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Abstract—Starting with Kilian (STOC ‘92), several
works have shown how to use probabilistically check-
able proofs (PCPs) and cryptographic primitives such
as collision-resistant hashing to construct very efficient
argument systems (a.k.a. computationally sound proofs),
for example with polylogarithmic communication com-
plexity. Ishai et al. (CCC ‘07) raised the question of
whether PCPs are inherent in efficient arguments, and to
what extent. We give evidence that they are, by showing
how to convert any argument system whose soundness is
reducible to the security of some cryptographic primitive
into a PCP system whose efficiency is related to that of
the argument system and the reduction (under certain
complexity assumptions).

Keywords-PCP, MIP, Argument, Black-Box Reduction

I. INTRODUCTION

Probabilistically checkable proofs (PCPs) are one

of the greatest successes of the interaction between

complexity theory and the foundations of cryptogra-

phy. The model of PCPs, and the equivalent model of

multi-prover interactive proofs, emerged from efforts

to find unconditional constructions of zero-knowledge

proofs [BGKW] and secure multiparty computation

protocols [BGW], [CCD] (replacing the constructions

of [GMW1] and [Yao], [GMW2], which relied on

computational complexity assumptions). But like their

predecessor, interactive proofs, they turned out to be ex-

tremely interesting from a purely complexity-theoretic

point of view [FRS], particularly through their surpris-

ing connection to the inapproximability of optimization

problems [FGL+]. The PCP Theorem [AS], [ALM+] is

one of the most celebrated results in complexity theory,

and has led to a large body of work that continues to

generate deep insights.

The PCP Theorem has also provided some returns

to cryptography. Specifically, Kilian [Kil] showed how
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to use PCPs to construct arguments (i.e. computa-

tionally sound proof systems) for NP in which the

communication complexity is polylogarithmic.1 Kil-

ian’s construction assumes the existence of collision-

resistant hash functions with subexponential security.

Its zero-knowledge version [Kil] and other variants

due to Micali [Mic] and Barak and Goldreich [BG],

have found further applications in cryptography [CGH],

[Bar]. Moreover, these argument systems provide the

asymptotically most efficient approaches for proving

general NP statements, and thus are appealing for appli-

cations such as proving the correctness of a delegated

computation or the safety of a program.
In this paper, we consider the question of whether

PCPs are really necessary for very efficient arguments.

One of our motivations is simply to better understand

the relation between these two fundamental notions in

complexity theory and cryptography. In addition, the use

of PCPs in efficient argument systems has the draw-

back that the protocols and their applications inherit

the somewhat complex construction and proof of the

PCP Theorem. While there have been some substantial

advances on simplifying the PCP Theorem [BS], [Din],

it remains quite nontrivial and the construction may still

be too involved to use in practice.
The question we study here has previously been

addressed by Ishai, Kushilevitz and Ostrovsky [IKO].

They showed that by using a stronger cryptographic

primitive, namely (additively) homomorphic encryption

rather than collision-resistant hashing, it is possible

to construct somewhat efficient arguments using the

simpler, exponential-length “Hadamard PCP” [ALM+]

rather than the polynomial-length PCPs of the full

PCP Theorem. Their arguments are only “somewhat

efficient” in that they have low (e.g. polylogarithmic)

communication from the prover to the verifier, but

the verifier-to-prover communication is polynomial (cf.

[GVW]).

1Another important parameter is the computation time of the
verifier, but we omit discussion of it in the introduction for the sake
of simplicity.
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Our Results. In this paper, we provide results suggest-

ing that PCPs are necessary for constructing efficient

arguments. Specifically, we consider a construction of

an argument system based on a wide range of crypto-

graphic primitives (e.g. collision-resistant hashing, the

RSA assumption, homomorphic encryption), where the

computational soundness is based on the security of

the primitive via an efficient reduction. That is, there

is an algorithm S such that if P∗ is any prover strategy

that convinces the verifier to accept a false statement,

then SP∗
“breaks” the cryptographic primitive.2 Indeed,

we provide a general formulation of a cryptographic

primitive and what it means to “break” such a primitive.

This formulation is quite general, covering standard

primitives such as one-way functions or homomorphic

encryption, and specific assumptions such as the hard-

ness of factoring. For such constructions we show how

to construct PCPs whose efficiency is related to that

of the argument system, the reduction, and a variety of

methods for “implementing” the cryptographic primitive

(discussed more below).

Informally, our construction works as follows. We

view the PCP oracle as specifying a prover strategy

PPCP for the argument system (i.e. the next-message

function). The PCP verifier:

1) Chooses an “implementation” C of the crypto-

graphic primitive (to be discussed more below)

and sends it to PPCP (with every query),

2) Runs the verifier of the argument system with

PPCP ,

3) Runs the reduction S with PPCP , and

4) Accepts if both the verifier of the argument system

accepts (in Step 2) and S does not break the

cryptographic primitive (in Step 3).

To establish soundness, we note that if PPCP con-

vinces the verifier of the argument system of a false

statement, then S will break the cryptographic primitive;

this means that at least one of the acceptance conditions

will fail. Thus, soundness of the PCP holds information-

theoretically, unconditionally and regardless of the im-

plementation chosen in Step 1 above. For completeness,

we need to ensure that the implementation (of the

cryptographic primitive) chosen in Step 1 cannot be

broken by SP , where P is the honest prover. We

provide several methods for achieving this, some based

on complexity assumptions and some unconditional.

Below we describe a few of these and the resulting PCP

parameters.

2Thus, we require that the reduction is “black-box” in its access
to P∗, which is true of all of the existing constructions [Kil], [Mic],
[BG], [IKO].

Implementation and Parameters. Arguments and

PCPs have many parameters, which we treat with as

much generality as possible. But for simplicity in the

current discussion, we focus on a few parameters of

interest, with typical settings. (In particular, we ig-

nore prover and verifier computation time.) Consider

an argument system constructed from a cryptographic

primitive C for a language L ∈ NP such that on

inputs of length n, the argument system has prover-
to-verifier communication complexity polylog(n) and

completeness and soundness error 1/3. Moreover, there

is a poly(n)-time reduction S such that for every x /∈ L
and every cheating prover P∗, if P∗ convinces the

verifier to accept with probability at least 1/3, then

SP∗
(C, x) “breaks” C with constant probability.

Three key parameters for us are the verifier-to-prover
communication complexity v = v(n); the number of

rounds r = r(n); and the number of queries S makes

to its oracle q = q(n). Kilian’s construction of argu-

ments from collision-resistant hash functions (CRHFs)

of exponential hardness [Kil] achieves v = O(log n+κ),
where κ is the seed length for a CRHF, and r, q = O(1)
(here we augment Kilian’s construction by basing it

on a PCP with constant query complexity, e.g. [AS],

[ALM+]). The Ishai et al. [IKO] construction from

homomorphic encryption has v = poly(n) and r, q =
O(1).

Given the above, our resulting PCPs for L will always

have constant completeness and soundness errors and

alphabet size polylog(n). The query complexity of our

PCPs will be r+q, matching the known constructions of

arguments from PCPs. The length of our PCPs is 2|C|+v ,

where C is the description length of the implementation

of the cryptographic primitive generated by the verifier.

Note that if |C| = O(v), then this matches known

constructions of arguments from PCPs, e.g. exponential-

length PCPs correspond to v = poly(n), and polyno-

mial length PCPs correspond to v = O(log n).
In this paper we present several approaches for im-

plementing the cryptographic primitive used by the con-

struction. Recall that our PCP verifier needs to generate

an implementation C of the cryptographic primitive that

cannot be broken by SP , where P is the honest prover

of the argument system. This is done in a variety of

different ways, we outline a few below:

• The general framework above is formalized in

Section IV, where we also present a natural (and

efficient) instantiation. Assume that we have a se-

cure implementation of the cryptographic primitive

in the usual sense, e.g. that collision-resistant hash

functions exist or that homomorphic encryption
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schemes exist, with whatever security parame-

ter is used by the underlying argument system

(typically polylog(n) to achieve polylogarithmic

communication) and security against poly(n)-time

adversaries. Such a primitive cannot be broken

by SP , because this is a poly(n)-time algorithm.

Then, since the implementation C is described by a

fixed algorithm (which gets a security parameter as

input), it can be hardwired into the PCP protocol.

Here we obtain a standard (information-

theoretically sound) PCP, where completeness

relies on the assumption that the implementation

of the primitive is secure. We view the assumption

we use here as quite natural, as if there were

no secure implementation of the primitive, then

the original construction was a significantly less

interesting object to begin with.

• In Section V, we consider more restrictive notions

of reductions, where all entities in the argument

system are given only black-box access to a cryp-

tographic primitive such as a one-way function,

pseudorandom function family, or collision resis-

tant hash family. We show that, in some cases, we

can minimize or remove altogether the computa-

tional assumptions made in the results presented

above (for such fully black-box reductions). To

do so, we observe that the implementation of the

cryptographic primitive we use need only be secure

against SP : a single fixed polynomial-time algo-

rithm. Obtaining an implementation that is secure

against a fixed polynomial time bounded algorithm

can be considerably easier than obtaining an imple-

mentation secure against any polynomial-time al-

gorithm (the usual requirement from cryptographic

primitives). For example, we can actually construct

such pseudorandom functions C with seed length

|C| = O(log n) using [IW], under the worst-case

complexity assumption that E = DTIME (2O(n))
does not have circuits of size 2o(n).

We can also obtain unconditional implementations

of collision-resistant hash functions against SP

using a family of poly(n)-wise independent hash

functions, yielding |C| = poly(n). Alternatively,

by picking poly(n) hash functions at random from

such a family and hardwiring them into the PCP

verifier and prover, we can obtain a nonuniform
PCP construction with |C| = O(log n). (This can

also be viewed as a uniform construction in the

common reference string model.)3

We emphasize that even though we use complexity

assumptions in some of our transformations, the result-

ing PCPs achieve the standard, statistical definition of

soundness — there does not exist any proof oracle that

can convince the verifier to accept a false statement,

except with small probability. Indeed, the complexity

assumptions are only used for the completeness of

(some of) our constructions, in order to ensure that

the honest proof oracle that describes the prover does

not inadvertently allow (the reduction S) to break the

primitive. This conditional completeness differs from

the soundness of the original argument system, which

also held under the same assumption, but was only

guaranteed against bounded malicious provers.

Perspective. Like all negative results regarding reduc-

tions, our results do not entirely preclude the possibility

of obtaining efficient arguments “without PCPs,” and

may be alternatively interpreted as suggesting avenues

for doing so. One possibility is to make non-black-box

use of the cheating prover strategy P∗ in the reduction

from breaking the cryptographic primitive to violating

soundness (or at least to use the fact that P∗ is efficient).

Another is to make use of reductions S that make many

queries q to the cheating prover, even when soundness is

violated with constant probability. (If q = poly(n), we

get a PCP with poly(n) queries, which is trivial.) An-

other direction is to use a reduction where a malicious

prover that breaks soundness with even say constant

probability only breaks the cryptographic primitive used

with polynomially small advantage. Such a reduction

would also yield only a PCP with polynomial query

complexity. Known reductions are not of this type.

Organization. Some of the proofs and results, as well

as an overview of known constructions of arguments

and their parameters, were omitted form this extended

abstract. See the full version for further details.

II. PRELIMINARIES AND DEFINITIONS

Let [n] be the set {1, 2, . . . n}. For x, y ∈ {0, 1}n we

use x◦y to denote the concatenation of x and y (a string

in {0, 1}2n). For a (discrete) distribution D over a set X
we denote by x ∼ D the experiment of selecting x ∈ X
by the distribution D. A function f(n) is negligible if

it is smaller than any (inverse) polynomial. We refer

the reader to [Gol1], [Gol2] for complete definitions of

standard cryptographic objects used in this work such

as one-way functions, distribution ensembles, collision

3Using the connection between PCPs and hardness of approxima-
tion, this construction can also be viewed as a randomized reduction
from L to an approximate version of MAXSAT (cf., [BGS]).
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resistant hash functions and pseudo-random functions.

We emphasize that throughout this work whenever we

make or refer to hardness assumptions, the assumptions

are always against non-uniform adversaries.
We present definitions of the two types of proof

system we consider in this work

Definition II.1 (Argument System (P,V) [BCC],

[GMR]). An argument system for a language L ∈
NT IME(g(n)) consists of two interactive machines.

P(x,w) gets an input x and advice w ∈ {0, 1}g(|x|)

(usually an NP witness to the input’s membership in

L). V(x) gets the input x. The requirements are:

• Completeness c(n). For every x ∈ L and corre-

sponding witness w, the interaction of V(x) with

P(x,w) (sometimes denoted (P(x,w),V(x)))
makes V accept with probability at least c(n)

• Soundness s(n) vs. size f(n). For every x /∈ L and

every cheating P∗ of (non-uniform) size at most

f(n), the probability that (P∗(x),V(x)) makes V
accept is at most s(n).

There are many complexity measures of an argument

system that will interest us, such as the communication

complexity (in each direction), the round complexity,

the size of the honest prover and verifier, and more.

Definition II.2 (PCP, Probabilistically Checkable Proof

(P,V)). An argument system for a language L ∈
NT IME(g(n)) consists of a non-adaptive (i.e. state-

less) machine P and an oracle machine V . P(x,w)
gets an input x, advice w ∈ {0, 1}g(|x|) (usually an NP
witness to the input’s membership in L) and an input

oracle query. V(x) gets the input x. The requirements

are:

• Completeness c(n) For every x ∈ L and cor-

responding witness w, the probability that V(x)
accepts when it is run with P(x,w) as its oracle

(we denote this as V(x)P(x,w)), is at least c(n).
• Soundness s(n) For every x /∈ L and every non-

adaptive cheating P∗ oracle, the probability that

V(x)P
∗(x) accepts is at most s(n).

There are many complexity measures of an PCP

system that have been extensively studied. In this work

we focus on the query complexity (the number of oracle

calls V makes), the alphabet size (the size of P’s

output), the PCP length (the number of possible P input

queries), the size of the honest prover and verifier, and

more.

III. CRYPTOGRAPHIC PRIMITIVES AND

REDUCTIONS

In this section we consider reductions from crypto-

graphic primitives to computationally sound argument

systems. We would like to consider a general notion

of a cryptographic primitive and of a reduction. The

notion we present here already captures a host of

cryptographic primitives such as one-way functions,

encryption schemes, specific assumptions, and more.

See the discussion below regarding how they fit the

formalism.

Definition III.1 (Cryptographic Primitive). A crypto-
graphic primitive (C, T ) is defined by a class C of

circuits and a testing procedure T . For a candidate C
in C (a circuit in the class), we say that an interactive

adversary A (κ, ε)-breaks C if:

Pr
T ’s coins

[
T A(C, 1κ, 1�1/ε�) accepts

]
≥ 2/3

On the other hand, we say C is (κ, ε)-secure against A
if:

Pr
T ’s coins

[
T A(C, 1κ, 1�1/ε�) accepts

]
≤ 1/3

where in both cases T is given access to the circuit

C. Throughout this work we deal only with C and

A for which there is a promise that either A breaks

C, or C is secure against A. The input parameter κ
is typically used to denote a security parameter that

bounds the input and output sizes of circuit C (circuits

that don’t meet this bound make T (C, 1κ, ·) accept

immediately).4 Intuitively, the parameter ε is used to

specify a “threshold” for the success probability of A
in breaking the primitive, see the examples below.

Note that the above notion can be extended to con-

sider classes of circuit distributions (rather than circuits,

or circuit distributions with support size 1, as done

above). For simplicity and clarity we use the more

restricted notion (Definition III.1 suffices to capture all

the cryptographic primitives we consider in this work).

We proceed by considering several examples and how

they fit into the above definition of a cryptographic

primitive:

1) One-Way Functions. Here C is the class of circuits

computing a function, say from {0, 1}κ to {0, 1}κ.

Given a circuit C and adversary A, the tester

T A(C, 1κ, 1�1/ε�) chooses O(1/ε) random inputs

to the function, applies C to each of the inputs,

and runs A on each of the outputs. T accepts

if the adversary inverts C on at least one of

these outputs (i.e. C(A(C(x))) = C(x) for one

of the inputs x). If f : {0, 1}∗ → {0, 1}∗
is a (length-preserving) one-way function, this

4Note that κ could also be used to bound the size of the circuit C,
we will not do so in this work.
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means that it is computable in polynomial time

(in its input length), and for every PPT A and

polynomial p(·), for sufficiently large κ, fκ is

(κ, 1/p(κ))-secure against Aκ. I.e., it holds that:

Pr[T Aκ(fκ, 1κ, 1p(κ)) accepts ] ≤ 1/3, where fκ

and Aκ are the restrictions of f and A to inputs

of length κ.

We can also consider subexponentially-hard one-

way functions. If f : {0, 1}∗ → {0, 1}∗ is

a (length-preserving) subexponentially-hard one-

way function, then it is computable in polynomial

time (in its input length), and for some constant

δ > 0 and every probabilistic algorithm A running

in time at most 2κδ

, for sufficiently large κ, fκ is

(κ, 1/2κδ

)-secure against Aκ.

2) Collision-Resistant Hash Families. Here C is the

class of circuits that evaluate families of shrinking

hash functions say from {0, 1}2κ to {0, 1}κ. I.e.,

C in C gets as input a seed s and an input

x and outputs the function Cs(x) = C(s, x).
The tester T chooses O(1/ε) random seeds

{s1, s2, . . . sO(1/ε)}, and asks A to find a collision

on each of them, it accepts if A succeeds on

at least one (i.e. if given for any of the seeds

si, the adversary A(si) finds x and x′ such that

C(si, x) = C(si, x
′)).

3) Hardness of Factoring. We can also view specific
number-theoretic (or other) assumptions as cryp-

tographic primitives in our framework. To cap-

ture, for example, the assumption that factoring

is hard, we have a single circuit Cκ for every

value of the security parameter. This circuit Cκ

is the canonical circuit that pick two random

κ/2-bit primes and outputs their product. The

tester T takes O(1/ε) random samples (num-

bers) {n1, n2, . . . , nO(1/ε)} from the distribution.

It then asks A to factor each of these numbers, and

accepts if A succeeds on at least one (A finds a

non-trivial factorization of some ni into two prime

factors).

4) Homomorphic Encryption Scheme. A homomor-

phic encryption scheme is a (public or secret key)

scheme with a special homomorphic evaluation

procedure that can be used on a sequence of

ciphertexts to compute an encryption of some

function f of the plaintexts (common functions

include addition and multiplication). The scheme

remains semantically secure against an adversary

who is given a circuit computing this homo-

morphic evaluation procedure. See [Gol2] for

more details on semantically secure encryption

schemes.

In this example, C is the class of circuits that per-

form key generation, encryption, decryption and

homomorphic evaluation procedures. The tester

uses C ∈ C to generate a key and feeds the ad-

versary with this key and with the homomorphic

evaluation procedure (for public-key schemes, the

adversary is also given the encryption procedure).

The tester and adversary then run the semantic se-

curity game O(1/ε2) times, and the tester accepts

if the adversary has advantage ε in breaking the

scheme’s semantic security in these experiments.

Discussion. Note that the definition of a cryptographic

primitive is decoupled from the question of whether

there exists an implementation of the primitive that is

(κ, ε)-secure against a collection of adversaries. We

note also that the related work of Naor [Nao] considers

general notions of cryptographic assumptions and prim-

itives. There, however, the primary focus is classifying

cryptographic assumptions according to how efficiently

they can be falsified. In that setting, one of the goals

is designing specific procedures that not only break

the cryptographic assumption (assuming that it can be

broken), but that do so in a way that can be verified very

efficiently. We, on the other hand, focus on verifying

that an arbitrary adversary (provided by a security

reduction) breaks the cryptographic primitive. Nonethe-

less, falsifiable (and even only somewhat falsifiable, cf.

[Nao]) assumptions naturally fall into our framework of

a cryptographic primitive. Non-falsifiable assumptions,

such as the knowledge of exponent assumption [Dam],

may not fit into our notion. This is because there is no

“testing procedure” that can be used to tell whether an

adversary breaks the assumption.

Now that we have presented our notion of a cryp-

tographic primitive, we proceed to define a reduction
from a cryptographic primitive to an argument system.

Definition III.2 (Reduction). A reduction R =
(P,V,S, (C, T ), κ(·), ε(·)) from a cryptographic prim-

itive defined by (C, T ) to an argument system for a

language L consists of several components. We use x
to denote an n bit input whose membership is being

proved, and w to denote the prover’s auxiliary input

(usually the NP witness).

1) A cryptographic primitive (C, T ) as in Definition

III.1.

2) Two functions κ : N → N, ε : N → [0, 1]
that determine the parameters of the cryptographic

primitive as a function of the input length. The

function κ(·) determines the security parameter,
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and ε(·) determines the advantage of an adversary

who breaks the argument’s soundness in breaking

the cryptographic primitive.5

3) Two interactive oracle machines: a prover

P(C, x, w) and verifier V(C, x) with access to a

candidate circuit C in C.

4) A proof of security: an oracle machine S with

black-box access to a cheating prover P∗(C, x)
that gets as input C in C and x ∈ {0, 1}n.

We require that (P(C, ·, ·),V(C, ·)) is complete for

every candidate C ∈ C. For security, we require that if a

cheating prover P∗(C, x) violates soundness for some

x /∈ L and C, then SP∗
(·, x) breaks the (supposedly

hard) C. If C is indeed hard to break, then the argument

system is thus sound. We state these requirements

formally below:

1) Completeness c(n). For every C in C, given x ∈
L and a valid witness w, the prover P(C, x, w)
convinces V(C, x) with probability at least c(n).

2) Security proof of soundness s(n). For every C in

C, every n-bit input x /∈ L and every cheating

prover P∗(C, x): if (P∗(C),V(C))(x) accepts

with probability at least s(n), then SP∗(·,x) breaks

C, i.e.:

Pr
[
T SP∗(·,x)

(C, 1κ(n), 1�1/ε(n)�) accepts
]
≥ 2/3

For simplicity, one can think of ε(n) = s(n)O(1)

throughout this work.

We assume throughout that s(n) ≤ 0.1 and c(n) ≥
0.9. We use t(n) to denote the circuit size SP (i.e.,

t(n) is |S| · |P|, here we refer only to the honest P),

and q(n) to denote the number of P∗-oracle queries

made by T SP∗
.6 We use v(n) to denote a bound on the

number of bits sent from V to P , u(n) to denote a bound

on the length (in bits) of each of P’s answers, and r(n)
to denote the number of rounds of communication of

(P,V).

In the reduction notion of Definition V.1, all the

algorithms in the argument system (prover, verifier,

tester T ) get access to C’s explicit representation. The

only “black-box” access in the definition is the security

proof’s access to the cheating prover. This is quite a

general notion of reduction. See Reingold, Trevisan and

5We find it convenient to have the reduction determine the security
parameter κ = κ(n) and the advantage in breaking the cryptographic
primitive ε = ε(n), rather than give κ as input to all the algorithms.

6Throughout, whenever we refer to a bound on a parameter that
depends on P ∗ we mean the worst case bound over the input, the
cheating prover, etc. for input length n. Note that these bounds may
also depend on the security parameter κ(n), which is a parameter of
the reduction.

Vadhan [RTV] for a discussion of different notions of

reductions. In this work we also consider more restricted

notions. Black-box reductions are reductions where the

algorithms access C as a black box. See Section V for a

discussion and definitions of these more restricted types

of reductions.

IV. FROM ARGUMENTS TO PCPS

In this section, we take any reduction R =
(P,V,S, (C, T ), κ(·), ε(·)) from a cryptographic prim-

itive specified by (C, T ) to an argument system for a

language L, and construct from it a PCP for L.

A. A Generic Transformation

For all of our results, we need an additional property

from the reduction. We require that it is possible to

generate candidates C in C for the cryptographic prim-

itive, that cannot be broken by the security proof SP

when it runs with the honest prover (except with small

probability). We formalize this property below.

Property IV.1. The reduction R (with soundness s(n))
has a (polynomial time deterministic) generation proce-
dure G(1n) that outputs a candidate C in C such that for
every x ∈ {0, 1}n and advice string w ∈ {0, 1}poly(n)

given to the prover P , C is (κ(n), ε(n))-secure against
SP(·,x,w)(·, x).7

In Section V we extend this notion to probabilistic

generators G. We will restrict our attention to determin-

istic G throughout this section.

We now specify a “generic” PCP construction for

reductions with Property IV.1. We will later show

how to instantiate this generic construction for specific

cryptographic primitives, by constructing a generator

G that meets Property IV.1 (unconditionally or under

various assumptions). We view the verifier for the PCP

as an oracle machine (with oracle access to the proof

or oracle-prover). We run the generator G to generate a

candidate C. The generic verifier VPCP and the (honest)

prover oracle PPCP depend on this candidate C. The

verifier and prover are specified in Figures 1 and 2.

The intuition is that if for x /∈ L a cheating PCP

prover P∗
PCP makes the verifier VPCP accept with

probability s(n) or greater in Step 1, then the reduction

R guarantees that in Step 2, the security proof SP∗
P CP

will break C correctly with advantage ε(n) (and VPCP

rejects). This guarantees soundness. On the other hand,

when x ∈ L, we know by Property IV.1 that C is

(κ(n), ε(n))-secure against the security proof run with

7Recall that in Definition III.1 we captured “security against A” by
saying that the testing procedure accepts A with probability at most
1/3.
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Verifier VPCP (C, x)

1) Choose random coins for V . Simulate V(C, x) in the interactive argument system using these coins and the
candidate C, using the PCP prover PPCP to obtain the messages of the argument system’s prover P(C, x, w).
Thus, each query to PPCP specifies a transcript of the interactive argument (The verifier’s messages are
computed using the existing transcript and the random coins chosen.) If V rejects, then reject. Otherwise,
continue to Step 2.

2) Repeat the following O(log(1/α)) times, where α = α(n) is a parameter:

Run the tester T SPP CP
(C, 1n, 1�1/ε(n)�) with independent random coins to check whether SPP CP breaks

C. Here PPCP plays the role of answering S’s oracle queries to P ∗. Again, each query to PPCP specifies
a transcript of the interactive argument.
If in at least half of these iterations T accepts, then reject. Otherwise accept.

Figure 1. Verifier VPCP

(Honest) PCP Proof Oracle PPCP (C, x, w)

For any query specifying a transcript of past messages for the interactive argument, simulate P(C, x, w) on this
transcript and output its next message.

Figure 2. (Honest) PCP Proof Oracle PPCP

the honest prover (and so the verifier should usually

accept). This guarantees completeness. We formalize

this in the theorem below.

Theorem IV.2. Let R = (P,V,S, (C, T ), κ(·), ε(·)) be
a reduction from a cryptographic primitive specified
by (C, T ) to an argument system for a language L
as in Definition III.2. Suppose furthermore that R
satisfies Property IV.1 and has a generator G for hard
candidates.

Let c = c(n) and s = s(n) be the completeness
and soundness of the argument system, and take ε =
ε(n) and κ = κ(n). Recall that v = v(n) bounds the
communication from V to P , the value u = u(n) bounds
P’s answer lengths, the value r = r(n) bounds the
number of rounds, and q = q(n) bounds the number of
P∗-queries made by T SP∗

(C, 1n, 1�1/ε�).
Then (PPCP ,VPCP ) is a PCP for L with complete-

ness c − α and soundness max{s, α}. The number of
queries is r + O[log(1/α) · q]. The alphabet size is
2u. The length of the PCP is 2v . Furthermore, the
PCP oracle can be constructed in time polynomial
in that of P(C, x,w). The running time of the PCP
verifier is polynomial in that of G, of V(C, x) and of
T SP∗

(C, 1n, 1�1/ε�).

Proof: We begin by analyzing the proposed con-

struction’s alphabet size, length and query number:

• Query number: The verifier VPCP makes r queries

to PPCP in Step 1 (one for each round of

communication between V and P). It then runs

O(log(1/α)) simulations of S, each of which

makes q queries. The total number of queries is

thus r + O[(log(1/α)) · q].
• Alphabet size: The answers of PPCP are messages

sent by the prover P in the interactive argument,

their length is bounded by u and the alphabet size

is bounded by 2u.

• PCP length: Each query made by VPCP includes a

transcript for the interactive argument . The length

of each such query is thus v, and the length of the

PCP is 2v .

We now turn our attention to completeness and

soundness. For soundness, suppose x /∈ L but P∗
PCP

makes the verifier VPCP accept in Step 1 with proba-

bility at least s. We view P∗
PCP as a cheating prover

P ∗ for the interactive argument. By the properties of

the reduction R, we know that SP∗
(·, x) will have

advantage ε in breaking C. This means that in Step

2, every time that VPCP simulates T , it accepts with

probability at least 2/3. Thus (repeating Θ(log(1/α))
times), the verifier VPCP will reject in Step 2 with all

but probability α. If the probability of “accepting” (i.e.

not rejecting) in Step 1 is greater than s, then the verifier

accepts in Step 2 with probability at most α. Hence, the

total probability of accepting is at most max{s, α}.

For completeness, in Step 1 of VPCP ’s operation,

when it runs the argument system’s V , it will accept with

probability at least c by the completeness of (P,V). By

Property IV.1, the candidate C is (κ, ε)-secure against

SPP CP . So in every iteration of Step 2, T will reject

with probability at least 2/3. Repeating Ω(log(1/α))
times, the probability that the verifier rejects in Step 2
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is at most α. Taking a union bound, the total probability

of accepting when x ∈ L and the prover is honest is at

least c − α.

B. Constructions Under Cryptographic Assumptions

As an immediate corollary of Theorem IV.2, we

obtain conditional constructions of PCPs from argument

systems. If there is indeed a computationally hard

candidate for the cryptographic primitive on which the

argument’s construction is based, then this candidate

immediately satisfies Property IV.1. We view this as a

natural assumption to make: presumably we consider

the construction of an argument to be meaningful be-

cause we believe that the cryptographic primitive has a

secure implementation. Given such an implementation,

we get a PCP (with statistical soundness) “for free”. We

can use the candidate to construct the PCP. In fact, it

suffices that the implementation is secure against (the

reduction run with) the fixed polynomial-time bounded
honest prover, so we can even make do with a crypto-

graphic primitive that is only secure against this fixed

algorithm. We emphasize that the soundness of the PCP
obtained is unconditional and information-theoretic; it

is only completeness that is based on the cryptographic

assumption. In fact, we only need hardness against

the security proof when it uses the honest prover (we

elaborate and build on this in subsequent sections).

Here the notion of reduction from arguments to

cryptographic primitives used is the general notion of

Definition III.2, i.e. the reduction is only black-box only

in the adversary. In particular, we obtain the following

(informal) corollary:

Corollary IV.3 (Informal). Let R be a reduction from
a cryptographic primitive to a computationally sound
argument system for language L. If there exists a secure
implementation of the cryptographic primitive, then the
argument system can be used to construct a PCP as in
Theorem IV.2.

In particular, if there exists a family of collision-
resistant hash functions, then any reduction from CRHF
to a computationally sound argument system can be
used to construct a PCP. If there exists an additively
homomorphic encryption scheme, then any reduction
from additively homomorphic encryption to a computa-
tionally sound argument system can be used to construct
a PCP.

Perspective from known constructions. We first ex-

amine the known reductions using collision-resistant

hashing for NP arguments [Kil], [Mic], [BG]. Taking

κ to be the security parameter, the communication from

V to P is v(n) = O(log(n) + κ) (specifying the hash

and O(1) PCP queries), the length of prover answers

is u(n) = O(log(n) · κ), and the number of rounds is

r(n) = O(1). The number of calls T SP∗
makes to P∗

is q(n) = O(1) (for constant soundness and advantage

in breaking the primitive). Theorem IV.2 gives (for any

instantiation) a PCP with constant completeness and

soundness, O(1) queries, alphabet size 2O(log(n)·κ), and

proof length poly(n) · 2κ. Thus, if we take a poly-

logarithmic security parameter, the PCP length is quasi-

polynomial. This does not quite match the Kilian [Kil]

construction (which needed a polynomial-length PCP),

but as we show in Section V, we can actually (under

complexity assumptions) get implementations of the

CRHF that suffice for the construction above and with

logarithmic κ. This yields a polynomial-length PCP

from any (black-box) construction with the parameters

of [Kil].

If we examine the reduction of [IKO], there the

communication from the verifier to the prover is κ times

the logarithm of the length of the PCP being used,

v(n) = poly(n) · κ (in their case the PCP used was

exponential, and so v(n) is polynomial). The commu-

nication from the prover to the verifier is u(n) = O(κ),
and the number of rounds is r(n) = O(1). Again, the

number of calls T SP∗
makes to P∗ is q(n) = O(1)

(for constant soundness and advantage in breaking the

encryption). Theorem IV.2 gives (for any instantiation)

a PCP with constant completeness and soundness, O(1)
queries, alphabet size 2O(κ), and proof length 2poly(n)·κ

(as should be expected, because they started with an

exponential length PCP).

V. WEAKENING OR ELIMINATING COMPUTATIONAL

ASSUMPTIONS

In this section we consider more restricted reductions

that those of Section IV-B, and obtain PCP constructions

with better parameters. The main idea will be to build

an implementation for the cryptographic primitive used

by the reduction that is only secure against one spe-

cific adversary: the adversary which runs the reduction

together with the honest argument prover (such an

implementation still suffices for arguing completeness

a la Theorem IV.2). In this section, we will look at

(fully) black-box reductions. Proofs have been omitted

for lack of space. See the full version for proofs and for

definitions and results about black-box reductions with
bounded adaptivity.

Definition V.1 (Black-Box Reduction.). A reduction

R = (P,V,S, (C, T ), κ(·), ε(·)) is a (fully) black-box
reduction if it is a reduction, as in Definition III.2, and
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also P and S only have black-box access to C, i.e.

they access C as an oracle. Here t(n) also bounds the

number of oracle calls made by SP (as t(n) is the total

combined size of this procedure).

Probabilistic Candidate Generator. To get uncon-

ditional results and results under weaker (worst-case)

assumptions, we need to generalize Property IV.1. We

need to extend that property to the case where we do

not have a deterministic generator that outputs a single

hard implementation, but rather a probabilistic generator

outputs a hard implementation (for a specific algorithm)

w.h.p.

Property V.2. The reduction R (with soundness s(n))
has a probabilistic polynomial-time generation proce-
dure G(1n) that outputs a candidate C in C such that for
every x ∈ {0, 1}n and advice string w ∈ {0, 1}poly(n)

given to the prover P:

Pr
G’s coins

[
C is (κ(n), ε(n))-secure against SP]

≥ 1−γ

where γ = γ(n) is a parameter, and b = b(n) bounds
the size of C that G outputs on input length n.

Note that now, when we want to use the generic

transformation of Theorem IV.2 for a reduction with

a probabilistic generator a la Property V.2, we need for

the PCP proof to depend on the hard candidate C. To

do this, we modify (PPCP ,VPCP ) so that in Step 1,

the PCP verifier will choose a random C ∼ G(1n).
Since this candidate C is not fixed in advance, it will

be included in every PCP query made by the verifier

(recall that C’s size is bounded by b(n)). This increases

the PCP length by a 2b(n) multiplicative factor. We

formalize this as a generalization of Theorem V.3.

Theorem V.3. Let R = (P,V,S, (C, T ), κ(·), ε(·)) be
a reduction from a cryptographic primitive specified by
(C, T ) to an argument system for a language L as in
Definition III.2. Suppose furthermore that R satisfies
Property V.2 and has a probabilistic generator G for
hard candidates that has output length bounded by b(n)
and with parameter γ(·) such that for all n, γ(n) ≤ 1/4.

Let c = c(n) and s = s(n) be the completeness and
soundness of the argument system, and take ε = ε(n),
κ = κ(n), b = b(n), and γ = γ(n). Recall that
v = v(n) bounds the communication from V to P ,
the value u = u(n) bounds P’s answer lengths, the
value r = r(n) bounds the number of rounds, and
q = q(n) bounds the number of P∗-queries made by
T SP∗

(C, 1n, 1�1/ε�).
Then (PPCP ,VPCP ) is a PCP for L with complete-

ness c− α− γ and soundness max{s, α}. The number

of queries is r + O[log(1/α) · q]. The alphabet size is
2u. The length of the PCP is 2v+b. Furthermore, the
PCP oracle can be constructed in time polynomial in
that of P(C, x, w) and G(1n). The running time of the
PCP verifier is polynomial in that of G(1n), of V(C, x)
and of T SP∗

(C, 1n, 1�1/ε�).

Bounded-Adversary PRFs. In Section IV-B we ob-

tained PCPs based on cryptographic assumptions. As

noted previously, however, the type of hardness we need

is much more relaxed than what is usual in the cryp-

tographic setting: we only need hardness for a specific
algorithm SP . In this setting, for algorithms that access

C as a black box, we can even obtain unconditional

results. For example, to an algorithm that makes only

q oracle queries, a q-wise independent hash function

“looks like” a truly random function. We can use this

intuition to transform (black-box) constructions of argu-

ments from collision-resistant hash families (CRHFs) or

one-way functions into PCPs unconditionally or under

relatively mild complexity assumptions. The price we

pay beyond the (conditional) results of Section IV-B, is

that the hash function description, and with it the PCP

length and verifier running time, may become large.
We define bounded-adversary pseudorandom func-

tions. These are function families that (from black-box

access) look random to a bounded adversary. We will

then show that bounded-adversary PRFs (i) suffice for

building a candidate generator instantiating the generic

construction of Theorem V.3 and constructing PCPs

from black-box reductions from one-way functions,

pseudorandom function families and collision resistant

hash families to arguments (ii) can be constructed

unconditionally or under weak worst-case complexity

assumptions (with various seed lengths).
We proceed in Section V-A with definitions and

constructions of bounded-adversary cryptographic prim-

itives. In Section V-B we show how to use the bounded-

adversary primitives to transform reductions into PCPs.

A. Bounded-Adversary PRFs
We begin by defining and constructing bounded-

adversary pseudorandom function families (PRFs).

These are collections of functions that look random

to bounded adversaries. We do not bound the time

needed to compute the function: it may take more time

than the adversary’s running time. We construct such

functions unconditionally and also under mild complex-

ity assumptions (to decrease the function’s description

size).

Definition V.4 (Pseudorandom Function). Consider

an efficiently constructible ensemble F = {fn :
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{0, 1}j(n)×{0, 1}k(n) → {0, 1}�(n)}n with seed length

j(n), input length k(n) and output length �(n). We say

that F is a (s(·), ε(·))-pseudorandom function (PRF) if

for every (non uniform) size s(n) adversary (an oracle

circuit ensemble) A, for all but finitely many input

lengths:

| Pr
seed∈{0,1}j(n)

[Afn(seed,·)(1n) = 1]−

− Pr
random function r

[Ar(1n) = 1]| ≤ ε(n)

I.e. no size s adversary can distinguish a random func-

tion in the family from a truly random function (except

with advantage ε).

Note here that we do not bound the complexity of

computing the pseudorandom functions, and in partic-

ular the function might not be computable by size s
circuits. This is similar to complexity-theoretic pseudo-

random generators such as that of Nisan and Wigderson

[NW]. We outline several constructions of bounded-

adversary pseudorandom and collision resistant func-

tions. The first is an unconditional construction of PRFs

that uses a large seed. The second construction replaces

the large seed with a non uniform construction with

a short seed. Then we show how to shorten the seed

without resorting to non uniformity by derandomizing

the unconditional construction, using the pseudorandom

generators of [NW], [IW].

Proposition V.5. For any input and output lengths k(n)
and �(n), there exists a (s(n), 0)-pseudorandom func-
tion. The seed length is j(n) = 2s(n)·max(k(n), �(n)).
The function can be evaluated in (uniform) time
poly(s(n), k(n), �(n)).

The main disadvantage of this construction is the

large seed length (as large as the adversary’s size). We

can reduce this seed length by using non uniformity:

Proposition V.6. For any input and output lengths k(n)
and �(n), there exists a (s(n), 1/s(n))-pseudorandom
function. The seed length is j(n) = O(log(s(n))).
The function can be evaluated in non uniform time
poly(s(n), k(n), �(n)). (In fact, a random advice string
of this length will yield a PRF of these parameters with
probability at least 1−2−s(n). Hence, this can be viewed
as a construction in the Common Random String (CRS)
Model.)

Another way of reducing the seed length without

resorting to non uniformity is derandomizing. We can

use derandomization techniques, e.g. the work of Im-

pagliazzo and Wigderson [IW], to reduce the seed

length without hurting pseudorandomness too much. To

do this we must make mild (worst-case) complexity

assumptions, this approach is taken in Proposition V.7.

Proposition V.7. Assume that for some constant β > 0,
it holds that DTIME (2O(n)) �⊆ SIZE (2β·n). Then
for any input and output lengths k(n) ≤ s(n)
and �(n) ≤ s(n), there exists a (s(n), 1/s(n))-
pseudorandom function. The seed length is j(n) =
O(log(s(n))). The function can be evaluated in (uni-
form) time poly(s(n), k(n), �(n)).

Remark V.8. In Proposition V.7 we made a relatively
strong complexity assumption, i.e. we assumed that
DTIME (2O(n)) �⊆ SIZE (2β·n). In general, we could
use more relaxed assumptions to obtain a weaker de-
randomization and longer seed length. For clarity, we
focus only on the “high-end” assumption made above.
Note that cryptographic pseudorandom functions or
collision-resistant functions are in general a stronger
assumption than the assumptions needed for a deran-
domization a la Proposition V.7. If there exist such
functions with seed, input and output length O(κ(n)),
then DTIME

(
2O(κ)

)
�⊆ SIZE (poly(n)). Using [IW]

this implies the existence of (poly(n), 1/poly(n))-
pseudorandom functions with similar input, output and
seed lengths.

B. Instantiations Using Bounded Adversary Primitives

Bounded-adversary PRFs can be used to transform

reductions from one-way functions, PRFs or CRHFs to

argument systems into PCPs. This is done by showing

that for any such reduction, the bounded-adversary

PRF can be used to obtain a generator G satisfying

Requirement V.2. The fixed and bounded adversary for

this PRF is the reduction run with the honest prover:

SP(·,x,w)(·, x). Recall that this procedure makes at most

t(n) oracle queries to the PRF.

For reductions from one-way functions (say func-

tions from {0, 1}κ to {0, 1}κ), the generator simply

outputs a bounded-adversary PRF chosen at random

from the family with input and output length κ. Since

SP(·,x,w)(·, x) cannot distinguish (from its bounded

oracle access) this function from a random one, w.h.p.

it cannot invert the function on a random input.

For reductions from CRHFs or PRFs (say with input

length 2κ and output length κ) to an argument system,

we use a bounded-adversary PRF family {fs : {0, 1}κ×
{0, 1}2κ → {0, 1}κ} with seed length j(n) bits. The

generator G outputs a random member of the bounded-

PRF family by choosing a random j(n)-bit seed. We

interpret this as a PRF or CRHF by parsing the first

input argument as the index to a function in the PRF

or CRHF, and the second argument as the actual input.

9090

Authorized licensed use limited to: Harvard Library. Downloaded on July 14,2020 at 19:25:30 UTC from IEEE Xplore.  Restrictions apply. 



Now since SP(·,x,w)(·, x) cannot distinguish fs from a

truly random function (from its bounded oracle access),

it should not be able to find collisions on a random fs.

This gives us a generator for reductions from CRHFs

(or PRFs).

Claim V.9. Let R = (P,V,S, (C, T ), κ(·), ε(·)) be
a black-box reduction from a one-way function fn :
{0, 1}κ → {0, 1}κ or from a CRHF (or PRF) fn :
{0, 1}κ × {0, 1}2κ → {0, 1}κ to a computationally
sound argument system and γ(·) a parameter. Let F be
a (λ · t(n) · log(1/γ) ·1/ε2, δ)-PRF as in Definition V.4,
with seed length j(n), input length 3κ(n) and output
length κ(n), where δ = 1/2 · (γ · ε − t(n)2/2κ) and
λ > 0 is a fixed constant. Then R satisfies Property
V.2, with the given γ(n) and where the number of coins
used by the generator G is j(n).

Instantiating the Generic Transformation. Recall

from Sections IV-A, IV-B the generic transformation of

Theorem V.3 and also the parameters it gives on known

reductions. We instantiate this transformation, trans-

forming reductions from random-oracles of collision-

resistant hash families into PCPs, using bounded-

adversary PRFs. Note that in this setting it even makes

sense to consider reductions with logarithmic secu-

rity parameter (logarithmic in the running time of the

bounded adversary).

Unconditional PRF. Any reduction from one-way func-

tions, PRFs or CRHFs to arguments yields (uncondi-

tionally) a PCP using the bounded-adversary PRFs of

Proposition V.5 together with Claim V.9. The complete-

ness, soundness, query complexity and alphabet size are

as in the theorem statement or Theorem V.3. The main

“price” of this instantiation is the length of the PCP that

is obtained. The number of bits needed to choose a func-

tion in the family is O(t · κ), where t is the size of SP

(e.g. poly(n) for arguments with efficient provers). The

length of the PCP is thus exponential: 2v+O(t·κ). While

this length is large, constructing even such exponential

length PCPs from scratch (e.g. the Hadamard PCP of

[ALM+]) is highly non-trivial. Another disadvantage

is that the verifier’s running time becomes quite large

(polynomial in t). The PCP length can be improved

either using non uniformity or derandomization, as we

now describe.

Nonuniform Unconditional PRF. Continuing the dis-

cussion above, if we use the nonuniform bounded-

adversary PRF of Proposition V.6, the number of bits

needed to choose a function in the family becomes only

O(log t). The length of the PCP shrinks to 2v ·poly(t).

The verifier’s running time, however, remains polyno-

mial in t, and moreover the prover and verifier are

now non uniform. An alternative approach that avoids

the non uniformity (at the cost of making complexity

assumptions) is derandomization.

Derandomized Conditional PRF. The final approach

we suggest for transforming reductions into PCPs is

shortening the seed length of PRFs using derandom-

ization under worst-case complexity assumptions. If

we assume that for some β > 0, it holds that

DTIME (2O(n)) �⊆ SIZE (2β·n), then we can use the

PRF of Proposition V.7. The number of bits needed to

choose a function in the family becomes only O(log t+
log(1/ε)).8 As before, the length of the PCP shrinks

to 2v · poly(t, 1ε). The verifier’s running time, while

uniform, still remains polynomial in t.

Remark V.10. If we are willing to make stronger
assumptions, we can assume here the existence of one-
way permutations f : {0, 1}κ → {0, 1}κ that are hard
to invert for circuits of size 2Ω(κ). This would give (using
the works of [GL], [BM], [GGM]), a (s, 1/s)-PRFs
with seeds of length O(log(s))that can be computed in
(uniform) time poly(log s(n)) and give both short PCP
length and efficient verifier running time.
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