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ABSTRACT 

Differential privacy is a formal mathematical framework for 
quantifying and managing privacy risks.  It provides provable privacy 
protection against a wide range of potential attacks, including those 
 

* Alexandra Wood is a Fellow at the Berkman Klein Center for Internet & Society at 
Harvard University. Micah Altman is Director of Research at MIT Libraries. Aaron Bembenek 
is a PhD student in computer science at Harvard University. Mark Bun is a Google Research 
Fellow at the Simons Institute for the Theory of Computing. Marco Gaboardi is an Assistant 
Professor in the Computer Science and Engineering department at the State University of New 
York at Buffalo. James Honaker is a Research Associate at the Center for Research on 
Computation and Society at the Harvard John A. Paulson School of Engineering and Applied 
Sciences. Kobbi Nissim is a McDevitt Chair in Computer Science at Georgetown University 
and an Affiliate Professor at Georgetown University Law Center; work towards this document 
was completed in part while the Author was visiting the Center for Research on Computation 
and Society at Harvard University. David R. O’Brien is a Senior Researcher at the Berkman 
Klein Center for Internet & Society at Harvard University. Thomas Steinke is a Research Staff 
Member at IBM Research – Almaden. Salil Vadhan is the Vicky Joseph Professor of Computer 
Science and Applied Mathematics at Harvard University. 

This Article is the product of a working group of the Privacy Tools for Sharing 
Research Data project at Harvard University (http://privacytools.seas.harvard.edu). The 
working group discussions were led by Kobbi Nissim. Alexandra Wood and Kobbi Nissim are 
the lead Authors of this Article. Working group members Micah Altman, Aaron Bembenek, 
Mark Bun, Marco Gaboardi, James Honaker, Kobbi Nissim, David R. O’Brien, Thomas 
Steinke, Salil Vadhan, and Alexandra Wood contributed to the conception of the Article and to 
the writing. The Authors thank John Abowd, Scott Bradner, Cynthia Dwork, Simson 
Garfinkel, Caper Gooden, Deborah Hurley, Rachel Kalmar, Georgios Kellaris, Daniel Muise, 
Michel Reymond, and Michael Washington for their many valuable comments on earlier 
versions of this Article. A preliminary version of this work was presented at the 9th Annual 
Privacy Law Scholars Conference (PLSC 2017), and the Authors thank the participants for 
contributing thoughtful feedback. The original manuscript was based upon work supported by 
the National Science Foundation under Grant No. CNS-1237235, as well as by the Alfred P. 
Sloan Foundation. The Authors’ subsequent revisions to the manuscript were supported, in 
part, by the US Census Bureau under cooperative agreement no. CB16ADR0160001. Any 
opinions, findings, and conclusions or recommendations expressed in this material are those 
of the Authors and do not necessarily reflect the views of the National Science Foundation, the 
Alfred P. Sloan Foundation, or the US Census Bureau. 



210 VAND. J. ENT. & TECH. L.  [Vol. 21:1:209 

currently unforeseen.  Differential privacy is primarily studied in the 
context of the collection, analysis, and release of aggregate statistics.  
These range from simple statistical estimations, such as averages, to 
machine learning.  Tools for differentially private analysis are now in 
early stages of implementation and use across a variety of academic, 
industry, and government settings.  Interest in the concept is growing 
among potential users of the tools, as well as within legal and policy 
communities, as it holds promise as a potential approach to satisfying 
legal requirements for privacy protection when handling personal 
information.  In particular, differential privacy may be seen as a 
technical solution for analyzing and sharing data while protecting the 
privacy of individuals in accordance with existing legal or policy 
requirements for de-identification or disclosure limitation. 

This primer seeks to introduce the concept of differential privacy 
and its privacy implications to non-technical audiences.  It provides a 
simplified and informal, but mathematically accurate, description of 
differential privacy.  Using intuitive illustrations and limited 
mathematical formalism, it discusses the definition of differential 
privacy, how differential privacy addresses privacy risks, how 
differentially private analyses are constructed, and how such analyses 
can be used in practice.  A series of illustrations is used to show how 
practitioners and policymakers can conceptualize the guarantees 
provided by differential privacy.  These illustrations are also used to 
explain related concepts, such as composition (the accumulation of risk 
across multiple analyses), privacy loss parameters, and privacy budgets.  
This primer aims to provide a foundation that can guide future decisions 
when analyzing and sharing statistical data about individuals, 
informing individuals about the privacy protection they will be afforded, 
and designing policies and regulations for robust privacy protection. 
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EXECUTIVE SUMMARY 

Differential privacy is a strong, mathematical definition of 
privacy in the context of statistical and machine learning analysis.  It 
is used to enable the collection, analysis, and sharing of a broad range 
of statistical estimates based on personal data, such as averages, 
contingency tables, and synthetic data, while protecting the privacy of 
the individuals in the data. 
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Differential privacy is not a single tool, but rather a criterion, 
which many tools for analyzing sensitive personal information have 
been devised to satisfy.  It provides a mathematically provable 
guarantee of privacy protection against a wide range of privacy attacks, 
defined as attempts to learn private information specific to individuals 
from a data release.  Privacy attacks include re-identification, record 
linkage, and differencing attacks, but may also include other attacks 
currently unknown or unforeseen.  These concerns are separate from 
security attacks, which are characterized by attempts to exploit 
vulnerabilities in order to gain unauthorized access to a system. 

Computer scientists have developed a robust theory for 
differential privacy over the last fifteen years, and major commercial 
and government implementations are starting to emerge. 

The differential privacy guarantee (Part III).  Differential 
privacy mathematically guarantees that anyone viewing the result of a 
differentially private analysis will essentially make the same inference 
about any individual’s private information, whether or not that 
individual’s private information is included in the input to the analysis. 

The privacy loss parameter (Section IV.B).  What can be 
learned about an individual as a result of her private information being 
included in a differentially private analysis is limited and quantified by 
a privacy loss parameter, usually denoted epsilon (𝜀).  Privacy loss can 
grow as an individual’s information is used in multiple analyses, but 
the increase is bounded as a known function of 𝜀 and the number of 
analyses performed. 

Interpreting the guarantee (Section VI.C).  The differential 
privacy guarantee can be understood in reference to other privacy 
concepts: 

• Differential privacy protects an individual’s information 
essentially as if her information were not used in the 
analysis at all, in the sense that the outcome of a 
differentially private algorithm is approximately the same 
whether the individual’s information was used or not. 

• Differential privacy ensures that using an individual’s data 
will not reveal essentially any personally identifiable 
information that is specific to her, or even whether the 
individual’s information was used at all.  Here, specific 
refers to information that cannot be inferred unless the 
individual’s information is used in the analysis. 
As these statements suggest, differential privacy is a new way 

of protecting privacy that is more quantifiable and comprehensive than 
the concepts of privacy underlying many existing laws, policies, and 
practices around privacy and data protection.  The differential privacy 
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guarantee can be interpreted in reference to these other concepts, and 
can even accommodate variations in how they are defined across 
different laws.  In many settings, data holders may be able to use 
differential privacy to demonstrate that they have complied with 
applicable legal and policy requirements for privacy protection. 

Differentially private tools (Part VII).  Differential privacy is 
currently in initial stages of implementation and use in various 
academic, industry, and government settings, and the number of 
practical tools providing this guarantee is continually growing.  
Multiple implementations of differential privacy have been deployed by 
corporations such as Google, Apple, and Uber, as well as federal 
agencies like the US Census Bureau.  Additional differentially private 
tools are currently under development across industry and academia. 

Some differentially private tools utilize an interactive 
mechanism, enabling users to submit queries about a dataset and 
receive corresponding differentially private results, such as custom-
generated linear regressions.  Other tools are non-interactive, enabling 
static data or data summaries, such as synthetic data or contingency 
tables, to be released and used. 

In addition, some tools rely on a curator model, in which a 
database administrator has access to and uses private data to generate 
differentially private data summaries.  Others rely on a local model, 
which does not require individuals to share their private data with a 
trusted third party, but rather requires individuals to answer questions 
about their own data in a differentially private manner.  In a local 
model, each of these differentially private answers is not useful on its 
own, but many of them can be aggregated to perform useful statistical 
analysis. 

Benefits of differential privacy (Part VIII).  Differential 
privacy is supported by a rich and rapidly advancing theory that 
enables one to reason with mathematical rigor about privacy risk.  
Adopting this formal approach to privacy yields a number of practical 
benefits for users: 

• Systems that adhere to strong formal definitions like 
differential privacy provide protection that is robust to a 
wide range of potential privacy attacks, including attacks 
that are unknown at the time of deployment.  An analyst 
using differentially private tools need not anticipate 
particular types of privacy attacks, as the guarantees of 
differential privacy hold regardless of the attack method 
that may be used.   

• Differential privacy provides provable privacy guarantees 
with respect to the cumulative risk from successive data 



214 VAND. J. ENT. & TECH. L.  [Vol. 21:1:209 

releases and is the only existing approach to privacy that 
provides such a guarantee.   

• Differentially private tools also have the benefit of 
transparency, as it is not necessary to maintain secrecy 
around a differentially private computation or its 
parameters.  This feature distinguishes differentially 
private tools from traditional de-identification techniques, 
which often conceal the extent to which the data have been 
transformed, thereby leaving data users with uncertainty 
regarding the accuracy of analyses on the data.   

• Differentially private tools can be used to provide broad, 
public access to data or data summaries while preserving 
privacy.  They can even enable wide access to data that 
cannot otherwise be shared due to privacy concerns.  An 
important example is the use of differentially private 
synthetic data generation to produce public-use microdata. 
Differentially private tools can, therefore, help enable 

researchers, policymakers, and businesses to analyze and share 
sensitive data, while providing strong guarantees of privacy to the 
individuals in the data.   

Keywords: differential privacy, data privacy, social science 
research 

I. INTRODUCTION 

Businesses, government agencies, and research institutions 
often use and share data containing sensitive or confidential 
information about individuals.1  Improper disclosure of such data can 
have adverse consequences for a data subject’s reputation, finances, 
employability, and insurability, as well as lead to civil liability, criminal 
penalties, or physical or emotional injuries.2  Due to these issues and 
other related concerns, a large body of laws, regulations, ethical codes, 
institutional policies, contracts, and best practices has emerged to 
address potential privacy-related harms associated with the collection, 
use, and release of personal information.3  The following discussion 
 
 1. See PRESIDENT’S COUNCIL OF ADVISORS ON SCI. & TECH., EXEC. OFFICE OF THE 
PRESIDENT, BIG DATA AND PRIVACY: A TECHNOLOGICAL PERSPECTIVE (2014), 
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/PCAST/pcast_big_data_a
nd_privacy_-_may_2014.pdf [https://perma.cc/MM2V-8C2P] (analyzing the current state of big-
data collection, storage, and use in order to make policy recommendations). 
 2. See generally Daniel J. Solove, A Taxonomy of Privacy, 154 U. PA. L. REV. 477 (2006) 
(grouping different types of privacy violations and noting their potential harms). 
 3. See DANIEL J. SOLOVE & PAUL M. SCHWARTZ, INFORMATION PRIVACY LAW 2 (6th ed. 
2018). 
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provides an overview of the broader data privacy landscape that has 
motivated the development of formal privacy models like differential 
privacy.   

A. Introduction to Legal and Ethical Frameworks for Data Privacy 

The legal framework for privacy protection in the United States 
has evolved as a patchwork of highly sector- and context-specific federal 
and state laws.4  For instance, Congress has enacted federal 
information privacy laws to protect certain categories of personal 
information found in health,5 education,6 financial,7 and government 
records,8 among others.  These laws often expressly protect information 
classified as personally identifiable information (PII), which generally 
refers to information that can be linked to an individual’s identity or 
attributes.9  Some laws also incorporate de-identification provisions, 
which provide for the release of information that has been stripped of 
PII.10  State data protection and breach notification laws prescribe 
specific data security and breach reporting requirements when 
managing certain types of personal information.11   

In addition, federal regulations generally require researchers 
conducting studies involving human subjects to secure approval from 
an institutional review board and fulfill ethical obligations to the 
participants, such as disclosing the risks of participation, obtaining 
their informed consent, and implementing specific measures to protect 

 
 4. See id. at 36–38. 
 5. See, e.g., Health Insurance Portability and Accountability Act (HIPAA), Pub. L. No. 
104-191, 110 Stat. 1936 (1996) (codified as amended in scattered titles of the U.S.C.). 
 6. See, e.g., Family Educational Rights and Privacy Act of 1974 (FERPA), Pub. L. No. 93-
380, 88 Stat. 571 (1974) (codified as amended at 20 U.S.C. § 1232g (2012)). 
 7. See, e.g., Fair Credit Reporting Act, Pub. L. No. 91-508, 84 Stat. 1114 (1970) (codified 
at 15 U.S.C. §§ 1681–1681x); Gramm-Leach-Bliley Act, Pub. L. No. 106-102, 113 Stat. 1338 (1999) 
(codified in relevant part primarily at 15 U.S.C. §§ 6801–6809, §§ 6821–6827). 
 8. See, e.g., Privacy Act of 1974, Pub. L. No. 93-579, 88 Stat. 1897 (1974) (codified as 
amended at 5 U.S.C. § 552a (2012)). 
 9. See SIMSON L. GARFINKEL, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DE-
IDENTIFYING GOVERNMENT DATASETS 46, NIST Special Publication No. 800-188 (2d Draft, 2016), 
https://csrc.nist.gov/csrc/media/publications/sp/800-188/draft/documents/sp800_188_draft2.pdf 
[https://perma.cc/U6ZG-BFV5]; Paul M. Schwartz & Daniel J. Solove, The PII Problem: Privacy 
and a New Concept of Personally Identifiable Information, 86 N.Y.U. L. REV. 1814, 1816 (2011). 
 10. See, e.g., DEP’T OF HEALTH & HUMAN SERVS., GUIDANCE REGARDING METHODS FOR DE-
IDENTIFICATION OF PROTECTED HEALTH INFORMATION IN ACCORDANCE WITH THE HEALTH 
INSURANCE PORTABILITY AND ACCOUNTABILITY ACT (HIPPA) PRIVACY RULE 6–7 (2012), 
https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/understanding/coveredentities/De-
identification/hhs_deid_guidance.pdf [https://perma.cc/NRY2-M7J7]. 
 11. See Paul M. Schwartz & Edward J. Janger, Notification of Data Security Breaches, 
105 MICH. L. REV. 913, 972–74 (2007) (summarizing state security breach notification laws). 
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privacy.12  It is also common for universities and other research 
institutions to adopt policies that require their faculty, staff, and 
students to abide by certain ethical and professional responsibility 
standards and set forth enforcement procedures and penalties for 
mishandling data.13   

Further restrictions apply when privacy-sensitive data are 
shared under the terms of a data sharing agreement, which will often 
strictly limit how the recipient can use or redisclose the data received.14  
Organizations may also require privacy measures set forth by technical 
standards, such as those specifying information security controls to 
protect personally identifiable information.15    

In addition, laws such as the EU General Data Protection 
Regulation are in place to protect personal data about European 
citizens regardless of where the data reside.16  International privacy 
guidelines, such as the privacy principles developed by the 
Organisation for Economic Co-operation and Development, have also 
been adopted by governments across the world.17  Moreover, the right 
to privacy is also protected by various international treaties and 
national constitutions.18   

Taken together, the safeguards required by these legal and 
ethical frameworks are designed to protect the privacy of individuals 
and ensure they fully understand both the scope of personal 
information to be collected and the associated privacy risks.  They also 
help data holders avoid administrative, civil, and criminal penalties, as 
well as maintain the public’s trust and confidence in commercial, 
government, and research activities involving personal data.   

 
 12. See Protection of Human Subjects, 45 C.F.R. §§ 46.109, .111, .116 (2018). 
 13. See, e.g., HARVARD UNIV. OFFICE OF THE VICE PROVOST FOR RESEARCH, HARVARD 
RESEARCH DATA SECURITY POLICY (2014), http://files.vpr.harvard.edu/files/vpr-
documents/files/hrdsp_10_14_14_final_edits.pdf [https://perma.cc/BDW6-T5NF]. 
 14. See ALEX KANOUS & ELAINE BROCK, INTER-UNIV. CONSORTIUM FOR POLITICAL & SOC. 
REFORM, CONTRACTUAL LIMITATIONS ON DATA SHARING 3 (2015), 
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/123016/ContractualLimitationsonDataS
haring150411-1.pdf [https://perma.cc/8JAQ-LWHP]. 
 15. See, e.g., INT’L ORG. FOR STANDARDIZATION, ISO 27018 CODE OF PRACTICE FOR 
PROTECTION OF PERSONALLY IDENTIFIABLE INFORMATION (PII) IN PUBLIC CLOUDS ACTING AS PII 
PROCESSORS (2014), https://www.iso.org/standard/61498.html [https://perma.cc/6R3L-SH3R] 
(abstract and preview). 
 16. See Commission Regulation 2016/679, 2016 O.J. (L 119) 1 [hereinafter GDPR]. 
 17. See SOLOVE & SCHWARTZ, supra note 3, at 38. See generally Organisation for Economic 
Cooperation and Development [OECD], Guidelines Governing the Protection of Privacy and 
Transborder Flow of Personal Data, C(80)58 (July 11, 2013), 
https://www.oecd.org/sti/ieconomy/2013-oecd-privacy-guidelines.pdf [https://perma.cc/7SX3-
ZEBP] (amending 1980 version). 
 18. See, e.g., G.A. Res. 217 (III) A, Universal Declaration of Human Rights, art. 12 (Dec. 
10, 1948). 



2018] DIFFERENTIAL PRIVACY 217 

B. Traditional Statistical Disclosure Limitation Techniques 

A number of technical measures for disclosing data while 
protecting the privacy of individuals have been produced within the 
context of these legal and ethical frameworks.19  In particular, 
statistical agencies, data analysts, and researchers have widely adopted 
a collection of statistical disclosure limitation (SDL) techniques to 
analyze and share data containing privacy-sensitive data with the aim 
of making it more difficult to learn personal information pertaining to 
an individual.20  This category of techniques encompasses a wide range 
of methods for suppressing, aggregating, perturbing, and generalizing 
attributes of individuals in the data.21  Such techniques are often 
applied with the explicit goal of de-identification—namely, making it 
difficult to link an identified person to a record in a data release by 
redacting or coarsening data.22   

Advances in analytical capabilities, increases in computational 
power, and the expanding availability of personal data from a wide 
range of sources are eroding the effectiveness of traditional SDL 
techniques.23  Since the 1990s—and with increasing frequency—privacy 
and security researchers have demonstrated that data that have been 
de-identified can often be successfully re-identified via a technique such 
as record linkage.24  Re-identification via record linkage, or a linkage 
attack, refers to the re-identification of one or more records in a de-
identified dataset by uniquely linking a record in a de-identified dataset 
with identified records in a publicly available dataset, such as a voter 
registration list.25  As described in Example 1 below, in the late 1990s, 
Latanya Sweeney famously applied such an attack on a dataset 
containing de-identified hospital records.26  Sweeney observed that 
records in the de-identified dataset contained the date of birth, sex, and 
 
 19. See generally Fed. Comm. on Statistical Methodology, Report on Statistical Disclosure 
Limitation Methodology (Office of Mgmt. & Budget: Statistical Policy, Working Paper No. 22, 
2005), https://www.hhs.gov/sites/default/files/spwp22.pdf [https://perma.cc/LXN5-7QRQ]. 
 20. See id. at 8. 
 21. See id. at 12–33 (describing various SDL techniques). 
 22. See GARFINKEL, supra note 9, at 3. 
 23. See Paul Ohm, Broken Promises of Privacy: Responding to the Surprising Failure of 
Anonymization, 57 UCLA L. REV. 1701, 1716, 1731, 1742 (2010). 
 24. See id. at 1719–22. 
 25. See CYNTHIA DWORK & AARON ROTH, THE ALGORITHMIC FOUNDATIONS OF 
DIFFERENTIAL PRIVACY 6–7 (2014) (originally published in 9 FOUND. & TRENDS IN THEORETICAL 
COMPUTER SCI. 211 (2014)); GARFINKEL, supra note 9, at 47. 
 26. See Recommendations to Identify and Combat Privacy Problems in the 
Commonwealth: Hearing on H.R. 351 Before the H. Select Comm. on Information Security, 189th 
Sess. (Pa. 2005) [hereinafter Pa. Privacy Hearing] (statement of Latanya Sweeney, Associate 
Professor, Carnegie Mellon University), http://dataprivacylab.org/dataprivacy/talks/Flick-05-
10.html [https://perma.cc/W62P-Y2YX]. 
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ZIP code of patients; that many of the patients had a unique 
combination of these three attributes; and that these three attributes 
were listed alongside individuals’ names and addresses in publicly 
available voting records.27  Sweeney used this information to re-identify 
records in the de-identified dataset.28  Subsequent attacks on protected 
data have demonstrated weaknesses in other traditional approaches to 
privacy protection, and understanding the limits of these traditional 
techniques is the subject of ongoing research.29 

C. The Emergence of Formal Privacy Models 

Re-identification attacks are becoming increasingly 
sophisticated over time, as are other types of attacks that seek to infer 
characteristics of individuals based on information about them in a data 
set.30  Successful attacks on de-identified data illustrate that traditional 
technical measures for privacy protection may be particularly 
vulnerable to attacks devised after a technique’s deployment and use.31  
Some de-identification techniques, for example, require the 
specification of attributes in the data as identifying (e.g., names, dates 
of birth, or addresses) or non-identifying (e.g., movie ratings or hospital 
admission dates).32  Data providers may later discover that attributes 
initially believed to be non-identifying can in fact be used to re-identify 
individuals.33  Similarly, de-identification procedures may require a 
careful analysis of present and future data sources that could 
potentially be linked with the de-identified data and enable re-
identification of the data.  Anticipating the types of attacks and 
resources an attacker could leverage is a challenging exercise and 
ultimately will fail to address all potential attacks, as unanticipated 

 
 27. See id. 
 28. See id. 
 29. See, e.g., Joseph A. Calandrino et al., “You Might Also Like:” Privacy Risks of 
Collaborative Filtering, 2011 IEEE SYMP. ON SECURITY & PRIVACY 231, 245; Yves-Alexandre de 
Montjoye et al., Unique in the Crowd: The Privacy Bounds of Human Mobility, NATURE SCI. REP. 
4 (Mar. 25, 2013), https://www.nature.com/articles/srep01376.pdf [https://perma.cc/F8DZ-347V]; 
Arvind Narayanan & Vitaly Shmatikov, Robust De-anonymization of Large Sparse Datasets, 2008 
IEEE SYMP. ON SECURITY & PRIVACY 111, 123–24. 
 30. See, e.g., Irit Dinur & Kobbi Nissim, Revealing Information While Preserving Privacy, 
22 PROC. ACM SIGMOD-SIGACT-SIGART SYMP. ON PRINCIPLES DATABASE SYS. 202, 203–04 
(2003). See generally Arvind Narayanan, Joanna Huey & Edward W. Felten, A Precautionary 
Approach to Big Data Privacy, in DATA PROTECTION ON THE MOVE: CURRENT DEVELOPMENTS IN 
ICT AND PRIVACY/DATA PROTECTION 357 (Serge Gutwirth et al. eds., 2016). 
 31. See Narayanan, Huey & Felten, supra note 30, at 366. 
 32. See GARFINKEL, supra note 9, at 12, 38–40. 
 33. See Ohm, supra note 23, at 1723. 
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sources of auxiliary information that can be used for re-identification 
may become available in the future.34   

Issues such as these underscore the need for privacy 
technologies that are immune not only to linkage attacks, but to any 
potential attack, including those currently unknown or unforeseen.35  
They also demonstrate that privacy technologies must provide 
meaningful privacy protection in settings where extensive external 
information may be available to potential attackers, such as employers, 
insurance companies, relatives, and friends of an individual in the 
data.36  Real-world attacks further illustrate that ex post remedies, such 
as simply “taking the data back” when a vulnerability is discovered, are 
ineffective because many copies of a set of data typically exist, and 
copies often persist online indefinitely.37   

In response to the accumulated evidence of weaknesses with 
respect to traditional approaches, a new privacy paradigm has emerged 
from the computer science literature—differential privacy.38  
Differential privacy is primarily studied in the context of the collection, 
analysis, and release of aggregate statistics.  Such analyses range from 
simple statistical estimations—such as averages—to machine 
learning.39  Contrary to common intuition, aggregate statistics such as 
these are not always safe to release because, as Part III explains, they 
can often be combined to reveal sensitive information about individual 
data subjects.   

First presented in 2006,40 differential privacy is the subject of 
ongoing research to develop privacy technologies that provide robust 
protection against a wide range of potential attacks.41  Importantly, 
differential privacy is not a single tool but a definition or standard for 

 
 34. See GARFINKEL, supra note 9, at 38–40. 
 35. See Narayanan, Huey & Felten, supra note 30, at 370. 
 36. See id. at 362–63. 
 37. As an example, in 2006, AOL published anonymized search histories of over 650,000 
users over a period of three months. Shortly after the release, journalists for the New York Times 
identified a person in the release, and AOL removed the data from its web site. See Michael 
Barbaro & Tom Zeller Jr., A Face Is Exposed for AOL Searcher No. 4417749, N.Y. TIMES (Aug. 9, 
2006), https://www.nytimes.com/2006/08/09/technology/09aol.html [https://perma.cc/GWH2-
W7F8].  However, in spite of AOL’s withdrawal of the data, copies of the data are still accessible 
on the internet today. See, e.g., AOL Search Data Collection, INTERNET ARCHIVE (Feb. 20, 2014), 
https://archive.org/details/AOL_search_data_leak_2006 [https://perma.cc/DVX3-KPUR]. 
 38. See generally Cynthia Dwork et al., Calibrating Noise to Sensitivity in Private Data 
Analysis, 3 THEORY CRYPTOGRAPHY CONF. 265 (2006). 
 39. See infra Part V.  
 40. See generally Dwork et al., supra note 38. 
 41. See, e.g., Differential Privacy, HARV. U. PRIVACY TOOLS PROJECT, 
https://privacytools.seas.harvard.edu/differential-privacy [https://perma.cc/FA7V-NZ3K] (last 
visited Sept. 14, 2018); Putting Differential Privacy to Work, U. PA., http://privacy.cis.upenn.edu 
[https://perma.cc/P5QU-XA7L] (last visited Sept. 14, 2018). 
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quantifying and managing privacy risks for which many technological 
tools have been devised.42  Analyses performed with differential privacy 
differ from standard statistical analyses—such as the calculation of 
averages, medians, and linear regression equations—in that random 
noise43 is added in the computation.44  Tools for differentially private 
analysis are now in early stages of implementation and use across a 
variety of academic, industry, and government settings.45 

This Article provides a simplified and informal, yet 
mathematically accurate, description of differential privacy.46  Using 
intuitive illustrations and limited mathematical formalism, it describes 
the definition of differential privacy, how it addresses privacy risks, 
how differentially private analyses are constructed, and how such 
analyses can be used in practice.  This discussion intends to help non-
technical audiences understand the guarantees provided by differential 
privacy. It can help guide practitioners as they make decisions 
regarding whether to use differential privacy and, if so, what types of 
promises they should make to data subjects about the guarantees 
differential privacy provides.  In addition, these illustrations intend to 
help legal scholars and policymakers consider how current and future 
legal frameworks and instruments should apply to tools based on formal 
privacy models such as differential privacy. 
 
 42. See Dwork et al., supra note 38, at 265; infra Part VII. 
 43. Random noise refers to uncertainty introduced into a computation by the addition of 
values sampled from a random process. For example, consider a computation that first calculates 
the number of individuals 𝑥 in the dataset who suffer from diabetes, then samples a value 𝑦 from 
a normal distribution with a mean of 0 and variance of 1, and outputs 𝑧 = 𝑥 + 𝑦. In this example, 
the random noise 𝑦 is added in the computation to the exact count 𝑥 to produce the noisy output 𝑧. 
For a more detailed explanation of random noise, see infra Part IV.  
 44. See Dwork et al., supra note 38, at 266. 
 45. See infra Part VII.  
 46. Differential privacy was defined in 2006 by Dwork, McSherry, Nissim and Smith. 
Dwork et al., supra note 38 (building on Avrim Blum et al., Practical Privacy: The SuLQ 
Framework, 24 PROC. ACM SIGMOD-SIGACT-SIGART SYMP. ON PRINCIPLES DATABASE SYS. 128, 
128–30 (2005); Dinur & Nissim, supra note 30; Cynthia Dwork & Kobbi Nissim, Privacy-Preserving 
Datamining on Vertically Partitioned Databases, 24 ANN. INT’L CRYPTOLOGY CONF. 528 (2004); 
Alexandre Evfimievski, Johannes Gehrke, Ramakrishnan Srikant, Limiting Privacy Breaches in 
Privacy Preserving Data Mining, 22 PROC. ACM SIGMOD-SIGACT-SIGART SYMP. ON PRINCIPLES 
DATABASE SYS. 211 (2003)). This primer’s presentation of the opt-out scenario versus real-world 
computation is influenced by Dwork, and its risk analysis is influenced by Kasiviswanathan & 
Smith. Cynthia Dwork, Differential Privacy, 33 INT’L COLLOQUIUM ON AUTOMATA, LANGUAGES & 
PROGRAMMING 1 (2006) [hereinafter Dwork, Differential Privacy]; Shiva Prasad Kasiviswanathan 
& Adam Smith, On the ‘Semantics’ of Differential Privacy: A Bayesian Formulation, 6 J. PRIVACY 
& CONFIDENTIALITY 1 (2014). For other presentations of differential privacy, see Dwork (2011) and 
Heffetz and Ligett (2014). Cynthia Dwork, A Firm Foundation for Private Data Analysis, 54 COMM. 
ACM 86 (2011) [hereinafter Dwork, A Firm Foundation]; Ori Heffetz & Katrina Ligett, Privacy 
and Data-Based Research, 28 J. ECON. PERSP. 75 (2014). For a thorough technical introduction to 
differential privacy, see DWORK & ROTH, supra note 25; Salil Vadhan, The Complexity of 
Differential Privacy, in TUTORIALS ON THE FOUNDATIONS OF CRYPTOGRAPHY 347 (Yehuda Lindell 
ed., 2017). 
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II. PRIVACY: A PROPERTY OF THE ANALYSIS—NOT ITS OUTPUT 

This Article seeks to explain how data containing personal 
information can be shared in a form that ensures the privacy of the 
individuals in the data will be protected.  The formal study of privacy 
in the theoretical computer science literature has yielded insights into 
this problem and revealed why so many traditional privacy-preserving 
techniques have failed to adequately protect privacy in practice.  First, 
many traditional approaches to privacy failed to acknowledge that 
attackers could use information obtained from outside the system (i.e., 
auxiliary information) in their attempts to learn private individual 
information from a data release.47  As the amount of detailed auxiliary 
information continues to grow and become more widely available over 
time, any privacy-preserving method must take auxiliary information 
into account in order to provide a reasonable level of privacy protection 
in light of any auxiliary information that an attacker may hold.48  
Furthermore, traditional approaches treated privacy as a property of 
the output of an analysis, whereas it is now understood that privacy 
should be viewed as a property of the analysis itself.49  Any privacy-
preserving method—including differential privacy—must adhere to 
this general principle in order to guarantee privacy protection. 

The following discussion provides an intuitive explanation of 
these principles, beginning with a cautionary tale about the re-
identification of anonymized records released by the Massachusetts 
Group Insurance Commission.50 

 

Example 1 

In the late 1990s, the Group Insurance Commission, an agency 
providing health insurance to Massachusetts state employees, 
allowed researchers to access anonymized records summarizing 
information about all hospital visits made by state employees.  The 
agency anticipated that the analysis of these records would lead to 
recommendations for improving healthcare and controlling 

 
 47. See Arvind Narayanan & Vitaly Shmatikov, Myths and Fallacies of “Personally 
Identifiable Information”, 53 COMM. ACM 24, 25–26 (2010). For examples illustrating what can 
happen if auxiliary information is not taken into account, see Narayanan, Huey & Felten, supra 
note 30, 363–65. 
 48. See Naranayan, Huey & Felten, supra note 30, at 358. 
 49. See id.; Frank McSherry, Privacy Preserving Data Analysis, U. CAL. SANTA CRUZ, 
https://users.soe.ucsc.edu/~abadi/CS223_F12/mcsherry.pdf [https://perma.cc/5DJ5-KX9B] (last 
visited Oct. 4, 2018). For a general discussion of the advantages of formal privacy models over ad-
hoc privacy techniques, see Narayanan, Huey & Felton, supra note 30. 
 50. See Pa. Privacy Hearing, supra note 26. 
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healthcare costs. 
 
Massachusetts Governor William Weld reassured the public that 
steps would be taken to protect the privacy of patients in the data.  
Before releasing the records to researchers, the agency removed 
names, addresses, Social Security numbers, and other pieces of 
information that could be used to identify individuals in the 
records.   
 
Viewing this as a challenge, Professor Latanya Sweeney, then a 
graduate student at MIT, set out to identify Governor Weld’s record 
in the dataset.  She obtained demographic information about 
Governor Weld, including his ZIP code and date of birth, by 
requesting a copy of voter registration records made available to 
the public for a small fee.  Finding just one record in the 
anonymized medical claims dataset that matched Governor Weld’s 
gender, ZIP code, and date of birth enabled her to mail the 
Governor a copy of his personal medical records.  
 

 
As Example 1 illustrates, in many cases, a dataset that appears 

to be anonymous may nevertheless be used to learn sensitive 
information about individuals.  In her demonstration, Professor 
Sweeney used voter registration records as auxiliary information in an 
attack.  This re-identification demonstrates the importance of using 
privacy-preserving methods that are robust to auxiliary information 
that may be exploited by an adversary.  Following Professor Sweeney’s 
famous demonstration, a long series of attacks has been carried out 
against different types of data releases anonymized using a wide range 
of techniques and auxiliary information.51  These attacks have shown 
that risks remain even if additional pieces of information, such as those 
that were leveraged in Professor Sweeney’s attack (gender, date of 
birth, and ZIP code), are removed from a dataset prior to release.52  
Risks also remain when using some traditional SDL techniques, such 
as 𝑘-anonymity, which is satisfied for a dataset in which the identifying 
attributes that appear for each person are identical to those of at least 
𝑘 − 1 other individuals in the dataset.53  Research has continually 
demonstrated that privacy measures that treat privacy as a property of 
 
 51. See, e.g., supra notes 26–29 and accompanying text. 
 52. See, e.g., supra notes 26–29 and accompanying text. 
 53. See, e.g., Ashwin Machanavajjhala et al., ℓ-Diversity: Privacy Beyond k-Anonymity, 22 
INT’L CONF. ON DATA ENGINEERING 24, 24 (2006) (“In this paper we show with two simple attacks 
that a 𝑘-anonymized dataset has some subtle, but severe privacy problems.”). 
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the output, such as 𝑘-anonymity and other traditional statistical 
disclosure limitation techniques, will fail to protect privacy. 

The Authors offer a brief note on terminology before proceeding.  
The discussions throughout this Article use the terms “analysis” and 
“computation” interchangeably to refer to any transformation, usually 
performed by a computer program, of input data into some output. 

As an example, consider an analysis on data containing personal 
information about individuals.  The analysis may be as simple as 
determining the average age of the individuals in the data, or it may be 
more complex and utilize sophisticated modeling and inference 
techniques.  In any case, the analysis involves performing a 
computation on input data and outputting the result.  Figure 1 
illustrates this notion of an analysis.   

 
Figure 1. An Analysis 

 
This primer focuses, in particular, on analyses for transforming 

sensitive personal data into an output that can be released publicly.  
For example, an analysis may involve the application of techniques for 
aggregating or de-identifying a set of personal data in order to produce 
a sanitized version of the data that is safe to release.  The data provider 
will want to ensure that publishing the output of this computation will 
not unintentionally leak information from the privacy-sensitive input 
data—but how?   

A key insight from the theoretical computer science literature is 
that privacy is a property of the informational relationship between the 
input and output, not a property of the output alone.54  The following 
discussion illustrates why this is the case through a series of examples.   

 

Example 2 

Anne, a staff member at a high school, would like to include 
statistics about student performance in a presentation.  She 

 
 54. This insight follows from a series of papers demonstrating privacy breaches enabled 
by leakages of information resulting from decisions made by the computation. See, e.g., 
Krishnaram Kenthapadi, Nina Mishra & Kobbi Nissim, Denials Leak Information: Simulatable 
Auditing, 79 J. COMPUTER & SYS. SCI. 1322, 1323 (2013). 

input analysis output
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considers publishing the fact that the GPA of a representative 
ninth-grade student is 3.5.  Because the law protects certain 
student information held by educational institutions, she must 
ensure that the statistic will not inappropriately reveal student 
information, such as the GPA of any particular student.   

One might naturally think that Anne could examine the statistic 
itself and determine that it is unlikely to reveal private information 
about an individual student.  However, although the publication of this 
statistic might seem harmless, Anne needs to know how the statistic 
was computed to make that determination.  For instance, if the 
representative ninth-grade GPA was calculated by taking the GPA of 
the alphabetically first student in the school, then the statistic 
completely reveals the GPA of that student.55  

Example 3 

Alternatively, Anne considers calculating a representative statistic 
based on average features of the ninth graders at the school.  She 
takes the most common first name, the most common last name, 
the average age, and the average GPA for the ninth-grade class.  
What she produces is “John Smith, a fourteen-year-old in the ninth 
grade, has a 3.1 GPA.” Anne includes this statistic and the method 
used to compute it in her presentation.  In an unlikely turn of 
events, a new ninth-grade student named John Smith joins the 
class the following week. 

Although the output of Anne’s analysis looks like it reveals 
private information about the new ninth grader John Smith, it actually 
does not—because the analysis itself was not based on his student 
records in any way.  While Anne might decide to present the statistic 
differently to avoid confusion, using it would not reveal private 
information about John.  It may seem counterintuitive that releasing a 
“representative” GPA violates privacy (as shown by Example 2), while 
releasing a GPA attached to a student’s name would not (as shown by 
Example 3).  Yet these examples illustrate that the key to preserving 
 
 55. One might object that the student’s GPA is not traceable back to that student unless 
an observer knows how the statistic was produced. However, a basic principle of modern 
cryptography (known as Kerckhoffs’ principle) holds that a system is not secure if its security 
depends on its inner workings being a secret. See AUGUSTE KERCKHOFFS, LA CRYPTOGRAPHIE 
MILITAIRE [MILITARY CRYPTOGRAPHY] 8 (1883). As applied in this example, this means that it is 
taken as an assumption that the algorithm behind a statistical analysis is public (or could 
potentially be public). 
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privacy is the informational relationship between the private input and 
the public output—and not the output itself.  Furthermore, not only is 
it necessary to examine the analysis itself to determine whether a 
statistic can be published while preserving privacy, but it is also 
sufficient.  In other words, if one knows whether the process used to 
generate a statistic preserves privacy, the output statistic does not need 
to be considered at all.  

III. WHAT IS THE DIFFERENTIAL PRIVACY GUARANTEE? 

The previous Part illustrates why privacy should be thought of 
as a property of a computation—but how does one know whether a 
particular computation has this property?   

Intuitively, a computation protects the privacy of individuals in 
the data if its output does not reveal any information that is specific to 
any individual data subject.  Differential privacy formalizes this 
intuition as a mathematical definition.56  Just as we can show that an 
integer is even by demonstrating that it is divisible by two, we can show 
that a computation is differentially private by proving it meets the 
constraints of the definition of differential privacy.  In turn, if a 
computation can be proven to be differentially private, we can rest 
assured that using the computation will not unduly reveal information 
specific to any data subject.57  Here, the term specific refers to 
information that cannot be inferred unless the individual’s information 
is used in the analysis.  For example, the information released by Anne 
in Example 3 is not specific to the new ninth grader John Smith because 
it is computed without using his information.   

The following example illustrates how differential privacy 
formalizes this intuitive privacy requirement as a definition.   

 

Example 4 

Researchers have selected a sample of individuals across the 
United States to participate in a survey exploring the relationship 
between socioeconomic status and health outcomes.  The 
participants were asked to complete a questionnaire covering topics 
concerning their residency, their finances, and their medical 
history.   

 
 56. See Dwork et al., supra note 38, at 265–66. 
 57. See id. 
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One of the participants, John, is aware that individuals have been 
re-identified in previous releases of de-identified data and is 
concerned that personal information he provides about himself, 
such as his medical history or annual income, could one day be 
revealed in de-identified data released from this study.  If leaked, 
this information could lead to a higher life insurance premium or 
an adverse decision with respect to a future mortgage application.58 

Differential privacy can be used to address John’s concerns.  If 
the researchers promise they will only share survey data after 
processing the data with a differentially private computation, John is 
guaranteed that any data the researchers release will disclose 
essentially nothing that is specific to him, even though he participated 
in the study.59  To understand what this means, consider the thought 
experiment, illustrated in Figure 2 and referred to as John’s opt-out 
scenario.  In John’s opt-out scenario, an analysis is performed using 
data about the individuals in the study, except that information about 
John is omitted.  His privacy is protected in the sense that the outcome 
of the analysis does not depend on his specific information—because his 
information was not used in the analysis at all.   

Figure 2. John’s Opt-Out Scenario 

 
John’s opt-out scenario differs from the real-world scenario depicted in 
Figure 1, where John’s information is part of the input of the analysis 
along with the personal information of the other study participants.  In 
contrast to his opt-out scenario, the real-world scenario involves some 
potential risk to John’s privacy.  Some of his personal information could 

 
 58. Note that these examples are introduced for the purposes of illustrating a general 
category of privacy-related risks relevant to this discussion, not as a claim that life insurance and 
mortgage companies currently engage in this practice. 
 59. Intuitively, the opt-out scenario and real-world scenario are very similar, and the 
difference between the two scenarios is measurable and small, as described in more detail in Part 
IV. 

input
without

John’s data

analysis output
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be revealed by the outcome of the analysis because his information was 
used as input to the computation.60   

A. Examples Illustrating What Differential Privacy Protects 

Differential privacy aims to protect John’s privacy in the real-
world scenario in a way that mimics the privacy protection he is 
afforded in his opt-out scenario.61  In other words, what can be learned 
about John from a differentially private computation is essentially 
limited to what could be learned about him from everyone else’s data 
without his own data being included in the computation.  Crucially, this 
same guarantee is made not only with respect to John, but also with 
respect to every other individual contributing her information to the 
analysis.   

A precise description of the differential privacy guarantee 
requires using formal mathematical language, as well as technical 
concepts and reasoning that are beyond the scope of this Article.  In lieu 
of the mathematical definition, this Article offers a few illustrative 
examples to discuss various aspects of differential privacy in a way 
designed to be intuitive and generally accessible.  The scenarios in this 
Section illustrate the types of information disclosures that are 
addressed when using differential privacy.   

 

Example 5 

Alice and Bob are professors at Private University.  They both have 
access to a database that contains personal information about 
students at the university, including information related to the 
financial aid each student receives.  Because it contains personal 
information, access to the database is restricted.  To gain access, 
Alice and Bob were required to demonstrate they planned to follow 
the university’s protocols for handling personal data by undergoing 
confidentiality training and signing data use agreements 

 
 60. See Cynthia Dwork & Moni Naor, On the Difficulties of Disclosure Prevention in 
Statistical Databases or the Case for Differential Privacy, 2 J. PRIVACY & CONFIDENTIALITY 93, 95 
(2008). 
 61. See generally Dwork, Differential Privacy, supra note 46. It is important to note that 
the use of differentially private analysis is not equivalent to the traditional use of opting out. On 
the privacy side, differential privacy does not require an explicit opt-out. In comparison, traditional 
use of opt-out may cause privacy harms by calling attention to individuals who choose to opt out. 
On the utility side, there is no general expectation that using differential privacy would yield the 
same outcomes as adopting the policy of opt-out. 
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proscribing their use and disclosure of personal information 
obtained from the database. 

In March, Alice publishes an article based on the information in 
this database and writes that “the current freshman class at 
Private University is made up of 3,005 students, 202 of whom are 
from families earning over $350,000 per year.”  Alice reasons that, 
because she published an aggregate statistic taken from over 3,005 
people, no individual’s personal information will be exposed.  The 
following month, Bob publishes a separate article containing these 
statistics: “201 students in Private University’s freshman class of 
3,004 have household incomes exceeding $350,000 per year.”  
Neither Alice nor Bob is aware that they have both published 
similar information.   

A clever student Eve reads both of these articles and makes an 
observation. From the published information, Eve concludes that 
between March and April one freshman withdrew from Private 
University and that the student’s parents earn over $350,000 per 
year.  Eve asks around and is able to determine that a student 
named John dropped out around the end of March.  Eve then 
informs her classmates that John’s family probably earns over 
$350,000 per year. 

John hears about this and is upset that his former classmates 
learned about his family’s financial status.  He complains to the 
university, and Alice and Bob are asked to explain.  In their 
defense, both Alice and Bob argue that they published only 
information that had been aggregated over a large population and 
does not identify any individuals.  

 
Example 5 illustrates how, in combination, the results of 

multiple analyses using information about the same people may enable 
one to draw conclusions about individuals in the data.  Alice and Bob 
each published information that, in isolation, seems innocuous.  
However, when combined, the information they published compromised 
John’s privacy.  This type of privacy breach is difficult for Alice or Bob 
to prevent individually, as neither knows what information others have 
already revealed or will reveal in future. This is referred to as the 
problem of composition.62   
 
 62. See Cynthia Dwork et al., Calibrating Noise to Sensitivity in Private Data Analysis, 7 
J. PRIVACY & CONFIDENTIALITY 17, 28 (2016) (note that this article shares a title with, and is a 
later version of, the authors’ prior paper, supra note 38); Srivatsava Ranjit Ganta, Shiva Prasad 
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Suppose, instead, that the institutional review board at Private 
University only allows researchers to access student records by 
submitting queries to a special data portal.  This portal responds to 
every query with an answer produced by running a differentially 
private computation on the student records. As explained in Part IV, 
differentially private computations introduce a carefully tuned amount 
of random noise to the statistics outputted.63  This means that the 
computation gives an approximate answer to every question asked 
through the data portal.64  As Example 6 illustrates, the use of 
differential privacy prevents the privacy leakage that occurred in 
Example 5. 

 

Example 6 

In March, Alice queries the data portal for the number of freshmen 
who come from families with a household income exceeding 
$350,000.  The portal returns the noisy count of 204, leading Alice 
to write in her article that “the current freshman class at Private 
University includes approximately 200 students from families 
earning over $350,000 per year.”  In April, Bob asks the same 
question and gets the noisy count of 199 students.  Bob publishes 
in his article that “approximately 200 families in Private 
University’s freshman class have household incomes exceeding 
$350,000 per year.”  The publication of these noisy figures prevents 
Eve from concluding that one student, with a household income 
greater than $350,000, withdrew from the university in March.  
The risk that John’s personal information could be uncovered based 
on these publications is thereby reduced. 

 
Example 6 hints at one of the most important properties of 

differential privacy—it is robust under composition.65  If multiple 
analyses are performed on data describing the same set of individuals, 
then, as long as each of the analyses satisfies differential privacy, it is 
guaranteed that all of the information released, when taken together, 
will still be differentially private.66  Notice how this example is 

 
Kasiviswanathan & Adam Smith, Composition Attacks and Auxiliary Information in Data Privacy, 
14 PROC. ACM SIGKDD INT’L CONF. ON KNOWLEDGE, DISCOVERY & DATA MINING 265, 265–66 
(2008). 
 63. See infra Part IV. 
 64. See infra Part IV. 
 65. See Vadhan, supra note 46, at 348–49. 
 66. See id. at 349, 361. 
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markedly different from Example 5, in which Alice and Bob do not use 
differentially private analyses and inadvertently release two statistics 
that, when combined, lead to the full disclosure of John’s personal 
information.  The use of differential privacy rules out the possibility of 
such a complete breach of privacy.  This is because differential privacy 
enables one to measure and bound the cumulative privacy risk from 
multiple analyses of information about the same individuals.67   

It is important to note, however, that every analysis, regardless 
of whether it is differentially private or not, results in some leakage of 
information about the individuals whose information is being analyzed.  
This is a well-established principle within the statistical community, as 
evidenced by a 2005 report that concluded “[t]he release of statistical 
data inevitably reveals some information about individual data 
subjects.”68  Furthermore, this leakage accumulates with each analysis, 
potentially to a point where an attacker may infer the underlying 
data.69  This is true for every release of data, including releases of 
aggregate statistics.70  In particular, releasing too many aggregate 
statistics too accurately inherently leads to severe privacy loss.71  For 
this reason, there is a limit to how many analyses can be performed on 
a specific dataset while providing an acceptable guarantee of privacy.72  
This is why it is critical to measure privacy loss and to understand 
quantitatively how risk accumulates across successive analyses, as 
Sections IV.E and VI.A describe below. 

B. Examples Illustrating What Differential Privacy Does Not Protect 

The following examples illustrate the types of information 
disclosures differential privacy does not seek to address.  

Example 7 

Suppose Ellen is a friend of John’s and knows some of his habits, 
such as that he regularly consumes several glasses of red wine with 

 
 67. See id. 
 68. See Fed. Comm. on Statistical Methodology, supra note 19, at 3. 
 69. See, e.g., Dinur & Nissim, supra note 30, at 203; Cynthia Dwork et al., Exposed! A 
Survey of Attacks on Private Data, 4 ANN. REV. STAT. & ITS APPLICATION 61, 64 (2016); Nils Homer 
et al., Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex Mixtures 
Using High-Density SNP Genotyping Microarrays, 4 PLoS Genetics e1000167, at 6, 9 (2008), 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2516199/pdf/pgen.1000167.pdf 
[https://perma.cc/7873-CG6L]; Fed. Comm. on Statistical Methodology, supra note 19, at 3. 
 70. See sources cited supra note 69. 
 71. See sources cited supra note 69. 
 72. See sources cited supra note 69. 
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dinner.  Ellen learns that John took part in a large research study, 
and that this study found a positive correlation between drinking 
red wine and the likelihood of developing a certain type of cancer.  
She might therefore conclude, based on the results of this study and 
her prior knowledge of John’s drinking habits, that he has a 
heightened risk of developing cancer. 

It may seem at first that the publication of the results from the 
research study enabled a privacy breach by Ellen.  After all, learning 
about the study’s findings helped her infer new information about John 
that he himself may be unaware of (i.e., his elevated cancer risk).  
However, notice that Ellen would be able to infer this information about 
John even if John had not participated in the medical study (i.e., it is a 
risk that exists in both John’s opt-out scenario and the real-world 
scenario).73  Risks of this nature apply to everyone, regardless of 
whether they shared personal data through the study or not.  Consider 
another example:  

Example 8 

Ellen knows that her friend John is a public school teacher with 
five years of experience and that he is about to start a job in a new 
school district.  She later comes across a local news article about a 
teachers’ union dispute, which includes salary figures for the public 
school teachers in John’s new school district.  Ellen is able to 
approximately determine John’s salary at his new job, based on the 
district’s average salary for a teacher with five years of experience. 

 
Note that, as in the previous example, Ellen can determine 

information about John (i.e., his new salary) from the published 
information, even though the published information was not based on 
John’s information.  In both examples, John could be adversely affected 
by the discovery of the results of an analysis, even in his opt-out 
scenario.  In both John’s opt-out scenario and in a differentially private 
real-world scenario, it is therefore not guaranteed that no information 
about John can be revealed.  The use of differential privacy limits the 
revelation of information specific to John. 

 
73. Ellen’s inference would rely on factors such as the size of the study sample, whether 

the sampling was performed at random, and whether John comes from the same population as the 
sample, among others. 
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These examples suggest, more generally, that any useful 
analysis carries a risk of revealing some information about individuals.  
One might observe, however, that such risks are largely unavoidable.  
In a world in which data about individuals are collected, analyzed, and 
published, John cannot expect better privacy protection than is offered 
by his opt-out scenario because he has no ability to prevent others from 
participating in a research study or appearing in public records.   

Moreover, the types of information disclosures enabled in John’s 
opt-out scenario often result in individual and societal benefits.  For 
example, the discovery of a causal relationship between red wine 
consumption and elevated cancer risk can lead to new public health 
recommendations, support future scientific research, and inform John 
about possible changes he could make in his habits that would likely 
have positive effects on his health.  Similarly, the publication of public 
school teacher salaries may be seen as playing a critical role in 
transparency and public policy, as it can help communities make 
informed decisions regarding appropriate salaries for their public 
employees.   

IV. HOW DOES DIFFERENTIAL PRIVACY LIMIT PRIVACY LOSS? 

The previous Part explains that the only things that can be 
learned about a data subject from a differentially private data release 
are essentially what could have been learned if the analysis had been 
performed without that individual’s data.   

How do differentially private analyses achieve this goal?  And 
what is meant by “essentially” when stating that the only things that 
can be learned about a data subject are essentially those things that 
could be learned without the data subject’s information?  The answers 
to these two questions are related. Differentially private analyses 
protect the privacy of individual data subjects by introducing carefully 
tuned random noise when producing statistics.74  Differentially private 
analyses are also allowed to leak some small amount of information 
specific to individual data subjects.75  A privacy parameter controls 
exactly how much information can be leaked and, relatedly, how much 
random noise is introduced during the differentially private 
computation.76   

 
 74. See Dwork et al., supra note 38, at 265–66. 
 75. See id. at 267. 
 76. Dwork et al., supra note 62, at 18. 
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A. Differential Privacy and Randomness 

Example 6 shows that differentially private analyses introduce 
random noise to the statistics they produce.  Intuitively, this noise 
masks the differences between the real-world computation and the opt-
out scenario of each individual in the dataset.  This means that the 
outcome of a differentially private analysis is not exact, but rather an 
approximation.  In addition, a differentially private analysis may, if 
performed twice on the same dataset, return different results because 
it intentionally introduces random noise.  Therefore, analyses 
performed with differential privacy differ from standard statistical 
analyses, such as the calculation of averages, medians, and linear 
regression equations, in which one gets the same answer when a 
computation is repeated twice on the same dataset.   

Example 9 

Consider a differentially private analysis that computes the 
number of students in a sample with a GPA of at least 3.0. Say that 
there are 10,000 students in the sample, and exactly 5,603 of them 
have a GPA of at least 3.0.  An analysis that added no random noise 
would report that 5,603 students had a GPA of at least 3.0.   

A differentially private analysis, however, introduces random noise 
to protect the privacy of the data subjects. For instance, a 
differentially private analysis might report an answer of 5,521 
when run on the student data; when run a second time on the same 
data, it might report an answer of 5,586.77 

Although a differentially private analysis might produce many 
different answers given the same dataset, it is usually possible to 
calculate accuracy bounds for the analysis measuring how much an 
output of the analysis is expected to differ from the noiseless answer.78 
Section VI.B discusses how the random noise introduced by a 
differentially private analysis affects statistical accuracy.  Appendix A.1 

 
 77. Note that, if an analyst is allowed to repeat this computation multiple times, she could 
average out the noise and get the exact answer. The number of allowable repetitions is limited by 
an overall privacy budget. See infra Section VI.A.   
 78. See, e.g., DWORK & ROTH, supra note 25, at 22; Prashanth Mohan et al., GUPT: Privacy 
Preserving Data Analysis Made Easy, 2012 PROC. ACM SIGMOD INT’L CONF. ON MGMT. DATA 349, 
349; Vadhan, supra note 46, at 366–67; Marco Gaboardi et al., PSI (𝜓): A Private Data Sharing 
Interface 15 (ArXiv, Working Paper No. 1609.04340, 2018), https://arxiv.org/pdf/1609.04340.pdf 
[https://perma.cc/PXC4-6CEL]. 
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provides more information about the role randomness plays in the 
construction of differentially private analyses.   

B. The Privacy Loss Parameter 

An essential component of a differentially private computation 
is the privacy loss parameter, which determines how well each 
individual’s information needs to be hidden and, consequently, how 
much noise needs to be introduced.79  It can be thought of as a tuning 
knob for balancing privacy and accuracy.  Each differentially private 
analysis can be tuned to provide more or less privacy—resulting in less 
or more accuracy, respectively—by changing the value of this 
parameter.  The parameter can be thought of as limiting how much a 
differentially private computation is allowed to deviate from the opt-out 
scenario of each individual in the data.   

Consider the opt-out scenario for a certain computation, such as 
estimating the number of HIV-positive individuals in a surveyed 
population.  Ideally, this estimate should remain exactly the same 
whether or not a single individual, such as John discussed above, is 
included in the survey.  However, as described above, ensuring that the 
estimate is exactly the same would require the total exclusion of John’s 
information from the real-world analysis.  It would also require 
excluding the information of other individuals (e.g., that of Gertrude, 
Peter, and so forth) in order to provide perfect privacy protection for 
them as well.  Continuing this line of argument, one can conclude that 
the personal information of every single surveyed individual must be 
removed in order to satisfy each individual’s opt-out scenario.  Thus, 
the analysis cannot rely on any person’s information and is completely 
useless.   

To avoid this dilemma, differential privacy requires only that the 
output of the analysis remain approximately the same, whether John 
participates in the survey or not.  That is, differential privacy allows for 
a deviation between the output of the real-world analysis and that of 
each individual’s opt-out scenario.  A parameter quantifies and limits 
the extent of the deviation between the opt-out and real-world 
scenarios.80  As Figure 3 illustrates below, this parameter is usually 
denoted by the Greek letter 𝜀 (epsilon) and referred to as the privacy 
parameter or, more accurately, the privacy loss parameter.81  The 
parameter 𝜀 measures the effect of each individual’s information on the 

 
 79. See DWORK & ROTH, supra note 25, at 6. 
 80. Id.  
 81. See id. 
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output of the analysis.  It can also be viewed as a measure of the 
additional privacy risk an individual could incur beyond the risk 
incurred in the opt-out scenario.  Note that Figure 3 replaces John with 
an arbitrary individual 𝑋 to emphasize that the differential privacy 
guarantee is made simultaneously to all individuals in the sample—not 
just John. 
 
 

Figure 3. Differential Privacy 

 
Moreover, it can be shown that the deviation between the real-

world and opt-out scenarios cannot be increased by any further 
processing of the output of a differentially private analysis. Hence, the 
guarantees of differential privacy, described below, hold regardless of 
how an attacker may try to manipulate the output. In this sense, 
differential privacy is robust to a wide range of potential privacy 
attacks, including attacks that are unknown at the time of 
deployment.82 

Choosing a value for 𝜀 can be thought of as setting the desired 
level of privacy protection.  This choice also affects the utility or 
accuracy that can be obtained from the analysis.83  A smaller value of 𝜀 
results in a smaller deviation between the real-world analysis and each 
opt-out scenario and is therefore associated with stronger privacy 

 
82.  The property that differential privacy is preserved under arbitrary further processing 

is referred to as (resilience to) post-processing. See DWORK & ROTH, supra note 25, at 19. 
 83. See id. For an illustration of how the choice of epsilon can affect accuracy, see infra 
Figure 4. 
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protection but less accuracy.84  For example, when 𝜀 is set to zero, the 
real-world differentially private analysis mimics the opt-out scenario of 
each individual perfectly and simultaneously.  However, an analysis 
that perfectly mimics the opt-out scenario of each individual would 
require ignoring all information from the input and, accordingly, could 
not provide any meaningful output.  Yet, when 𝜀 is set to a small 
number such as 0.1, the deviation between the real-world computation 
and each individual’s opt-out scenario will be small, providing strong 
privacy protection, while also enabling an analyst to derive useful 
statistics based on the data.   

Accepted guidelines for choosing 𝜀 have not yet been developed.85  
The increasing use of differential privacy in real-life applications will 
likely shed light on how to reach a reasonable compromise between 
privacy and accuracy, and the accumulated evidence from these real-
world decisions will likely contribute to the development of future 
guidelines.86  As discussed in Section IV.D, the Authors of this Article 
recommend that, when possible, 𝜀 be set to a small number, such as a 

 
 84. See infra Figure 4. 
 85. See JOHN M. ABOWD & IAN M. SCHMUTTE, REVISITING THE ECONOMICS OF PRIVACY: 
POPULATION STATISTICS AND CONFIDENTIALITY PROTECTION AS PUBLIC GOODS 1 (2015), 
https://digitalcommons.ilr.cornell.edu/cgi/viewcontent.cgi?article=1036&context=ldi 
[https://perma.cc/8B8Q-LCFA]; GARFINKEL, supra note 9, at 54; Justin Hsu et al., Differential 
Privacy: An Economic Method for Choosing Epsilon, 27 IEEE COMPUTER SECURITY FOUND. SYMP. 
398, 398 (2014). See generally John M. Abowd & Ian M. Schmutte, An Economic Analysis of Privacy 
Protection and Statistical Accuracy as Social Choices, AM. ECON. REV. (forthcoming). 
 86. Setting the primary loss parameter 𝜀 is a policy decision to be informed by normative 
and technical considerations. Companies and governments experimenting with practical 
implementations of differential privacy have selected various values for 𝜀. Some of these 
implementations have adopted values of 𝜀 exceeding 1 due to the difficulty of meeting utility 
requirements using lower values of 𝜀. To date, these choices of 𝜀 have not led to known 
vulnerabilities. For example, the US Census Bureau reportedly chose a value of 𝜀 = 8.9 for 
OnTheMap—a public interface which allows users to explore American commuting patterns using 
a variant of differential privacy. See John M. Abowd, Assoc. Dir. for Research and Methodology, 
US Census Bureau, The Challenge of Scientific Reproducibility and Privacy Protection for 
Statistical Agencies, Presentation for the Census Scientific Advisory Committee 12 (Sept. 15, 
2016), https://www2.census.gov/cac/sac/meetings/2016-09/2016-abowd.pdf 
[https://perma.cc/4CXN-C257]. As another example, researchers have determined that Apple’s 
differential private data collection in macOS 10.12 and iOS 10 likely uses values of 𝜀 as high as 6 
and 14, respectively. See Jun Tang et al., Privacy Loss in Apple’s Implementation of Differential 
Privacy on MacOS 10.12 (ArXiv, Working Paper No. 1709.02753, 2017), 
https://arxiv.org/pdf/1709.02753.pdf [https://perma.cc/V4QE-QJ49]. Although differential privacy 
is an emerging concept and has been deployed in limited applications to date, best practices may 
emerge over time as values for 𝜀 are selected for implementations of differential privacy in a wide 
range of settings. With this in mind, researchers have proposed that a registry be created to 
document details of differential privacy implementations, including the value of 𝜀 chosen and the 
factors that led to its selection. See NAT’L ACAD. OF SCIS., ENG’G & MED., FEDERAL STATISTICS, 
MULTIPLE DATA SOURCES, AND PRIVACY PROTECTION: NEXT STEPS 107 (Robert M. Groves & Brian 
A. Harris-Kojetin eds., 2017) (citing Cynthia Dwork & Dierdre Mulligan, Differential Privacy in 
Practice: Expose Your Epsilons! (June 5, 2014) (unpublished manuscript)), http://nap.edu/24893 
[https://perma.cc/5YKH-QQBG]. 
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value less than 1.87  As Figure 3 illustrates, the maximum deviation 
between the opt-out scenario and the real-world computation should 
hold simultaneously for each individual X whose information is 
included in the input. 

C. Bounding Risk 

The previous Section discusses how the privacy loss parameter 
limits the deviation between the real-world computation and each data 
subject’s opt-out scenario.  However, it might not be clear how this 
abstract guarantee relates to the privacy concerns individuals face in 
the real world.  To help ground the concept, this Section discusses a 
practical interpretation of the privacy loss parameter.  It describes how 
the parameter can be understood as a bound on the financial risk 
incurred by an individual participating in a research study. 

Any useful analysis carries the risk that it will reveal 
information about the individuals in the data.88  An individual whose 
information is used in an analysis may be concerned that a potential 
leakage of her personal information could result in reputational, 
financial, or other costs.  Examples 10 and 11 below introduce a scenario 
in which an individual participating in a research study worries that an 
analysis on the data collected in the research study may leak 
information that could lead to a substantial increase in her life 
insurance premium.  Example 12 illustrates that, while differential 
privacy necessarily cannot fully eliminate this risk, it can guarantee 
that the risk will be limited by quantitative bounds that depend on 𝜀.89  

 

Example 10 

Gertrude, a sixty-five-year-old woman, is considering whether to 
participate in a medical research study.  While she can envision 
many potential personal and societal benefits resulting in part from 
her participation in the study, she is concerned that the personal 
information she discloses over the course of the study could lead to 
an increase in her life insurance premium in the future.   

For example, Gertrude is concerned that the tests she would 
undergo as part of the research study would reveal that she is 
predisposed to suffer a stroke and is significantly more likely to die 

 
 87. See discussion following Table 1. 
 88. See supra Part III. 
 89. See Dwork et al., supra note 38, at 266–67. 
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in the coming year than the average person of her age and gender.  
If such information related to Gertrude’s increased risk of 
morbidity and mortality is discovered by her life insurance 
company, it will likely increase the premium for her annual 
renewable term policy substantially.   

Before she opts to participate in the study, Gertrude wishes to be 
assured that privacy measures are in place to ensure that her 
participation will have, at most, a limited effect on her life 
insurance premium. 

1. A Baseline: Gertrude’s Opt-Out Scenario 

It is important to note that Gertrude’s life insurance company 
may raise her premium based on something it learns from the medical 
research study, even if Gertrude does not herself participate in the 
study.  The following example is provided to illustrate such a scenario.90  

Example 11 

Gertrude holds a $100,000 life insurance policy.  Her life insurance 
company has set her annual premium at $1,000, i.e., 1% of 
$100,000, based on actuarial tables showing that someone of 
Gertrude’s age and gender has a 1% chance of dying in the next 
year. 

Suppose Gertrude opts out of participating in the medical research 
study.  Regardless, the study reveals that coffee drinkers are more 
likely to suffer a stroke than non-coffee drinkers.  Gertrude’s life 
insurance company may update its assessment and conclude that, 
as a sixty-five-year-old woman who drinks coffee, Gertrude has a 
2% chance of dying in the next year.  The company decides to 
increase Gertrude’s annual premium from $1,000 to $2,000 based 
on the findings of the study.91 

 
 90. Figures in this example are based on data from Actuarial Life Table: Period Life Table, 
2015, SOC. SECURITY ADMIN., http://www.ssa.gov/oact/STATS/table4c6.html 
[https://perma.cc/7ZPH-GE7N] (last visited Sept. 22, 2018). 

91. Note that there may be legal, policy, or other reasons why a company would not raise 
Gertrude’s insurance premium based on the outcome of this study. Also, this is not a claim that 
insurance companies engage in this practice. Example 11 is introduced for the purposes of illus-
trating a general category of privacy-related risks relevant to this discussion. This example as-
sumes that the insurance company updates its belief about Gertrude’s chances of dying next year 
based on the outcome of this study using a Bayesian analysis. Furthermore, it assumes that Ger-
trude’s premium is then updated in proportion to this change in belief. Differential privacy also 
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In this example, the results of the study led to an increase in 
Gertrude’s life insurance premium, even though she did not contribute 
any personal information to the study.  A potential increase of this 
nature is unavoidable to Gertrude in this scenario because she cannot 
prevent other people from participating in the study.  This example 
illustrates that Gertrude can experience a financial loss even in her opt-
out scenario.  Because, as presented in this example, Gertrude cannot 
avoid this type of risk on her own,92 in the following discussion this opt-
out scenario will serve as a baseline for measuring potential increases 
in her privacy risk above this threshold.   

2. Reasoning About Gertrude’s Risk 

Next consider the increase in risk, relative to Gertrude’s opt-out 
scenario, that is due to her participation in the study.  

Example 12 

Suppose Gertrude decides to participate in the research study. 
Based on the results of medical tests performed on Gertrude over 
the course of the study, the researchers conclude that Gertrude has 
a 50% chance of dying from a stroke in the next year.  If the data 
from the study were to be made available to Gertrude’s insurance 
company, it might decide to increase her insurance premium to 
$50,000 in light of this discovery. 

Fortunately for Gertrude, this does not happen.  Rather than 
releasing the full dataset from the study, the researchers release 
only a differentially private summary of the data they collected.  
Differential privacy guarantees that, if the researchers use a value 
of ε = 0.01, then the insurance company’s estimate of the 
probability that Gertrude will die in the next year can increase from 
the opt-out scenario’s estimate of 2% to at most 

2% ⋅ (1 + 0.01) = 2.02%. 

 
allows one to reason (in a different manner) about a more general case where no assumptions are 
made regarding how the insurance company updates Gertrude’s premium, but that analysis is 
omitted from this discussion for simplicity. 
 92. Although Gertrude, acting as an individual, cannot avoid this risk, society or groups 
of individuals may collectively act to avoid such a risk. For example, the researchers could be 
prohibited from running the study, or the data subjects could collectively decide not to participate. 
Therefore, the use of differential privacy does not completely eliminate the need to make policy 
decisions regarding the value of allowing data collection and analysis in the first place. 
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Thus Gertrude’s insurance premium can increase from $2,000 to, 
at most, $2,020.  Gertrude’s first-year cost of participating in the 
research study, in terms of a potential increase in her insurance 
premium, is at most $20.  

Note that this does not mean that the insurance company’s 
estimate of the probability that Gertrude will die in the next year 
will necessarily increase as a result of her participation in the 
study, nor that if the estimate increases it must increase to 2.02%.  
What the analysis shows is that if the estimate were to increase it 
would not exceed 2.02%. 

 
In this example, Gertrude is aware of the fact that the study 

could indicate that her risk of dying in the next year exceeds 1%.  She 
happens to believe, however, that the study will not indicate more than 
a 2% risk of dying in the next year, in which case the potential cost to 
her of participating in the research will be at most $20.  Based on her 
belief, Gertrude may decide that she considers the potential cost of $20 
to be too high and that she cannot afford to participate with this value 
of 𝜀 and this level of risk.  Alternatively, she may decide that it is 
worthwhile.  Perhaps she is paid more than $20 to participate in the 
study, or the information she learns from the study is worth more than 
$20 to her.  The key point is that differential privacy allows Gertrude 
to make a more informed decision based on the worst-case cost of her 
participation in the study.   

It is worth noting that, should Gertrude decide to participate in 
the study, her risk might increase—even if her insurance company is 
not aware of her participation.  Gertrude might actually have a higher 
chance of dying in the next year, and that could affect the study results.  
In turn, her insurance company might decide to raise her premium 
because she fits the profile of the studied population—even if it does not 
believe her data were included in the study.  Differential privacy 
guarantees that, even if the insurance company knows that Gertrude 
did participate in the study—it can only make inferences about her that 
it could have essentially made if she had not participated in the study. 

D. A General Framework for Reasoning About Privacy Risk 

Gertrude’s scenario illustrates how differential privacy is a 
general framework for reasoning about the increased risk that is 
incurred when an individual’s information is included in a data 
analysis.  Differential privacy guarantees that an individual will be 
exposed to essentially the same privacy risk, whether or not her data 
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are included in a differentially private analysis.93  In this context, one 
can think of the privacy risk associated with a release of the output of 
a data analysis as the potential harm that an individual might incur 
because of a belief that an observer forms based on that data release. 

In particular, when 𝜀 is set to a small value, an observer’s 
posterior belief can change—relative to the case where the data subject 
is not included in the data set—by a factor of at most approximately 1 +
𝜀 based on a differentially private data release.94  For example, if 𝜀 is 
set to 0.01, then the privacy risk to an individual resulting from 
participation in a differentially private computation grows by at most a 
multiplicative factor of 1.01.   

As Examples 11 and 12 illustrate, there is a risk to Gertrude 
that the insurance company will see the study results, update its beliefs 
about the mortality of Gertrude, and charge her a higher premium.  If 
the insurance company infers from the study results that Gertrude has 
probability 𝑝 of dying in the next year and her insurance policy is valued 
at $100,000, her premium will increase to 𝑝 × $100,000.  This risk 
exists, even if Gertrude does not participate in the study.  Recall how, 
in Example 11, the insurance company’s belief that Gertrude will die in 
the next year doubles from 1% to 2%, increasing her premium from 
$1,000 to $2,000, based on general information learned from the 
individuals who did participate.  Recall also that if Gertrude does decide 
to participate in the study (as in Example 12), differential privacy limits 
the change in this risk relative to her opt-out scenario.  In financial 
terms, her risk increases by at most $20, since the insurance company’s 
beliefs about her probability of death change from 2% to at most 2% ⋅
(1 + 𝜀) = 2.02%, where 𝜀 = 0.01. 

Note that the above calculation requires certain information 
that may be difficult to determine in the real world. In particular, the 
2% baseline in Gertrude’s opt-out scenario (i.e., Gertrude’s insurer’s 
belief about her chance of dying in the next year) is dependent on the 
results from the medical research study, which Gertrude does not know 
at the time she makes her decision whether to participate.  Fortunately, 
differential privacy provides guarantees relative to every baseline 
risk.95    

 

 
 93. See Dwork et al., supra note 62, at 19; Dwork & Naor, supra note 60, at 103. 
 94. In general, the guarantee made by differential privacy is that the probabilities differ 
by at most a factor of 𝑒±𝜀, which is approximately 1 ± 𝜀 when 𝜀 is small. See Shiva Prasad 
Kasiviswanathan & Adam Smith, On the ‘Semantics’ of Differential Privacy: A Bayesian 
Formulation, 6 J. PRIVACY & CONFIDENTIALITY 1 (2014). 
 95. See infra Table 1 and accompanying text. 
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Example 13 

Say that, without her participation, the study results would lead 
the insurance company to believe that Gertrude has a 3% chance of 
dying in the next year (instead of the 2% chance hypothesized 
earlier).  This means that Gertrude’s insurance premium would 
increase to $3,000.  Differential privacy guarantees that, if 
Gertrude had instead decided to participate in the study, the 
insurer’s estimate for Gertrude’s mortality would have been at 
most 3% ⋅ (1 + ε) = 3.03% (assuming an ε of 0.01), which means 
that her premium would not increase beyond $3,030. 

 

Calculations like those used in the analysis of Gertrude’s privacy 
risk can be performed by referring to Table 1.  For example, the value 
of 𝜀 used in the research study Gertrude considered participating in was 
0.01, and the baseline privacy risk in her opt-out scenario was 2%.  As 
shown in Table 1, these values correspond to a worst-case privacy risk 
of 2.02% in her real-world scenario.  Notice also how the calculation of 
risk would change with different values.  For example, if the privacy 
risk in Gertrude’s opt-out scenario were 5% rather than 2% and the 
value of 𝜀 remained the same, then the worst-case privacy risk in her 
real-world scenario would be 5.05%. 
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Table 1. Maximal Difference Between Posterior Beliefs in 
Gertrude’s Opt-Out and Real-World Scenarios 

The notation 𝐴(𝑥′) refers to the application of the analysis 𝐴 on the dataset 𝑥′, which 
does not include Gertrude’s information. As this table shows, the use of differential 
privacy provides a quantitative bound on how much one can learn about an individ-
ual from a computation.96 

posterior 
belief 
given 
𝐴(𝑥′) 
in % 

value of 𝜀 

0.01 0.05 0.1 0.2 0.5 1 

0 0 0 0 0 0 0 
1 1.01 1.05 1.1 1.22 1.64 2.67 
2 2.02 2.1 2.21 2.43 3.26 5.26 
5 5.05 5.24 5.5 6.04 7.98 12.52 

10 10.09 10.46 10.94 11.95 15.48 23.2 
25 25.19 25.95 26.92 28.93 35.47 47.54 
50 50.25 51.25 52.5 54.98 62.25 73.11 
75 75.19 75.93 76.83 78.56 83.18 89.08 
90 90.09 90.44 90.86 91.66 93.69 96.07 
95 95.05 95.23 95.45 95.87 96.91 98.1 
98 98.02 98.1 98.19 98.36 98.78 99.25 
99 99.01 99.05 99.09 99.18 99.39 99.63 

100 100 100 100 100 100 100 
 maximum posterior belief given 𝐴(𝑥) in % 

 
The fact that the differential privacy guarantee applies to every 

privacy risk means that Gertrude can know for certain how 
participating in the study might increase her risks relative to opting 
out, even if she does not know a priori all the privacy risks posed by the 
data release.  This enables Gertrude to make a more informed decision 
about whether to take part in the study.  For instance, perhaps with the 
help of the researcher obtaining her informed consent, Gertrude can use 
this framework to better understand how the additional risk she may 
incur by participating in the study is bounded.  By considering the 
bound with respect to a range of possible baseline risk values, she may 

 
 96. For 𝑝, the posterior belief given 𝐴(𝑥’), and privacy parameter 𝜀, the bound on the posterior 
belief given 𝐴(𝑥) is B

BCDEF(GHB)
. For small 𝜀 and 𝑝, this expression can be approximated as 𝑝(1 + 𝜀). These 

formulas are derived from the definition of differential privacy. See Kobbi Nissim, Claudio Orlandi & 
Rann Smorodinsky, Privacy-Aware Mechanism Design, 13 PROC. ACM CONF. ON ELECTRONIC COM. 
774, 775–89 (2012). 
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decide whether she is comfortable with taking on the risks entailed by 
these different scenarios.   

Table 1 demonstrates how significant changes in posterior belief 
compared to the opt-out baseline can be for different values of 𝜀.  Notice 
how, at 𝜀 = 1, a belief that Gertrude has a certain condition with 1% 
probability in the opt-out scenario would become 2.67%, which is quite 
a large factor increase (more than double), and a 50% belief would 
become nearly a 75% belief (also a very significant change).  For 𝜀 = 0.2 
and 𝜀 = 0.5, the changes start to become more modest, but could still be 
considered too large, depending on how sensitive the data are.  For 𝜀 =
0.1 and below, the changes in beliefs may be deemed small enough for 
most applications. 

Also note that the entries in Table 1 are the worst-case bounds 
that are guaranteed by a given setting of 𝜀.  An adversary’s actual 
posterior beliefs given A(x) may be smaller in a given practical 
application, depending on the distribution of the data, the specific 
differentially private algorithms used, and the adversary’s prior beliefs 
and auxiliary information.   That is, in a real-world application, a 
particular choice of 𝜀 may turn out to be safer than Table 1 indicates, 
but it can be difficult to quantify how much safer.    

The exact choice of 𝜀 is a policy decision that should depend on 
the sensitivity of the data, with whom the output will be shared, the 
intended data analysts’ accuracy requirements, and other technical and 
normative factors.  Table 1 and explanations interpreting it, such as the 
examples provided in this Section, can help provide the kind of 
information needed to make such a policy decision. 

E. Composition 

Privacy risk accumulates with multiple analyses on an 
individual’s data, and this is true whether or not any privacy-preserving 
technique is applied.97  One of the most powerful features of differential 
privacy is its robustness under composition.98  One can reason about—
and bound—the privacy risk that accumulates when multiple 
differentially private computations are performed on an individual’s 
data.99   

 
 97. See DWORK & ROTH, supra note 25, at 5. Note that this observation is not unique to 
differentially private analyses. It is true for any use of information, and, therefore, for any 
approach to preserving privacy. However, the fact that the cumulative privacy risk from multiple 
analyses can be bounded is a distinguishing property of differential privacy. 
 98. See sources cited supra note 62. 
 99. See sources cited supra note 62. 
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The parameter 𝜀 quantifies how privacy risk accumulates across 
multiple differentially private analyses.  Imagine that two differentially 
private computations are performed on datasets about the same 
individuals.  If the first computation uses a parameter of 𝜀G and the 
second uses a parameter of 𝜀I, then the cumulative privacy risk 
resulting from these computations is no greater than the risk associated 
with an aggregate parameter of 𝜀G + 𝜀I.100  In other words, the privacy 
risk from running the two analyses is bounded by the privacy risk from 
running a single differentially private analysis with a parameter of 𝜀G +
𝜀I.   

 

Example 14 

Suppose that Gertrude decides to opt into the medical study 
because it is about heart disease, an area of research she considers 
critically important.  The study leads to a published research paper, 
which includes results from the study produced by a differentially 
private analysis with a parameter of 𝜀G = 0.01.  A few months later, 
the researchers decide that they want to use the same study data 
for another paper.  This second paper would explore a hypothesis 
about acid reflux disease, and would require calculating new 
statistics based on the original study data.  Like the analysis results 
in the first paper, these statistics would be computed using 
differential privacy, but this time with a parameter of 𝜀I = 0.02. 
 
Because she only consented to her data being used in research 
about heart disease, the researchers must obtain Gertrude’s 
permission to reuse her data for the paper on acid reflux disease.  
Gertrude is concerned that her insurance company could compare 
the results from both papers and learn something negative about 
Gertrude’s life expectancy and drastically raise her insurance 
premium.  She is not particularly interested in participating in a 
research study about acid reflux disease and is concerned the risks 
of participation might outweigh the benefits to her.   
 
Because the statistics from each study are produced using 
differentially private analyses, Gertrude can precisely bound the 
privacy risk that would result from contributing her data to the 
second study.  The combined analyses can be thought of as a single 
analysis with a privacy loss parameter of 
 

 
 100. See Dwork et al., supra note 62, at 28. 
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𝜀G + 𝜀I = 0.01 + 0.02 = 0.03. 
 
Say that, without her participation in either study, the insurance 
company would believe that Gertrude has a 2% chance of dying in 
the next year, leading to a premium of $2,000.  If Gertrude 
participates in both studies, the insurance company’s estimate of 
Gertrude’s mortality would increase to at most 
 

2% ⋅ (1 + 0.03) = 2.06%. 
 
This corresponds to a premium increase of $60 over the premium 
that Gertrude would pay if she had not participated in either study. 

 
This means that, while it cannot get around the fundamental 

law that privacy risk increases when multiple analyses are performed 
on the same individual’s data, differential privacy guarantees that 
privacy risk accumulates in a bounded way.101  Despite the 
accumulation of risk, two differentially private analyses cannot be 
combined in a way that leads to a privacy breach that is 
disproportionate to the privacy risk associated with each analysis in 
isolation.  To the Authors’ knowledge, differential privacy is currently 
the only known framework with quantifiable guarantees with respect 
to how risk accumulates across multiple analyses.   

V. WHAT TYPES OF ANALYSES ARE PERFORMED WITH DIFFERENTIAL 
PRIVACY? 

A large number of analyses can be performed with differential 
privacy guarantees.  Differentially private algorithms are known to 
exist for a wide range of statistical analyses such as count queries, 
histograms, cumulative distribution functions, and linear regression; 
techniques used in statistics and machine learning such as clustering 
and classification; and statistical disclosure limitation techniques like 
synthetic data generation, among many others.   

For the purposes of illustrating that broad classes of analyses can 
be performed using differential privacy, the discussion in this Part 
provides a brief overview of each of these types of analyses and how they 
can be performed with differential privacy guarantees.102   

 
 101. See id. at 28–29. 
 102. The discussion in this Part provides only a brief introduction to a number of statistical 
and machine learning concepts. For a more detailed introduction to these concepts, see, for 
example, JOSEPH K. BLITZSTEIN & JESSICA HWANG, INTRODUCTION TO PROBABILITY (2015); 
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• Count queries: The most basic statistical tool, a count 

query, returns an estimate of the number of individual 
records in the data satisfying a specific predicate.103 For 
example, a count query could be used to return the number 
of records corresponding to HIV-positive individuals in a 
sample.  Differentially private answers to count queries 
can be obtained through the addition of random noise, as 
demonstrated in the detailed example found in Appendix 
A.1. 

• Histograms: A histogram contains the counts of data 
points as they are classified into disjoint categories.104  For 
example, in the case of numerical data, a histogram shows 
how data are classified within a series of consecutive non-
overlapping intervals.  A contingency table (or cross 
tabulation) is a special form of histogram representing 
the interrelation between two or more variables.105  The 
categories of a contingency table are defined as 
conjunctions of attribute variables, such as the number of 
individuals in a dataset that are both college-educated and 
earn less than $50,000 per year.106  Differentially private 
histograms and contingency tables provide noisy counts for 
the data classified in each category.107   

• Cumulative distribution function (CDF): For data 
over an ordered domain, such as age (where the domain is 
integers, say, in the range of 0, 1, 2, …,	100), or annual 
income (where the domain is real numbers, say, in the 
range of $0.00− $1,000,000.00), a cumulative distribution 
function depicts for every domain value 𝑥 an estimate of 
the number of data points with a value up to 𝑥.108  A CDF 
can be used for computing the median of the data points 

 
GARETH JAMES ET AL., AN INTRODUCTION TO STATISTICAL LEARNING WITH APPLICATIONS IN R 127–
75 (2013). 
 103. See Mark Bun, A Teaser for Differential Privacy 1 (Dec. 8, 2017) (unpublished 
manuscript), https://www.cs.princeton.edu/~smattw/Teaching/521fa17lec22.pdf 
[https://perma.cc/L54G-BKUW]. 
 104. See JOHN M. CHAMBERS ET AL., GRAPHICAL METHODS FOR DATA ANALYSIS 24–26 
(1983). 
 105. See YVONNE M. BISHOP, STEPHEN E. FIENBERG & PAUL W. HOLLAND, DISCRETE 
MULTIVARIATE ANALYSIS: THEORY AND PRACTICE 9–13 (1975). 
 106. See id. 
 107. See, e.g., Dwork et al., supra note 38, at 273. 
 108. See JAMES E. GENTLE, COMPUTATIONAL STATISTICS 29–30 (2009). 
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(the value 𝑥 for which half the data points have value up to 
𝑥) and the interquartile range, among other statistics.109  A 
differentially private estimate of the CDF introduces noise 
that needs to be taken into account when the median or 
interquartile range is computed from the estimated 
CDF.110 

• Linear regression: Social scientists are often interested 
in modeling how a dependent variable varies as a function 
of one or more explanatory variables.  For instance, a 
researcher may seek to understand how a person’s health 
depends on her education and income.  In linear regression, 
an underlying linear model is assumed, and the goal of the 
computation is to fit a linear model to the data that 
minimizes a measure of “risk” (or “cost”), usually the sum 
of squared errors.111  Using linear regression, social 
scientists can learn to what extent a linear model explains 
their data, and which of the explanatory variables 
correlates best with the dependent variable.112  
Differentially private implementations of linear regression 
introduce noise in its computation.113  

• Clustering: Clustering is a data analysis technique that 
involves grouping data points into clusters, so that points 
in the same cluster are more similar to each other than to 
points in other clusters.114  Data scientists often use 
clustering as an exploratory tool to gain insight into their 
data and identify the data’s important subclasses.115  
Researchers are developing a variety of differentially 
private clustering algorithms,116 and such tools are likely 

 
 109. See id. at 62–63, 330. 
 110. For a more in-depth discussion of differential privacy and CDFs, see Daniel Muise & 
Kobbi Nissim, Ctr. for Research on Computation & Soc’y, Presentation at Harvard University: 
Differential Privacy in CDFs (Apr. 2016), http://privacytools.seas.har-
vard.edu/files/dpcdf_user_manual_aug_2016.pdf [https://perma.cc/DZU8-7SSB] (slide deck). 
 111. See WILLIAM H. GREEN, ECONOMETRIC ANALYSIS 13–14, 28–29 (8th ed. 2017). 
 112. See id. 
 113. See, e.g., Adam Smith, Privacy-Preserving Statistical Estimation with Optimal 
Convergence Rates, 43 PROC. ACM SYMP. ON THEORY COMPUTING 813, 814 (2011). 
 114. See TREVOR HASTIE, ROBERT TIBSHIRANI & JEROME FRIEDMAN, THE ELEMENTS OF 
STATISTICAL LEARNING: DATA MINING, INFERENCE, & PREDICTION 501 (2d ed. 2001). 
 115. See id. at 502. 
 116. Many papers describe differentially private clustering algorithms. For a recent 
example, see Haim Kaplan & Uri Stemmer, Differentially Private k-Means with Constant 
Multiplicative Error 1 (ArXiv, Working Paper No. 1804.08001, 2018), 
https://arxiv.org/abs/1804.08001 [https://perma.cc/HR35-FHHK]. 



2018] DIFFERENTIAL PRIVACY 249 

to be included in future privacy-preserving tool kits for 
social scientists. 

• Classification: In machine learning and statistics, 
classification is the problem of identifying or predicting 
which of a set of categories a data point belongs in, based 
on a training set of examples for which category 
membership is known.117  Data scientists often utilize data 
samples that are pre-classified (e.g., by experts or from 
historical data) to train a classifier, which can later be used 
for labeling newly acquired data samples.118  Theoretical 
work has shown that it is possible to construct 
differentially private classification algorithms for a large 
collection of classification tasks.119   

• Synthetic data: Synthetic data are data sets generated 
from a statistical model estimated using the original 
data.120  The records in a synthetic data set have no one-to-
one correspondence with the individuals in the original 
data set, yet the synthetic data can retain many of the 
statistical properties of the original data. Synthetic data 
resemble the original sensitive data in format, and, for a 
large class of analyses, results are similar whether 
performed on the synthetic or original data.121  Theoretical 
work has shown that differentially private synthetic data 
can be generated for a large variety of tasks.122  A 
significant benefit is that, once a differentially private 
synthetic data set is generated, it can be analyzed any 
number of times, without any further implications for 
privacy.123  As a result, synthetic data can be shared freely 

 
 117. See JAMES ET AL., supra note 102, at 127–29. 
 118. See id. 
 119. Many papers describe differentially private classification algorithms. For an early 
example, see Blum et al., supra note 46. 
 120. See Jerome P. Reiter, Satisfying Disclosure Restrictions with Synthetic Data Sets, 18 
J. OFFICIAL STAT. 531, 531 (2002); Jerome P. Reiter & Trivellore E. Raghunathan, The Multiple 
Adaptations of Multiple Imputation, 102 J. AM. STAT. ASS’N 1462, 1466 (2007); Donald B. Rubin, 
Discussion, Statistical Disclosure Limitation, 9 J. OFFICIAL STAT. 461, 464 (1993). 
 121. See Rubin, supra note 120, at 463. 
 122. See, e.g., Avrim Blum, Katrina Ligett & Aaron Roth, A Learning Theory Approach to 
Non-Interactive Database Privacy, 40 PROC. ACM SYMP. ON THEORY COMPUTING 609, 609 (2008). 
 123. See NAT’L ACADS. OF SCIS., ENG’G & MED., INNOVATIONS IN FEDERAL STATISTICS: 
COMBINING DATA SOURCES WHILE PROTECTING PRIVACY 94 (Robert M. Groves & Brian A. Harris-
Kojetin eds., 2017). 
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or even made public in many cases.124  For example, 
statistical agencies can release synthetic microdata as 
public-use data files in place of raw microdata.125 

VI. PRACTICAL CONSIDERATIONS WHEN USING DIFFERENTIAL PRIVACY 

This Part discusses some of the practical challenges to using 
differentially private computations such as those outlined in the 
previous Part.  When making a decision regarding whether to 
implement differential privacy, one must consider the relevant privacy 
and utility requirements associated with the specific use case in mind.  
This Article provides many examples illustrating scenarios in which 
differentially private computations could be used. However, if, for 
instance, an analysis is being performed at the individual-level—e.g., 
in order to identify individual patients who would be good candidates 
for a clinical trial or to identify instances of bank fraud—differential 
privacy would not apply, as it will disallow learning information specific 
to an individual.   

Additionally, because implementation and use of differential 
privacy is in its early stages, there is a current lack of easy-to-use 
general purpose and production-ready tools, though progress is being 
made on this front, as Part VII discusses below.  The literature 
identifies a number of other practical limitations, emphasizing the need 
for additional differentially private tools tailored to specific applications 
such as the data products released by federal statistical agencies; 
subject matter experts trained in the practice of differential privacy; 
tools for communicating the features of differential privacy to the 
general public, users, and other stakeholders; and guidance on setting 
the privacy loss parameter 𝜀.126   

This Part focuses on a selection of practical considerations, 
including (A) challenges due to the degradation of privacy that results 
from composition, (B) challenges related to the accuracy of differentially 
private statistics, and (C) challenges related to analyzing and sharing 
personal data while protecting privacy in accordance with applicable 

 
 124. For an example of public use synthetic microdata, see Ashwin Machanavajjhala et al., 
Privacy: Theory Meets Practice on the Map, 24 PROC. IEEE INT’L CONF. ON DATA ENGINEERING 277, 
277 (2008). 

125. See Ron S. Jarmin, Thomas A. Louis & Javier Miranda, Expanding the Role of 
Synthetic Data at the U.S. Census Bureau 3 (Ctr. for Econ. Studies, Research Paper No. CES 14-
10, 2014), https://www2.census.gov/ces/wp/2014/CES-WP-14-10.pdf [https://perma.cc/6UXH-
TMKM]. 
 126. See Simson L. Garfinkel, John M. Abowd & Sarah Powazek, Issues Encountered 
Deploying Differential Privacy (ArXiv, Working Paper No. 1809.02201, 2018), 
https://arxiv.org/abs/1809.02201 [https://perma.cc/4FL6-JU46]. 
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regulations and policies for privacy protection.  It is important to note 
that the challenges of producing accurate statistics, while protecting 
privacy and addressing composition, are not unique to differential 
privacy.127  It is a fundamental law of information that privacy risk 
grows with the repeated use of data, and hence this risk applies to any 
disclosure limitation technique.128  Traditional SDL techniques—such 
as suppression, aggregation, and generalization—often reduce accuracy 
and are vulnerable to loss in privacy due to composition.129  The 
impression that these techniques do not suffer accumulated 
degradation in privacy is merely due to the fact that these techniques 
have not been analyzed with the high degree of rigor that differential 
privacy has been.130  A rigorous analysis of the effect of composition is 
important for establishing a robust and realistic understanding of how 
multiple statistical computations affect privacy.131    

A. The “Privacy Budget” 

As Section IV.B explains, one can think of the parameter 𝜀 as 
determining the overall privacy protection provided by a differentially 
private analysis.  Intuitively, 𝜀 determines “how much” of an 
individual’s privacy an analysis may utilize, or, alternatively, by how 
much the risk to an individual’s privacy can increase.  A smaller value 
for 𝜀 implies better protection (i.e., less risk to privacy).132  Conversely, 
a larger value for 𝜀 implies worse protection (i.e., higher potential risk 
to privacy).133  In particular, 𝜀 = 0 implies perfect privacy (i.e., the 
analysis does not increase any individual’s privacy risk at all).134  
Unfortunately, analyses that satisfy differential privacy with 𝜀 = 0 
must completely ignore their input data and therefore are useless.135  

Section IV.B also explains that the choice of ε is dependent on 
various normative and technical considerations, and best practices are 

 
 127. See Dwork et al., supra note 62, at 82. 
 128. See id. 
 129. See Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan & Adam Smith, 
Composition Attacks and Auxiliary Information in Data Privacy, 14 PROC. ACM SIGKDD INT’L 
CONF. ON KNOWLEDGE, DISCOVERY & DATA MINING 265, 265–66 (2008). 
 130. For a discussion of privacy and utility with respect to traditional statistical disclosure 
limitation techniques, see generally Bee-Chung Chen et al., Privacy-Preserving Data Publishing, 
2 FOUND. & TRENDS IN DATABASES 1 (2009). As shown in Example 5, techniques relying on 
aggregation do not necessarily compose well. Furthermore, this phenomenon has been 
demonstrated more generally with respect to a wide range of traditional statistical disclosure 
limitation techniques. See generally Ganta, Kasiviswanathan & Smith, supra note 129. 
 131. See id. at 266. 
 132. See Dwork et al., supra note 62, at 18. 
 133. See id. at 18. 
 134. See id. 
 135. See supra Part IV.B. 
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likely to emerge over time as practitioners gain experience from 
working with real-world implementations of differential privacy.  As a 
starting point, experts have suggested that ε be thought of as a small 
value ranging from approximately 0.01 to 1.136  Based on the analysis 
following Table 1, the Authors of this Article believe that adopting a 
global value of 𝜀 = 0.1, when feasible, provides sufficient protection.  In 
general, setting 𝜀 involves making a compromise between privacy 
protection and accuracy.  The consideration of both utility and privacy 
is challenging in practice and, in some of the early implementations of 
differential privacy, has led to choosing a higher value for 𝜀.137  As the 
accuracy of differentially private analyses improves over time, it is 
likely that lower values of 𝜀 will be chosen. 

The privacy loss parameter 𝜀 can be thought of as a “privacy 
budget” to be spent by different analyses of individuals’ data.  If a single 
analysis is expected to be performed on a given set of data, then one 
might allow this analysis to exhaust the entire privacy budget 𝜀.  
However, a more typical scenario is that several analyses are expected 
to be run on a dataset, and, therefore, one needs to calculate the total 
utilization of the privacy budget by these analyses. 138   

Fortunately, as Section IV.E discusses, a number of composition 
theorems have been developed for differential privacy.  In particular, 
these theorems state that the composition of two differentially private 
analyses results in a privacy loss that is bounded by the sum of the 
privacy losses of each of the analyses.139  

To understand how overall privacy loss is accounted for in this 
framework, consider the following example.  

 

Example 15 

Suppose a data analyst using a differentially private analysis tool 
is required to do so while maintaining differential privacy with an 
overall privacy loss parameter 𝜀 = 0.1.  This requirement for the 
overall privacy loss parameter may be guided by an interpretation 
of a regulatory standard, institutional policy, or best practice, 
among other possibilities.  It means that all of the analyst’s 
analyses, taken together, must have a value of ε that is at most 0.1.  

 
 136. See, e.g., Dwork, A Firm Foundation, supra note 46, at 91 (“[W]e tend to think of 𝜀 as, 
say, 0.01, 0.1, or in some cases, ln 2 or ln 3.”). 
 137. See supra notes 85–86 and the discussion following Table 1. 
 138. See Heffetz & Ligett, supra note 46, at 84 (discussing various examples in which the 
privacy budget is divided across several analyses). 
 139. See Dwork et al., supra note 62, at 28. 
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Consider how this requirement would play out within the following 
scenarios: 

One-query scenario: The data analyst performs a differentially 
private analysis with a privacy loss parameter 𝜀G = 0.1.  In this 
case, the analyst would not be able to perform a second analysis 
over the data without risking a breach of the policy limiting the 
overall privacy loss to 𝜀 = 0.1. 

Multiple-query scenario: The data analyst first performs a 
differentially private analysis with 𝜀G = 0.01, which falls below the 
limit of 𝜀 = 0.1.  This means that the analyst can also apply a second 
differentially private analysis, say with εI = 0.02.  After the second 
analysis, the overall privacy loss amounts to 

𝜀G + 𝜀I = 0.01 + 0.02 = 0.03, 

which is still less than 𝜀 = 0.1, and therefore allows the analyst to 
perform additional analyses before exhausting the budget.   

 
The multiple-query scenario can be thought of as if the data 

analyst has a privacy budget of 𝜀 = 0.1 that is consumed incrementally 
as she performs differentially private analyses, until the budget has 
been exhausted.140  Performing additional analyses after the overall 
budget has been exhausted may result in a privacy parameter that is 
larger (i.e., worse) than 𝜀.141  Any data use exceeding the privacy budget 
would result in a privacy risk that is too significant.   

Note that, in the sample calculation for the multiple-query 
example, the accumulated privacy risk was bounded simply by adding 
the privacy parameters of each analysis.  It is in fact possible to obtain 
better bounds on the accumulation of the privacy loss parameter than 
suggested by this example.142  Various tools for calculating the bounds 
on the accumulated privacy risks in real-world settings using more 
sophisticated approaches are currently under development.143  

 
 140. See Heffetz & Ligett, supra note 46, at 84. 
 141. See id. at 84, 87. 
 142. A number of papers explore ways to improve these bounds. See, e.g., Amos Beimel, 
Kobbi Nissim & Eran Omri, Distributed Private Data Analysis: Simultaneously Solving How and 
What, 2008 ADVANCES IN CRYPTOGRAPHY (CRYPTO) 451; Cynthia Dwork, Guy N. Rothblum & 
Salil Vadhan, Boosting and Differential Privacy, 51 IEEE ANN. SYMP. ON FOUND, COMPUTER SCI. 
51 (2010); Peter Kairouz, Sewoong Oh & Pramod Viswanath, The Composition Theorem for 
Differential Privacy, 63 IEEE TRANSACTIONS ON INFO. THEORY 4037 (2017); Jack Murtagh & Salil 
P. Vadhan, The Complexity of Computing the Optimal Composition of Differential Privacy, 2016 
THEORY OF CRYPTOGRAPHY 157. 
 143. See Gaboardi et al., supra note 78, at 7. 
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B. Accuracy 

This Section discusses the relationship between differential 
privacy and accuracy.  The accuracy of an analysis is a measure of how 
its outcome can deviate from the true quantity or model it attempts to 
estimate.144  There is no single measure of accuracy, as measures of 
deviations differ across applications.145  Multiple factors have an effect 
on the accuracy of an estimate, including measurement and sampling 
errors.146  The random noise introduced in differentially private 
computations similarly affects accuracy.147   

For most statistical analyses, the inaccuracy coming from 
sampling error decreases as the number of samples grows,148 and the 
same is true for the inaccuracy coming from the random noise in most 
differentially private analyses.  In fact, it is often the case that the 
inaccuracy due to the random noise vanishes more quickly than the 
sampling error.149  This means that, in theory, for very large datasets 
(with records for very many individuals), differential privacy comes 
essentially “for free.” 

However, for datasets of the sizes that occur in practice, the 
amount of noise that is introduced for differentially private analyses 
can have a noticeable impact on accuracy.  For small datasets, for very 
high levels of privacy protection (i.e., small 𝜀), or for complex analyses, 
the noise introduced for differential privacy can severely impact 
utility.150  In general, almost no utility can be obtained from datasets 
containing 1/𝜀 or fewer records.151  As Section VI.A discusses, this is 
 
 144. See INT’L STATISTICAL INST., THE OXFORD DICTIONARY OF STATISTICAL TERMS 4 
(Yadolah Dodge ed., 6th ed. 2006). 
 145. For example, a researcher interested in estimating the average income of a given 
population may care about the absolute error of this estimate (i.e., the difference between the real 
average and the estimate), whereas a researcher interested in the median income may care about 
the difference between the number of respondents whose income is below the estimate and the 
number of respondents whose income is above the estimate. 
 146. Measurement error is the difference between the measured value of a quantity and its 
true value (e.g., an error in measuring an individual’s height or weight), and sampling error is 
error caused by observing a sample rather than the entire population (e.g., the fraction of people 
with diabetes in the sample is likely to be different from the fraction with diabetes in the 
population). 
 147. See Muise & Nissim, supra note 110, at 94. 
 148. See JACOB COHEN, STATISTICAL POWER ANALYSIS FOR THE BEHAVIORAL SCIENCES 6 
(1977). 
 149. See generally Dwork et al., supra note 62; Smith, supra note 113; infra Appendix A.2. 
 150. See Muise & Nissim, supra note 110; Michael Hay et al., Principled Evaluation of 
Differentially Private Algorithms Using DPBench, 2016 PROC. ACM SIGMOD INT’L CONF. ON 
MGMT. DATA 139, 139, http://dl.acm.org/citation.cfm?id=2882931 [https://perma.cc/6BQD-PQCT]. 
 151. This rule of thumb follows directly from the definition of differential privacy. See 
Dwork et al., supra note 62, at 17, 18. Specifically, the parameter 𝜀 bounds the distance between 
the probability distributions resulting from a differentially private computation on two datasets 
that differ on one entry. Datasets containing only 1/𝜀 entries can differ on at most this number of 
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exacerbated by the fact that the privacy budget usually needs to be 
partitioned among many different queries or analyses, and thus the 
value of 𝜀 used for each query needs to be much smaller.  Much of the 
ongoing research on differential privacy is focused on understanding 
and improving the tradeoff between privacy and utility (i.e., obtaining 
the maximum possible utility from data while preserving differential 
privacy).152   

Procedures for estimating the accuracy of certain types of 
analyses have been developed.153  These procedures take as input the 
number of records, a value for 𝜀, and the ranges of numerical and 
categorical fields, among other parameters, and produce guaranteed 
accuracy bounds.154  Alternatively, a desired accuracy may be given as 
input instead of 𝜀, and the computation results in a value for 𝜀 that 
would provide this level of accuracy.155  Figures 4(a)–(d) illustrate an 
example of a cumulative distribution function and the results of its 
noisy approximation with different settings of the privacy parameter 
𝜀.156 

 

 

 

 

 

 

 

 

 

 
entries. Summing the differences over just 1/𝜀 entries reveals that, for any two datasets of this 
size, the differentially private mechanism produces distributions that are at distance 𝜀 ∙ G

	N	
= 1 at 

most. A distance of this size would usually not support any reasonable utility. 
 152. See, e.g., Dwork, Differential Privacy, supra note 46, at 6; DWORK & ROTH, supra note 
25, at 158; Vadhan, supra note 46, at 58–59, 77. 
 153. See Mohan et al., supra note 78, at 349; Gaboardi et al., supra note 78, at 15. 
 154. See Gaboardi et al., supra note 78, at 15. 
 155. See id. at 12, 15. 
 156. Figures 4(a)–(d) are adapted from Muise & Nissim, supra note 110, at 113. 
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Figure 4. Example of the Differentially Private Computation 
Output 

 
(a) CDF of Income in District Q 

(without noise) 
(b) CDF of Income in District Q 

(with	𝜀 = 0.005) 

 
 

(c) CDF of Income in District Q 
(with 𝜀 = 0.01) 

(d) CDF of Income in District Q 
(with 𝜀 = 0.1) 

 
Figure 4 illustrates the outcome of a differentially private 

computation of the CDF of income in fictional District Q.  Graph (a) 
presents the original CDF (without noise) and the subsequent graphs 
show the result of applying differentially private computations of the 
CDF with 𝜀 values of (b) 0.005, (c) 0.01, and (d) 0.1.  Notice that, as 
smaller values of 𝜀 imply better privacy protection, they also imply less 
accuracy due to noise addition compared to larger values of 𝜀. 

Another concept related to accuracy is truthfulness.  This term 
has appeared regularly, if infrequently, in the statistical disclosure 
limitation literature since the mid-1970s, though it does not have a 
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well-recognized formal definition.157  Roughly speaking, the SDL 
literature recognizes a privacy-protecting method as truthful if one can 
determine unambiguously which types of statements, when 
semantically correct as applied to the protected data (i.e., data 
transformed by a privacy technique such as k-anonymity), are also 
semantically correct when applied to the original sample data.158   

This concept has an intuitive appeal.  For data protected via 
suppressing some of the cells in the database, statements of the form 
“there are records with characteristics X and Y” are correct in the 
original data if they are correct in the protected data.  For example, one 
might definitively state, using only the protected data, that “some 
plumbers earn over $50,000.”  One cannot make this same statement 
definitively for data that have been synthetically generated.159   

One must be careful, however, to identify and communicate the 
types of true statements a protection method supports.  For instance, 
neither suppression nor synthetic data support truthful nonexistence 
claims at the microdata level.  Even if all Wisconsin residents are 
included in the data, a statement such as “there are no plumbers in the 
dataset who earn over $50,000” cannot be made definitively by 
examining the protected data alone if income or occupation values have 
been suppressed or synthetically generated.  Moreover, protection 
methods may, in general, preserve truth at the individual record level, 
but not at the aggregate level (or vice versa).160  For instance, local 
 
 157. See, e.g., Lawrence H. Cox & Gordon Sande, Techniques for Preserving Statistical 
Confidentiality, 42 PROC. INT’L STAT. INST. 6 (1979); Josep Domingo-Ferrer, David Sánchez & Jordi 
Soria-Comas, Database Anonymization: Privacy Models, Data Utility, and Microaggregation-
Based Inter-Model Connections, 15 SYNTHESIS LECTURES INFO. SECURITY, PRIVACY & TR. 1, 15 
(2016) (distinguishing between “perturbative masking (which distorts the original data and leads 
to the publication of non-truthful data) and non-perturbative masking (which reduces the amount 
of information, either by suppressing some of the data or by reducing the level of detail, but 
preserves truthfulness)”); Benjamin C. M. Fung et al., Privacy Preserving Data Publication: A 
Survey of Recent Developments, 42 ACM COMPUTING SURVS., no. 14, 2010, at 4 (describing, without 
defining, truthfulness at the record level by explaining that “[i]n some data publishing scenarios, 
it is important that each published record corresponds to an existing individual in real life. . . . 
Randomized and synthetic data do not meet this requirement. Although an encrypted record 
corresponds to a real life patient, the encryption hides the semantics required for acting on the 
patient represented.”). 
 158. See sources cited supra note 157.  Note that this definition of truthfulness is analogous 
to the general notion of avoiding false precision and is consistent with recognized principles for 
reporting statistical results. See, e.g., Tom Lang & Douglas Altman, Statistical Analyses and 
Methods in the Published Literature: The SAMPL Guidelines, 25 Medical Writing 31 (2016). 
 159. Synthetic data generation, by definition, uses a statistical model built from one set of 
data to generate new data. This preserves some of the statistical characteristics of the data, but 
not the original records themselves. See Fung et al., supra note 157, at 4. As a result, any 
measurement made on the synthetic dataset is related only probabilistically to measurements 
made on the original data and is associated with a measure of uncertainty. 
 160. See generally A. F. Karr et al., A Framework for Evaluating the Utility of Data Altered 
to Protect Confidentiality, 60 AM. STATISTICIAN 224 (2006) (discussing various approaches to 
evaluating the utility of data protected by statistical disclosure limitation techniques). 
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recoding and suppression, global recoding, and privacy criteria such as 
k-anonymity that use these operations in their implementation cannot 
produce reliably truthful statements about most aggregate 
computations.  As an example, statements such as “the median income 
of a plumber in Wisconsin is $45,000” or “the correlation between 
income and education in Wisconsin is .50” will not be correct.161   

Assessing the truthfulness of modern privacy protection 
methods requires generalizing notions of truthfulness to apply to 
statements about the population from which the sample is drawn.  
Scientific research and the field of statistics are primarily concerned 
with making correct statements about the population.162  Statistical 
estimates inherently involve uncertainty and, as mentioned above, 
there are many individual sources of error that contribute to the total 
uncertainty in a calculation.  These are traditionally grouped by 
statisticians into the categories of sampling and nonsampling errors.163  
Correct assertions about a statistical statement accurately 
communicate the uncertainty of the estimated value.164   

Thus, a statement is statistically truthful of protected data if it 
accurately communicates the uncertainty—inclusive of sampling and 
nonsampling errors—of the estimated population value.  Methods such 
as local suppression and global recoding are not always capable of 
producing statistically truthful statements.165  Fortunately, privacy 
 
 161. Correctly calculating and truthfully reporting the uncertainty induced by suppression 
would require revealing the full details of the suppression algorithm and its parameterization. 
Revealing these details allows information to be inferred about individuals. Traditional SDL 
techniques require that the mechanism itself be kept secret in order to protect against this type of 
attack. 
 162. In general terms, the goal of statistics is to make reliable inferences about a population 
or distribution based on characteristics calculated from a sample of data drawn from that 
population. For a mathematically detailed definition, see Allan Birnbaum, On the Foundations of 
Statistical Inference, 57 J. AM. STAT. ASS’N 269, 273 (1962). In similarly general terms, the goal of 
science is to yield reliable generalized knowledge about the world, such as knowledge about 
populations, general predictions, or natural laws. A widely recognized example capturing this 
distinction is the regulatory definition of scientific research found in the Federal Policy for the 
Protection of Human Subjects. See 45 C.F.R. § 46.102(l) (2018) (“Research means a systematic 
investigation, including research development, testing and evaluation, designed to develop or 
contribute to generalizable knowledge.”). 
 163. See Error Measurement, BUREAU OF LAB. STAT., 
https://www.bls.gov/opub/hom/topic/error-measurements.htm [https://perma.cc/66U6-HJFA] (last 
visited Sept. 13, 2018). 
 164. See MICAH ALTMAN, JEFF GILL & MICHAEL P. MCDONALD, NUMERICAL ISSUES IN 
STATISTICAL COMPUTING FOR THE SOCIAL SCIENTIST 260–61 (2004). 
 165. See LEON WILLENBORG & TON DE WAAL, ELEMENTS OF STATISTICAL DISCLOSURE 
CONTROL 28 (2001) (discussing how SDL techniques may introduce bias). For instance, Willenborg 
and de Waal note specifically that suppression of local values (i.e., cells, when used in the context 
of microdata) induces missing-data bias. Generalization takes many forms, and these forms are 
associated with different sources of statistical bias. For example, range generalization (e.g., top-
coding) involves collapsing the observed distribution of values, which statisticians recognize as 
yielding truncation bias, whereas global recoding to suppress an entire measure may induce 
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protecting methods such as synthetic data generation, record swapping, 
and differential privacy are capable of producing statements about 
statistical estimates that are truthful.166  For example, all of these 
methods could produce truthful statements such as “with a confidence 
level of 99%, the median income of a plumber is $45,000± $2,000.”167  
When produced by a truthful method, this statement correctly 
communicates the uncertainty of the statement, and would, roughly 
speaking,168 turn out to be true of the population in 99 out of 100 
independent trials. 

Generally, differentially private methods introduce uncertainty.  
However, it is a property of differential privacy that the method itself 
does not need to be kept secret.  This means the amount of noise added 
to the computation can be taken into account in the measure of accuracy 
and, therefore, lead to correct statements about the population of 
interest.  This can be contrasted with many traditional SDL techniques, 
which only report sampling error and keep the information needed to 
estimate the “privacy error” secret.  Any privacy-preserving method, if 
misused or misinterpreted, can produce incorrect statements.  
Additionally, the truthfulness of some methods, such as suppression 
and synthetic data generation, is inherently limited to particular levels 
of computations (e.g., to existence statements on microdata, or 
statements about selected aggregate statistical properties, 
respectively).  Differential privacy may be used truthfully for a broader 
set of computations, so long as the uncertainty of each calculation is 
estimated and reported.   

C. Complying with Legal Requirements for Privacy Protection 

Statistical agencies, companies, researchers, and others who 
collect, process, analyze, store, or share data about individuals must 
take steps to protect the privacy of the data subjects in accordance with 
various laws, institutional policies, contracts, ethical codes, and best 

 
missing-variable bias in a subsequently estimated model. See generally JACK JOHNSTON & JOHN 
DINARDO, ECONOMETRIC METHODS (4th ed. 1996) (discussing these types of biases). 
 166. Each of these methods can be applied in such a way that correctly calibrated measures 
of uncertainty accompany computed statistics. For a detailed treatment of using differential 
privacy to carefully calibrate the uncertainty in statistical estimates, see Cynthia Dwork et al., 
The Reusable Holdout: Preserving Validity in Adaptive Data Analysis, 349 SCI. 636 (2015). 
 167. From this statement, we can derive other conclusions, such as that, with 99% 
confidence, at least half of all plumbers earn over $43,000 annually. And if existence statements 
such as these are the main concern, one could use other differentially private algorithms to support 
making similar statements with near certainty—not merely 99% confidence. 
 168. For a precise treatment of frequentist statistical confidence intervals, see D.R. COX & 
D.V. HINKLEY, THEORETICAL STATISTICS 48–49, 208–09 (1974). 
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practices.169  In some settings, tools that satisfy differential privacy can 
be used to analyze and share data, while both complying with legal 
obligations and providing strong mathematical guarantees of privacy 
protection for the individuals in the data.170 

Privacy regulations and related guidance do not directly answer 
the question of whether the use of differentially private tools is 
sufficient to satisfy existing regulatory requirements for protecting 
privacy when sharing statistics based on personal data.171  This issue is 
complex because privacy laws are often context dependent, and there 
are significant gaps between differential privacy and the concepts 
underlying regulatory approaches to privacy protection.172  Different 
regulatory requirements are applicable depending on the jurisdiction, 
sector, actors, and types of information involved.173  As a result, 
datasets held by an organization may be subject to different 
requirements. In some cases, similar or even identical datasets may be 
subject to different requirements when held by different 
organizations.174  In addition, many legal standards for privacy 
protection are, to a large extent, open to interpretation and therefore 
require a case-specific legal analysis by an attorney.175   

Other challenges arise as a result of differences between the 
concepts appearing in privacy regulations and those underlying 
differential privacy.  For instance, many laws focus on the presence of 
“personally identifiable information” or the ability to “identify” an 
individual’s personal information in a release of records.176  Such 
concepts do not have precise definitions,177 and their meaning in the 
context of differential privacy applications is especially unclear.178  In 
addition, many privacy regulations emphasize particular requirements 
for protecting privacy when disclosing individual-level data, such as 
removing personally identifiable information, which are arguably 
difficult to interpret and apply when releasing aggregate statistics.179  
While in some cases it may be clear whether a regulatory standard has 
been met by the use of differential privacy, in other cases—particularly 

 
 169.   See supra Section I.A (discussing legal and ethical frameworks for data privacy). 
 170. See Kobbi Nissim et al., Bridging the Gap Between Computer Science and Legal 
Approaches to Privacy, 31 HARV. J.L. & TECH. 687, 697 (2018). 
 171. See id. at 733. 
 172. See id. at 730, 735. 
 173. See id. at 691; Schwartz & Solove, supra note 9, at 1847. 
 174. See Micah Altman et al., Towards a Modern Approach to Privacy-Aware Government 
Data Releases, 30 BERKELEY TECH. L.J. 1967, 2009 (2015). 
 175. See id. at 1972. 
 176. See Schwartz & Solove, supra note 9, at 1816. 
 177. See id. 
 178. See Nissim et al., supra note 170, at 691, 730–31. 
 179. See id. at 720. 
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along the boundaries of a standard—there may be considerable 
uncertainty.180  Regulatory requirements relevant to issues of privacy 
in computation rely on an understanding of a range of different 
concepts, such as personally identifiable information, de-identification, 
linkage, inference, risk, consent, opt out, and purpose and access 
restrictions.  The following discussion explains how the definition of 
differential privacy can be interpreted to address each of these concepts 
while accommodating differences in how these concepts are defined 
across various legal and institutional contexts.   

Personally identifiable information (PII) and de-identification 
are central concepts in information privacy law.181  Regulatory 
protections typically extend only to personally identifiable information; 
information not considered personally identifiable is not protected.182  
Although definitions of personally identifiable information vary, they 
are generally understood to refer to the presence of pieces of 
information that are linkable to the identity of an individual or to an 
individual’s personal attributes.183  PII is also related to the concept of 
de-identification, which refers to a collection of techniques devised for 
transforming identifiable information into non-identifiable information 
while also preserving some utility of the data.  In principle, it is 
intended that de-identification, if performed successfully, can be used 
as a tool for removing PII, or transforming PII into non-PII.184   

When differential privacy is used, it can be understood as 
ensuring that using an individual’s data will not reveal essentially any 
personally identifiable information specific to her.185  Here, the use of 
the term “specific” refers to information that is unique to the individual 
 
 180. See id. at 710. 
 181. See Schwartz & Solove, supra note 9, at 1819. 
 182. See id. at 1816. 
 183. For a survey of various definitions of personally identifiable information, see id. at 
1829–36. The Government Accountability Office also provides a general definition of personally 
identifiable information. See U.S. GOV’T ACCOUNTABILITY OFFICE, GAO-08-536, ALTERNATIVES 
EXIST FOR ENHANCING PROTECTION OF PERSONALLY IDENTIFIABLE INFORMATION (2008) (“For 
purposes of this report, the terms personal information and personally identifiable information are 
used interchangeably to refer to any information about an individual maintained by an agency, 
including (1) any information that can be used to distinguish or trace an individual’s identity, such 
as name, Social Security number, date and place of birth, mother’s maiden name, or biometric 
records; and (2) any other information that is linked or linkable to an individual, such as medical, 
educational, financial, and employment information.”), https://www.gao.gov/new.items/d08536.pdf 
[https://perma.cc/9DTU-H7S6]. 
 184. See, e.g., 34 C.F.R. § 99.31(b)(1) (2018) (provision for “[d]e-identified records and 
information,” which permits the release of education records “after the removal of all personally 
identifiable information provided that the educational agency or institution or other party has 
made a reasonable determination that a student’s identity is not personally identifiable, whether 
through single or multiple releases, and taking into account other reasonably available 
information”). 
 185. Note that the reference to “using an individual’s data” in this statement means the 
inclusion of an individual’s data in an analysis. 
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and cannot be inferred unless the individual’s information is used in the 
analysis. 

Linkage is a mode of privacy loss recognized, implicitly or 
explicitly, by a number of privacy regulations.186  As illustrated in 
Example 1, linkage typically refers to the matching of information in a 
database to a specific individual, often by leveraging information from 
external sources.187  Linkage is also closely related to the concept of 
identifying an individual in a data release, as identifying an individual 
is often accomplished via a successful linkage.188  Linkage has a 
concrete meaning when data are published as a collection of individual-
level records, often referred to as microdata.189  However, what is 
considered a successful linkage when a publication is made in other 
formats, such as statistical models or synthetic data, has not been 
defined and is open to interpretation.   

Despite this ambiguity, it can be argued that differential privacy 
addresses record linkage in the following sense.  Differentially private 
statistics provably hide the influence of every individual, and even 
small groups of individuals.190  Although linkage has not been precisely 
defined, linkage attacks seem to inherently result in revealing that 
specific individuals participated in an analysis.  Because differential 
privacy protects against learning whether or not an individual 
participated in an analysis, it can therefore be understood to protect 
against linkage.  Furthermore, differential privacy provides a robust 
guarantee of privacy protection that is independent of the auxiliary 
information available to an attacker.191  Indeed, under differential 
privacy, even an attacker utilizing arbitrary auxiliary information 
cannot learn much more about an individual in a database than she 
could if that individual’s information were not in the database at all.192   

 
 186. For example, by defining personally identifiable information in terms of information 
“linked or linkable to a specific student,” FERPA appears to emphasize the risk of a successful 
record linkage attack. See 34 C.F.R. § 99.3 (2018). The Department of Health & Human Services 
in guidance on de-identifying data in accordance with the HIPAA Privacy Rule includes an 
extended discussion of examples of record linkage attacks and de-identification strategies for 
mitigating them. See DEP’T OF HEALTH & HUMAN SERVS., supra note 10, at 15–17. Guidance on 
complying with European data protection law refers to linkability, “which is the ability to link, at 
least, two records concerning the same data subject or a group of data subjects (either in the same 
database or in two different databases),” as one of three risks essential to anonymization. Article 
29 Data Protection Working Party, Opinion 05/2014 on Anonymisation Techniques, at 11 (Apr. 10, 
2014) [hereinafter Article 29 Data Protection Working Party]. 
 187. See DWORK & ROTH, supra note 25, at 6–7; Fed. Comm. on Statistical Methodology, 
supra note 19, at 83. 
 188. See sources cited infra note 186. 
 189. See Fed. Comm. on Statistical Methodology, supra note 19, at 4. 
 190. See Dwork et al., supra note 62, at 17, 29. 
 191. See Ganta, Kasiviswanathan & Smith, supra note 129, at 265. 
 192. See id. at 271. 



2018] DIFFERENTIAL PRIVACY 263 

Inference is another mode of privacy loss that is implicitly or 
explicitly referenced by some privacy regulations and related guidance.  
For example, some laws protect information that enables the identity of 
an individual to be “reasonably inferred,”193 and others protect 
information that enables one to determine an attribute about an 
individual with “reasonable certainty.”194  When discussing inference as 
a mode of privacy loss, it is important to distinguish between two 
types—inferences about individuals and inferences about large groups 
of individuals.  Although privacy regulations and related guidance 
generally do not draw a clear distinction between these two types of 
inference,195 the distinction is key to understanding which privacy 
safeguards would be appropriate in a given setting.   

Differential privacy can be understood as essentially protecting 
an individual from inferences about attributes that are specific to her—
that is, information that is unique to the individual and cannot be 
inferred unless the individual’s information is used in the analysis.  
Interventions other than differential privacy may be necessary in 
contexts in which inferences about large groups of individuals, such as 
uses of data that result in discriminatory outcomes by race or sex, are 
a concern.196   

Risk is another concept that appears in various ways throughout 
regulatory standards for privacy protection and related guidance.  For 
example, some regulatory standards include a threshold level of risk 
that an individual’s information may be identified in a data release.197  
Similarly, some regulations also acknowledge, implicitly or explicitly, 
that any disclosure of information carries privacy risks, and therefore 
the goal is to minimize, rather than eliminate, such risks.198   

 
 193. See, e.g., E-Government Act of 2002, Pub. L. 107-347, 116 Stat. 2899, § 208 (2002) 
(codified as amended at 44 U.S.C. § 3501 (2012)) (“[T]he term ‘identifiable form’ means any 
representation of information that permits the identity of an individual to whom the information 
applies to be reasonably inferred by either direct or indirect means.”). 
 194. See, e.g., 34 C.F.R. § 99.3 (2018) (defining “personally identifiable information,” in 
part, in terms of information that would allow one to identify a student “with reasonable 
certainty”). 
 195. See, e.g., Article 29 Data Protection Working Party, supra note 186, at 12 (defining 
inference broadly as “the possibility to deduce, with significant probability, the value of an 
attribute from the values of a set of other attributes”). 
 196. See Micah Altman et al., Practical Approaches to Big Data Privacy Over Time, 8 INT’L 
DATA PRIVACY L. 29, 43 (2018); Micah Altman, Alexandra Wood & Effy Vayena, A Harm-Reduction 
Framework for Algorithmic Fairness, 16 IEEE SECURITY & PRIVACY 34 (2018). 
 197. The HIPAA Privacy Rule requires covered entities to use de-identification techniques 
prior to releasing data in order to create a dataset with only a “very small” risk of identification. 
45 C.F.R. § 164.514(b)(1) (2018). 
 198. Guidance on complying with the Confidential Information Protection and Statistical 
Efficiency Act (CIPSEA) requires agencies to “[c]ollect and handle confidential information to 
minimize risk of disclosure.” See Implementation Guidance for Title V of the E-Government Act, 
72 Fed. Reg. 33,362–33,363 (June 15, 2007). Guidance from the Department of Health & Human 
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Differential privacy can readily be understood in terms of risk.199  
Specifically, differential privacy enables a formal quantification of 
risk.200  It guarantees that the risk to an individual is essentially the 
same with or without her participation in the dataset,201 and this is 
likely true for most notions of risk adopted by regulatory standards or 
institutional policies.  In this sense, differential privacy can be 
interpreted as essentially guaranteeing that the risk to an individual is 
minimal or very small.  Moreover, the privacy loss parameter 𝜀 can be 
tuned according to different requirements for minimizing risk.202   

Consent and opt out are concepts underlying common provisions 
set forth in information privacy laws.203  Consent and opt-out provisions 
enable individuals to choose to allow, or not to allow, their information 
to be used by or redisclosed to a third party.204  Such provisions are 
premised on the assumption that providing individuals with an 
opportunity to opt in or out gives them control over the use of their 
personal information and effectively protects their privacy.205  However, 
this assumption warrants a closer look.  Providing consent or opt-out 
mechanisms as a means of providing individuals with greater control 
over their information is an incomplete solution as long as individuals 
are not fully informed about the consequences of uses or disclosures of 
their information.206  In addition, allowing individuals the choice to opt 
in or out can create new privacy concerns.  For example, an individual’s 
decision to opt out may—often unintentionally—be reflected in a data 
release or analysis and invite scrutiny into whether the choice to opt 
out was motivated by the need to hide compromising information.207   

The differential privacy guarantee can arguably be interpreted 
as providing stronger privacy protection than a consent or opt-out 
mechanism.  This is because differential privacy can be understood as 
 
Services recognizes that de-identification methods “even when properly applied, yield de-identified 
data that retains some risk of identification. Although the risk is very small, it is not zero, and 
there is a possibility that de-identified data could be linked back to the identity of the patient to 
which it corresponds.” DEP’T OF HEALTH & HUMAN SERVS., supra note 10, at 6. 
 199. See supra Section IV.C. 
 200. See id. 
 201. See id. 
 202. See supra Section IV.B. 
 203. See generally Daniel J. Solove, Introduction: Privacy Self-Management and the 
Consent Dilemma, 126 HARV. L. REV. 1880, 1884, 1901 (2013). 
 204. See, e.g., 34 C.F.R. § 99.37 (2018) (including a provision requiring educational agencies 
and institutions to offer students an opportunity to opt out of the disclosure of their personal 
information in school directories). 
 205. See Solove, supra note 203, at 1880. 
 206. See id. at 1885. 
 207. See, e.g., Kim Zetter, The NSA Is Targeting Users of Privacy Services, Leaked Code 
Shows, WIRED (July 3, 2014, 5:45 PM), https://www.wired.com/2014/07/nsa-targets-users-of-
privacy-services/ [https://perma.cc/2KVL-LKS4] (revealing that the National Security Agency’s 
surveillance efforts specially target users of privacy services). 
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automatically providing all individuals in the data with essentially the 
same protection that opting out is intended to provide.208  Moreover, 
differential privacy provides all individuals with this privacy 
guarantee.209  Therefore, differential privacy can be understood to 
prevent the possibility that individuals who choose to opt out would, by 
doing so, inadvertently reveal a sensitive attribute about themselves or 
attract attention as individuals who are potentially hiding sensitive 
facts about themselves.   

Purpose and access provisions often appear in privacy 
regulations as restrictions on the use or disclosure of personal 
information to specific parties or for specific purposes.  Legal 
requirements reflecting purpose and access restrictions can be divided 
into two categories.  The first category includes restrictions, such as 
those governing confidentiality for statistical agencies,210 prohibiting 
the use of identifiable information except for statistical purposes.  The 
second category broadly encompasses other types of purpose and access 
provisions, such as those permitting the use of identifiable information 
for legitimate educational purposes.211   

Restrictions limiting use to statistical purposes, including 
statistical purposes involving population-level rather than individual-
level analyses or statistical computations, are in many cases consistent 
with the use of differential privacy.  This is because, as Part IV explains, 
differential privacy protects information specific to an individual while 
allowing population-level analyses to be performed.  Therefore, tools 
that satisfy differential privacy may be understood to restrict uses to 
only those that are for statistical purposes, such as the definition of 
statistical purposes found in the Confidential Information Protection 
and Statistical Efficiency Act of 2002 (CIPSEA).212  However, other use 
and access restrictions, such as provisions limiting use to legitimate 
educational purposes, are orthogonal to differential privacy and require 
alternative privacy safeguards.213   
 
 208. See supra Part IV. 
 209. See id. 
 210. See, e.g., Confidential Information Protection and Statistical Efficiency Act of 2002, 
Pub. L. No. 107-347, 116 Stat. 2899, 2963, 2966 (2002) (codified as amended at 44 U.S.C. § 3501 
(2012)) (prohibiting the use of protected information “for any use other than an exclusively 
statistical purpose,” where statistical purpose “means the description, estimation, or analysis of 
the characteristics of groups, without identifying the individuals or organizations that comprise 
such groups”). 
 211. For example, FERPA generally prohibits the disclosure of personally identifiable 
information from education records, with limited exceptions such as disclosures to school officials 
with a legitimate educational interest in the information, 34 C.F.R. § 99.31(a)(1) (2018), or to 
organizations conducting studies for, or on behalf of, schools, school districts, or postsecondary 
institutions, § 99.31(a)(6). 
 212. See supra note 210. 
 213. See Altman et al., supra note 196, at 47. 
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The foregoing interpretations of the differential privacy 
guarantee can be used to demonstrate that, in many cases, a 
differentially private mechanism would prevent the types of disclosures 
of personal information that privacy regulations have been designed to 
address.  Moreover, in many cases, differentially private tools provide 
privacy protection that is more robust than that provided by techniques 
commonly used to satisfy regulatory requirements for privacy 
protection.  However, further research to develop methods for proving 
that differential privacy satisfies legal requirements and setting the 
privacy loss parameter 𝜀 based on such requirements is needed.214  In 
practice, data providers should consult with legal counsel when 
considering whether differential privacy tools—potentially in 
combination with other tools for protecting privacy and security—are 
appropriate within their specific institutional settings.215   

VII. TOOLS FOR DIFFERENTIALLY PRIVATE ANALYSIS 

At the time of this writing, differential privacy is transitioning 
from a purely theoretical mathematical concept to one that underlies 
software tools for practical use by analysts of privacy-sensitive data.  
The first real-world implementations of differential privacy have been 
deployed by companies such as Google,216 Apple,217 and Uber,218 and 
government agencies such as the US Census Bureau.219  Researchers in 
industry and academia are currently building and testing additional 
tools for differentially private statistical analysis.  This Part briefly 
reviews some of these newly emerging tools, with a particular focus on 
the tools that inspired the drafting of this primer.   

 
 214. For an extended discussion of the gaps between legal and computer science definitions 
of privacy and a demonstration that differential privacy can be used to satisfy an institution’s 
obligations under FERPA, see Nissim et al., supra note 170. 
 215. For a framework for selecting among differential privacy and other suitable privacy 
and security controls, see Altman et al., supra note 196, at 29; Altman et al., supra note 174, at 
2022. 
 216. See Úlfar Erlingsson, Vasyl Pihur & Aleksandra Korolova, RAPPOR: Randomized 
Aggregatable Privacy-Preserving Ordinal Response, 2014 PROC. ACM CONF. ON COMPUTER & 
COMM. SECURITY 1054, 1055 (2014) [hereinafter Erlingsson et al., RAPPOR]; Úlfar Erlingsson, 
Learning Statistics with Privacy, Aided by the Flip of a Coin, GOOGLE AI BLOG (Oct. 30, 2014), 
http://googleresearch.blogspot.com/2014/10/learning-statistics-with-privacy-aided.html 
[https://perma.cc/Q873-TZZS]. 
 217. Andy Greenberg, Apple’s ‘Differential Privacy’ Is About Collecting Your Data—–But 
Not Your Data, WIRED (June 13, 2016, 7:02 PM), http://www.wired.com/2016/06/apples-
differential-privacy-collecting-data/ [https://perma.cc/5A47-GP96]. 
 218. See Noah Johnson, Joseph P. Near & Dawn Song, Towards Practical Differential 
Privacy for SQL Queries, 11 PROC. VLDB ENDOWMENT 526, 526 (2018). 
 219. See OnTheMap Application for the Longitudinal Employer-Household Dynamics 
Program, US CENSUS BUREAU, http://onthemap.ces.census.gov [https://perma.cc/WNX3-CQFB] 
(last visited Sept. 25, 2018). 
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A. Government and Commercial Applications of Differential Privacy 

Since 2006, the US Census Bureau has published an online 
interface enabling the exploration of the commuting patterns of workers 
across the United States, based on confidential data collected by the 
Bureau through the Longitudinal Employer-Household Dynamics 
program.220  Through this interface, members of the public can interact 
with synthetic datasets generated from confidential survey records.221  
Beginning in 2008, the computations used to synthesize the data 
accessed through the interface have provided formal privacy 
guarantees that satisfy a variant of differential privacy.222  In 2017, the 
Census Bureau announced that it was prototyping a system that would 
protect the full set of publication products from the 2020 decennial 
Census using differential privacy.223 

Google, Apple, and Uber have also experimented with 
differentially private implementations.224  For instance, Google 
developed the RAPPOR system, which applies differentially private 
computations in order to gather aggregate statistics from consumers 
who use the Chrome web browser.225  This tool allows analysts at Google 
to monitor the wide-scale effects of malicious software on the browser 
settings of Chrome users, while providing strong privacy guarantees to 
individuals.226  The current differentially private implementations by 
the Census Bureau and Uber rely on a curator model—the model 
serving as the focus of most of this Article—in which a database 
administrator has access to and uses private data to generate 
differentially private data summaries.227  In contrast, the current 
implementations by Google’s RAPPOR and in Apple’s macOS 10.12 and 
iOS 10 rely on a local model of privacy, which does not require 
individuals to share their private data with a trusted third party; but 

 
 220. See id. 
 221. See OnTheMap Help and Documentation, US CENSUS BUREAU, 
https://lehd.ces.census.gov/applications/help/onthemap.html#!faqs [https://perma.cc/P7PU-4CL2] 
(last visited Oct. 4, 2018). 
 222. See Machanavajjhala et al., supra note 124, at 277. 
 223. See generally Garfinkel, Abowd & Powazek, supra note 126. 
 224. See Erlingsson et al., RAPPOR, supra note 216; Greenberg, supra note 217; Johnson, 
Near & Song, supra note 218, at 526. 
 225. See Erlingsson et al., RAPPOR, supra note 216. 
 226. Id. Other examples for using differential privacy (for which, to the best of the Authors’ 
knowledge, no technical reports have been published) include Google’s use of differential privacy 
in analyzing urban mobility and Apple’s use of differential privacy in iOS 10. See Andrew Eland, 
Tackling Urban Mobility with Technology, GOOGLE EUR. BLOG (Nov. 18, 2015), 
http://googlepolicyeurope.blogspot.com/2015/11/tackling-urban-mobility-with-technology.html; 
Greenberg, supra note 217. 
 227. See Garfinkel, Abowd & Powazek, supra note 126; Johnson, Near & Song, supra note 
218. 
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rather, answer questions about their own data in a differentially 
private manner.228  Each of these differentially private answers is not 
useful on its own, but many of them can be aggregated to perform useful 
statistical analysis. 

B. Research and Development Towards Differentially Private Tools 

Several experimental systems from academia and industry 
enable data analysts to construct privacy-preserving analyses without 
requiring an understanding of the subtle technicalities of differential 
privacy.  Systems such as Privacy Integrated Queries (PINQ),229 
Airavat,230 GUPT,231 Fuzz,232 DFuzz,233 and Ektelo234 aim to provide 
user-friendly tools for writing programs that are guaranteed to be 
differentially private, through the use of  differentially private building 
blocks235 or general frameworks such as “partition-and-aggregate” or 
“subsample-and-aggregate”236 for transforming non-private programs 
into differentially private ones.237  These systems rely on a common 
approach: they keep the data safely stored and allow users to access 
them only via a programming interface which guarantees differential 
privacy.238  They also afford generality, enabling one to design many 
types of differentially private programs that are suitable for a wide 
range of purposes.239  However, it can be challenging for a lay user with 
limited expertise in programming to make effective use of these 
systems.240  

The Authors of this Article are collaborators on the Harvard 
Privacy Tools Project, which develops tools to help social scientists 
collect, analyze, and share data while providing privacy protection for 
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 239. See id. at 2, 6. 
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individual research subjects.241  To this end, the project seeks to 
incorporate definitions and algorithmic tools from differential privacy 
into a private data-sharing interface (PSI) which facilitates data 
exploration and analysis using differential privacy.242  PSI is intended 
to be integrated into research data repositories, such as Dataverse.243  
It will provide researchers depositing datasets into a repository with 
guidance on how to partition a limited privacy budget among the many 
statistics to be produced or analyses to be run.244  It will also provide 
researchers seeking to explore a dataset available on the repository 
with guidance on how to interpret the noisy results produced by a 
differentially private algorithm.245  Through the differentially private 
access enabled by PSI, researchers will be able to perform rough 
preliminary analyses of privacy-sensitive datasets that currently 
cannot be safely shared.246  Such access will help researchers determine 
whether it is worth the effort to apply for full access to the raw data.247   

C. Tools for Specific Data Releases or Specific Algorithms 

There have been a number of successful applications of 
differential privacy with respect to specific types of data—including 
data from genome-wide association studies,248 location history data,249 
data on commuter patterns,250 mobility data,251 client-side software 
data,252 and data on usage patterns for phone technology.253  For 
differentially private releases of each of these types of data, experts in 
differential privacy have taken care to choose algorithms and allocate 
privacy budgets with the aim of maximizing utility with respect to the 
particular data set.254  Therefore, each of these tools is specific to the 
type of data it is designed to handle, and such tools cannot be applied 
in contexts in which the collection of data sources and the structure of 
the datasets are too heterogeneous to be compatible with such 
 
 241. Harvard University Privacy Tools Project, HARV. U., 
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optimizations.255  Thus, there remains a need for more general-purpose 
tools such as those described in the previous Section.  Beyond these 
examples, a wide literature on the design of differentially private 
algorithms describes approaches to performing specific data analysis 
tasks, including work comparing and optimizing such algorithms across 
a wide range of datasets.  For example, the recent development of 
DPBench,256 a framework for standardized evaluation of the accuracy 
of privacy algorithms, provides a way to compare different algorithms 
and ways of optimizing them.257   

VIII. SUMMARY 

As the previous Part illustrates, differential privacy is in initial 
stages of implementation in limited academic, commercial, and 
government settings, and research is ongoing to develop tools that can 
be deployed in new applications.  As differential privacy is increasingly 
applied in practice, interest in the topic is growing among legal scholars, 
policymakers, and other practitioners.  This Article provides an 
introduction to the key features of differential privacy, using 
illustrations that are intuitive and accessible to these audiences.   

Differential privacy provides a formal, quantifiable measure of 
privacy.  It is established by a rich and rapidly evolving theory that 
enables one to reason with mathematical rigor about privacy risk.  
Quantification of privacy is achieved by the privacy loss parameter 𝜀, 
which controls, simultaneously for every individual contributing to the 
analysis, the deviation between one’s opt-out scenario and the actual 
execution of the differentially private analysis.   

This deviation can grow as an individual participates in 
additional analyses, but the overall deviation can be bounded as a 
function of 𝜀 and the number of analyses performed.  This amenability 
to composition—or the ability to provide provable privacy guarantees 
with respect to the cumulative risk from successive data releases—is a 
unique feature of differential privacy.258  While it is not the only 
framework that quantifies a notion of risk for a single analysis, it is 
currently the only framework with quantifiable guarantees on the risk 
resulting from a composition of several analyses.   

 
 255. Id. 
 256. See Michael Hay et al., Principled Evaluation of Differentially Private Algorithms 
Using DPBench, 2016 PROC. ACM SIGMOD INT’L CONF. ON MGMT. DATA 139, 139, 
http://dl.acm.org/citation.cfm?id=2882931 [https://perma.cc/6BQD-PQCT]. 
 257. Id.; see also DPCOMP, https://www.dpcomp.org [https://perma.cc/72CL-86ZN] (last 
visited Sept. 25, 2018). 
 258.  See Ganta, Kasiviswanathan & Smith, supra note 129, at 265. 
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The parameter 𝜀 can be interpreted as bounding the excess risk 
to an individual resulting from her data being used in an analysis 
(compared to her risk when her data are not being used).  Indirectly, 
the parameter 𝜀 also controls the accuracy to which a differentially 
private computation can be performed.  For example, researchers 
making privacy-sensitive data available through a differentially private 
tool may, through the interface of the tool, choose to produce a variety 
of differentially private summary statistics while maintaining a desired 
level of privacy (quantified by an accumulated privacy loss parameter), 
and then compute summary statistics with formal privacy guarantees.   

Systems that adhere to strong formal definitions like differential 
privacy provide protection that is robust to a wide range of potential 
privacy attacks, including attacks that are unknown at the time of 
deployment.259  An analyst designing a differentially private data 
release need not anticipate particular types of privacy attacks, such as 
the likelihood that one could link particular fields with other data 
sources that may be available.  Differential privacy automatically 
provides a robust guarantee of privacy protection that is independent 
of the methods and resources used by a potential attacker. 

Differentially private tools also have the benefit of transparency, 
as it is not necessary to maintain secrecy around a differentially private 
computation or its parameters.  This feature distinguishes 
differentially private tools from traditional de-identification techniques 
which often require concealment of the extent to which the data have 
been transformed, thereby leaving data users with uncertainty 
regarding the accuracy of analyses on the data.  

Differentially private tools can be used to provide broad, public 
access to data or data summaries in a privacy-preserving way.  
Differential privacy can help enable researchers, policymakers, and 
businesses to analyze and share sensitive data that cannot otherwise 
be shared due to privacy concerns.  Further, it ensures that they can do 
so with a guarantee of privacy protection that substantially increases 
their ability to protect the individuals in the data.  This, in turn, can 
further the progress of scientific discovery and innovation. 

APPENDIX A. ADVANCED TOPICS 

This Article concludes with some advanced topics for readers 
interested in exploring differential privacy further.  This Appendix 
explores how differentially private analyses are constructed, explains 

 
 259.  Here, the term “privacy attacks” refers to attempts to learn private information 
specific to individuals from a data release. 
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how the noise introduced by differential privacy compares to statistical 
sampling error, and discusses the protection differential privacy can 
provide for small groups of individuals. 

A.1. How Are Differentially Private Analyses Constructed? 

As indicated in Part IV, the construction of differentially private 
analyses relies on the careful introduction of uncertainty in the form of 
random noise.  This Section provides a simple example illustrating how 
a carefully calibrated amount of random noise can be added to the 
outcome of an analysis in order to provide privacy protection.   

 

Example 16 

Consider computing an estimate of the number of HIV-positive 
individuals in a sample, where the sample contains 𝑛 = 10,000 
individuals of whom 𝑚 = 38 are HIV-positive.  In a differentially 
private version of the computation, random noise 𝑌 is introduced 
into the count so as to hide the contribution of a single individual.  
That is, the result of the computation would be 𝑚′ = 𝑚 + 𝑌 = 38 +
𝑌 instead of 𝑚 = 38. 

 
The magnitude of the random noise 𝑌 affects both the level of 

privacy protection provided and the accuracy of the count.260  Generally, 
greater uncertainty requires a larger noise magnitude and therefore 
results in worse accuracy—and vice versa.  In designing a release 
mechanism like the one described in Example 16, the magnitude of 𝑌 
should depend on the privacy loss parameter 𝜀.  A smaller value of 𝜀 is 
associated with a larger noise magnitude.  When choosing the noise 
distribution, one possibility is to sample the random noise 𝑌 from a 
normal distribution with zero mean and standard deviation 1/𝜀.261  
Because the choice of the value of 𝜀 is inversely related to the magnitude 
of the noise introduced by the analysis, the mechanism is designed to 

 
 260. See supra note 84 and accompanying text. The term “magnitude” refers to the 
magnitude of the random noise distribution as measured in parameters like the standard deviation 
or variance. This is not necessarily referring to the magnitude of the actual random noise sampled 
from the noise distribution. Generally, greater uncertainty requires a larger noise magnitude. 
 261. More accurately, the noise 𝑌 is sampled from the Laplace distribution with a mean of 
0 and standard deviation of √2/𝜀. The exact shape of the noise distribution is important for proving 
that outputting 𝑚+ 𝑌 preserves differential privacy, but can be ignored for the current discussion. 
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provide a quantifiable tradeoff between privacy and utility.262  Consider 
the following example.  

 

Example 17 

A researcher uses the estimate 𝑚′, as defined in the previous 
example, to approximate the fraction 𝑝 of HIV-positive people in 
the population. The computation would result in the estimate 
 

𝑝′ =
𝑚′
𝑛
=
38 + 𝑌
10,000

. 
 
For instance, suppose the sampled noise is 𝑌 = 4.2. Then, the 
estimate would be 
 

𝑝′ =
38 + 𝑌
10,000

=
38 + 4.2
10,000

=
42.2
10,000

= 0.42%, 
 
whereas, without added noise, the estimate would have been 𝑝 =
0.38%. 

 

A.2 Two Sources of Error: Sampling Error and Added Noise 

This Section continues with the example from the previous 
Section.  Note that there are two sources of error in estimating 𝑝: 
sampling error and added noise.  The first source, sampling error, would 
cause 𝑚 to differ from the expected 𝑝 ⋅ 𝑛 by an amount of roughly 
 

|𝑚 − 𝑝 ⋅ 𝑛| ≈ U𝑝 ⋅ 𝑛. 263 
 
For instance, consider how the researcher from the example 

above would calculate the sampling error associated with her estimate.  
 

 
 262. Note that this means that, when the sample size is small, the accuracy can be 
significantly reduced. For instance, if the sample size is similar in magnitude to 1/	𝜀, the amount 
of noise that is added can even be larger than the sample size. Differential privacy works best 
when the sample size is large, specifically when it is significantly larger than 1/	𝜀. 
 263. The standard deviation of the difference 𝑚 − 𝑝 ⋅ 𝑛  is U𝑝 ⋅ (1 − 𝑝) ⋅ 𝑛 ≈ U𝑝 ⋅ 𝑛	for small 
values of 𝑝. See BLITZSTEIN & HWANG, supra note 102, at 158–60. Thus, the expected value of the 
deviation |𝑚 − 𝑝 ⋅ 𝑛| is approximately U𝑝 ⋅ 𝑛.  See J. Martin Bland & Douglas G. Altman, Measuring 
Agreement in Method Comparison Studies, 8 STAT. METHODS MED. RES. 135, 147 (1999). 
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Example 18 

The researcher reasons that 𝑚′ is expected to differ from 𝑝 ⋅ 10,000 
by roughly 
 

U𝑝 ⋅ 10,000 ≈ √38 ≈ 6. 
 
Hence, the estimate 0.38% is expected to differ from the true 𝑝 by 
approximately 
 

6
10,000

= 0.06%, 
 
even prior to the addition of the noise 𝑌 by the differentially private 
mechanism. 

 
The second source of error is the addition of random noise 𝑌 in 

order to achieve differential privacy.  This noise would cause 𝑚′ and 𝑚 
to differ by an amount of roughly 

 
|𝑚′ −𝑚| ≈ 1/𝜀. 264 

 
The researcher in the example would calculate this error as follows.  
 

Example 19 

The researcher reasons that, with a choice of 𝜀 = 0.1, she should 
expect |𝑚′ −𝑚| ≈ 1/0.1 = 10, which can shift 𝑝′ from the true 𝑝 by 
an additional GV

GV,VVV
= 0.1%. 

 
Taking both sources of noise into account, the researcher calculates 
that the difference between noisy estimate 𝑝′ and the true 𝑝 is at 
most roughly 

0.06% + 0.1% = 0.16%. 
 

 
 264. The expectation of 𝑚W is exactly 𝑚 because the Laplace distribution has zero mean. 
The standard deviation of the difference	𝑚W − 𝑚 is exactly the standard deviation of Y, which was 
chosen to be 1/𝜀. 
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The two sources of noise are statistically independent,265 so the 
researcher can use the fact that their variances add to produce a 
slightly better bound: 
 

|𝑝′ − 𝑝| ≈ U0.06I + 0.1I = 0.12%. 

 
Generalizing from this example, we find that the standard 

deviation of the estimate 𝑝′ (hence the expected difference between 𝑝′ 
and 𝑝) is of magnitude roughly 

|𝑝W − 𝑝| ≈ XB
Y
+ G

YN
. 

 
Notice that for a large enough sample size 𝑛, the noise added for 

privacy protection (1/𝑛𝜀) will be much smaller than the sampling error 
(Up/n), due to the difference between having n and √n in the 
denominator, and thus privacy comes essentially “for free” in this 
regime.  Note also that the literature on differentially private 
algorithms has identified many other noise introduction techniques 
that can result in better accuracy guarantees than the simple technique 
used in the examples above.266  Such techniques are especially 
important for more complex analyses, for which the simple noise 
addition technique discussed in this Section is often far from optimal in 
terms of accuracy. 

A.3 Group Privacy 

By holding individuals’ opt-out scenarios as the relevant 
baseline, the definition of differential privacy directly addresses 
disclosures of information localized to a single individual.  However, in 
many cases, information may be shared between multiple individuals.  
For example, relatives may share an address or certain genetic 
attributes.   

How does differential privacy protect information of this nature?  
Consider the opt-out scenario for a group of 𝑘 individuals. This is the 
scenario in which the personal information of all 𝑘 individuals is 
omitted from the input to the analysis.  For instance, John and 
Gertrude’s opt-out scenario (𝑘 = 2) is the scenario in which both John’s 

 
 265. Events are said to be statistically independent when the probability of occurrence of 
each event does not depend on whether the other event occurs. See BLITZSTEIN & HWANG, supra 
note 102, at 56. 
 266.  See DWORK & ROTH, supra note 25, at 6, 22. 
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and Gertrude’s information is omitted from the input to the analysis.  
Recall that the parameter 𝜀 controls how much the real-world scenario 
can differ from any individual’s opt-out scenario.  It can be shown that 
the difference between the differentially private real-world and opt-out 
scenarios of a group of 𝑘 individuals grows to at most 

 
𝑘 ⋅ 𝜀. 267 

 
This means that the privacy guarantee degrades moderately as 

the size of the group increases.  Effectively, a meaningful privacy 
guarantee can be provided to groups of individuals of a size of up to 
about 

𝑘 ≈ 1/𝜀 
 
individuals.268  However, almost no protection is guaranteed to groups 
of 
 

𝑘 ≈ 10/𝜀 
 
individuals or greater.269  This is the result of a design choice to not a 
priori prevent analysts using differentially private mechanisms from 
discovering trends across moderately-sized groups.270 

 
 267.  See id. at 20; Dwork et al., supra note 62, at 29; Vadhan, supra note 46, at 361. 
 268.  See DWORK & ROTH, supra note 25, at 192. When k is approximately 1/𝜀, the group 
privacy guarantee corresponds to 𝑘 ⋅ 𝜀 ≈ 1. 
 269.  Guarantees that correspond to higher values than 𝑘 ⋅ 𝜀 ≈ 1 (say, 𝑘 ⋅ 𝜀 > 10) provide 
only weak privacy guarantees. 
 270.  See generally Dwork et al., supra note 62. 


