and a positive integer parameterh. As explained in Section 2.1, our
expander is constructed directly from Parvaresh-Vardy codes as follows:

Γ(f0, y) = [y, f0(y), f1(y), . . . , fm−1(y)].

In the analysis, our task is to show that for any setT of sizeL, the setLIST(T ) = {f0 : Γ(f0) ⊆ T} is
small. To do this we follow the list-decoding analysis of [PV], which in turn has the same general structure
as the list-decoding algorithms for Reed–Solomon codes [Sud, GS]. We first produce a non-zero polynomial
Q : F

1+m
q → Fq that vanishes onT . Now, for everyf0 ∈ LIST(T ), we have

Q(y, f0(y), . . . , fm−1(y)) = 0 ∀y ∈ Fq,

and by ensuring thatQ has small degree (which is possible becauseT is not too large), we will be able
to argue that the univariate polynomialQ(Y, f0(Y ), . . . , fm−1(Y )) is the zero polynomial. Recalling the
definition of thefi, and viewing thefi as elements of the extension fieldF = Fq[Y ]/E(Y ), we observe that
f0 is aroot of the univariate polynomial

Q∗(Z)
def
= Q(Y,Z,Zh, Zh2

, . . . , Zhm−1
) mod E(Y ).

This is because when simplifying the formal polynomialQ∗(f0(Y )) mod E(Y ), we can first take each
f0(Y )h

i

term moduloE(Y ), resulting infi(Y ), and we have just argued thatQ(Y, f0(Y ), . . . , fm−1(Y ))
is the zero polynomial, so it is still the zero polynomial modulo E(Y ). This argument holds for every
f0 ∈ LIST(T ), and so we can upper-bound|LIST(T )| by the degree ofQ∗.

3 Expander Graphs

We first formally develop the list-decoding view of expanders described in Section 2.1.
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Definition 3.1. For a bipartite graphΓ : [N ] × [D] → [M ] and a setT ⊆ [M ], define

LIST(T ) = {x ∈ [N ] : Γ(x) ⊆ T}.

The proof of the next lemma follows from the definitions:

Lemma 3.2. A graphΓ is a (K,A) expander iff for every setT of size at mostAK − 1, LIST(T ) is of size
at mostK − 1.

3.1 The construction

Fix the fieldFq and letE(Y ) be an irreducible polynomial of degreen overFq. We identify elements ofFn
q

with univariate polynomials overFq with degree at mostn − 1. Fix an integer parameterh.

Our expander is the bipartite graphΓ : F
n
q × Fq → F

m+1
q defined as:

Γ(f, y)
def
= [y, f(y), (fh mod E)(y), (fh2

mod E)(y), · · · , (fhm−1
mod E)(y)]. (1)

In other words, the bipartite graph has “message” polynomials f(Y ) on the left, and they’th neighbor of
f(Y ) is simply they’th symbol of the Parvaresh-Vardy encoding off(Y ). For ease of notation, we will
refer to(fhi

mod E) as “fi.”

Theorem 3.3. The graphΓ : F
n
q × Fq → F

m+1
q defined in (1) is a(6Kmax , A) expander forKmax = hm

andA = q − (n − 1)(h − 1)m.

Proof. Let K be any integer less than or equal toKmax = hm, and letA = q − (n − 1)(h − 1)m. By
Lemma 3.2, it suffices to show that for every setT ⊆ F

m+1
q of size at mostAK − 1, we have|LIST(T )| 6

K − 1. Fix such a setT .

Our first step is to find a nonzero “low-degree” polynomialQ(Y, Y1, . . . , Ym) that vanishes onT . Specif-
ically, Q will only have nonzero coefficients on monomials of the formY i

Mj(Y1, . . . , Ym) for 0 6 i 6 A−1

and0 6 j 6 K−1 6 hm−1, whereMj(Y1, . . . , Ym) = Y j0
1 · · ·Y jm−1

m andj = j0+j1h+· · ·+jm−1h
m−1

is the base-h representation ofj. (For simplicity, one may think ofK = hm, in which case we are simply
requiring thatQ has degree at mosth − 1 in each variableYi.) For eachz ∈ T , requiring thatQ(z) = 0
imposes a homogeneous linear constraint on theAK coefficients ofQ. Since the number of constraints is
smaller than the number of unknowns, this linear system has anonzero solution. Moreover, we may assume
that among all such solutions,Q is the one of smallest degree in the variableY . This implies that if we write
Q in the form

Q(Y, Y1, . . . , Ym) =

K−1
∑

j=0

pj(Y ) · Mj(Y1, . . . , Ym)

for univariate polynomialsp0(Y ), . . . , pK−1(Y ), then at least one of thepj ’s is not divisible byE(Y ).
OtherwiseQ(Y, Y1, . . . , Ym)/E(Y ) would have smaller degree inY and would still vanish onT (sinceE
is irreducible and thus has no roots inFq).

Consider any polynomialf(Y ) ∈ LIST(T ). By the definition ofLIST(T ) and our choice ofQ, it holds
that

Q(y, f0(y), f1(y), . . . , fm−1(y)) = 0 ∀y ∈ Fq.

9



That is, the univariate polynomialRf (Y )
def
= Q(Y, f0(Y ), . . . , fm−1(Y )) hasq zeroes. Since the degree of

Rf (Y ) is at most(A − 1) + (n − 1)(h − 1)m < q, it must be identically zero. So

Q(Y, f0(Y ), . . . , fm−1(Y )) = 0

as a formal polynomial. Now recall thatfi(Y ) ≡ f(Y )h
i

(mod E(Y )). Thus,

Q(Y, f(Y ), f(Y )h, . . . , f(Y )h
m−1

)

≡ Q(Y, f0(Y ), . . . , fm−1(Y )) ≡ 0 (mod E(Y )) .

So if we interpretf(Y ) as an element of the extension fieldF = Fq[Y ]/E(Y ), thenf(Y ) is a root of the
univariate polynomialQ∗ overF defined by

Q∗(Z)
def
= Q(Y,Z,Zh, Zh2

, . . . , Zhm−1
) mod E(Y )

=

K−1
∑

j=0

(pj(Y ) mod E(Y )) · Mj(Z,Zh, . . . , Zhm−1
)

=
K−1
∑

j=0

(pj(Y ) mod E(Y )) · Zj.

Since this holds for everyf(Y ) ∈ LIST(T ), we deduce thatQ∗ has at least|LIST(T )| roots inF. On the
other hand,Q∗ is a non-zero polynomial, because at least one of thepj(Y )’s is not divisible byE(Y ). Thus,
|LIST(T )| is bounded by the degree ofQ∗, which is at mostK − 1.

Remark 3.4. Observe that for allS ⊆ Fq, the subgraph ofΓ that comes from taking onlyy-th edges for
y ∈ S, is a(6Kmax , A) expander forA = |S| − (n − 1)(h − 1)m by the same argument.

3.2 Setting parameters

The following theorem differs from Theorem 1.3 only by allowing α to be non-constant.

Theorem 3.5(Thm. 1.3, generalized). For all positive integersN , Kmax 6 N , all ε > 0, and all α ∈
(0, log x/ log log x) for x = (log N)(log Kmax )/ε, there is an explicit(6Kmax , (1 − ε)D) expanderΓ :

[N ]× [D] → [M ] with degreeD = O
(

((log N)(log Kmax )/ε)1+1/α
)

andM 6 D2 ·K1+α
max

. Moreover,D

andM are powers of 2.

Proof. Let n = log N andk = log Kmax. Let h0 = (2nk/ε)1/α, h = dh0e, and letq be the power of 2 in
the interval(h1+α/2, h1+α].

Set m = d(log Kmax)/(log h)e, so thathm−1 6 Kmax 6 hm. Then, by Theorem 3.3, the graph
Γ : F

n
q × Fq → F

m+1
q defined in (1) is a(6hm, A) expander forA = q − (n − 1)(h − 1)m. Since

Kmax 6 hm, it is also a(6Kmax, A) expander.

Note that the number of left-vertices inΓ is qn > N , and the number of right-vertices is

M = qm+1
6 q2 · h(1+α)·(m−1)

6 q2 · K1+α
max .

10



The degree is

D
def
= q 6 h1+α

6 (h0 + 1)1+α

= O(h1+α
0 ) = O

(

((log N)(log Kmax)/ε)
1+1/α

)

.

where the second-to-last equality follows from the fact that h0 = (nk/ε)1/α > α (due to the upper bound
onα).

To see that the expansion factorA = q − (n − 1)(h − 1)m > q − nhk is at least(1− ε)D = (1− ε)q,
note that

nhk 6 ε · h1+α 6 εq,

where the first inequality holds becausehα > nk/ε.

Finally, the construction is explicit because a representation of Fq for q a power of 2 (i.e. an irreducible
polynomial of degreelog q overF2) as well as an irreducible polynomialE(Y ) of degreen overFq can be
found in timepoly(n, log q) = poly(log N, log D) [Sho].

Remark 3.6. In this proof we work in a fieldFq of characteristic 2, which has the advantage of yielding
a polynomial-time construction even when we need to takeq to be superpolynomially large (which occurs
whenε(n) = n−ω(1)). Whenε > 1/poly(n), then we could use any prime powerq instead, with some
minor adjustments to the construction and the parameters claimed in the theorem.

In the above theorem,α is restricted to be slightly sublogarithmic innk/ε. It will sometimes be useful
to use the following variant, which corresponds to a logarithmic value ofα and yields a degree with a linear
dependence onlog N .

Theorem 3.7. For all positive integersN , Kmax 6 N , and all ε > 0, there is an explicit(6Kmax , (1 −
ε)D) expanderΓ : [N ] × [D] → [M ] with degreeD 6 2(log N)(log Kmax )/ε andM 6 (4Kmax )log D.
Moreover,D andM are powers of 2.

Proof. The proof is along the same lines as that of Theorem 3.5, except we takeh = 2, q ∈ (nk/ε, 2nk/ε],
andm = dlog Kmax e. Then we can bound the degree byD = q 6 2nk/ε, the number of right-hand
vertices byM = qm+1 = (4 ·2m−1)log q 6 (4Kmax )log q, and the expansion byA = q−(n−1)(h−1)m >

q − nk > (1 − ε)D.

4 Lossless condensers and extractors

In this section we prove our main extractor theorem.

4.1 Lossless condensers

We first interpret the expanders constructed in the previoussection as lossless condensers (see Defini-
tion 1.6). This connection, due to Ta-Shma, Umans, and Zuckerman [TUZ], is based on viewing a function
C : {0, 1}n × {0, 1}d → {0, 1}m as the neighbor function of a bipartite graph with2n left-vertices,2m

right-vertices, and left-degree2d. It turns out that this graph has expansion close to the degree if and only if
C is a lossless condenser.
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Lemma 4.1([TUZ]) . For n,m, d ∈ N, ε ∈ (0, 1), andk ∈ [0, n] such that2k ∈ N, C : {0, 1}n×{0, 1}d →
{0, 1}m is ak →ε k + d condenser iff the corresponding bipartite graph is a(2k, (1 − ε) · 2d) expander.

One minor technicality in the above connection is that it requires that2k be an integer, whereas the
notion of condenser makes sense for allk ∈ [0, n]. However, this is easily handled by rounding, if we
allow a tiny increase in the error parameterε. Specifically, we have the following generalization of the “if”
direction of Lemma 4.1:

Lemma 4.2. For n,m, d ∈ N, ε ∈ (0, 1), andk ∈ [0, n], C : {0, 1}n ×{0, 1}d → {0, 1}m is ak →ε k + d
condenser if the corresponding bipartite graph is a(d2ke, (1 − ε) · 2d) expander and a(b2kc, (1 − ε) · 2d)
expander.

Proof. Let K = 2k /∈ N andL = bKc. Everyk-source is a convex combination of sourcesX in which
some setS of L elements each have probability mass exactly1/K, and one elementx /∈ S has probability
1−L/K; thus it suffices to prove the lemma for such sourcesX. We can decomposeX = pX1+(1−p)X2

whereX1 is uniform onS, X2 is uniform onS∪{x}, andp ∈ [0, 1] satisfiesp/L+(1−p)/(L+1) = 1/K
(so that all elements ofS have probability exactly1/K).

By Lemma 4.1,C(X1,Ud) is ε-close to a sourceZ1 of min-entropylog(LD), whereD = 2d, and
C(X2,Ud) is ε-close to a sourceZ2 of min-entropylog((L + 1)D). ThenC(X,Ud) is ε-close toZ =
pZ1 + (1 − p)Z2. We now claim thatZ is a(k + d)-source. Indeed, for everyz,

Pr[Z = z] 6 p · Pr[Z1 = z] + (1 − p) Pr[Z2 = z] 6 p · 1

LD
+ (1 − p) · 1

(L + 1)D
=

1

KD
.

Using this lemma, the following are immediate consequencesof Theorems 3.5 and 3.7.

Theorem 4.3(Theorem 1.7, generalized). For everyn ∈ N, kmax 6 n, ε > 0, and
α ∈ (0, log(nkmax/ε)/ log log(nkmax/ε)), there is an explicit functionC : {0, 1}n × {0, 1}d → {0, 1}m

with d = (1 + 1/α) · (log n + log kmax + log(1/ε)) + O(1) andm 6 2d + (1 + α)kmax such that for all
k 6 kmax , C is ak →ε k + d (lossless) condenser.

Theorem 4.4. For everyn ∈ N, kmax 6 n, and α, ε > 0, there is an explicit functionC : {0, 1}n ×
{0, 1}d → {0, 1}m with d 6 log n + log kmax + log(1/ε) + 1 andm 6 d · (kmax + 2) such that for all
k 6 kmax , C is ak →ε k + d (lossless) condenser.

Once we have condensed almost all of the entropy into a sourcewith high entropy rate (as in Theo-
rem 4.3), extracting (most of) that entropy is not that difficult. All we need to do is to compose the condenser
with an extractor that works for high entropy rates. The following standard fact makes the composition for-
mal:

Proposition 4.5. SupposeC : {0, 1}n × {0, 1}d1 → {0, 1}n′
is ank →ε1 k′ condenser, andE : {0, 1}n′ ×

{0, 1}d2 → {0, 1}m is a (k′, ε2)-extractor, thenE ◦ C : {0, 1}n × {0, 1}d1+d2 → {0, 1}m defined by

(E ◦ C)(x, y1, y2)
def
= E(C(x, y1), y2) is a (k, ε1 + ε2)-extractor.
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In the next section, we will use this proposition to compose our condenser with a simple extractor
for high entropy rates to obtain our main extractor theorem (Theorem 1.5) for the case of constant error
ε. For subconstant error, we could compose with Zuckerman’s extractor for constant entropy rate [Zuc2],
which works providedε > exp(−k/2O(log∗ k)). Instead, in Section 4 we combine our condenser with ideas
from the early constructions of extractors (the Leftover Hash Lemma, block-source extraction, and simple
compositions), to obtain a completely self-contained proof of Theorem 1.5 with no constraint on the error
parameterε at all.

4.2 Extractors for constant error

In this section, we prove Theorem 1.5 for the case of constanterrorε (which suffices for many applications
of extractors). It is obtained by composing our condenser with a extractor for min-entropy rate close to 1.
A standard extractor construction for this setting is basedon expander walks [Gil, Zuc2, Zuc3]. Specifi-
cally, such an extractor can be obtained by combining the equivalence between extractors and ‘averaging
samplers’ [Zuc2], and the fact that expander walks are an averaging sampler, as established by the Chernoff
bound for expander walks [Gil].2

Theorem 4.6. For all constantsα, ε > 0, there is a constantδ < 1 for which the following holds: for all
positive integersn, there is an explicit construction of a(k = δn, ε) extractorE : {0, 1}n × {0, 1}t →
{0, 1}m with t 6 log(αn) andm > (1 − α)n.

For completeness, we present the short proof:

Proof. Let m = d(1 − α)ne, and for some absolute constantsc > 1 andλ < 1, let G be an explicit2c-
regular expander on2m vertices (identified with{0, 1}m) and second eigenvalueλ = λ(G) < 1. Let L
be the largest power of 2 at most(n − m)/c (soL > (n − m)/(2c)), and lett = log L 6 log(αn). The
extractorE is constructed as follows. Its first argumentx is used to describe a walkv1, v2, . . . , vL of length
L in G by pickingv1 based on the firstm bits ofx, and each further step of the walk from the nextc bits of
x — so in all,L must satisfyn = m + (L − 1)c. The seedy is used to pick one of the vertices of the walk
at random. The outputE(x, y) of the extractor is them-bit label of the chosen vertex.

Let X be a random variable with min-entropyk = δn. We wish to prove that for anyS ⊆ {0, 1}m, the
probability thatE(X,Ut) is a vertex inS is in the rangeµ ± ε whereµ = |S|/2m. Fix any such subsetS.
Call anx ∈ {0, 1}n “bad” if

∣

∣

∣

∣

Pr
y

[E(x, y) ∈ S] − µ

∣

∣

∣

∣

> ε/2.

The known Chernoff bounds for random walks on expanders [Gil] imply that the number of badx’s is at
most

2n · e−Ω(ε2(1−λ)L) = 2n · e−Ω(ε2(1−λ)αn/c) = 2n · 2−Ω(ε2αn)

(sincec, λ are absolute constants). Therefore the probability thatX is bad is at most2−δn · 2n · 2−Ω(ε2αn),
which is exponentially small for large enoughδ < 1. Therefore

|Pr[E(X,Ut) ∈ S] − µ| 6 ε/2 + 2−Ω(n) 6 ε,

implying thatE is a(k, ε)-extractor.

2The papers [IZ, CW] prove hitting properties of expander walks, and observe that these imply objects related to (but weaker
than) extractors, known as dispersers.
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Combining this with our condenser, we obtain the following extractor:

Theorem 4.7(Thm. 1.5 for constant error). For all constantsα, ε > 0: for all positive integersn, k, there
is an explicit construction of a(k, ε) extractorE : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n) and
m > (1 − α)k.

Proof. Given constantα, ε > 0, apply Theorem 4.6 to obtain aδ = 1 − γ for a constantγ > 0 and
an explicit (k, ε/2) extractorE : {0, 1}a × {0, 1}t → {0, 1}m with a = bk/(1 − γ)c, t 6 log a, and
m > (1 − α)a > (1 − α)k.

By Theorem 4.3, there is an explicitk →ε/2 k + d condenserC : {0, 1}n × {0, 1}u → {0, 1}b with
u = O(log n) andb 6 (1 + γ/2) · k + 2u 6 a, where the latter inequality holds because we may assume
k > (4u + 2)/γ. (Otherwise a trivial extractor that outputs its seed will satisfy the theorem.)

By Proposition 4.5, we obtain a(k, ε) extractorE : {0, 1}n × {0, 1}d → {0, 1}m with seed length
d = t + u = O(log n) and output lengthm > (1 − α)k.

4.3 Extractors for arbitrary error

In this section, provide a self-contained construction of extractors that are optimal up to constant factors,
with no constraint on the error parameter. It is obtained by combining our condenser with the ideas from the
early constructions of extractors [Zuc1, NZ, SZ, Zuc2, GW].Beyond our condenser, the only tools needed
are the universal hashing and some simple (and standard) methods to compose extractors. In this section,
we often use the termk-sourceto mean a random variable with min-entropy at leastk.

4.3.1 The Leftover Hash Lemma

The Leftover Hash Lemma [ILL], which predates the general definition of extractors [NZ], shows that
universal hash functions are randomness extractors, albeit with a large seed length:

Lemma 4.8([ILL]) . For all n ∈ N, k 6 n, andε > 0, there is an explicit(k, ε) extractorE : {0, 1}n ×
{0, 1}d → {0, 1}m with d = n andm > k + d − 2 log(1/ε).

Note that the output length is optimal, but the seed length islinear rather than logarithmic inn. Neverthe-
less, this extractor was a very useful component in early constructions of extractors with (poly)logarithmic
seed length [Zuc1, NZ, Zuc2]. Indeed, it was dubbed the “Mother of all Extractors” by Nisan [NT].

Proof Sketch.We associate{0, 1}n = {0, 1}d with the finite fieldF of size2n. Givenx, y ∈ F, we define
E(x, y) = (y, xy|m), wherexy|m is the firstm = dk + d − 2 log(1/ε)e bits of the productxy ∈ F.

The fact that this is a(k, ε) extractor follows from the Leftover Hash Lemma [ILL] and thefact that
the set of functionshy(x) = xy|m is 2-universal. For completeness, we sketch the proof here.Let X be
a k-source on{0, 1}n, andY be uniform on{0, 1}d. Then, it can be shown that thecollision probability3

of E(X,Y) = (Y,XY|m) is at most(1/D) · (1/K + 1/M) 6 (1 + 2ε2)/(DM). (1/D is the collision
probability of Y, 1/K is the collision probability ofX, and1/M is the probability thatxY = x′

Y for
any two distinctx 6= x′.) This is equivalent to saying that the`2 distance of the distributionE(X,Y) from

3Thecollision probabilityof a random variableZ is
P

z
Pr[Z = z]2 = Pr[Z = Z

′], whereZ′ is an iid copy ofZ.
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uniform is at most
√

2ε2/DM 6 2ε/
√

DM . Then the statistical distance to uniform equals 1/2 the`1

distance, which in turn is at most a factor of
√

DM larger than thè2 distance.

We note that by composing our lossless condenser (Theorem 4.3) with this extractor via Proposition 4.5,
we can reduce the seed length fromn to O(k + log(n/ε)), matching the low min-entropy extractors of [SZ]
(which are based on generalization of the Leftover Hash Lemma to almost-universal hash functions):

Lemma 4.9. For every constantα > 0, for all n ∈ N, k 6 n, andε > 0, there is an explicit extractor
E : {0, 1}n × {0, 1}d → {0, 1}m with d = (1 + α)k + O(log(n/ε)) andm > k + d − 2 log(1/ε) (the
constant inO(log(n/ε)) depends onα).

Remark 4.10. It was pointed out to us by Michael von Korff and Kai-Min Chungthat the seed length
can be reduced further toαk + O(log(n/ε)) for an arbitrarily small constantα > 0 by condensing to
lengthn′ = (1 + α)k + O(log(n/ε)), and then applying the “high min-entropy” extractor of [GW], which
requires a seed of lengthn′ − k + O(log(1/ε)) = αk + O(log(n/ε)) and has optimal output lengthm =
k + d − 2 log(1/ε) − O(1) (if implemented using Ramanujan expander graphs). In the next section, we
will see another way (Lemma 4.11) to achieve this constant-factor savings in seed length, which has the
advantage of being self-contained (not relying on Ramanujan expanders) but has the disadvantage of only
extracting a constant fraction of the min-entropy.

4.3.2 An extractor with seed much shorter than its output

Our goal in this subsection is to constructing the followingextractor, which will be the main building block
for our recursive construction:

Lemma 4.11. For everyconstantt > 0 and all positive integersn > k and all ε > 0, there is an explicit
(k, ε) extractorE : {0, 1}n × {0, 1}d → {0, 1}m with m = dk/2e andd 6 k/t + O(log(n/ε)).

The point is that this extractor has a seed length that is an arbitrarily large constant factor (namely
t/2) smaller than its output length. This will be useful as a building block for our recursive construction
of extractors optimal up to constant factors in Section 4.3.3. We now turn to defining block sources and
collecting basic results about extracting randomness fromthem.

A block sourceis a useful model of a weak random source that has more structure than an arbitrary
k-source:

Definition 4.12([CG]). X = (X1,X2, . . . ,Xt) is a(k1, k2, . . . , kt) block sourceif for everyx1, . . . , xi−1,
Xi|X1=x1,...,Xi−1=xi−1 is aki-source. Ifk1 = k2 = · · · = kt = k, then we callX a t × k block source.

Note that a(k1, k2, . . . , kt) block source is also a(k1 + · · · + kt)-source, but it comes with additional
structure — each block is guaranteed to contribute some min-entropy. Thus, extracting randomness from
block sources is easier task than extracting from general sources. Indeed, we have the following standard
lemma:

Lemma 4.13. Let E1 : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 be a (k1, ε1)-extractor, andE2 : {0, 1}n2 ×
{0, 1}d2 → {0, 1}m2 be a(k2, ε2)-extractor withm2 > d1. DefineE′((x1, x2), y2) = (E1(x1, y1), z2),
where(y1, z2) is obtained by partitioningE2(x2, y2) into a prefixy1 of lengthd1 and a suffixz2 of length
m2 − d1.
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Then for every(k1, k2) block sourceX = (X1,X2) taking values in{0, 1}n1 × {0, 1}n2 , it holds that
E′(X,Ud2

) is (ε1 + ε2)-close toUm1
× Um2−d1

.

Proof. (X1,Y1,Z2) = (X1, E2(X2,Ud2
)) is ε2-close to(X1,Um2

) = (X1,Ud1
,Um2−d1

).

Thus,(E1(X1,Y1),Z2) isε2-close to(E1(X1,Ud1
),Um2−d1

), which isε1-close to(Um1
,Um2−d1

).

By the triangle inequality,E′(X,Ud2
) = (E1(X1,Y1),Z2) is (ε1+ε2)-close to(Um1

,Um2−d1
).

The benefit of this composition is that the seed length ofE′ equals that of only one of the extractors
(namelyE2), rather than being the sum of the seed lengths. Thus, we get to extract from multiple blocks at
the “price of one.” Moreover, since we can taked1 = m2, which is typically larger thand2, the seed length
of E′ can even be much smaller than that ofE1.

The lemma extends naturally to extracting from many blocks:

Lemma 4.14. For i = 1, . . . , t, let Ei : {0, 1}ni × {0, 1}di → {0, 1}mi be a(ki, εi)-extractor, and suppose
that mi > di−1 for everyi = 1, . . . , t, where we defined0 = 0. DefineE′((x1, . . . , xt), yt) = (z1, . . . , zt),
where fori = t, . . . , 1, we inductively define(yi−1, zi) to be a partition ofEi(xi, yi) into a di−1-bit prefix
and a(mi − di−1)-bit suffix.

Then for every(k1, . . . , kt) block sourceX = (X1, . . . ,Xt) taking values in{0, 1}n1 × · · · {0, 1}nt , it
holds thatE′(X,Udt

) is ε-close toUm for ε =
∑t

i=1 εi andm =
∑t

i=1(mi − di−1).

In light of this composition, many constructions of extractors work by first converting the source into
a block source and then applying block-source extraction asabove. Our construction will also use this
approach (recursively). It is based on the observation thatour condenser gives a very simple way to convert
a general source into a block source. Indeed, every source ofsufficiently high min-entropy is already a block
source.

Lemma 4.15. If X is a (n − ∆)-source of lengthn, andX = (X1,X2) is a partition ofX into blocks of
lengthsn1 andn2, then(X1,X2) is ε-close to some(n1 − ∆, n2 − ∆ − log(1/ε)) block source.

The intuition behind the above lemma is that ifX is missing only∆ bits of entropy, then no substring
of it can be missing more than∆ bits of entropy (even conditioned on the others). The additional log(1/ε)
bits of entropy loss inX2 is to ensure that the min-entropy ofX2 is high conditioned on all but anε fraction
of values ofX1.

Consider ak-sourceX of length n = (4/3)k, i.e. the source has min-entropy rate3/4, as can be
achieved by applying our condenser. Then setting∆ = k/3 and breakingX into two halves of length
n/2 = (2/3)k, we have a block source in which each block has min-entropy roughly k/3. Then, by
Lemma 4.13, if we want to extractΩ(k) bits using a seed of lengthO(log n), it suffices to have a(k/3, ε)
extractorE1 with output lengthm1 = Ω(k) and a(k/3, ε) extractorE2 with seed lengthd2 = O(log n)
such that the output lengthm2 of E2 is at least the seed lengthd1 of E1 (e.g. both can bepoly(log k)). By
now, there are many such pairs (E1, E2) in the literature, some of which are quite clean and direct.Still,
we do not use that approach here, because it is not self-contained, and, more importantly, it does not yield
extractors with arbitrarily small errorε.

By induction, we have the following:
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Corollary 4.16. If X is a(n−∆)-source of lengthn, andX = (X1,X2, . . . ,Xt) is a partition ofX into t
blocks, each of length at leastn′, then(X1,X2, . . . ,Xt) is tε-close to somet× (n′ −∆− log(1/ε)) block
source.

Returning to our goal of constructing the extractors of Lemma 4.11, here is our plan for the proof. To
convert a generalk-sourceX into a block source witht = O(1) blocks, we can first use our condenser of
Theorem 4.3 to obtain ak-sourceX′ of length(1 + α)k for a sufficiently small constantα, which we then
break intot equal-sized blocks. By applying Corollary 4.16 with∆ = αk, the result will be close to a source
with min-entropy at leastk/t−αk = Ω(k) per block, providedα < 1/t. Applying block-source extraction
with the extractor of Lemma 4.8, we obtain extractor promised in Lemma 4.11. The formal details follow.

Proof of Lemma 4.11:Round t up to an integer, and setε0 = ε/(4t + 1). Given ak-sourceX, we
apply the condenser of Theorem 4.3 with errorε0 and parameterα = 1/(6t). With a seed of lengthd′ =
O(log(n/ε0)) = O(log(n/ε)), this provides us with anX′ of length at mostn′ = (1 + α)k + O(log(n/ε))
that isε0-close to ak-source.

Next, we partitionX′ into 2t blocks, each of sizen′′ = bn′/(2t)c or n′′ + 1. By Corollary 4.16, the
result is(ε0 + 2tε0)-close to a2t × k′′ source, where

k′′ = n′′ − αk − O(log(n/ε)) > k/(2t) − αk − O(log(n/ε)) = k/(3t) − O(log(n/ε)) .

Now we perform block-source extraction using the “LeftoverHash Lemma” extractorE′′ of Lemma 4.8
with input lengthn′′ + 1, min-entropyk′′, and errorε0 to extract from each block. The seed length forE′′

is d′′ 6 n′′ + 1 = k/t + O(log(n/ε), and output lengthm′′ > max{d′′, k′′ + d′′ − 2 log(1/ε0)}. (Output
lengthm′′ = d′′ is always achievable by simply having the extractor output its seed.)

Applying the block-source extractor of Lemma 4.14 withEi = E′′ for everyi, the number of bits we
extract is

m > 2t · (m′′ − d′′) > 2t · (k′′ − 2 log(1/ε0)) = 2k/3 − O(log(n/ε)) > dk/2e

(the last step follows since ifk 6 O(log(n/ε)) we can simply output the seed). The statistical distance
increases by at most2t · ε0, for an output that has distance at most(4t + 1) · ε0 = ε from uniform. The total
seed length needed for the block-source extraction isd′ + d′′ = k/t + O(log(n/ε)). �

4.3.3 The recursion and extractors optimal up to constant factors

We now apply the above techniques recursively to construct an extractor that is optimal up to constant factors
for all settings of parameters. This extractor outputs onlyhalf of the min-entropy from the source, but we
will be able to easily boost this to an output length of(1 − α)k for any desired constantα > 0, using
standard techniques (Theorem 4.19).

Theorem 4.17. For all positive integersn, k and all ε > 0, there is an explicit construction of a(k, ε)
extractorE : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n + log(1/ε)) andm > k/2.

Overview of the Construction. Note that for small min-entropiesk, namelyk = O(log(n/ε)), this is
already achieved by Lemma 4.11 with seed lengthd smaller than the output lengthm by any constant
factor. (If we allowd > m, then extraction is trivial — just output the seed.) Thus, our goal will be
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to recursively construct extractors for large min-entropies using extractors for smaller min-entropies. Of
course, ifE : {0, 1}n × {0, 1}d → {0, 1}m is a(k0, ε) extractor, say withm = k0/2, then it is also a(k, ε)
extractor for everyk > k0. The problem is that the output length is onlyk0/2 rather thank/2. Thus, we need
to increase the output length. This can be achieved by simplyapplying extractors for smaller min-entropies
several times.

Lemma 4.18 ([WZ, RRV]). SupposeE1 : {0, 1}n × {0, 1}d1 → {0, 1}m1 is a (k1, ε1) extractor and
E2 : {0, 1}n × {0, 1}d2 → {0, 1}m2 is a (k2, ε2) extractor fork2 6 k1 − m1 − s. ThenE′ : {0, 1}n ×
{0, 1}d1+d2 → {0, 1}m1+m2 defined byE′(x, (y1, y2)) = E1(x, y1) ◦ E2(x, y2) is a (k1, (1/(1 − 2−s)) ·
ε1 + ε2) extractor.

The intuition is that most outputs ofE1 have probability mass≈ 2−m1 ; thus after conditioning on the
output ofE1, the source still has min-entropy≈ k1 − m1.

To see how we might apply this, consider settingk1 = .8k andm1 = k1/2, ε1 = ε2 = ε, s = 1,
k2 = k1 − m1 − 1 ∈ [.3k, .4k], andm2 = k2/2. Then we obtain a(k, 3ε) extractorE′ with output length
m = m1 + m2 > k/2 from two extactors for min-entropiesk1, k2 that are smaller thank by a constant
factor.

Now, however, the problem is that the seed length grows by a constant factor (e.g. ifd1 = d2, we
get seed length2d rather thand). Fortunately, block source extraction (Lemma 4.13, with the extractor of
Lemma 4.11 asE2) gives us a method to reduce the seed length by a constant factor. (The seed length of
the composed extractorE′ will be the same of that asE2, which will be a constant factor smaller than its
output lengthm2, which we can take to be equal to the seed lengthd1 of E1. Thus, the seed length ofE′

will be a constant factor smaller than that ofE1.) To apply this, we will convert our source to a block source
by condensing it to high min-entropy rate and applying Corollary 4.16.

One remaining issue is that the errorε still grows by a constant factor. However, we can start with
polynomially small error at the base of the recursion and there are only logarithmically many levels of
recursion, so we can afford this blow-up.

We now proceed with the proof details. It will be notationally convenient to do the steps in the reverse
order from the description above — first we will reduce the seed length by a constant factor, and then apply
Lemma 4.18 to increase the output length.

Proof of Theorem 4.17.Fix n ∈ N and ε0 > 0. Setd = c log(n/ε0) for an error parameterε0 and a
sufficiently large constantc to be determined in the proof below. (To avoid ambiguity, we will keep the
dependence onc explicit throughout the proof, and all big-Oh notation hides universal constants independent
of c.) Fork ∈ [0, n], let i(k) be the smallest nonnegative integeri such thatk 6 2i · 8d. This will be the
level of recursion in which we handle min-entropyk; note thati(k) 6 log k 6 log n.

For everyk ∈ [0, n], we will construct an explicitEk : {0, 1}n×{0, 1}d → {0, 1}dk/2e that is a(k, εi(k))
extractor, for an appropriate sequenceε0 6 ε1 6 ε2 · · · . Note that we require the seed length to remain
d and the fraction of min-entropy extracted to remain 1/2 for all values ofk. The construction will be by
induction oni(k).

Base Case: i(k) = 0, i.e. k 6 8d. The construction ofE follows from Lemma 4.11, settingt = 9 and
takingc to be a sufficiently large constant.
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Inductive Case: We constructEk for i(k) > 1 from extractorsEk′ with i(k′) < i(k) as follows. Given a
k-sourceX of lengthn, Ek works as follows.

1. We apply our condenser (Theorem 4.3) to convertX into a sourceX′ that isε0-close to ak-source of
length(9/8)k + O(log(n/ε0)). This requires a seed of lengthO(log(n/ε0)).

2. We divideX
′ into two equal-sized halves(X1,X2). By Corollary 4.16,(X1,X2) is 2ε0-close to a

2 × k′ block source for
k′ = k/2 − k/8 − O(log(n/ε0)) .

Note thati(k′) < i(k). Sincei(k) > 1, we also havek′ > 3d−O(log(n/ε0)) > 2d, for a sufficiently
large choice of the constantc.

3. Now we apply block-source extraction as in Lemma 4.13. We take E2 to be a(2d, ε0) extractor
from Lemma 4.11 with parametert = 16, which will give usm2 = d output bits using a seed of
lengthd2 = (2d)/16 + O(log(n/ε0)). For E1, we use our recursively constructedEk′ , which has
seed lengthd, error εi(k′), and output lengthdk′/2e > k/6 (where the latter inequality holds for a
sufficiently large choice of the constantc, becausek > 8d > 8c log(1/ε)).

All in all, our extractor so far has seed length at mostd/8+O(log(n/ε0)), error at mostεi(k)−1 +O(ε0),
and output length at leastk/6. This would be sufficient for our induction except that the output length is
only k/6 rather thank/2. We remedy this by applying Lemma 4.18.

With one application of the extractor above, we extract at leastm1 = k/6 bits of the source min-entropy.
Then with another application of the extractor above for min-entropy thresholdk2 = k−m1−1 = 5k/6−1,
by Lemma 4.18, we extract another(5k/6− 1)/6 bits and so on. After four applications, we have extracted
all but(5/6)4 ·k+O(1) 6 k/2 bits of the min-entropy. Our seed length is then4·(d/8+O(log(n/ε0))) 6 d
and the total error isεi(k) = O(εi(k)−1).

Solving the recurrence for the error, we getεi = 2O(i) · ε0 6 poly(n) · ε0, so we can obtain errorε by
settingε0 = ε/poly(n). As far as explicitness, we note that computingEk consists of four evaluations of
our condenser from Theorem 4.3, four evaluations ofEk′ for values ofk′ such thati(k′) < (i(k) − 1), four
evaluations of the explicit extractor from Lemma 4.11, and simple string manipulations that can be done in
timepoly(n, d). Thus, the total computation time is at most4i(k) · poly(n, d) = poly(n, d).

4.3.4 Main extractor theorem

The extractor of Theorem 4.17 extracts only half of the min-entropy from the source, but we can obtain
extractors that obtain any constant fraction of the min-entropy or all the min-entropy by repeated application
of Lemma 4.18.

Theorem 4.19(main extractor result). For every constantα > 0: for all positive integersn > k and all
ε > 0, there is an explicit(k, ε) extractor E : {0, 1}n × {0, 1}d → {0, 1}m with m = (1 − α)k and
d = log n + O(log(k/ε)).

Proof. Achieving the parameters in the theorem, except with seed lengthO(log(n/ε)) follows immediately
by applying Lemma 4.18O(1/α) times with both extractors being taken from Theorem 4.17. Toachieve
the promised seed lengthlog n + O(log(k/ε)), we first apply our condenser from Theorem 4.4 to the
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source. This requires a seed of lengthd 6 log n + log k + log(1/ε) + 1 to condense the source to length
n′ 6 d · (k +2) = O(k · log(n/ε)), while retaining all of the min-entropy (up to statistical distanceε). Then
extracting a constant fraction of the min-entropy only requires an additional seed lengthO(log(n′/ε)) =
O(log k + log log n + log(1/ε)) = O(log(k/ε)). (We assumek > log n; otherwise we can use the trivial
extractor that just outputs the seed.)

Note that an additional improvement of Theorem 4.19 over Theorem 4.17 is that it achieves a constant
of 1 in front of thelog n. Indeed, whenk = no(1) andε = 1/no(1), the seed length is within a(1 + o(1))
factor of the optimal boundlog n+2 log(1/ε)+O(1), improving over the extractors of Lu et al. [LRVW] in
which the seed length is only optimal to within some large constant factor. (In the conference version of this
paper [GUV2], we also showed how to use our techniques together with [Zuc3] to improve the seed length
of Theorem 4.19 to(1 + γ) log n + log k + O(1) for arbitrarily small constantsε, γ > 0; we omit that result
here because the improvement is only for a rather limited range of parameters.)

4.3.5 Extracting all the min-entropy

Next, we give an extractor that extracts all of the min-entropy. In order to also get the min-entropy of the
seed, we will use the following variant of Lemma 4.18, where the second extractor is also applied to the
seed of the first extractor.

Lemma 4.20 ([RRV]). SupposeE1 : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 is a (k1, ε1) extractor andE2 :
{0, 1}n1+d1 ×{0, 1}d2 → {0, 1}m2 is a (k2, ε2) extractor fork2 6 k1 + d1 −m1 − s. ThenE′ : {0, 1}n1 ×
{0, 1}d1+d2 → {0, 1}m1+m2 defined byE′(x, (y1, y2)) = E1(x, y1) ◦ E2((x, y1), y2) is a (k1, (1/(1 −
2−s)) · ε1 + ε2) extractor.

Theorem 4.21. For all positive integersn > k and all ε > 0, there is an explicit(k, ε) extractor E :
{0, 1}n × {0, 1}d → {0, 1}m with m = k + d − 2 log(1/ε) − O(1) andd = log n + O(log k · log(k/ε)).

Proof. Similar to the proof of Theorem 4.19, we show how to get the larger seed lengthO(log k · log(n/ε))
first; then the result follows by composing the extractor with our condenser from Theorem 4.4.

By applying Lemma 4.18 (withs = 1) to our extractors from Theorem 4.17 (with errorε0 = ε/6k)
log k times, we obtain a(k, ε1) extractorE1 : {0, 1}n × {0, 1}d1 → {0, 1}m1 with seed lengthd1 =
O(log k · log(n/ε0)) = O(log k · log(n/ε)), output lengthm1 = k, and errorε1 6 2 · 2log k · ε0 = ε/3.
(With s = 1, each application of Lemma 4.18 doubles the error and addsε0.) Now we use Lemma 4.20
to composeE1 with the (k2, ε2) extractorE2 : {0, 1}n+d1 × {0, 1}d2 → {0, 1}m2 from Lemma 4.9, for
min-entropyk2 = k + d1 − m1 − 1 = d1 − 1 and errorε2 = ε/3. E2 has seed lengthd2 = k2 +
O(log((n + d1)/ε2)) = O(log k · log(n/ε)), and output lengthm2 = k2 + d2 − 2 log(1/ε2) − O(1).
The final extractorE′ from Lemma 4.20 has seed lengthd1 + d2 = O(log k · log(n/ε)) and output length
m1 + m2 = k + d1 + d2 − 2 log(1/ε) − O(1).

Remark 4.22. In some applications of extractors, it is useful to havestrong extractors, where the seed ap-
pears as a substring of the output in a fixed set of coordinates. All of our extractors (namely Theorem 4.17,
Theorem 4.19, and Theorem 4.21) can be made to have this property (with no loss in the claimed parame-
ters).4 To achieve this, we first observe that our condenser (Theorem4.3) is already strong. (Indeed, the

4Another common definition of strong extractor requires thatthe joint distribution of the seed and output isε-close to uniform. A
strong extractor with output lengthm in that definition is equivalent to a strong extractor with output lengthm+d in our definition.
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seedy is the first component of the output ofC = Γ in Equation (1).) Then the fact thatC is ak →ε k + d
condenser implies that for everyk-sourceX, C(X,Ud) is ε-close to a joint distribution(Ud,Z) where for
everyy ∈ {0, 1}d, Z|Ud=y is ak-source. Thus, whenever we condense the source in our construction, we
can simply save the seed for the output, and operate only onZ as our condensed source. All of the other
compositions and transformations in our construction preserve this notion of strongness.

Remark 4.23. One of the major remaining open problems about extractors isto extract all of the min-
entropy (as in Theorem 4.21) with a seed length ofO(log(n/ε)) (as in Theorem 4.19). To this end, it is
worth pointing out where we lose entropy in the proof of Theorem 4.19. The first place is in Lemma 4.11,
but as pointed out in Remark 4.10 this can be avoided by combining our condenser with extractors from
Ramanujan expanders. The other place we lose entropy is in our (repeated) use of Lemma 4.15, where
we view a high min-entropy source as a block source. Intuitively, the entropy loss comes because we do
not know from which of the two blocks the entropy is missing, so we pessimistically assume it is missing
from both. This entropy loss problem has arisen in previous work, and in fact the “zig-zag product” for
extractors [RVW] solves it for the case of very high min-entropyn−∆ (where we can find optimal extractors
for sources of lengthO(∆) by exhaustive search). Needless to say, it would be very interesting to eliminate
the entropy loss in our setting too.

5 List-decoding view of lossy condensers

In Section 6, we give a (arguably simpler) construction of condensers from Reed-Solomon codes instead
of Parvaresh-Vardy codes. The price for this modification isthat the resulting objects are no longerlossless
condensers, but instead just ordinary (lossy) condensers.5 In this section, we develop a list-decoding char-
acterization of lossy condensers that will be used in the subsequent sections. For this we will need some
lemmas about min-entropy.

Proposition 5.1. A distribution D with min-entropylog(K − c) is c/K-close to some distribution with
min-entropylog K.

Proof. The distance fromD to the closest distribution with min-entropylog K is
∑

a:D(a)>1/K

(D(a) − 1/K) 6 1 − (K − c) · 1/K = c/K.

The following lemma gives a useful sufficient condition for adistribution to be close to having large
min-entropy:

Lemma 5.2. LetZ be a random variable andK a positive integer.

1. Suppose that for all setsT of sizeK, Pr[Z ∈ T ] 6 ε. ThenZ is ε-close to having min-entropy at
leastlog(K/ε).

2. Conversely, ifZ is ε-close to having min-entropy at leastlog(K/ε), thenPr[Z ∈ T ] 6 2ε for all sets
T of sizeK.

5We are able to get a lossless condenser from Reed-Solomon codes when the output entropy rate is less than1/2.
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Proof. 1. Let T be a set of theK heaviest elementsx (under the distribution ofZ). Let 2−` be the
average probability mass of the elements inT . Thenε > Pr[Z ∈ T ] = 2−`K, so ` > log(K/ε).
But every element outsideT has weight at most2−`, and with all but probabilityε, Z hits elements
outsideT .

2. Suppose thatZ′ is the random variable of min-entropy at leastlog(K/ε) that isε-close toZ, and let
T be a set of sizeK. ThenPr[Z ∈ T ] 6 Pr[Z′ ∈ T ] + ε 6 |T | · (ε/K) + ε = 2ε.

Now we can develop a “list-decoding” view of lossy condensers, analogous to the one we have used
for expanders (Lemma 3.2) and the one known for extractors [TZ]. The following definition should be
compared to Definition 3.1:

Definition 5.3. For a functionC : {0, 1}n × {0, 1}d → {0, 1}m and a setT ⊆ {0, 1}m, define

LIST(T, ε)
def
=

{

x : Pr
y

[C(x, y) ∈ T ] > ε

}

.

Similar to the situation with expanders, if we can bound the size ofLIST(T, ε) for all setsT that are not
too large, then we have a condenser:

Lemma 5.4. Fix a functionC : {0, 1}n × {0, 1}d → {0, 1}m and positive integersH andL.

1. Suppose that every setT ⊆ {0, 1}m of size at mostL, we have|LIST(T, ε)| 6 H. ThenC is a

log(H/ε) →2ε log(L/ε) − 1

condenser.

2. Conversely, suppose thatC is a
log H →ε log(L/ε)

condenser. Then for every setT ⊆ {0, 1}m of size at mostL, we have|LIST(T, 2ε)| 6 H.

Proof. 1. We have a random variableX with min-entropylog(H/ε). For a fixedT of size at mostL,
the probability thatX is in LIST(T, ε) is at mostε; if that does not happen, then the probability
C(X,Ut) lands inT is at mostε. Altogether the probabilityC(X,Ut) falls in T is at most2ε. Now
apply Lemma 5.2.

2. Suppose that there is a setT ⊆ {0, 1}m of size at mostL for which |LIST(T, 2ε)| > H. Let X be
a random variable uniformly distributed overLIST(T, 2ε); note thatX has min-entropy greater than
log H. The probability thatC(X,Ut) lands inT is greater than2ε. By Lemma 5.2,C(X,Ut) is not
ε-close to any random variable of min-entropylog(L/ε), contradicting the condenser property.
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Thus, up to a constant factor in the errorε and log(1/ε) bits of source min-entropy, proving that a
function is a condenser is equivalent to bounding the size of|LIST(T, ε)| for setsT of a some sizeL. In the
conference version of this paper [GUV2], we used this list-decoding view of lossy condensers to show that
we can eliminate thelog k in the seed length of the condenser of Theorem 4.3 (fork = kmax ), at the price
of losing a constant fraction of the min-entropy. (The idea was to use the “multiple roots” trick of [GS] in
the list-decoding analysis.) We omit that result in this version because the improvement is rather small, and
instead use the lossy condenser framework to analyze a “Reed–Solomon” version of our construction.

6 Condensers from Reed-Solomon codes

We use one of the main ideas from the folded Reed-Solomon codeconstruction of Guruswami and Rudra [GR]
to argue that a small modification to our construction gives agood condenser from (folded) Reed-Solomon
codes, answering a question raised in [KU]. There are two variants of the Reed-Solomon construction:
the first is lossy (it loses a constant fraction of the source entropy), but it achieves entropy rate arbitrarily
close to 1 (just like the main condenser of Theorem 4.3); the second (pointed out to us by Ariel Gabizon) is
lossless, but it only achieves entropy rate 1/2.

6.1 Lossy Reed-Solomon condenser

Let q be an arbitrary prime power, and letζ ∈ Fq be a generator of the multiplicative groupF
∗
q. Then the

polynomialE(Y ) = Y q−1 − ζ is irreducible overFq [LN, Chap. 3, Sec. 5]. The following identity holds
for all f(Y ) ∈ Fq[Y ]:

f(Y )q ≡ f(Y q) ≡ f(Y q−1Y ) ≡ f(ζY ) (mod E(Y )) .

In this case, if we modify our basic functionΓ (see (1)) slightly so that we raisef to successive powers ofq
rather thanh, we obtain the functionC : F

n
q × Fq → F

m+1
q defined by:

C(f, y)
def
= [y, f(y), (f q mod E)(y), (f q2

mod E)(y), · · · , (f qm−1
mod E)(y)]

= [y, f(y), f(ζy), · · · , f(ζm−1y)]. (2)

In other words, our function interprets its first argument asdescribing a univariate polynomial overFq of
degree at mostn − 1 (i.e., a Reed-Solomon codeword), it uses the seed to select arandom location in the
codeword, and it outputsm successive symbols of the codeword, together with the seed.This is precisely
the analogue of the Shaltiel-Umansq-ary extractor construction [SU], for univariate polynomials rather
than multivariate polynomials. Alternatively (and following the correspondence with codes described in
Section 2.1),C(f, y) is they’th symbol in an encoding of the “message”f in the “folded Reed–Solomon
code” of Guruswami and Rudra [GR]. (Actually, the folded Reed-Solomon codes only takey’s from a subset
of Fq in order to save on the codeword length.)

With a minor modification to the proof of Theorem 3.3, we show that this is good condenser:

Theorem 6.1. DefineC as in (2) andLIST(T, ε) with respect toC as in Definition 5.3. Then for every
T ⊆ F

m+1
q of size at mostL = Ahm − 1, we have

|LIST(T, ε)| 6 (h − 1) · qm − 1

q − 1
,
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whereA = εq − (n − 1)(h − 1)m.

Proof. Let T ⊆ F
m+1
q with |T | 6 Ahm − 1. The proof follows along the lines of Theorem 3.3. We

interpolate a nonzero polynomialQ(Y, Y1, Y2, . . . , Ym) that vanishes onT , and and has degree at mostA−1
in Y and at most(h−1) in eachYj. The number of coefficients of such aQ equalsAhm which exceeds|T |,
and therefore such a nonzero polynomialQ indeed exists. We can also ensure thatE(Y ) does not divideQ.

For everyf(Y ) ∈ LIST(T, ε), the polynomialRf (Y )
def
= Q(Y, f(Y ), f(ζY ), . . . , f(ζm−1Y )) has more

thanεq roots, and degree at most(A − 1) + (n − 1)(h − 1)m, and therefore must be the zero polynomial.
We defineQ∗ slightly differently:

Q∗(Z)
def
= Q(Y,Z,Zq, Zq2

, . . . , Zqm−1
) mod E(Y ).

As before,Q∗ is a nonzero polynomial over the extension fieldF = Fq[Y ]/(E(Y )). Further, everyf(Y ) ∈
LIST(T, ε), viewed as an element of the extension fieldF, is a root ofQ∗. It follows that |LIST(T, ε)| 6

deg(Q∗). The degree ofQ∗ is at most

(h − 1)(1 + q + q2 + · · · + qm−1) = (h − 1) · qm − 1

q − 1
,

and this proves the claimed bound.

By picking parameters suitably in the above construction, we obtain the following condenser. Unlike our
basic condenser (Theorem 4.3), this condenser is no longer lossless. Instead, the ratio of the input and output
min-entropies is≈ (1 + 1/α), which means that we retain only aα/(1 + α) fraction of the min-entropy.

Theorem 6.2(Reed-Solomon lossy condenser). For everyn ∈ N, ` 6 n such that2` is an integer, and
α, ε > 0, there is an explicit functionC : {0, 1}n × {0, 1}d → {0, 1}n′

defined in (2) that is a

(1 + 1/α)`t + log(1/ε) →3ε `t + d − 2

condenser withd 6 (1 + 1/α)t and n′ 6 (1 + 1/α)`t + d, wheret = dα log(4n`/ε)e, provided`t >

log(1/ε).

Proof. Seth = 2t and note thath1/α > 4n/ε. Let q be the power of2 in (h1+1/α/2, h1+1/α]. Setm = `.
Note that

A
def
= εq − (n − 1)(h − 1)m > εq − nhm > εq/2,

becauseq > h1+1/α/2 > 2nh`/ε, andm = `.

Consider the functionC : F
n
q × Fq → F

m+1
q defined in (2). By Theorem 6.1, for everyT ⊆ F

m+1
q of

size at mostL = Ahm − 1 we have|LIST(T, ε)| 6 qm − 1. Applying Lemma 5.4, we find thatC is a

log

(

qm − 1

ε

)

→2ε log

(

Ahm − 1

2ε

)

condenser. By Proposition 5.1, the output distribution of the condenserC is within statistical distance
1

Ahm 6 2−`t 6 ε of a distribution with min-entropy at least

log

(

Ahm

2ε

)

> log q + `t − 2 = `t + d − 2 .
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We can thus conclude thatC is a

(1 + 1/α)`t + log(1/ε) →3ε `t + d − 2

condenser. This is the claimed condenser; the upper bounds on d andn′ follow from the fact thatq = 2d 6

2(1+1/α)t.

Finally, the construction is explicit because a representation of Fq for q a power of 2 as well as a generator
of F

∗
q can be found in timepoly(log q) [Sho].

6.2 Lossless Reed-Solomon condenser

The variant in this subsection is lossless, and so it is most convenient to describe it as an expander graph first
and then apply Lemma 4.2. The construction is again obtainedby a careful choice ofh and the irreducible
E(Y ). In this variant we require that the parameterh is a prime power greater thann, and thatq is a power
of h (soFq contains a subfieldFh). Let ζ ∈ Fh be a generator of the multiplicative groupF

∗
h (compare with

the previous section which selected a generator ofF
∗
q), and define the polynomialE(Y ) = Y h−1 − ζ. The

advantage of these choices for our construction was pointedout to us by Ariel Gabizon.

We identify elements ofFn
h with polynomials overFh that have degree at mostn− 1 (compare with the

previous section in which the polynomials were overFq). The following identity holds for allf(Y ) ∈ Fh[Y ]
andi > 0:

f(Y )h
i

= f(Y hi

) = f(Y (h−1)(hi−1+hi−2+···+h+1)Y ) ≡ f(ζiY ) (mod E(Y )). (3)

As usual, for ease of notation, we will refer to(fhi

mod E) as “fi.” Our expander is the bipartite graph
ΓRS : F

n
h × Fq → F

m+1
q defined as:

ΓRS(f, y)
def
= [y, f0(y), f1(y), f2(y), · · · , fm−1(y)]

= [y, f(y), f(ζy), f(ζ2y), . . . , f(ζm−1y)]. (4)

Analogous to Theorem 3.3, we have the following:

Theorem 6.3. The graphΓRS : F
n
h ×Fq → F

m+1
q defined in (4) is a(6Kmax , A) expander forKmax = hm

andA = q − (n − 1)(h − 1)m, providedlogh q andh − 1 are relatively prime.

Proof. The proof is exactly the same as the proof of Theorem 3.3, after noting two facts: first, by Eqn. (3)
the degree of each of thefi is at mostn− 1 (even ifh− 1 is larger thann); second,E(Y ) as defined in this
section is irreducible overFq [LN, Chap. 3, Sec. 5] (this is where the coprime requirement on logh q and
h − 1 is used).

Setting parameters we obtain (compare to Theorem 3.5):

Theorem 6.4(Reed-Solomon expander). For all positive integersN , Kmax 6 N , and all1 > ε > 0, there
is an explicit(6Kmax , (1−ε)D) expanderΓRS : [N ]×[D] → [M ] with degreeD = O((log N)(log Kmax )/ε)2

andM 6 (DKmax )2. Moreover,D andM are powers of 2.
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Proof. We setn = log N , k = log Kmax, andh to be the power of 2 in the range((nk/ε), 2(nk/ε)]. Set
q = h2. Observe thath − 1 and2 are relatively prime, so Theorem 6.3 applies. The remainderof the proof
proceeds exactly as the proof of Theorem 3.5 withα = 1.

Finally, applying Lemma 4.2, we immediately obtain the following lossless condenser based on Reed-
Solomon codes:

Theorem 6.5(Reed-Solomon lossless condenser). For everyn ∈ N, kmax 6 n, and ε > 0, there is an
explicit functionC : {0, 1}n × {0, 1}d → {0, 1}m with d = 2(log n + log kmax + log(1/ε)) + O(1) and
m 6 2(d + kmax ) such that for allk 6 kmax , C is ak →ε k + d (lossless) condenser.

6.3 Limitation of the Reed-Solomon condensers

For the Reed-Solomon-based construction, a relatively simple argument shows that the entropy rate must in
general be a constant less than 1. The example below comes from [GHSZ, TZ] (it applies to the function
ΓRS as well as the functionC from Eqn. (2), for which it is stated):

Lemma 6.6. DefineC as in Eqn. (2). For every positive integerp < n such thatp|(q− 1), there is a source
X with min-entropy at leastbn/pc · log q for which the support ofC(X,Ulog q) is entirely contained within
a set of sizewm, wherew = (q − 1)/p + 1.

Proof. Take the source to bep-th powers of all polynomials overFq of degree at mostb(n − 1)/pc. Every
output symbol ofC is an evaluation of such a polynomial, and therefore must be ap-th power or 0. There
are thus onlyw = (q − 1)/p + 1 possible output symbols, so the output is contained within aset of size
wm.

For such a sourceX, the output min-entropy ofC is at mostm log w and the output length ism log q.
Thus the output entropy rate is at most

log w

log q
≈ 1 − log p

log q
.

So for example, for a source obtained whenp ≈ √
n, the Reed-Solomon condenserC yields constant

entropy rate bounded away from1 unless the seed lengthlog q is ω(log n).

This implies that the entropy rates obtained in Theorems 6.2and 6.5 are not an artifacts of the analysis.
That is, it is not possible to improve the entropy rates (e.g., to 1 − o(1)) simply by giving a different,
improved analysis.

7 Application to Storing Sets

Buhrman, Miltersen, Radhakrishnan, and Srinivasan [BMRV]showed that unbalanced expanders with ex-
pansion close to the degree can be used to construct the following kind of data structures for storing sets:

Definition 7.1. A randomized bitprobe data structure for set membershipconsists of two algorithms:

• A (deterministic)encoding algorithmthat takes a setS ⊆ [N ] of sizeL (specified as a list of elements),
a parameterε > 0, and outputs an encodingX ∈ {0, 1}M .
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• A (randomized)decoding algorithmthat is given the parametersN,L, ε, an elementx ∈ [N ], and
oracle accessto the encodingX, and outputs a bitb.

We require that ifX is the output of the encoding algorithm on setS, then for everyx, the decoding
algorithm’s output will correctly indicate whether or notx is in S, with probability at least1 − ε over the
algorithm’s coin tosses. Aq-queryscheme is one in which the decoding algorithm makes at mostq queries
to the encodingX. M is called thelengthof the data structure, andε the error probability.

We say the data structure isexplicit if the encoding can be computed in time polynomial in its input and
output lengths, i.e. timepoly(L, log N, log(1/ε),M) and the decoding can be computed in time polynomial
in its input length, i.e. timepoly(log N, log(1/ε)).

The construction of such data structures from expanders is given by the following theorem. As observed
by Ta-Shma [Ta-], to have an explicit data structure, we needan expander that not only has an efficiently
computable neighbor function but which can also be efficiently “list decoded.”

Theorem 7.2(implicit in [BMRV], explicit in [Ta-]) . If there is a(62L, (1−ε)D) expanderΓ : [N ]×[D] →
[M ], then there is a randomized one-query bitprobe data structure for subsets of[N ] of size at mostL with
lengthM and error probability at most4ε.

Moroever, if the expander is explicit and for every setT ⊆ [M ] of size at mostLD, we can compute
LIST(T, 4ε) in timepoly(L, log N, log(1/ε),M), then the data structure is explicit.

With an optimal expander we haveM = O(LD) = O(L · (log N)/ε); therefore, the length of the data
structure is only anO(1/ε) factor larger than theL log N bits that are needed describe the setS without
concern for efficient membership tests.

We now observe that our expanders have the list decoding property needed for Theorem 7.2:

Lemma 7.3. DefineΓ : F
n
q × Fq → F

m+1
q as in (1). Then givenT ⊆ F

m+1
q andε > 0, we can compute

LIST(T, ε) in timepoly(|T |, n,m, q, log h) provided that|T | 6 Ahm−1, whereA = εq−(n−1)(h−1)m.

Proof. The observation is that essentially the proof of Theorem 3.3gives analgorithm for computing
LIST(T, ε). (The proof of Theorem 3.3 corresponds to the case thatε = 1, but as seen in the proof of
Theorem 6.1, it generalizes to arbitraryε if we setA = εq − (n − 1)(h − 1)m.) We go through the steps
here:

• SetH = d(|T | + 1)/Ae. Find a polynomialQ(Y, Y1, . . . , Ym) vanishing onT with nonzero coef-
ficients on monomials of the forY iMj(Y1, Y2, . . . , Ym) for 0 6 i 6 A − 1 and0 6 j 6 H − 1
(borrowing the notation from the proof of Theorem 3.3). Thisrequires solving a linear system overFq

with |T | equations andAH unknowns. To ensureQ is not divisibly byE(Y ), we repeatedly remove
factors ofE(Y ); there can by at mostA/(n − 1) such factors.

• As in the proofs of Theorems 3.3 and 6.1, everyf(Y ) ∈ LIST(T, ε) is a root of the polynomial
Q∗(Z) = Q(Y,Z,Zh, . . . , Zhm−1

) mod E(Y ) over F = Fq[Y ]/E(Y ). We constructQ∗ by first
substituting theZ variable and then reducingH different univariate polynomialspj(Y ), each of de-
gree at mostA − 1, moduloE(Y ), which is of degree at mostn − 1.

• Find the rootsf of Q∗(Z), which is a polynomial of degree at mostH − 1 over the fieldF, which is
of sizeqn.
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• For each such rootf , check whether it is an element ofLIST(T, ε), which can be done by counting
how many of itsq neighborsΓ(f, y) are inT .

All of these steps can be done in timepoly(|T |, n,m, q, log h).

Plugging our expanders into Theorem 7.2, we obtain the following:

Theorem 7.4. For everyN , L 6 N , andε, α > 0, there is a randomized one-query bitprobe data structure
for subsets of[N ] of size at mostL with error probability at mostε and length

M =

(

log N

ε

)O(1+1/α)

· L1+α.

Proof. We show how to achieve the claimed length with error probability at most4ε for anyε > 0, which is
equivalent to the above theorem up to a change in the hidden constant. We will apply Theorem 7.2 with our
expanderΓ defined in Equation (1). We will set the parametersn, m, q, andh as in the proof of Theorem 3.5,
for Kmax = dL/3εe. (Note that the upper bound onα is not a problem, since here we may assumeα 6 1
wlog.) This gives a right-hand side of size

M 6 D2 · K1+α
max

=

(

log N

ε

)O(1+1/α)

· L1+α,

sinceD = ((log N)/ε)O(1+1/α).

SinceKmax > 2L, we have an explicit(62L, (1−ε)D) expander and the first condition of Theorem 7.2
is satisfied. For the second condition, we will use Lemma 7.3 to ensure that we can efficiently compute
LIST(T, 4ε) for everyT of size at mostLD. Recalling thatD = q, this imposes the constraintLq 6

Ahm−1, whereA = 4εq−(n−1)(h−1)m. The settings in Theorem 3.5 ensure thatq > (n−1)(h−1)m/ε,
so we haveA > 3εq. They also ensure thathm > Kmax . Thus, we have

Ahm
> 3εqKmax > Lq + 1,

as desired. Thus, we can computeLIST(T, 4ε) for |T | 6 LD in timepoly(|T |, n,m, q, log h) = poly(M).

The optimal setting ofα in the above theorem isα = Θ(
√

(log log N + log(1/ε))/ log L), which leads
to a bound of

M = L ·
(

log N

ε

)O(1)

· exp
(

√

(log log N + log(1/ε)) · log L
)

.

Previous explicit constructions achievedM = O(L2 · (log N)/ε2) [BMRV] and M = L · exp((log log N +
log(1/ε))3) [Ta-]. Our bound is an improvement when

((log N)/ε)ω(1)
6 L 6 exp(o((log log N + log(1/ε))5)).
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8 Conclusions

The “list-decoding” view of expanders and condensers used in this paper seems to be quite powerful, leading
to constructions that are more direct, achieve improved parameters. It is thus natural to ask how far this
approach can be pushed. Constructing unbalanced expanderswith expansion close to the degree where the
degree and/or size of the right-hand side are withinconstant factorsof optimal is a natural next goal. This
is closely related to question of constructing truly optimal extractors, ones that are optimal up toadditive
constants in the seed length and/or output length. Towards this end, we wonder if there is some variant of
our construction with a better entropy rate – the next natural threshold is to have entropydeficiencyonly
ko(1). Another interesting question is whether some variant of these constructions can give a block-wise
source directly. Depending on the actual parameters, either of these two improvements have the potential
to lead to extractors with optimal output length (i.e. ones extract all the min-entropy). Alternatively, if we
can find an extractor with optimal output length for high min-entropy (say.99n), then, by composing it with
our condenser, we would get one for arbitrary min-entropy. Yet another approach is to eliminate the entropy
loss in our recursion construction; see Remark 4.23.

We also wonder whether these new techniques can help in othersettings. For example, can we use
them to argue aboutcomputationalanalogues of the objects in this paper – pseudorandom generators and
pseudoentropy generators? Or, can variants of our constructions yield so-called “2-source” objects, in which
both the source and the seed are only weakly random? In recentwork [RZ], a 3-source extractor was
constructed using the techniques from this paper, for the case when one of the sources is much shorter than
the other two. Whether one can remove this length restriction and construct a general 3-source (or even
2-source) extractor remains open.

Acknowledgements. This paper began with a conversation at the BIRS workshop “Recent Advances in
Computation Complexity” in August 2006. We thank the organizers for inviting us, and BIRS for hosting
the workshop. We also thank Kai-Min Chung, Ariel Gabizon, Oded Goldreich, Prahladh Harsha, Farzad
Parvaresh, Jaikumar Radhakrishnan, Omer Reingold, Ronen Shaltiel, Prasad Tetali, Dieter van Melkebeek,
Michael von Korff, and the anonymous CCC reviewers for helpful comments. We thank Ariel Gabizon for
an important observation that enabled the construction in Subsection 6.2.

References

[BMRV] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S.Venkatesh. Are bitvectors optimal?SIAM
Journal on Computing, 31(6):1723–1744 (electronic), 2002.

[CG] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity.SIAM Journal on Computing, 17(2):230–261, April 1988.

[CRVW] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson.Randomness conductors and constant-
degree expansion beyond the degree/2 barrier. InProceedings of the 34th Annual ACM Symposium
on Theory of Computing, pages 659–668, 2002.

[CW] A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and weak random sources
(extended abstract). InProceedings of the 30th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 14–19, 1989.

29



[GG] O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators.Journal of
Computer and System Sciences, 22(3):407–420, June 1981.

[GHSZ] V. Guruswami, J. Hastad, M. Sudan, and D. Zuckerman. Combinatorial bounds for list decoding.
IEEE Transactions on Information Theory, 48(5):1021–1035, 2002.

[Gil] D. Gillman. A Chernoff bound for random walks on expander graphs. SIAM J. Comput.,
27(4):1203–1220 (electronic), 1998.

[GR] V. Guruswami and A. Rudra. Explicit codes achieving list decoding capacity: Error-correction
with optimal redundancy.IEEE Transactions on Information Theory, 54(1):135–150, January
2008. Preliminary version appeared in STOC 2006.

[GS] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and Algebraic-Geometry
codes.IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

[GT] D. Galvin and P. Tetali. Slow mixing of Glauber dynamicsfor the hard-core model on regular
bipartite graphs.Random Structures & Algorithms, 28(4):427–443, 2006.

[GUV1] V. Guruswami, C. Umans, and S. Vadhan. Extractors andcondensers from univariate polynomi-
als. Technical Report TR06-134, Electronic Colloquium on Computational Complexity, October
2006.

[GUV2] V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and randomness extractors from
Parvaresh–Vardy codes. InProceedings of the 22nd Annual IEEE Conference on Computational
Complexity (CCC ‘07), pages 96–108, 12–16 June 2007.

[GW] O. Goldreich and A. Wigderson. Tiny families of functions with random properties: A quality-size
trade-off for hashing.Random Structures & Algorithms, 11(4):315–343, 1997.

[HLW] S. Hoory, N. Linial, and A. Wigderson. Expander graphsand their applications.Bull. Amer. Math.
Soc. (N.S.), 43(4):439–561 (electronic), 2006.

[ILL] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions
(extended abstracts). InProceedings of the Twenty First Annual ACM Symposium on Theory of
Computing, pages 12–24, Seattle, Washington, 15–17 May 1989.

[ISW] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and pseudo-random generators with
optimal seed length. InProceedings of the 32nd Annual ACM Symposium on Theory of Comput-
ing, pages 1–10, 2000.

[IZ] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proceedings of the 30th
Annual IEEE Symposium on Foundations of Computer Science, pages 248–253, 1989.

[Kah] N. Kahale. Eigenvalues and expansion of regular graphs. Journal of the ACM, 42(5):1091–1106,
September 1995.

[KU] S. Kalyanaraman and C. Umans. On obtaining pseudorandomness from error-correcting codes. In
S. Arun-Kumar and Naveen Garg, editors,FSTTCS, volume 4337 ofLecture Notes in Computer
Science, pages 105–116. Springer, 2006.

30



[LN] R. Lidl and H. Niederreiter. Introduction to Finite Fields and their applications. Cambridge
University Press, 1986.

[LPS] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs.Combinatorica, 8(3):261–277, 1988.

[LRVW] C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: Optimal up to constant factors.
In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 602–611,
2003.

[Mar1] G. A. Margulis. Explicit constructions of expanders. Problemy Peredǎci Informacii, 9(4):71–80,
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