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Abstract

We show that a number of graph-theoretic counting problems remain AP-hard, indeed #P-complete,
in very restricted classes of graphs. In particular, we prove that the problems of counting matchings,
vertex covers, independent sets, and extremal variants of these all remain hard when restricted to planar
bipartite graphs of bounded degree or regular graphs of constant degree. As corollaries, we obtain results
about counting cliques in restricted classes of graphs, and counting satisfying assignments to restricted
classes of monotone 2-CNF formulae. To achieve these results, a new interpolation-based reduction
technique which preserves properties such as constant degree is introduced.

1 Introduction

From the time that Valiant [Val79a, Val79b] introduced the class #P of counting problems and gave a
complexity-theoretic explanation for the apparent difficulty of enumeration, counting has held an important
place in theoretical computer science. Although many researchers have continued Valiant’s work by adding
to the list of #P-complete problems,our understanding of the complexity of counting still pales in comparison
to our understanding of decision problems.

This is unfortunate, for counting, aside from being mathematically interesting, is closely related to im-
portant practical problems. For instance, reliability problems are often equivalent to counting problems.
Computing the probability that a graph remains connected given a probability of failure on each edge is
essentially equivalent to counting the number of ways that the edges could fail without losing connectiv-
ity. Counting problems also arise naturally in Artificial Intelligence research [Orp90, Pro90, Rot96]. As
explained by Roth [Rot96], various methods used in reasoning, such as computing “degree of belief” and
“Bayesian belief networks” are computationally equivalent to counting the number of satisfying assignments
to a propositional formula. Thus, understanding the types of propositional formulae for which counting
satisfying assignments is feasible tells us the extent to which these reasoning techniques might be useful.
Graph-theoretic counting problems such as the ones we consider also appear often in statistical physics (cf.,
[Har67, JS93, Jer87, LV99]).

Perhaps the most significant deficiency in our understanding of counting is that, in many cases, we do not
know whether hard counting problems remain hard when additional restrictions are placed on the problem
instances. A quick glance at Garey and Johnson’s famous catalogue of N'P-complete problems [GJ79]
reveals that the restricted-case complexity of most difficult decision problems is understood in detail. This
information is useful, because a complexity-theoretic hardness result often leads us to ask whether the
instances we are interested in possess special properties which make the problem tractable. Restricted-case
complexity results tell us when such special properties do not make a problem any easier, closing the gap
between what we can do and what we know we cannot.

While researchers have managed to prove a number of restricted-case hardness results for counting prob-
lems, the techniques have been somewhat ad hoc, requiring new ideas for each problem. One reason for
this is that many of the known reductions between counting problems employ ‘blow-up’ techniques, which
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destroy special properties of the original problem instance. This makes it difficult to deduce additional
restricted-case results from known restricted-case results. For example, although Dagum and Luby [DL92]
have shown that counting perfect matchings remains #P-complete when restricted to 3-regular bipartite
graphs, the standard reduction from counting perfect matchings to counting matchings in [Val79b] blows
up the degree of the graph and does not enable us to conclude that counting matchings remains difficult in
either regular or bounded-degree graphs.

Our results. In this paper, we introduce a new reduction technique that yields restricted-case complexity
results for many problems of interest. In particular, we show in Theorem 4.1 that counting matchings,
vertex covers, independent sets, and variants of these structures remains difficult in planar bipartite graphs
of bounded degree and in regular graphs of constant degree. As immediate corollaries, we deduce hardness
results for counting cliques and satisfying assignments in restricted classes of graphs and formulae. Our
main reduction technique, like some of those in [Val79b], is based on polynomial interpolation. However,
in contrast to the reductions in most earlier papers on the complexity of counting, our reductions preserve
graph properties such as regularity and degree-boundedness. Moreover, the technique is quite general, and
it can be applied to different problems in an almost mechanical manner.

A summary of our results, together with previous work, is given in Tables 1 and 2. Precise definitions
of the problems we consider can be found in Sections 3 and 4 and a more detailed summary of related
work is given in Section 2. We note that our results for vertex covers, independent sets, monotone 2-CNF
satisfying assignments, and cliques are essentially restatements of each other via well-known equivalences
(cf., Propositions 3.1 and 3.2), but we list them separately on Tables 1 and 2 for clarity and comparison to
previous work.

Several of our results answer open problems explicitly stated in previous work: counting maximal match-
ings in unrestricted graphs [Val79b], counting satisfying assignments to monotone 2-CNF formulae in which
every variable appears a bounded number of times [Rot96], and counting satisfying assignments to planar
2-CNF formulae [HMRS98].

When counting remains hard even in restricted cases, the natural alternative is to seek approzimate
counting algorithms. However, restricted-case complexity results for approximate counting are even harder
to come by than ones for exact counting. In Proposition 4.3, we obtain such a result, as we show that
counting minimum cardinality vertex covers is N'P-hard even in graphs of maximal degree 3. Perhaps this
could be used as a starting point for achieving other such results.

Techniques. Our main technique is best illustrated with an example: reducing #PERFECT MATCHINGS
to #MATCHINGS while preserving the sparsity of the input graph. Suppose we are given an oracle which
counts all matchings in a graph, and we want to use this oracle to count the number of perfect matchings in
a graph G. Let vy, ..., v, be the vertices of G. For s =0,...,n, consider the graph G obtained by adding
disjoint chains v; —v;; — v;2 — -+ — v;,5 to each vertex v; of G.

We will describe the number of matchings in G in terms of matchings in G. Consider any matching
M in G, and let us count the number of ways M can be extended to a matching in G4. For each vertex
v; of G which is matched by M, the edge (v;, v;,1) cannot be added to the matching, but we can choose an
arbitrary matching for the chain v;; — --- — v; 5. For each vertex v; which is not matched by M, we can
add an arbitrary matching of the chain v; — v;; —--- — v; s to M. Thus the number of ways to extend M
to a matching in G5 is exactly :rgxglf , where j is the number of vertices matched by M and z; denotes
the number of matchings in chain of ¢ nodes. Therefore, if we let A; denote the number matchings in G in
which exactly j nodes are matched, then G has exactly E?:o AJ:L“;J:ZJ:{ matchings. We can obtain these

values for s = 0,...,n with n + 1 oracle calls. Dividing by z', ;, we obtain the evaluation of the polynomial
flz) = Z?:o Azl at the points (z5/xs41) for s =0,...,n. Now, we’d like to use polynomial interpolation

to recover the coefficients of f, and in particular, the leading coefficient 4,, which is the number of perfect
matchings in G. We can do this provided we can compute the values x; and the evaluation points zs/xs1
are distinct.

Luckily, it is not hard to get a handle on z,, the number of matchings in a chain of s nodes. It turns out
that z is simply the s’th Fibonacci number! One can use the Fibonacci recurrence to compute the values
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xs, and the well-known closed form for the Fibonacci numbers (cf., [Tuc95, Sec. 7.3]) can be used to show
that their consecutive ratios zs/zs41 never repeat. (We formally prove all this in Lemma 6.3.)

In contrast to the previously known reduction from #PERFECT MATCHINGS to #MATCHINGS [Val79b],
the above reduction only increases the maximum vertex degree by one. It also preserves other graph proper-
ties, such as bipartiteness and planarity. Moreover, this technique generalizes quite easily to other problems
and graph properties (such as regularity). We used only a few properties of chains and matchings in the
reduction:

1. The number of matchings in the graphs G is related to matchings in the original graph G via polyno-
mial evaluation.

2. The evaluation points can be expressed in terms of the number of matchings in a chain of length s
(and the number in which one end vertex is not matched).

3. The evaluation points can be computed efficiently.
4. The evaluation points do not repeat.

We will see by inspection that analogues of the first two conditions still hold when we replace matchings with
a variety of other problems, and when chains are replaced with other gadgets. For the last two conditions,
we will use gadgets possessing a repetitive structure, so that the evaluation points satisfy simple linear
recurrence relations. These recurrences will certainly allow the evaluation points to be computed efficiently,
but we are left with proving that they do not repeat. To this end, in Section 6 we prove the following lemma,
which gives general conditions under which (ratios of) sequences defined by 2 x 2 linear recurrences do not
repeat.

Lemma 6.2 Let A, B,C, D, o, and yo be rational numbers. Define the sequences {x,} and {y,} recursively
by £p41 = Az, + By, and y,41 = Cxy, + Dy,,. Then the sequence {z, = x,/y,} never repeats as long as
all of the following conditions hold:

AD — BC #0 (1)

D? —2AD + A +4BC #0 (2)
D+A+#0 (3)

D? + A +2BC #0 (4)

D? 4+ AD + A* + BC #0 (5)

D?> — AD + A2 + 3BC #0 (6)
Byg — Cxg — (A~ D)zoyo # 0 (7)

Greenhill [Gre99] has observed that when the coefficients A,B,C,D are all positive, Conditions 2-6 are
guaranteed to hold, so only the first and last must be checked.

This lemma, with the approach outlined above, gives an almost mechanical way to find reductions that
preserve properties such as sparsity and regularity. We will refer to this method as the Fibonacci technique, in
reference to its simplest incarnation described above. The reductions we obtain from the Fibonacci technique
have some interesting features not present in many previous interpolation-based reductions, such as those
in [Val79b]. First, our interpolation points are typically rapidly converging sequences of rational numbers
(e.g. the consecutive ratios of Fibonacci numbers converge to the golden ratio), whereas previous methods
often interpolated at distinct integer points, which seems difficult to do without losing special properties of
the original graph. Second, we do not know how to reduce the number of oracle calls in these reductions
to a constant. This is in contrast to the reductions done in [Val79b]. There, Valiant asserts that all the
reductions can be done with a single oracle call, because the arithmetic can be simulated by operations on
the graph or formula in question. Here that does not appear to work, because the graph operations used by
Valiant blow up the degree.

Of course, it is not enough to have reductions that preserve properties such as sparsity and regularity; we
need initial hardness results for restricted classes of graphs from which to reduce. For this, we rely heavily



on results and techniques from previous work, such as [DL92, PB83, Jer87, Val79b, Rot96]. In particular, to
obtain results about planar graphs, we use the Fibonacci technique to refine the reduction of Jerrum [Jer87]
so that properties such as sparsity and bipartiteness are preserved, and also extend his approach to problems
involving vertex covers.

2 Related Work

Our results for counting in sparse bipartite graphs first appeared in the author’s undergraduate thesis [Vad95],
and the first version of this paper [Vad97] added our results for planar and regular graphs. Some of the
related work, namely that of Luby and Vigoda [LV97] and Bubley and Dyer [BD97a, BD97b], was done
subsequent to [Vad95], but independently of [Vad97]. We describe those works, together with more recent
developments, under the heading “Subsequent Work.” Throughout this section, we only discuss works that
address the same counting problems as us. The reader is referred to [Wel93, Pap94, Vad95, Jer95] for more
general surveys on the complexity of counting, and [Sin93, Kan94, MR95, Vad96, JS97] for approximate
counting.

Previous work. In his seminal paper [Val79a], Valiant introduced the class #P of counting problems and
proved that counting perfect matchings in bipartite graphs is #P-complete. In [Val79b], he showed that a
number of other counting and reliability problems are #P-complete, including the unrestricted versions of
most of the problems we study in this paper. Some of these problems, such as # VERTEX COVERS, were shown
to remain hard in bipartite graphs by Provan and Ball [PB83], who also proved hardness results for reliability
problems. Provan [Pro86] obtained restricted-case results (acyclic planar graphs of maximum degree 3) for
some reliability problems, but not the problems that we investigate. Jerrum [Jer87] showed that counting
matchings in planar graphs is #P-complete, in striking contrast to perfect matchings which can efficiently
counted in planar graphs via algorithms due to Fisher, Kasteleyn, and Temperley [Fis61, Kas63, TF61].
Broder [Bro86] proved that counting perfect matchings in bipartite graphs of minimum vertex degree at
least n/2 is #P-complete. Dagum and Luby [DL92] obtained even stronger results, showing that counting
perfect matchings remains hard even in k-regular and (n — k)-regular bipartite graphs, for any constant
k> 3.

From the start, the #P-completeness of counting satisfying assignments to a propositional formula was
seen to follow immediately from parsimonious versions of Cook’s reduction [Val79a]. Valiant [Val79b] proved
that the problem remained just as hard in the dramatically restricted case of monotone 2-CNF, which
was restricted further to bipartite monotone 2-CNF by Provan and Ball [PB83]. Roth [Rot96] showed that
counting satisfying assignments is #P-complete even in 2-CNF Horn formulae in which each variable appears
at most 3 times, along with giving a number of polynomial-time algorithms to count satisfying assignments
in other restricted types of 2-CNF formulae. Hunt, Marathe, Radhakrishnan, and Stearns [HMRS98] showed
that counting satisfying assignments to planar 3-CNF formulae is #P-complete, and gave a number of other
counting problems that are hard in planar graphs, including counting minimum cardinality vertex covers.

The general theory of approximate counting was developed in work of Stockmeyer [Sto85], Karp and
Luby [KLM89], and Jerrum, Valiant, and Vazirani [JVV86]. The first positive result for approximate counting
that relates to our work is due to Karp and Luby [KLM89], who gave gave a polynomial-time algorithm for
approximately counting satisfying assignments to a DNF formula. After that, most of the positive results
on approximate counting have come via the theory of “rapidly mixing Markov chains.” In the first dramatic
application of this approach to approximating a #P-complete counting problem, Jerrum and Sinclair [JS89]
analyzed a Markov chain proposed by Broder [Bro86] and thereby showed that it is possible to approximately
count the number of perfect matchings in a graph of minimum vertex degree at least /2 in polynomial
time. They also gave an algorithm for approximately counting all matchings in an arbitrary graph. Their
perfect matching algorithm was simplified by Dagum and Luby [DL92], who thereby obtained algorithms
for approximately counting perfect matchings in an-regular bipartite graphs for any constant « (and in fact
a more general class of graphs).

For the counting problems we consider, the only previous inapproximability results involved approxi-
mately counting independent sets (equivalently, vertex covers or cliques) in general graphs [Sin93, Zuc96].
Specifically, Sinclair [Sin93] used the ‘blow-up’ technique introduced in [JVV86] to show that it is NP-hard



€

to approximate the number of independent sets in a graph, even up to an approximation factor of on'” ,
for any constant € > 0. This result directly translates to the A"P-hardness of approximately counting the
number of satisfying assignments to a monotone 2-CNF formula to within a factor of 27" [Rot96] (cf.,
Proposition 3.1). Zuckerman [Zuc96], using techniques from the theory of probabilistically checkable proofs
(PCP) [FGLT96, AS98, ALM*98], showed that it is hard to approximate arbitrarily iterated logarithms
of the number of independent sets in a graph unless NP has slightly superpolynomial-time randomized
algorithms.

Subsequent work. Since this work was done, there has been a substantial improvement in our under-
standing of counting independent sets (equivalently, vertex covers) in sparse graphs. With respect to exact
counting, our results left a gap between the easy and hard cases; specifically, we showed that counting
independent sets in graphs of maximal degree 4 is #P-complete, whereas the problem is polynomial-time
solvable in graphs of maximal degree 2. For regular graphs, our hardness result only held for degrees
> 5. Greenhill [Gre99] has closed these gaps, showing that counting independent sets in 3-regular graphs
is #P-complete. We note that her hardness result uses ours as a starting point, and also makes use of
(generalizations of) our Fibonacci technique.

For approximately counting independent sets in sparse graphs, almost nothing was known at the time of
this work. There were no polynomial-time approximation algorithms and no inapproximability results other
than Sinclair’s [Sin93] and Zuckerman’s [Zuc96] results for unrestricted graphs and our result about count-
ing maximum cardinality independent sets. Luby and Vigoda [LV97] have remedied this situation in both
respects. First, using the Markov chain approach, they have given a polynomial-time algorithm to approxi-
mately count independent sets in graphs of maximal degree at most 4. (Extensions and improvements can
be found in [DG97, LV99, RT98].) Second, combining a blow-up technique of [Sin93] with PCP-based inap-
proximability results [PY91, AS98, ALM™98], they proved that for some (large) constant A, approximately
counting independent sets in graphs of maximal degree A is N'P-hard. Using a more sophisticated reduction
and results in [Has97], Dyer, Frieze, and Jerrum [DFJ99] reduce the degree for this inapproximability result
to A = 25, and give evidence that the Markov chain approach is unlikely to work for any A > 6. These
results suggest that the PCP Theorem, which has yielded many inapproximability results for optimization
problems, may also be the right starting point for proving hardness of approximate counting.

Bubley and Dyer [BD97b] have considered the problem of counting independent sets of a given size s in
a graph of maximal degree A. Our results on counting maximum cardinality independent sets imply that
the exact (resp., approximate) version of this problem is #P-complete (resp., N'P-hard) even when A = 3,
if there is no restriction on s. They show that in fact the approximate counting problem can be solved in
polynomial time for s < n/2(A 4+ 1) + 1, whereas the exact counting problem remains #P-complete under
this restriction.

In another work, Bubley and Dyer [BD97a] have proven some new results about counting satisfying
assignments in restricted classes of formulae. Instead of looking at 2-CNF formulae (as we do, and as
happens when translating results about independent sets), they do not restrict the number of variables per
clause, but only allow each variable to appear at most twice. They have shown that it is possible to efficiently
approximate the number of satisfying assignments to such formulae. On the other hand, they show that
exactly counting satisfying assignments remains #P-complete in CNF formula in which each literal appears
exactly once, and monotone CNF formulae in which variable appears at most twice. They also relate these
versions of #SAT to counting “sink-free orientations” in directed graphs.

3 Preliminaries

Nearly all of the counting problems we will be considering are in Valiant’s class #P, and the remainder are
closely related to #P. Below, we informally review some basic definitions. For a more detailed discussion of
#P, the reader is referred to any of [Wel93, Vad95, Jer95, Pap94].

Following [JVV86], #P can be defined in terms of p-relations. Let ¥ be a finite alphabet. A relation
R C ¥* x ¥* is said to be a p-relation iff it is polynomially-balanced, i.e. there exists a polynomial p such
that (z,y) € R = |y| < p(|z|); and it can be ‘checked quickly,” i.e. the language L = {(z,y) € R} can



be decided in polynomial time. The counting problem # R associated with R is: Given z € ¥*, output
|R(z)| = {y € * : (x,y) € R}|. #P is the class of all such counting problems.

In the above definition, = should be thought of as an instance of a problem, such as a boolean formula
F, and R(z) as the set of solutions associated with z, such as the satisfying assignments to F'. It is easy to
see that NP consists exactly of problems of the form: Given z, decide whether R(z) is nonempty. Thus #P
is the set of counting problems naturally associated with NP languages.

In contrast to AP, it turns out that standard Karp reductions (i.e., polynomial-time many-one reduc-
tions) are not sufficient to describe the relative difficulty of counting problems. It is easy to construct
counting problems which are obviously equivalent in difficulty, but for which there can be no one-to-one
correspondence between solution sets. Hence, following [Val79a], we consider a problem IT to be as hard as
a problem I' iff ' can be solved by a polynomial-time algorithm with an oracle for II, and we denote this
by I' o II. Such a reduction is known as a Cook reduction (or polynomial-time Turing reduction),
and this is the only form of reduction we will refer to in this paper. A problem II is said to be #7P-hard
iff all problems in #P reduce to it; if, in addition, II € #P it is called #P-complete. Lastly, a problem is
said to be #P-easy if it can be reduced to some problem in #P. Occasionally, we will be able to reduce
one problem to another via a polynomial-time mapping of problem instances that preserves the number
of solutions. Such a reduction is called a parsimonious reduction and these are important because they
preserve inapproximability.

Having defined all the complexity-theoretic notions we will need, we proceed to define the combinatorial
objects we will be studying. Let G = (V, E) be an undirected graph. The (maximum) degree of G is
the maximum number of edges incident to any vertex, and the minimum degree of G is defined similarly.
A vertex covers in G is a subset S of V such that every edge in E has at least one endpoint in S. An
independent sets in G is a subset S of V such that no two vertices in S are connected by an edge in E. A
cliques in G is a subset S of V' such that every two vertices in S are connected by an edge in E. It is well-
known that cliques, vertex covers, and independent sets are intimately related objects. Their relationship is
formalized by the following proposition:

Proposition 3.1 Let G = (V, E) be an undirected graph and let G = (V, E) be its (edge-)complement. Let F
be the monotone 2-CNF formula on variables V given by F = /\(u,v)eE(“VU)' For S CV,let xs:V—{0,1}
be the assignment which mapsv € V to 1 iff v € S. Then the correspondence S +» (V —5) « (V= 5) ¢ xs
establishes bijections between the vertex covers in G, the independent sets in G, the cliques in G, and the
satisfying assignments of F.

Proof By the definitions. O

We will also be examining the complexity of these problems in bipartite graphs. However, the study of
cliques in bipartite graphs is not very interesting, as the only cliques are edges. So, for a bipartite graph
G = (V,E), we will instead look at bipartite cliques, which are subsets S C V of vertices which can
be partitioned S = S; U S2 so that S; x So C E. To obtain an analogoue of Proposition 3.1, we say
that bipartite graphs G = (V, E) and H = (V,F) are bipartite complements if V' can be partitioned
V =V; UV; such that E C Vi x Vo and F = V; x V5 \ E. Note that a bipartite complement of a graph
can be found in polynomial time, and is unique if the graph is connected. Proposition 3.1 has the following
bipartite analogue.

Proposition 3.2 Let bipartite graphs G = (V, E) and H = (V, F) be bipartite complements. Then S C V
is an independent set in G iff it is a bipartite clique in H.

Proof By the definitions. O

The above propositions will enable us to immediately deduce hardness results for all of the above problems
given a hardness result for one of them. Therefore, we will concentrate primarily on the vertex cover problem.

We will also study extremal variants of all of the above problems. A vertex cover S is said to be minimal
iff no proper subset of S is a vertex cover. It is said to be of minimum cardinality iff there is no vertex
cover with fewer vertices. Similarly, we speak of maximal and maximum cardinality independent sets or
cliques.



By Proposition 3.1, it is easy to see that minimal vertex covers correspond to minterms of a monotone
2-CNF formula — that is, satisfying assignments for which changing any variable from true to false would
no longer satisfy the formula. It is clear that the smallest DNF form for a monotone formula F' is simply the
disjunction of all minterms, writing an individual minterm M as the conjunction of the variables in M. Hence,
restricted-case hardness results for counting minimal vertex covers immediately imply that determining the
size of the minimal DNF form is hard even for restricted classes of CNF formulae.

It is clear that if the decision problem associated with a p-relation is N'P-complete, then the associated
counting problem is also N"P-hard. Thus, complexity of counting results are only interesting when the related
decision problem is easy. The first nontrivial result of this form, due to Valiant, involved another type of
graph-theoretic structure, known as a perfect matching. A matchings in an undirected graph G = (V, E)
is a set M C E of edges, no two of which share an endpoint. A perfect matchings is a matching M in
which every vertex in V' is the endpoint of an edge in M. Valiant’s Theorem [Val79a] states that counting
perfect matchings in bipartite graphs is #P-complete. Matchings can be related to the other structures we
mentioned via the following construction:

Let G = (V, E) be an undirected graph. The line graph of G is the undirected graph L(G) = (E, H),
where (e1,es) € H iff e; and e, share an endpoint in G.

Lemma 3.3 Let G = (V, E) be an undirected graph. Then M <> E—M establishes a bijective correspondence
between matchings in G and vertex covers in the line graph of G.

Proof Notice that M C E is a matching in G iff M is an independent set in L(G). The relationship with
vertex covers follows from Proposition 3.1. O

One of the restricted classes of graphs that we will examine is the class of planar graphs. A graph is said
to be planar iff there exists an embedding of the graph in the plane (where the vertices are points and the
edges are curves connecting the points) in which no two edges intersect. The bijection of Proposition 3.1
suggests how to define planarity for CNF formulae. If F' is a formula in conjunctive normal form, we define
G(F) to be the graph whose vertices are the variables of F', where two vertices are connected if they lie in a
common clause. We call F' planar iff G(F') is planar.

There are several reasons for studying the problems described above. One is that many N P-completeness
results have come via reduction from decision versions of these problems, so it reasonable to guess that many
restricted-case #P-completeness results could come via reduction from restricted versions of these counting
problems. Another reason is that these problems are closely related to important problems in other areas. As
discussed in the introduction, several problems in Artificial Intelligence are equivalent to counting satisfying
assignments to a propositional formula [Orp90, Pro90, Rot96]. In addition, the counting problems we consider
arise naturally in statistical physics; specifically, counting matchings amounts to counting arrangements of
monomer-dimer systems, and counting independent sets is tantamount to computing the partition function
in the hard-core model of a gas (cf., [Har67, Jer87, LV99)]).

For their simplicity, their relationships to other important problems, and their potential to serve as
starting points for further results, the problems of counting matchings, vertex covers, and independent sets
are important ones to consider. So motivated, we now proceed to classify the cases in which these problems
are and are not tractable.

4 Formal Statement of Results

Before stating our negative results, we explain the entries in the “Polynomial-time Solvable” columns of
Tables 1 and 2 for which no reference is given. The tractability of problems such as counting matchings,
vertex covers, and their variants in graphs of maximal degree at most 2 follows from the simple structure of
these graphs: The connected components of such graphs are cycles and chains, and objects such as matchings
and vertex covers multiply across connected components, so it suffices to count them in cycles and chains. It
is not hard to write down closed forms or recurrences which can be used to count these structures in chains
and cycles. This is done explicitly in [Vad95]. The polynomial-time solvability of counting cliques in graphs
of maximal degree at most A follows from the fact that the largest clique in such a graph is of size at most



A. Thus, one can exhaustively check the < n® possibilities in polynomial time. Similarly, a planar graph
cannot, contain any clique of size > 5, nor any bipartite clique involving at least 3 vertices on both sides of
the partition, as these structures are nonplanar (cf., [Tuc95, Sec. 1.4]). Finally, as noted earlier, the only
cliques in a bipartite graph are singletons and pairs. All the other entries follow from the above observations
via Propositions 3.1 and 3.2.

We now state our negative results. Below, the counting problems are named as follows: the beginning
of the name indicates any restrictions on the input graph or formula, and the end of the name contains the
structures to be counted. A prefix of kA indicates that the maximum degree of the graph is at most k. An
example of a problem denoted this way is:

#7A-PLANAR BIPARTITE MAXIMAL MATCHINGS
Input: A planar bipartite graph G of degree < 7.
Output: he number of maximal matchings in G.

Theorem 4.1 The following problems are #P-complete (except for Problem 8, which is #P-hard"):
#4A-BIPARTITE MATCHINGS

#6A-PLANAR BIPARTITE MATCHINGS

#k-REGULAR MATCHINGS, any fizred k > 5

#5A-BIPARTITE MAXIMAL MATCHINGS

#7A-PLANAR BIPARTITE MAXIMAL MATCHINGS

#PLANAR BIPARTITE VERTEX COVERS

#3A-PLANAR BIPARTITE MINIMUM CARDINALITY VERTEX COVERS
#k-REGULAR MINIMUM CARDINALITY VERTEX COVERS, any fized k > 4
. #4A-PLANAR BIPARTITE VERTEX COVERS

10 #k-REGULAR VERTEX COVERS, any fizred k > 5

11. #5A-PLANAR BIPARTITE MINIMAL VERTEX COVERS

12. #REGULAR MINIMAL VERTEX COVERS

© 0 RS~

In the following corollary, we use the same naming conventions as above, with some additional ones.
When BIPARTITE CLIQUES appears, it refers to counting bipartite cliques in bipartite graphs. A prefix of kd
means that the minimum vertex degree is at least k. n refers to the number of vertices in the graph, except
when the input is restricted to be bipartite, in which case n is the number of vertices on each side of the
bipartition.

For problems involving satisfying assignments, 2S5AT denotes the problem of counting the satisfying as-
signments of the input formula F, MINTERMS the problem of counting the minterms of F' (i.e., the number
of clauses in the smallest DNF formula equivalent to F'), and MIN WEIGHT 2SAT the problem of counting
satisfying assignments with the fewest variables set to true. A prefix of kA (resp., .-REGULAR) indicates
that each variable appears at most (resp., exactly) k times. A bipartite 2-CNF formula is one in which the
variables can be partitioned into two sets such that no clause contains two variables from the same set. For
example:

#3A-PLANAR BIPARTITE MONOTONE MIN WEIGHT 2SAT

Input: A planar monotone formula F = (¢11 Ver2) A Acr1 Vera) on variables X UY, where X NY = §;
cii € X, ci2 €Y for each i; and each variable appears at most 3 times.

Output: The number of satisfying assignments to F' with the fewest variables set to ‘true’.

Corollary 4.2 The following problems are #P-complete (except for Problems 2, 9 and 17, which are #P-
hard):
1. #3A-PLANAR BIPARTITE MAXIMUM CARDINALITY INDEPENDENT SETS

LProblem 8 is not likely to be in #7P, because as testing whether a vertex cover is of minimum cardinality is A*P-hard [GJ79,
Thm 3.3]. But we will reduce it to a #P problem, proving that it is #P-easy. The failure of #P to be closed under reductions
and even simpler operations is discussed in [OTTW96].

In contrast, Problem 7 is in #P because in bipartite graphs, the size of the minimum cardinality vertex cover equals the
size of the maximum cardinality matching. The latter quantity can be found using any of the standard maximum cardinality
matching algorithms. See [Pap94, Problem 9.5.25].
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2. #k-REGULAR MAXIMUM CARDINALITY INDEPENDENT SETS, any fized k > 4
3. #4A-PLANAR BIPARTITE INDEPENDENT SETS

4. #k-REGULAR INDEPENDENT SETS, any fixzed k > 5

5. #5A-PLANAR BIPARTITE MAXIMAL INDEPENDENT SETS

6. #REGULAR MAXIMAL INDEPENDENT SETS

7. #(n — 3)0-MAXIMUM CARDINALITY CLIQUES

8. #(n — 3)0-MAXIMUM CARDINALITY BIPARTITE CLIQUES

9. #(n — k)-REGULAR MAaXIMUM CARDINALITY CLIQUES, any fized k > 4

10. #(n — 4)6-CLIQUES

11. #(n — 4)6-B1PARTITE CLIQUES
12. #(n — k)-REGULAR CLIQUES, any fized k > 5
13. #(n — 5)6-MAXIMAL CLIQUES

14. #(n — 5)6-MAXIMAL BIPARTITE CLIQUES

15. #REGULAR MAXIMAL CLIQUES

16. #3A-PLANAR BIPARTITE MONOTONE MIN WEIGHT 2SAT

17. #k-REGULAR MONOTONE MIN WEIGHT 2SAT, any fized k > 5
18. #4A-PLANAR BIPARTITE MONOTONE 2SAT

19. #k-REGULAR MONOTONE 2SAT, any fized k > 5

20. #5A-PLANAR BIPARTITE MINTERMS

21. #REGULAR MINTERMS

The following proposition contains our inapproximability result. The prefix of f-APPROX indicates the
problem of solving the given counting problem within a multiplicative approximation factor of f. Though
we have adopted Cook reductions as our notion of reducibility, the following results are actually proved via
Karp reductions to ‘gap promise problems’ (cf., [BGS98]).

Proplosition 4.3 The following problems are N'P-hard for every € > 0:
1. 2"17€—APPROX #3A-MINIMUM CARDINALITY VERTEX COVERS

2. 2”1_€—APPROX #3A-MAXIMUM CARDINALITY INDEPENDENT SETS
3. 2" T-APPROX #(n — 3)d-MAXIMUM CARDINALITY CLIQUES

4. 27" ~“_ APPROX #3A-MIN WEIGHT MONOTONE 2SAT

5 The Reductions

We state three facts about polynomial interpolation here that we will use repeatedly in our reductions. Let
K be a finite extension of Q. For any z € K, let ||z|| denote the number of bits needed to represent z. (If
K is a degree d extension, elements of K are represented by polynomials of degree < d — 1 with rational
coefficients, and arithmetic is done modulo some irreducible polynomial defining K.) For a polynomial
f in several variables over K, let ||f|| be the number of bits needed to represent f, which is the sum of
|la|| for the coefficients a of f. We use a dense representation of polynomials, which means that if some
monomial z%' - £ - .. z% has a nonzero coefficient in f, then the coefficients of all smaller monomials (i.e.,
any x3' ---z¢ such that e; < d; for all ) must be included when computing || f||. (Zero coefficients count as
one bit). For a rational function ¢ = f/g, let ||q]| = ||f]] + |lgl]-

Fact 5.1 Let F = K(y1,Y2,--.,Yk) be the field of rational functions over K in k variables for some constant
k. Let f(x) = E?:o a;x’ be a polynomial with coefficients in F. If (ag, Bo),- .-, (aa, B4) such that f(a;) = B
are known for distinct «; € F, then the coefficients of f can be recovered in time polynomial in max; ||a;l|,
max; || 3|, and d.

Fact 5.2 Let f(z,y) = Eiﬂ(n a;;jz'y’ be a polynomial in two variables with coefficients in K. If for each

of n + 1 distinct ; € K, n+ 1 distinct y;; € K along with the values z;; = f(x;,yij) are known, then the
coefficients of f can be recovered in time polynomial in max;; ||a;;||, max; ||2;||, max;; |yi;], end max;; ||2;]|.
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Fact 5.3 Let f(x) = Z?:o a;x’ be a polynomial with nonnegative integer coefficients. If (o, B) is known
where f(a) = B and a is a rational number satisfying a > (a; + 1) for each i, then the coefficients of f can
be recovered in time polynomial in |||, ||6]|, and d.

Proof (of Fact 5.1) Here we just use the Lagrange interpolation formula:

(=) (&~ ai1)(@ — am) (@ - aq)

flz) = Z:ﬁi <(ai —aq) (e — i) (@ — agpr) - (ag — ad))

This is a polynomial which agrees with f at d 4+ 1 distinct points, so it must be the same polynomial. By
multiplying out and collecting terms, we can obtain the coefficients of f all at once, in polynomial time. O

Proof (of Fact 5.2) Define, for each 0 <7 <n, g.(y) = 3, ; a;jz,y’. For each r, we know the evaluation
of g-(y) at the n + 1 points y,q, - - ., Yrn, SO We can recover the polynomials g,.(y) by Fact 5.1. These are the
evaluations of f(z,y), considered as a polynomial in z with coefficients in K (y), at the points zg, ..., Zy.
By Fact 5.1, we can recover the coefficients of f. O

Proof (of Fact 5.3) All we need to do is write # as a number in base a and the digits are our coefficients.
In more detail, note that E?;OI a;at < E?;OI (a—1)al =a? -1 < al so aq = |3/a’|, which we can obtain
quickly by just integer multiplication and division. Now consider f;(z) = f(z) — agz?. We can repeat this

process for fi, obtaining the coefficients in sequence. O

Proof (of Theorem 4.1) 1. #4A-BIPARTITE MATCHINGS

The reduction given in the Introduction reduces #PERFECT MATCHINGS to #MATCHINGS while only in-
creasing the degree by 1 and preserving bipartiteness. Dagum and Luby [DL92] have proven the former to
be #P-complete in 3-regular bipartite graphs; our result follows. (The facts about matchings in chains and
Fibonacci sequences needed for the reduction are given by Lemma 6.3.)

2. #6A-PLANAR BIPARTITE MATCHINGS
The starting point for this proof is the work of Jerrum [Jer87] which shows that counting matchings in planar
graphs is #P-complete. As is, his reduction produces graphs that are neither bipartite nor of bounded degree.
We show how an additional step added in the middle of his reduction can transform the graphs produced
into bipartite ones. We then show how a reduction like the one in Reduction 1 can replace the final step of
his reduction so that the degree does not blow up.

In the course of his reduction, Jerrum considers a weighted form of #MATCHINGS: Let G = (V, E) be
a graph in which each vertex v € V' is assigned a weight w(v) € C. If M C E is a matching in G, then we
let C' (M) be the set of vertices in V' which are covered by M, i.e. are endpoints of edges in M. Then the
weight of M is w(M) = [[,¢c () w(v), i-e. the product of the weights of all vertices not covered by M;
for a perfect matching M, w(M) = 1. The weighted matching sum W/(G) of G is )~ ,, w(M), where
this sum is taken over all matchings in G. Thus if all vertices have weight 1, W (G) is simply the number of
matchings in G. We say that G has k weights if the number of distinct values other than 1 occurring as
weights in G is at most k. The #kA-WEIGHTED MATCHINGS problem is the following:

#kA-WEIGHTED MATCHINGS
Input: A vertex-weighted graph G with k weights.

Output: W(G).

As usual, we also consider variants of this problem for bipartite, planar, and bounded degree graphs. The
prefix dA is used to restrict to graphs of degree at most d. Our reduction will proceed in three stages. The
first will show that computing W (G) is hard for planar graphs of bounded degree. The second will transform
any graph into a bipartite graph without changing W (G), losing planarity, or increasing the degree. The
third will remove weights one by one without losing any of the graph properties, showing that counting
matchings in bipartite planar graphs of bounded degree is hard.

12



2a. #3-REGULAR PERFECT MATCHINGS o #5A-2A\-PLANAR WEIGHTED MATCHINGS
Jerrum [Jer87] gives a reduction from #PERFECT MATCHINGS to #2\-PLANAR WEIGHTED MATCHINGS.
We observe that his reduction produces a graph of degree 5 when applied to a graph of degree 3.

2b. #5A-2X\-PLANAR WEIGHTED MATCHINGS o #5A-4\-PLANAR BIPARTITE WEIGHTED MATCHINGS
Consider the weighted graph H with vertex set {vy,vs,vs,v4}, edges (v1,v2), (v1,v3), (v2,v4), (v3,v4), and
vertex weights w(vy) = w(vs) = 1, w(ve) = ¢, w(vs) = ¢, where ¢ = €>/3 is a primitive cube root of unity.
(See Figure 1.) Straightforward calculations show the following:

V1 V4

V3

Figure 1: The graph H in Reduction 2b.

1. W(H) = W(H\ {v1,v}) = 1
2. WH\A{v1}) =W(H \{va}) =0

Above, the notation H \ S denotes the graph formed by removing from H all vertices in S and any edges
incident to them.

Now let G be a planar weighted graph with 2 weights and let e = (u,v) be any edge in G. Consider the
graph G’ obtained from G by removing edge e; adding a disjoint copy of H; and adding edges e; = (u, v1)
and es = (v,v4). (See Figure 2.) We will show that W(G') = W(G). Let M be any matching in G’ that

w(u)

< 6%
<
N—

Figure 2: The transformation of Reduction 2b.

doesn’t contain any of the edges of H. Then observation 2 above tells us that if M contains exactly one of
e1 and es, the net contribution to W(G') of all matchings formed by adding H-edges to M will be zero. If
M contains neither e; nor ey, then, since w(H) = 1, the net contribution of all matchings formed by adding
H-edges to M will be [Jw(z) where the product is taken over all vertices x ¢ C (M) U {v1, va,v3,v4}. This
is the same as the G-weight of M. Similarly, since w(H \ {v1,v4}) = 1, if M contains both e; and e, the net
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contribution will be the same as the G-weight of (M — {e1,ez}) U {e}. Thus, the net weight of all matchings
in G" accounts exactly for the net weight of all matchings in G and W(G') = W(G). Therefore, if we do this
procedure to all edges in G, we will end up with a planar bipartite graph G with 4 weights (¢ and (2 are the
only new weights) such that W (G) = W (G). It is clear that this reduction can be carried out in polynomial
time.

In the next part of the reduction, we remove weights one by one, only increasing the degree by 1. We use
the prefix kp to restrict to graphs with k& weights in which all vertices with weight 1 have degree at most
6 and all other vertices have degree at most 5. In particular, an instance of #5A-4\-PLANAR BIPARTITE

WEIGHTED MATCHINGS satisfies this condition for k = 4.

2c. #ku-PLANAR BIPARTITE WEICHTED MATCHINGS o #(k — 1)u-PLANAR BIPARTITE WEIGHTED
MATCHINGS

Jerrum [Jer87] gives a reduction which removes weights one by one, but his reduction blows up the degree.
To replace his reduction, we use the Fibonacci technique.

Let G be a bipartite planar graph with k& weights, in which all vertices with weight 1 have degree at
most 6 and all other vertices have degree at most 5. Let o # 1 be a vertex weight that occurs in G and let
V1, ..., U, be the vertices with weight a.. For each s =0, ..., m, construct a graph G as follows: Add nodes
v;,; to G for 1 <4 < m. Add edges to create disjoint chains v; — v;1 —v;2 —--- —v; 5 of s+ 1 nodes. Assign
each of the new vertices weight 1, assign vy, ..., v, weight 1, and keep all other vertex weights the same as
in G. Notice that G, is a valid instance of #(k — 1)u-PLANAR BIPARTITE WEIGHTED MATCHINGS.

Now, for every matching M in GG, we can obtain matchings in G4 by adding some of the new edges to
M. Suppose M covers exactly i of vy,...,v,. Then the net contribution to W (G5) of the matchings formed
by adding new edges to M is 2% (241 1/a)™ ‘wg(M), where z; is the number of matchings in a chain of
t vertices. Let A; = Y wg(M), where the sum is taken over all matchings in G which match exactly i
of v1,...,Um. Then W(Gs) = (zs11/a)™ > 1" Ai(axs/xs41)'. As in original application of the Fibonacci
technique, we can recover the coefficients A; with m + 1 oracle calls and polynomial interpolation, using
Lemma 6.3 to verify that the evaluation points are distinct. Then it is easy to compute W(G) = Z?io A,
as desired.

It may seem odd that the graphs G constructed in this reduction do not depend on the value of a. This
is because this reduction works even if « is regarded as an indeterminate — W (@) is then a polynomial in «,
and we are essentially recovering this polynomial. Finally, note that #0u-PLANAR BIPARTITE WEIGHTED
MATCHINGS is exactly #6A-PLANAR BIPARTITE MATCHINGS.

3. #k-REGULAR MATCHINGS, any fixed k£ > 5

We reduce from #(k—2)-REGULAR BIPARTITE PERFECT MATCHINGS, which was shown to be #P-complete
by Dagum and Luby [DL92]. Let H be the complete graph on k+1 vertices with one edge removed. Consider
the graph L* formed by taking s + 1 disjoint copies of H, labelled Hy, ..., Hy, and attaching y; to ;. for
each 0 <i < s, where x; and y; are the two vertices in H; of degree k — 1. (See Figure 3.)

X Yo X3 Y1 X2 Y2
Figure 3: The graph L3 in Reduction 3.

Now let G be any (k — 2)-regular graph on n nodes u1,us,...,u,. For any 0 < s < n, consider the
disjoint union of G with n copies of L*. Let the vertices of degree k — 1 in the ith copy of L¥ be labelled
v; and w;. We can form a k-regular graph G by connecting u; to both v; and w; for each i. Let A; be the
number of matchings in G in which exactly i vertices are unmatched. Then the number of matchings in G
is >0 g Ai(zs +4ys + 3zs) (ws + 2y, + 2,)" ¢, where x, is the number of matchings in L* in which v and w
— the two vertices of degree k — 1 — are both matched, y; is the number in which v but not w is matched,
and z is the number in which neither v nor w is matched. By Lemma 6.4, we can compute g, ys, and zg in
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polynomial time and the sequence (zs +4ys +325) /(s +2ys + 25) = 14+2(ys + 25) /(x5 + 2ys + z5) = never re-
peats. So, with n+ 1 oracle calls and interpolation, we can recover Ay, the number of perfect matchings in G.

4. #4A-BIPARTITE MATCHINGS & #5A-BIPARTITE MAXIMAL MATCHINGS

The reduction we use is from [PB83], though they use it for vertex cover problems. Given a bipartite
undirected graph G = (V, E) of degree < 4, construct G' = (V',E'), where V! = VU {v' : v € V}
and E' = E U {(v,v") : v € V}. Note that every matching W in G yields a unique maximal matching
W' =W U{(v,v") : v not matched by W} in G' and every maximal matching of G’ can be obtained in this
fashion.

5. #6A-PLANAR BIPARTITE MATCHINGS ¢ #7A-PLANAR BIPARTITE MAXIMAL MATCHINGS.
Notice that Reduction 4 preserves planarity, so it applies here, too.

6. #PLANAR BIPARTITE VERTEX COVERS

This result will come via a sequence of reductions beginning with # VERTEX COVERS, whose #P-completeness
follows immediately from Lemma 3.3 and the #P-completeness of #MATCHINGS. In the spirit of Reduc-
tion 2, the intermediate problems involve a generalization of vertex covers which we call an edge-weighted
sets. Suppose G is a graph in which each edge e = (u,v) is labelled with a triple d./s./n. and S is a set of
vertices in GG. Then define the weight of S with respect to e as:

d. if {u,v}N S| =2,
we(S) =4 s if {u,v}NS| =1,
ne if {u,v}N S| =0,

so that d., s., and n, correspond to weights if e is “doubly covered,” “singly covered,” or “not covered” by
S, respectively. The weight of S with respect to G is then defined as wg(S) = [], we(S). We now
define the edge-weighted sum EW(G) to be ) ¢ wa(S). Notice that if all the edges in G are labelled
1/1/0, then EW(G) is simply the number of vertex covers in G, so we have indeed generalized #VERTEX
CovERs. With this in mind, we call an edge of such a labelled graph normal if its label is 1/1/0. For
technical reasons, we will restrict to graphs with only a constant number of distinct labels. We will say a
graph labelled as above has k labels if the number of distinct labels other than 1/1/0 is at most k.

Our first aim in reducing #VERTEX COVERS to planar graphs is to simplify the types of graphs we deal
with. We call an embedding of a labelled graph G in the plane simple iff only normal edges are involved in
crossings and each edge is in at most one crossing. Consider the following computational problem:

kA-SIMPLE EDGE-WEIGHTED SUM
Input: A labelled graph G with k labels and a simple embedding of G in the plane.
Output: EW(G).

We now reduce #VERTEX COVERS to this problem.

6a. #VERTEX COVERS o #1A-SIMPLE EDCGE-WEIGHTED SUM
Let m be the number of edges in G = (V,E). For any s > 2m and any ¢ > 0 consider the graph
Gst = (Vs 1, Es,) formed by removing each edge e = (u,v) of G and replacing it with the s + 2 vertices u®,
v®, and w{,...,w§. Also add the edges (u,u®), (v,v®), (u,wf), (v,w§) and (w§,wf ;) fori=1,...,5 —1.
Furthermore, label the edges (u,u®) and (v,v¢) with the label (tFs_1/Fs)/0/1, where Fy is the sth Fibonacci
number, as defined in Lemma 6.3. Label all other edges 1/1/0. Notice that it is easy to obtain a simple
embedding of G5: from any embedding of G in the plane, as we have broken each edge of G into > 2m
pieces and the edges of the form (u,u¢) clearly make no difference.

For each set of vertices S in G, let us consider the (weighted) number of ways that we may extend S to

G5, i.e. let us compute
> we,, (T).

T:TNV=S

If an edge e = (u,v) of G is doubly covered by S, then there are x4(tFs_1/F5)? (weighted) ways of adding
vertices u®, v¢, and wy,...,w¢ to S, where x; is the number of vertex covers in a chain of k vertices. If e
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is singly covered by S, then there are zs_1tFs_1/Fs ways to add these vertices. Finally, if e is not covered
by S, there are z,_» ways. Thus, if A;; is the number of subsets of V' which doubly cover i edges in G' and
which singly cover j edges, then

EW(Gyp) = D Aij(@s (tFs1 /Fy)) (w51t Fsy [Fy) (w—2)™ 7.

i,j
Writing r, for Fy/Fj—1 and using the fact that z;, = Fi41 (from Lemma 6.3), we get

EW(Gar) = 3 Aij(Fusa /Fut) (¢, PV UL,

Using the relation rgy; =1+ 1/rs, we get Fs11/Fs_1 = 754175 = s + 1. Substituting this above, we get

EW(Goe) = F2y > Aij(8(ry 41, %)t

4,3

Lemma 6.3 tells us that the sequence {r;} does not repeat. Since z7! +272 # y~! +y~2 for any two distinct
positive real numbers z and y, the sequence {r;' +r; 2} also does not repeat. Thus, by Fact 5.2, evaluating
EW(G,,;) for each t = 0,...,m and for each s = 2m,...,3m + 1 enables us to recover the coefficients A;;.
> it j—m Aij is the number of vertex covers of G.

We’ve reduced the problem to dealing with simple embeddings of graphs; the next step is to the problem
of computing EW for planar graphs, as defined below:

kA-PLANAR EDGE-WEIGHTED SUM
Input: A labelled graph G with k labels and a planar embedding of G.
Output: EW(G).
The aim of the next reduction will be to replace crossings with planar gadgets without changing the value
of EW(G).

6b. #1A-SIMPLE EDGE-WEIGHTED SUM o« #5A-PLANAR EDGE-WEIGHTED SUM

First we make planar gadgets to compute elementary boolean formulae. We will write sets of vertices as
functions from the set of all vertices to {0,1}, where S(v) = 1 indicates that v € S and S(v) = 0 indicates
that v ¢ S. Consider the AND gadget in Figure 4.

z _— 1/0/ -1 o/1/0 %
AND ° o .

Figure 4: The AND gadget in Reduction 6b.

It is easy to see that for any a,b,c € {0,1},

|1 ifz=zAy.
Z waND(S) = { 0 otherwise.
S:S(z)=a,S(y)=b,S(z)=c
Thus, this gadget “forces” z to be x A y. Similarly, the OR gadget of Figure 5 forces z to be x V y. Observe
that an edge labelled 1/0/1 forces its endpoints to take on the same value and an edge labelled 1/0/0
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0/1/0

z — 1/0/ -1

OR .

0/1/0

Figure 5: The OR gadget in Reduction 6b.

forces both its endpoints to take on the value 1. The AND and OR gadgets constructed above along with
these observations, enable us to form a complex gadget to replace crossings: Take any simple embedding
of G = (V,E) in the plane. Consider any two (normal) edges e; = (a,c) and e2 = (b,d) which cross,
where a,b,c,d is the order of the endpoints going clockwise around the crossing starting with a. Let G’
be the graph with these edges removed. For any S C V, wg (S) = wg(S) if S contains at least one
endpoint of both e; and e, and wg(S) = 0 otherwise. The key observation is that S contains at least one
endpoint of both e; and ey iff S contains some pair of vertices in {a, b, ¢,d} which are adjacent, when these
vertices are considered in clockwise order. Thus, if we replace the crossing with a gadget which simply forces
(anb)V(bAc)V (ecAd)V (dAa) =1, then the edge-weighted sum does not change. This can be done with
the planar gadget of Figure 6.

1/0/1 1/0/1

1/0/1
1/0/1

1/0/1

1/0/1

Figure 6: Replacing crossings in Reduction 6b.

If we replace all crossings of G in this manner, we obtain a planar labelled graph G’ such that EW(G) =
EW(G’). The gadgets only use the labels 1/0/0,0/1/0,1/0/—1, and 1/0/1 in addition to the labels already
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present in G, so G’ uses 5 labels. Finally, notice that the transformation can be performed in polynomial
time.

Now we show that we can reduce the number of labels one at a time until there are none, showing that
planar vertex cover is #P-complete.

6c. #kA-PLANAR EDGE-WEIGHTED SUM o #(k — 1)A-PLANAR EDGE-WEIGHTED SUM

Let G = (V, E) be any planar graph. Pick any label A = (a,b,c) used in G, let L be the set of edges with
label A and let ¢ = |L|. Let G5  be the graph formed by replacing all edges e = (u, v) with label A in the
following fashion: Remove e, add vertices

_ e e e e e e
Ve ={ws,...,wi,uf,...,uf,vf,...,v7},

and add (normal) edges (u,w§), (v,wy), (u,uf), (u$,v5), (v5,v) for each 0 <i <5,0<j <t

a/b/c )
@ ]

Figure 7: The transformation of Reduction 6c.

Let S be a subset of V. For each edge e € L doubly covered by S, there are 253! (weighted) ways to
extend S using vertices of V.. For each edge e € L singly covered, there are 2! ways. For each e € L not
covered, there is only 1 way. Thus, if C;; is the collection of subsets of V' which doubly cover i edges of L
and singly cover j edges of L, and

1
Ay = Wszc; we(S),
cCyj

then ' '
EW(Goq) = > Aij(2°3)1(2")7.
2]
By Fact 5.2, if we can compute EW (G, ;) for t =0,...,¢, s =0,...,¢, we can recover the coefficients A;;
and thereby compute

EW(G) =) Aja'bic" .
i,J
Notice that #0A-PLANAR EDGE-WEIGHTED SUM is exactly PLANAR VERTEX COVERS.
6d. #PLANAR VERTEX COVERS o #PLANAR BIPARTITE VERTEX COVERS
Observe that the reduction of Provan and Ball [PB83] from # VERTEX COVERS to #BIPARTITE VERTEX

COVERS preserves planarity.

7. #PLANAR BIPARTITE VERTEX COVERS o #3A-PLANAR BIPARTITE MINIMUM CARDINALITY VERTEX
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COVERS

Let G be a bipartite planar graph. Consider the graph G’ formed by taking each vertex v in G, replacing
it with a cycle C,, of 2d(v) vertices where d(v) is the degree of v in G, and connecting the neighbors of v to
alternate vertices on C,. In order for this to preserve planarity, the neighbors must be connected with the
same orientation as they have in a planar embedding of G. Let M, be the vertices in C, which are connected
to vertices outside C,,, so |Cy| = 2|M,]|. See Figure 8 for an example.

Figure 8: The tranformation of Reduction 7.

Notice that every vertex cover in G’ must be of size at least s = ) _, d(v) to cover each cycle. Further
notice that the vertex covers in G are in bijective correspondence with the covers of size s in G, under the
map

S | Mou €\ M.

vES vgS

Finally, observe that G’ is bipartite (since G is), planar, and of degree at most 3.

8a. #k-REGULAR BIPARTITE PERFECT MATCHINGS o #(2k — 2)-REGULAR MINIMUM CARDINALITY
VERTEX COVERS, any fixed k > 3

This follows immediately from Lemma 3.3, noting that the line-graph of a k-regular graph is a (2k — 2)-
regular graph.

8b. #(k — 1)-REGULAR MINIMUM CARDINALITY VERTEX COVERS o #k-REGULAR MINIMUM CARDI-
NALITY VERTEX COVERS, any odd k& > 5

Let H be the complete graph on k+ 1 vertices with one edge removed. Consider the sequence of graphs { H” :

n > 0} defined as follows: HE is the complete graph on k+2 vertices, labelled uy, vy, . . ., U(k—1)/2, V(k=1)/2, U, V, W,
with the edges (u1,v1),..., (Uk-1)/2,V(k=1)/2), (4, V), (v, w) removed. H7’§+1 is formed by taking the disjoint
union of HF and a new copy of H and and connecting one of the vertices of degree k — 1 in H to the unique
vertex in H¥ of degree k — 1. See Figure 9.

u U4

M=K

w v1

Figure 9: The graph Hj in Reduction 8b.
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Let G be any (k — 1)-regular graph on n nodes u,us,...,u,. For any s > 0, consider the disjoint union
of G with n copies of HY . Let the vertex of degree k — 1 in the ith copy of HJ, be labelled v;. We can
form a k-regular graph G by connecting w; to v; for each i. Lemma 6.5 tells us that there are minimum
cardinality vertex covers (mcvc’s) in the ith copy of HY, both containing v; and not containing v;. Hence,
any mcve in Gy must be formed by taking a mcve in G and taking meve’s in each copy of HY,. If G has N
meve’s and they are of size ¢, then G has N(z,; + y,)°(z5)" ¢ meve’s, where x, is the number of mcve’s in
H¥_ containing the vertex of degree k — 1 and y, is the number not containing the vertex of degree k — 1.
With a single oracle call, we obtain the evaluation of the polynomial f(z) = Nz¢ at the point z; = 14+y,/zs,
which equals 1+ ((k+1)s+4)/(k — 1) by Lemma 6.5. Notice that f(z0)/f(z1) = (20/21)¢, so with just two
oracle calls we can recover ¢ and then N. (In fact, Reduction 8a produces instances G in which we know ¢,
so actually only one oracle call is necessary here.)

9. #3A-PLANAR BIPARTITE MINIMUM CARDINALITY VERTEX COVERS o #4A-PLANAR BIPARTITE
VERTEX COVERS

This is a standard application of the Fibonacci technique, almost identical to Reduction 1: Form G, by
attaching chains of length s to each vertex of the input graph G for s = 0,...,n. The number of vertex
covers in (G is essentially the evaluation of a polynomial whose coefficients are the number of vertex covers
in G of each size. By Lemma 6.3, these evaluation points are consecutive ratios of Fibonacci numbers, which
do not repeat, so by interpolation we can recover the number of minimum cardinality vertex covers in G.

10a. #4-REGULAR MINIMUM CARDINALITY VERTEX COVERS ¢ #5-REGULAR VERTEX COVERS

This is another application of the Fibonacci technique. Let G be any 4-regular graph on n nodes. As in
Reduction 8b, for 0 < s < n, form a 5-regular graph G by attaching n disjoint copies of the gadget H?
defined in that reduction. We recover the number of minimum cardinality vertex covers in G by polynomial
interpolation, using Lemma 6.6 to guarantee that the evaluation points are distinct.

10b. #(k —2)-REGULAR MINIMUM CARDINALITY VERTEX COVERS o #k-REGULAR VERTEX COVERS
This yet another application of the Fibonacci technique, with slightly different gadgets. Let H be the com-
plete graph on k + 1 vertices with two edges incident to some vertex v removed. Consider the sequence of
graphs {I¥ : n. > 0} defined as follows: I¥ is the complete graph on k+ 1 vertices with a single edge removed.
I* 11 is formed by taking the disjoint union of I¥ and a new copy of H and connecting the vertex of degree
k —2in H to the two vertices of degree k — 1 in I¥. Let (I*)* be the graph formed by adding to I* a new
vertex p and connecting p to the two vertices of degree k — 1 in IF.

Figure 10: The graph I? in Reduction 10b.

Let G be any (k — 2)-regular graph on n nodes u1,us, ..., u,. For any 0 < s < n, consider the disjoint
union of G with n copies of I*¥. Let the vertices of degree k — 1 in the ith copy of I* be labelled v; and
w;. We can form a k-regular graph G5 by connecting u; to both v; and w; for each . By Lemma 6.7 and
polynomial interpolation, the number of minimum cardinality vertex covers in GG can be recovered from the
number of vertex covers in G for s =0,...,n.

11. #4A-PLANAR BIPARTITE VERTEX COVERS o #5A-PLANAR BIPARTITE MINIMAL VERTEX COVERS
This reduction is identical to Reduction 4.

12. #5-REGULAR VERTEX COVERS o« #REGULAR MINIMAL VERTEX COVERS

Let G be any 5-regular graph on n nodes uy,us,...,u,. For r > 0, let J. be the complete bipartite graph
on (5+2r) + (5 + 2r) vertices with one edge removed. Consider the disjoint union of G with nr copies of J,.,
where these copies are named H; ; for 1 <4 <n,1 < j <r. Let G' be the graph formed by attaching each
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u; to the two vertices of degree of 4 + 2r in each of H; 1, H; 3, ..., H; . Notice that G’ is a (5 + 2r)-regular
graph. Notice that if G has A; vertex covers of size i, G' has Y .-, 4;(37)*(2")" ¢ minimal vertex covers.
Dividing by 2™, we get the evaluation of f(z) = Y1, A;z* at (3/2)". If we choose r = n, we can, by
Lemma 5.3, recover the coefficients of f in a single oracle call. The number of vertex covers in G is simply
the sum of the coefficients. O

>_>

Figure 11: The transformation in Reduction 12 for r = 2.
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Proof (of Corollary 4.2) These follow immediately from Theorem 4.1, Proposition 3.1, and Proposi-
tion 3.2. O

Proof (of Proposition 4.3) Here we only prove that the given problems are hard to approximate within a
factor 2"'/*"° . Proving inapproximability within 2" ° is more involved, and details can be found in [Vad95]
or [Vad97].

By Proposition 3.1, we may focus on vertex covers, and the other results follow. We reduce from o'
APPROX #VERTEX COVERS, which was shown to be NP-hard by Sinclair [Sin93] (see also Roth [Rot96]).
Note that, ignoring the planarity and bipartiteness conditions, Reduction 7 in the proof of Theorem 4.1 is a
parsimonious reduction from #VERTEX COVERS to #3A-MINIMUM CARDINALITY VERTEX COVERS. That
is, it transforms graphs G to graphs G’ such that the number of minimum cardinality vertex covers in G’
equals the number of vertex covers in GG. Note that if G has n vertices, then the number of vertices in G’
is n' < 2n2%, so an approximation within 2 )2 for G gives an approximation within 2" for G (for
sufficiently large n). O

6 Proving that Sequences Don’t Repeat

In this section, we develop general tools for proving that sequences defined by 2 x 2 linear recurrences do
not repeat, and apply them to deduce that the interpolation points in our reductions are distinct.

Lemma 6.1 Leta,b,c,d, be rational numbers and let o and 3 be nonzero complex numbers. Let the sequence
zn, be defined by

aa™ + bp"

ca™ + dpn

Then the sequence {z,} repeats iff ad —bc =0 or o/ is a root of unity.

n =

Proof Cross-multiplying, we see that z, = z,, iff (ad — be)(a™p"” — f™a™) = 0 iff ad — be = 0 or
(a/B)"~™ =1.0
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Lemma 6.2 Let A, B,C, D, zo, and yo be rational numbers. Define the sequences {z,} and {y,} recursively
by £p41 = Az, + By, and y,41 = Cxy, + Dy,,. Then the sequence {z, = x,/y,} never repeats as long as
all of the following conditions hold:

AD — BC #0 (1)

D? —2AD + A +4BC #0 (2)
D+A#0 (3)

D?>+ AD + A + BC #0 (4)

D?> + A +2BC #0 (5)

D? — AD + A2 + 3BC #0 (6)
Bys — Cxg — (A — D)zoyo # 0 (7)

Proof Let a and 3 be the eigenvalues of the matrix ( & B ) By basic linear algebra, as long as a and 3

are distinct, the general solution to the 2 x 2 system of linear recurrences describing z,, and y, is given by
T, = aa™ + bp™ and y,, = ca™ + bp", for some a,b,c,d € C. By the previous lemma, as long as a # 3 and
neither « nor f is zero, {z,} can repeat only if ad — bc = 0 or o/ is a root of unity.

If a/ 3 is a root of unity, it must be one of degree 1 or 2 over Q, as a/ € Q(a, ) = Q(«), which is a field
extension of degree < 2 over Q. The degree of a primitive nth root of unity over Q is ¢(n) (see, e.g., [IR90,
Sec. 13.2, Thm. 1]), where ¢ is the Euler totient function. By the formula ¢([]p) = [1p* " (p;i — 1) for
distinct primes p;, one sees that only n for which ¢(n) < 2 are 1,2,3,4, and 6. The irreducible polynomials
over Q for the corresponding primitive roots of unity are z — 1, z+1, 22+ 2 +1, 22+ 1, and 2> —z+ 1. So to
check that a/f is not a root of unity, we need only check that a/3 does not satisfy any of these polynomials.
Using the quadratic formula, we can express « and 3 in terms of A, B,C, and D. The first 6 conditions in
the lemma come from substituting these expressions into the polynomials that test whether (1) a or 3 is
zero, (2) a = f, and (3)—(6) a/f is a 2nd, 3rd, 4th, or 6th root of unity.

As long as a # (3 and neither are zero, we can solve for a, b, ¢, and d in terms of A, B, C, D, and the initial
conditions xg,yo. Condition 7 amounts to testing whether ad—bc = 0 (given that D? —2AD + A2+4BC # 0,
which is tested by Condition 2). O

As observed by Greenhill [Gre99], if A, B, C, and D are all positive (or if all are nonnegative and A # D),
then only Conditions 1 and 7 must be checked in the above lemma. We now apply this lemma to the various
sequences that arise in our reductions.

Lemma 6.3 Let F,, denote the nth Fibonacci number. That is, Fhp = 1, F} = 1, and F,42 = Fj,41 + F,,
for all n > 0. The number of matchings (resp., vertex covers) in a chain of n vertices is F,, (resp., F41).
Moreover, F11/F,, # Fi1/Fm for any n # m.

Proof Let z, be the number of matchings in a chain of n vertices. Given a chain C;, =v; —vy — -+ — v,
with n > 1, the number of matchings in C), in which v; is matched is z,_» and the number in which v is
unmatched is z,_1. Thus, z, = zn_1 + Tp_o, which is the Fibonacci recurrence. Also note that zg = 1
and z; = 1. To obtain the result for vertex covers, observe that C), is the line-graph of C),+1 and apply
Lemma 3.3. The “moreover” part of the lemma follows from Lemma 6.1 with A = B =C =x9 =yo = 1
and D =0. O

Lemma 6.4 For k > 4, let L* be the graph defined in Reduction 3 of the proof of Theorem 4.1. Let v and
w be the vertices in L* of degree k — 1. Let x5 be the number of matchings in L* in which both v and w
are matched, let ys be the number in which v is matched but w s not, and let z; be the number in which
neither v nor w is matched. Then xs,ys, and zs can be computed in time polynomial in s and the sequence
{ws = (ys + 2z5) /(x5 + 2ys + 2z5)} never repeats.

Proof For all m, let M,, denote the number of matchings in the complete graph on m vertices. Observe
that My, +1 = My, +mM,,_1. By inspection, we can verify that the sequences zs and y, satisfy the following
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recurrences:

Ts4+1 = (k‘ — I)Mk_la:s + (k‘ — I)Mk—lys + (k‘ — I)Mk_gys
= (k‘ — I)Mk_la:s + (Mk + (k — Q)Mk—l)ys
Ys+1 = kas + (Mk + Mkfl)ys

It is easy to see that ys and z; satisfy the same recurrence relations:

Yst1 = (B—=1)My_1ys + (My + (k= 2)Mi_1)zs
Zoyr = Mypys + (My + My 1)z,
The initial conditions are
20 = My
Yo = My —20=Mp— My,
ro = M1 —2yo — 2z = kMp_1 — My

We can compute z,,ys, and 2z, in polynomial time using the above recurrences. Because we have three
sequences here, we cannot apply Lemma 6.2 directly. However, the proof here is nearly identical to the one
of Lemma 6.2, so we do not include the details that are worked out there. Since the two pairs of sequences
satisfy the same recurrence relations, closed forms for these sequences will be of the form xz; = aa®+b38°%,ys =
ca® +dfp%, z; = ea® + f35. So

(c+e)a® + (d+ f)B?
(a+2c+e)a*+ (b+2d+ f)B*

This sequence will not repeat as long as a/3 is not a root of unity and (c+e)(b+2d+ f) — (d+ f)(a+2c+e) #
0. The conditions for a/8 to not be a root of unity are the same as Conditions 1-6 of Lemma 6.2; of
these, Conditions 2-6 are automatically satisfied since the recurrence coefficients are all positive. After
simplification, Condition 1 becomes:

s =

—M? — MM+ (k—=1)M7_, # 0
Dividing by M?_, and applying the quadratic formula, we can reformulate this condition as:

M, , 1+ 4k -3
My, 2

Moser and Wyman [MW55] have shown the following:?

L+ vAk =3 _ My _1+vAk+1
2 = My = 2

The proof of this fact is by straightforward induction, applying the the recurrence Myy; = My + kM.
The same proof actually shows that strict inequality holds (on both sides) for all k¥ > 4, as long as we use
k = 4 as our base case. Thus condition (1) is also satisfied.

The only condition left to check is (c+e)(b+2d+ f) — (d+ f)(a+2c+e) # 0. Using the initial conditions
to solve for these values, this reduces to

—2MP + (6 — 2k)My_ M}? + (4k — 6) M2 | My + (2k* —6k +4)MZ | #0

2Moser and Wyman discuss the number of solutions to 2 = 1 in the symmetric group on k elements. It is easy to see that
this quantity is exactly M.
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Dividing by M7 ,, we obtain a cubic polynomial in My/Mj)_, which vanishes iff

M, c {_k+2’1i\/;k—3}

My

The strengthened Moser-Wyman result shows that this cannot hold for any k& > 4. O

Lemma 6.5 Fiz k to be an odd integer > 3. Let HF be the graph defined in Reduction 8b of the proof of
Theorem 4.1. Let v be the unique vertex in HY of degree k — 1. Then the number of minimum cardinality
vertex covers in HY =~ containing v is (k—1)™"1/2 and the number not containing v is (k—1)™((k+1)m+4)/2.

Proof First, let H be the complete graph on k + 1 vertices with one edge removed. We now prove the
lemma by induction on m.

m = 0: It is easily verified that the size of the minimum cardinality vertex cover (mcvc) in HEF is k, that
there are (k — 1)/2 such covers containing v, and that there are 2 such covers not containing v.

Induction step: Let v’ be the vertex of degree k — 1 in Hg(m—l—l) and let v be the vertex of degree k — 1 in
HE . Now observe that, the smallest vertex cover in H is of size k — 1 and the only such cover omits both
the vertices of degree k — 1. The two copies of H added to HY,, to form Hf(mﬂ) cannot both simultaneously
be covered by covers of size k — 1, for this would leave the edge between them uncovered. Hence, the smallest
possible cover for Hf(m +1) could only come from taking a mcve on HY . a cover of size k — 1 on one of the
added copies of H and a cover of size k on the other copy of H. It is now easy to treat the problem in cases:
For each mcve of HY, . that contains v, there are k — 1 mcve’s in Hg(m—i-l) containing v" and k + 1 mcvc’s not
containing v’. For each mcve of HY = mnot containing v , there are 0 mcve’s containing v’ and k — 1 mcve’s not,
containing v'. By induction hypothesis, this gives a total of (k — 1)((k — 1)™*1/2) = (k — 1)™*2/2 mcvc’s
containing v’ and (k+1)((k—1)""1/2)+ (k—D[(k—1)™((k+1)m+4)/2] = (k— 1™ ((k+1)(m+1)+4)/2
not containing v'. O

Lemma 6.6 Fiz k to be an odd integer > 3. Let HF be the graph defined in Reduction 8b of the proof of
Theorem 4.1. Let v be the unique verter in HE of degree k — 1. Define x5 to be the number of vertex covers
in HY containing v and ys to be the number not containing v. Then x; and ys can be computed in time
polynomial in s and the sequence {z;/ys} never repeats.

Proof The sequences x; and y; satisfy the following recurrences:

Tsy1 = (k+ Dzs + kys
Yst1 = 2T+ Ys,
with initial conditions zy = (3k + 3)/2 and yo = 3. Conditions 1 and 7 of Lemma 6.2 are

—k+1 #£ 0
9k—9)/2 # 0

It is clear that these hold for all odd integers £ > 3. O

Lemma 6.7 Fiz k to be an integer > 3. Let (I¥)t be the graph defined in Reduction 10b of the proof of
Theorem 4.1. Let p be the vertex in (IF)T of degree 2. Define x5 to be the number of vertex covers in I¥
containing v and let ys be the number not containing v. Then x5 and ys can be computed in time polynomial
in s and the sequence {xs/ys} never repeats.

Proof The sequences x; and y; satisfy the following recurrences:
zsy1 = (k+1Dzs+ 3ys
Yst1 = (k—1)zs+y,,
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with initial conditions xg = k£ + 3 and yo = k. Conditions 1 and 7 of Lemma 6.2 are

—2k+4 # 0
E*—3k+9 # 0

It is easily verified that these hold for all integers k > 3. O

7 Conclusion

The study of counting and its computational complexity is both interesting and important. However, we
only have a limited understanding of how the complexity of counting problems behaves in restricted cases.
The results of this paper have improved the situation somewhat, but there are still many open problems.
We believe that the tools developed here are likely to prove useful in obtaining restricted-case results for
other counting problems.

Even regarding just the problems studied here, several unanswered questions stand out. For one, we
have shown that a number of problems are hard in bounded-degree bipartite graphs and constant-degree
regular graphs, but we do not know what happens if these conditions are imposed simultaneously. Do these
problems remain hard in bipartite k-regular graphs, or even just bipartite regular graphs? In addition, we
know that all the problems become tractable in degree 2, but some of our results only show hardness for
degree 4 or higher. Recall that, subsequent to this work, Greenhill [Gre99] has closed this degree gap for
counting independent sets, but other gaps still remain.

For approximate counting, the gaps between positive and negative results are even larger. For instance,
Luby and Vigoda [LV97] have given a polynomial-time algorithm for approximately counting independent
sets in graphs of degree 4, but the problem is only known to become AP-hard at degree 25, as shown by
Dyer, Frieze, and Jerrum [DFJ99]. An even larger gap in our knowledge is the long-standing open problem of
approximately counting perfect matchings in general graphs. (Recall that this can be solved in polynomial
time for dense graphs [JS89].) In the context of optimization problems, a substantial body of work has
yielded numerous tight inapproximability results based on the the PCP Theorem (cf., [CK00]). There is a
need to develop analogous general techniques for the inapproximability of counting problems, perhaps by
designing PCP systems that are tailored for this purpose.
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