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Abstract. We initiate a complexity-theoretic treatment of hardness amplification
for collision-resistant hash functions, namely the transformation of weakly
collision-resistant hash functions into strongly collision-resistant ones in the
standard model of computation. We measure the level of collision resistance
by the maximum probability, over the choice of the key, for which an efficient
adversary can find a collision. The goal is to obtain constructions with short
output, short keys, small loss in adversarial complexity tolerated, and a good
trade-off between compression ratio and computational complexity. We provide
an analysis of several simple constructions, and show that many of the parameters
achieved by our constructions are almost optimal in some sense.

Keywords: collision resistance, hash functions, hardness amplification, combin-
ers.

1 Introduction

Constructing collision-resistant hash functions is a central problem in cryptography,
both from the foundational and the practical points of view. The goal is to construct
length-decreasing functions for which it is infeasible to find two distinct inputs with
the same output. This problem has received much attention over the past two decades.
Still, coming up with constructions that are efficient enough to be of use in practice
and at the same time enjoy rigorous security guarantees (say, based on the hardness
of some well-studied problem) has turned out to be elusive. We also seem unable to
construct collision-resistant functions from potentially simpler primitives, c.f. [25]. The
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problem is highlighted by the repeated attacks on the popular MD4, MD5 and SHA1
hash functions (refer to [20] and references therein).

Given this state of affairs, it is natural to ask whether one can “bootstrap” collision
resistance by constructing “full-fledged” collision-resistant hash functions (CRHF)
from “weak” ones. That is, are there general mechanisms for transforming hash
functions, for which it is “somewhat easy” (but not completely trivial) to find collisions,
into one for which it is infeasible to find collisions? In addition to providing rigorous
ways to improve the collision resistance of hash functions, such mechanisms could in
themselves suggest methodologies for constructing hash functions “from scratch”.

Several works propose design principles for hash functions, e.g. [17,4,14,3]. These
mechanisms can indeed be regarded as “hardness amplification” mechanisms for
collision-resistant hash functions. However, with the exception of [4], which concen-
trates on increasing the domain size of the hash function, all the analyses provided
for these mechanisms use idealized models of computation, such as modeling the
underlying building blocks as random functions. Consequently, we do not currently
have constructions that are guaranteed to provide some level of collision resistance
in the standard model of computation, under the sole assumption that the underlying
building blocks have some weaker collision resistance properties. (Recently, the closely
related problem of constructing “combiners” for hash functions has been studied in the
standard model [2,19]; we discuss this problem in more detail below.)

This state of the art should be contrasted with the “sister problem” of constructing
one-way functions. Here we have a well-established theory of hardness amplification
[27] (see also [11]). That is, we have concrete notions of “strength” of one-way
functions, and constructions that are guaranteed to provide “strong” one-way functions
based on the sole assumption that the underlying building block is a “weak” one-way
function. Several lower bounds for “black-box” hardness amplification are also known,
e.g. [23,15].

We note that collision resistance often exhibits very different properties than one-
wayness. For one, constructing collision-resistant hash functions calls for different
design principles (e.g. the proposed expander-based one-way function of [10] is very
bad as a collision-resistant function). Furthermore, both practice and theory indicate that
collision resistance is considerably harder to achieve than one-wayness, e.g. [6,26,25].
Still, except for some specific points highlighted within, we show that it is possible to
translate much of the analysis used in the study of amplification of one-wayness to the
setting of collision resistance.

1.1 This Work

We initiate a study of amplification of collision resistance, in a standard reductionist
complexity-theoretic framework. That is, we first provide a measure for the “level”
of collision resistance of hash functions. We then consider some constructions and
quantitatively analyze the amount in which they amplify the collision resistance, along
with a number of efficiency parameters (discussed below).

Model for hash functions. Following [4], we model hash functions as a family of
functions, where a function in the family is specified via a key. Security is analyzed
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for the case where the key is chosen at random (from the space of keys) and made
public. We point out several advantages of this approach. Refer to [21] for a more
detailed discussion. First, it allows for a natural modeling of the adversary as an
algorithm (a circuit) that takes for input a key κ identifying a function hκ in the
family and tries to output a collision x0 �= x1 such that hκ(x0) = hκ(x1). (Such
modeling is not possible for single functions since for any length-reducing function
there always exists an adversary that outputs a collision for that function in constant
time.) Second, this approach supports a simple and natural quantitative measure for the
level of collision resistance: the level of collision resistance is the maximum probability,
over the choice of the key, with which an efficient adversary can find a collision. Third,
current constructions of hash functions can be naturally regarded as keyed function
families. For instance, we may interpret the initialization vector (IV) in SHA0 and
SHA1 as a key. Finally, several collision-finding attacks seems to depend on specific
values or properties of the key in use and work for some keys but not others. Specific
examples include Dobbertin’s attack on MD5 [6], time-memory trade-off attacks, and
attacks on Gibson’s hash function [8]. In particular, it may well be possible that even
“broken” functions still have a significant fraction of keys for which attacks are less
successful. On the other hand, it may not be sufficient to simply view an IV as a key,
because the IV may not be incorporated into the computation in a sufficiently strong
way; see the discussion at the end of the introduction.

Parameters. We consider the following parameters for hash functions and hardness
amplification. First and foremost is the level of collision resistance. The goal in hardness
amplification is to reduce the maximum probability that an efficient adversary can find
collisions from 1− δ to ε, where ε and δ are typically o(1). Another salient parameter is
the output length. Other parameters include the key size, the number of applications of
the underlying hash function, the the running time (or, complexity) of the adversaries
considered and the “compression ratio” (i.e the ratio of input length to output length).
By itself, the compression ratio is less interesting since we may apply a transformation
due to Merkle and Damgård [17,4] to increase the compression ratio arbitrarily; this
increases the number of applications of the underlying function but maintains the same
key size and output length. Our goal is to construct hash functions with a high level of
collision resistance, while maintaining short outputs, short keys, and a good trade-off
between compression ratio and number of operations.

Constructions. We analyze two construction for hardness amplification. The first is
based on simple concatenation (possibly folklore) and the second uses error-correcting
codes and was suggested by Knudsen and Preneel [14]. Then, we analyze two additional
constructions for reducing the key size and the output length respectively.

Amplification via concatenation. The first construction is simple concatenation: we
hash the input using several independently chosen functions and concatenate the hash
values. Formally, given a family H = {hκ} of hash functions, and a parameter q,
define the family H′ = {h′

κ1,...,κq
} so that h′

κ1,...,κq
(x) = hκ1(x) ◦ ... ◦ hκq(x), where

κ1, ..., κq are independently chosen keys in the family H. The analysis is essentially
the same as that for classic hardness amplification for one-way functions [27]. The
underlying intuition is that finding collisions in h′

κ1,...,κq
is hard as long as finding
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collisions in one of hκ1 , . . . , hκq is hard. If the initial maximal probability of finding
collisions is δ, the maximal probability of finding collisions in the new hash family
is (1 − δ)Ω(q) = e−Ω(δq). This means that the improvement in the level of collision
resistance is exponential in q whereas the output length is linear in q.

Amplification via codes. In the second construction, we first encode the input with
an error-correcting code wherein the codeword has length q over some large alphabet.
Next, we hash the encoded input using q independently chosen functions (one for each
of the q symbols in the codeword) and concatenate the hash values as before. In order
to find a collision for this construction, one has to find collisions in many of the q
underlying hash functions (as opposed to all q functions as in the previous construction).
This construction was previously analyzed in an idealized setting in [14].

The analysis relies on the idea that finding collisions in the new hash function is
hard as long as finding collisions in several of the q functions is hard (as opposed to
finding collision in just a single function). Indeed, if the initial maximal probability of
finding collisions is δ, then we expect that it is hard to find collisions in δq functions.
To exploit this, we use a code with minimum distance (1 −O(δ))q, and for such codes,
we may achieve a rate of Ω(δ). Consequently this construction allows us to hash an
input that is longer by a factor of Θ(δq) (compared to the first construction) while still
using only q invocations of hash functions from the given family. When compared to
amplifying the domain size via the Merkle-Damgård transformation and then applying
the first construction, the second construction offers a Θ(δq) factor improvement in the
number of hashing operations. The price we pay for this improvement is that for the
same δ, ε (i.e., for fixed levels of collision resistance in the underlying and target hash
functions), the choice of q for the second construction is a constant multiplicative factor
larger than that for the first construction.

We remark that this analysis yields also hardness amplification for one-way functions
with a logarithmic factor improvement in the security reduction.

Reducing the key size. Next, we demonstrate how to modify both constructions so that
the key size increases only by an additive logarithmic term (at the price of increasing
the output length by a constant multiplicative factor). This is done by choosing the q
keys via randomness-efficient sampling using expander graphs. The sampler we require
for the concatenation construction is fairly standard (e.g. randomness-efficient samplers
were exploited in a similar manner in [5]), whereas the coding-theoretic construction
requires a modified analysis of a previous sampler [9].

Reducing the output length. Starting with a family H of hash functions with output
length �out and parameter q, the first two constructions yield a family with output length
q�out. We show that for any Δ, we may in fact reduce the output length to q·(�out − Δ).
More generally, we show how to transform any family H with output length �out into
one with output length �out−Δ with a negligible loss in the level of collision resistance.
However, the complexity of computing the function increases by a multiplicative factor
of 2Δ, so the construction is only useful for logarithmic values of Δ.

Limitations. We point out some of the limitations of our constructions and try to
justify them. A first limitation is that, given a guarantee on the resilience of H against
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adversaries of a given size, we can only guarantee resilience of the new hash family
H′ against adversaries of much smaller size. A similar limitation is shared by existing
hardness amplification results for one-way functions. This may be expected, given that
all our constructions, as well as all existing constructions for hardness amplification
of one-way functions are “black box”. Indeed, evidence that such limitation may be
inherent in “black-box constructions” is given in [11, Chapter 2, Ex 16, p. 96]. In
addition, our constructions increase both the complexity of the hashing and the output
length. To explain the blow-up in these parameters, we provide lower bounds on the
number of hashing operations and output length:

– We establish a matching lower bound (up to multiplicative constants) on the number
of hashing operations used in our first two constructions. The bound holds for
black-box constructions that do not use the input as keys for the underlying hash
functions. In particular, the number of hashing operations must have an inverse
dependency on δ, the initial maximal probability of finding collisions. The bound
is derived from that for hardness amplification for one-way functions in [15].

– Assuming in addition some natural restrictions on the reduction used in the proof
of security, we show that the output length of the new hash function is at least
Ω(1

δ · �out). Our constructions achieve output length O(1
δ · �out · log 1

ε ).

While the guarantees provided by our constructions may be too weak to be of real
practical significance, this is unfortunately the state of the art for general constructions.
Providing better guarantees remains a fascinating open problem.

Combiners. Our results pertaining to the output length (namely the fourth construction
and lower bounds thereof) build on the recent work on black-box combiners for
collision resistance [2,19,12]. We briefly recall the notion and results and explain the
connection to hardness amplification.

Black-box combiners for collision resistance. A black-box combiner for collision
resistance is a procedure that given t functions h1, . . . , ht with output length �out,
computes a single function h̃ with the following property: there is an efficient
transformation that given a collision for h̃, outputs collision for each of h1, . . . , ht.
This guarantees that finding collisions on h̃ is hard as long as finding collisions on one
of h1, . . . , ht is hard. Concatenating the outputs of h1, . . . , ht on the same input yields
a combiner with output length t ·�out. Boneh, Boyen and Pietrzak [2,19] showed that
this trivial combiner is essentially optimal by giving a t·(�out − O(log n)) lower bound
for deterministic black-box combiners.

Black-box combiners for collision resistance arise naturally in the context of our
work. Indeed, our first hardness amplification construction may be viewed as choosing
κ1, . . . , κq at random and applying the trivial (deterministic) combiner to hκ1 , . . . , hκq .
In addition, since we deal with families of functions rather than with single functions,
it makes sense in our model to consider also randomized combiners (still, for single
functions). We can then incorporate any randomness used by the combiner in the key of
the new hash family. Two natural questions arise here: Can we beat the [2,19] bound by
using randomized combiners? Alternatively, can the bound be improved by removing
the additive logarithmic factor?
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We answer both questions negatively. We first extend the lower bound of [2,19] to
derive a t· (�out − O(log n) lower bound on the output length of randomized black-box
combiners. Our lower bound for the output length for hardness amplification builds on
this lower bound. We then construct a randomized black-box combiner with output
length t · (�out − Ω(log n)). This result is interesting in itself, since it is the first
non-trivial combiner that beats concatenation. Furthermore, this combiner underlies
our fourth construction mentioned above, which reduces the output length of hash
functions. Putting these two results together, we deduce that the optimal randomized
black-box combiner has output length t·(�out − Θ(log n)).

Combiners for families of hash functions. So far, we’ve discussed the relationship be-
tween combiners for single functions and hardness amplification for function families.
In addition, one may directly study combiners for families of functions: Given t families
of hash functions with output length �out, construct a single family of hash functions that
is collision-resistant as long as one of the t families is collision-resistant. We note that
it is possible to construct a combiner having output length t · (�out − O(log n)) using
our randomized black-box combiner. The concurrent work of Fischlin and Lehmann
[7] studies a very similar problem, albeit in an idealized model that only admits generic
attacks on the hash functions.

Extensions. Our positive results for hardness amplification of collision resistance may
be extended to several other variants of collision resistance. Details of these extensions
are deferred to the final version of the paper.

Resistance to correlations. As noted in previous work (e.g. [1]), collision resistance can
be regarded as a special case of “resistance to finding correlations.” That is, for a given
k-ary relation R, say that a family of functions H is R-resistant if it is hard given a
random h ∈ H to find x1, ...xk such that R(h(x1), ..., h(xk)) holds. In this terminology,
collision resistance is simply Req-resistance where Req(y1, y2) iff y1 = y2. Can R-
resistance be amplified for other relations? Can collision resistance be derived from (or
imply) R-resistance for other relations R? These are interesting questions.

As a small step in this direction, we consider amplification for the “near collision”
relation Rnear, where Rnear(y1, y2) iff the Hamming distance between y1 and y2 is
small (see e.g. [16, Sec 9.2.6]). We observe that by encoding the hash value with
an error-correcting code, we may transform a standard collision-resistant hash family
to a near-collision-resistant hash family. Conversely, given a near-collision-resistant
hash family, one can construct a standard collision-resistant hash family with shorter
output by “decoding” the hash value to the nearest codeword of a covering code. This
yields an amplification theorem for resistance to near-collisions, as a corollary of our
amplification theorems for collision resistance.

Target collision resistance. Our results extend also to the related notion of target
collision resistance (namely, universal one-way hash functions [18]). Here we may
use the same constructions as for collision resistance, except to replace the Merkle-
Damgård domain expansion with that of Shoup [24], and the same analysis goes
through. We stress that the extension should not be taken for granted, because
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techniques for collision resistance do not always extend readily to target collision
resistance; domain expansion is a good example.

Discussion. We discuss some additional aspects of the analysis in this work. First,
we address only collision resistance, which is one out of many desired properties of
“cryptographic hash functions”. In fact, we do not even address properties such as
resistance to finding additional collisions, once a collision is found. Concentrating on
plain collision resistance allows for clearer understanding. In fact, constructing hash
functions achieving even this specific property seems to be challenging enough, as
evidenced by the attacks on MD5 and SHA1.

Another point worth highlighting is that our analysis can be viewed as a demonstra-
tion of the benefits in having families of hash functions, where there is some assurance
that finding collisions in one function in the family does not render other functions in the
family completely insecure. This may suggest a methodology for constructing practical
collision-resistant functions: Design such functions as keyed functions, where the key
is intimately incorporated in the evaluation of the function. This might give some hope
that finding collisions for one value of the key might not help much in finding collisions
for other values of the key. Then, apply a generic amplification mechanism such as
the ones studied here to guarantee strong collision resistance even when a significant
fraction of the keys result in weak functions. We stress that, in order to be of value,
the key has to be incorporated in the computation of the function in a strong way. This
fact is exemplified (in the negative) by the MD/SHA line of functions: Although these
functions are often modeled as families of functions that are keyed via the IV, the actual
constructions do not incorporate the IV in the computation in a strong way. And, indeed,
the very recent attacks against such functions (e.g. [26]) seem to work equally well for
all values of the IV. Similarly suspect are related methods for creating a hash function
family from a fixed hash function by treating a portion of the input as key.

Finally, we stress that even though we use asymptotic notation to make our results
more readable, they actually provide concrete bounds on the parameters achieved.
Moreover, we provide uniform reductions in all of our proofs of security, so even though
the positive results are stated for nonuniform adversaries, it is easy to derive an analogue
of those results for uniform adversaries.

Organization. We begin with by reviewing quantitative definitions of collision
resistance for CRHFs in Section 2. We present all of our constructions for hardness
amplification, key size reduction and output length reduction in Section 3, and our lower
bounds in Section 4. Given that randomized black-box combiners are a recurring tool
in this paper, we define them in Section 2 and present the construction in Section 3 and
the matching lower bound in Section 4.

2 Preliminaries

2.1 Quantitative Definitions of Collision Resistance

A family of hash functions is a collection of polynomial-time computable functions
H = {Hn : {0, 1}�key(n) × {0, 1}�in(n) → {0, 1}�out(n)}, where n is the security



Amplifying Collision Resistance: A Complexity-Theoretic Treatment 271

parameter, satisfying �out(n) < �in(n). We refer to �in, �out, �key as the input length,
output length and key size of the hash function. We use hκ : {0, 1}�in(n) → {0, 1}�out(n)

to denote the function Hn(κ, ·) associated with the key κ ∈ {0, 1}�key(n). We call a pair
(x0, x1) satisfying x0 �= x1 and hκ(x0) = hκ(x1) a collision for hκ.

For any n, we say that Hn is an (s, ε)-CRHF (collision-resistant hash function) if
for every nonuniform A of size s,

Pr[κ ← {0, 1}�key(n); A(κ) outputs a collision for hκ] < ε

(The quantity ε is what we refer to in the introduction as the level of collision resistance.)
For notational simplicity, we omit references to n whenever the context is clear (e.g.
H : {0, 1}�key × {0, 1}�in → {0, 1}�out).

We will also refer to asymptotic notions of CRHFs. As with one-way functions, we
want to consider the entire class of nonuniform polynomial-time adversaries (although
we do provide uniform reductions in our proofs of security). Formally, we say that
H is a strong CRHF if for every polynomial p(·) and every sufficiently large n, H
is a (p(n), 1

p(n) )-CRHF. Similarly, we say that H is a weak CRHF if there exists a
constant c such that for every polynomial p(·) and every sufficiently large n, H is a
(p(n), 1 − 1

nc )-CRHF. Standard cryptographic applications of hash functions actually
require strong CRHFs, so whenever the strength of the CRHF is not qualified, we will
refer to strong CRHFs.

Public-coin vs. secret-coin hash functions. As noted in [13], a distinction needs to
be made between public-coin and secret-coin hash functions. In a public-coin hash
function, the key corresponds to a uniformly generated random string and the key
generation algorithm computes the identity function. In a secret-coin hash function,
the distribution of the key may be any samplable distribution. For simplicity and clarity,
our definition and exposition refer to public-coin hash functions. It is easy to see that
all of our constructions (Constructions 1, 2 and 4) apart from the reduction in key size
using randomness-efficient sampling extend to secret-coin hash functions.

2.2 Black-Box Combiners for Collision Resistance

We generalize the notion of black-box combiners from [2,19] so as allow randomized
constructions.

Definition 1. We say that (C, R) is a randomized black-box (t′, t)-combiner for
collision resistance if C, R are deterministic poly-time oracle TMs, and there exists
some negligible function ν(·) such that for all h1, . . . , ht : {0, 1}�in → {0, 1}�out:

CONSTRUCTION. For every r, Ch1,...,ht

(r, ·) computes a function h̃r :
{0, 1}�in

′ → {0, 1}�out
′
, where �in

′ > �out
′.

REDUCTION. With probability 1 − ν(n) over r: if (x̃0, x̃1) is a collision for
h̃r, then Rh1,...,ht

(r, x̃0, x̃1) outputs t pairs (x1
0, x

1
1), . . . , (x

t
0, x

t
1) such that for

at least t − t′ + 1 values i ∈ {1, . . . , t}, (xi
0, x

i
1) is a collision for hi.
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Intuitively, the guarantee is that if it is hard to find collisions on some t′ of the functions
h1, . . . , ht, then with overwhelming probability over r, it is hard to find collisions on
h̃r. Our definition generalizes that in [2,19] in that we provide both C and R with
additional “randomness” r, which is interpreted as a key. Specifically, in the previous
definitions, C computes a single function, whereas in our definition C computes a
family of functions {h̃r}. In our construction, R is deterministic, whereas our lower
bound (as with previous work) extends to randomized reductions R.

3 Constructions

The goal of hardness amplification is to deduce the existence of strong CRHFs from
weak CRHFs. Fix a security parameter n. The parameters for the new CRHF H′ will
be different from those for the starting CRHF H: we use �in, �out, �key to denote the
parameters for a (s, 1 − δ)-CRHF that we start with, and �in

′, �out
′, �key

′ to denote the
parameters for the (s′, ε)-CRHF that we are about to construct. Typical values of the
parameters are δ = 1

poly(n) and ε = neg(n). As outlined in the introduction, we begin
two basic constructions for hardness amplification (Sections 3.1 and 3.2) and then show
how to reduce the key size (Section 3.3) and output length (Section 3.4). A summary of
the parameters is given in Fig 1.

Domain expansion. We compensate the loss in compression ratio in our constructions
by first applying Merkle-Damgård domain expansion [4,17], noting that domain
expansion for collision resistance preserves the hardness parameter.

Proposition 0 ([4,17]). Fix some security parameter n. Suppose there exists a (s, ε)-
CRHF Hn from {0, 1}�key × {0, 1}�in to {0, 1}�out computable in time T . Then,
Construction 0 yields an (s′, ε)-CRHF H′

n from {0, 1}�key
′ × {0, 1}�in

′
to {0, 1}�out

′

with the following parameters:

– �out
′ = �out and �key

′ = �key

– # hash calls = �in
′−�in

�out−�in

– security reduction : s′ = s − �in
′ · T

3.1 Amplification Via Concatenation

We begin with a description and the analysis of the basic concatenation construction.
The analysis we provide is very similar to that for hardness amplification for one-way
functions via direct product [27,11]. The presentations is somewhat simpler. We also
make a small modification to the analysis that facilitates the analysis of the coding-
theoretic construction, discussed in the next section.

Construction 1 (basic). Pick q = � 2
δ ln 2

ε � independent keys κ1, . . . , κq. On input x ∈
{0, 1}�in, output hκ1(x) ◦ hκ2(x) ◦ · · · ◦ hκq(x)

In using the same input to the hash functions under all of the q keys κ1, . . . , κq,
we ensure that a collision x0, x1 for the key (κ1, . . . , κq) is also a collision for the
underlying hash function on each of the keys κ1, . . . , κq.
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Proposition 1 (Construction 1). Fix some security parameter n. Suppose there exists
a (s, 1 − δ)-CRHF Hn from {0, 1}�key × {0, 1}�in to {0, 1}�out. Then, Construction 1
yields an (s′, ε)-CRHF H′

n from {0, 1}�key
′ × {0, 1}�in

′
to {0, 1}�out

′
with the following

parameters:

– �in
′ = �in and �out

′ = Θ( �out
δ log 1

ε ) and �key = Θ( �key

δ log 1
ε )

– # hash calls = Θ( �in
′

δ�in
log 1

ε )
– security reduction : s′ = s · Θ(1

ε log 1
ε log 1

δ )−1

Proof. Suppose A finds collisions on H′
n with probability at least ε, and consider the

following algorithm A′ for finding collisions on Hn: on input κ,

1. chooses κ1, . . . , κq at random, i ∈ [q] at random, and sets κi = κ.
2. runs A(κ1, . . . , κq) to obtain x0, x1, and outputs x0, x1.

To analyze the success probability for A′, first fix any set S of keys κ of density δ
2 .

Intuitively, S represents the set of keys for which it is hard for A′ to find a collision.

Pr
κ1,...,κq

[A(κ1, . . . , κq) outputs a collision
∧

at least one of the κj’s lies in S]

≥ ε − (1 − δ
2 )q ≥ ε

2

Hence,

Pr
κ1,...,κq,i

[A(κ1, . . . , κq) outputs a collision
∧

κi ∈ S] ≥ ε
2q

On the other hand,

Pr
κ1,...,κq,i

[A(κ1, . . . , κq) outputs a collision
∧

κi ∈ S]

= δ
2 · Pr

κ∈S
Pr[A′(κ) outputs a collision for hκ]

≤ δ
2 · max

κ∈S
Pr[A′(κ) outputs a collision for hκ]

This implies that for any set S of density δ
2 ,

max
κ∈S

Pr[A′(κ) outputs a collision for hκ] ≥ ε
δq

Hence,

Pr
κ

[
Pr[A′(κ) outputs a collision for hκ] ≥ ε

δq

]
≥ 1 − δ

2

By running A′ a total of δq
ε log 1

δ = O(1
ε log 1

ε log 1
δ ) times, we find collisions on Hn

for a 1 − δ
2 fraction of keys with probability 1 − δ

2 . This means we find collisions on
Hn for a random key with probability at least 1 − δ. ��
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3.2 Amplification Via Codes

Note how the basic construction loses an O(q) factor in the compression ratio because
we repeat the same input for each of the q keys. The following work-around was
suggested in [14]. We first encode the input x using an error-correcting code C to obtain
q symbols C(x)1, . . . , C(x)q ∈ {0, 1}�in, and then we hash each of the q blocks with
independently chosen hash functions hκ1 , . . . , hκq and output the concatenation. Note
that the adversary may upon receiving the q keys only produce collisions wherein the
codewords disagree only on the “easy” keys. For the analysis to go through, we argue
that w.h.p., a δ

4 fraction of the keys (and not just one key) must be “hard”. If we pick
C to be a code with relative distance 1 − δ

8 , we are guaranteed there is a δ
8 fraction of

positions wherein the codewords disagree and the corresponding keys are “hard”.

Construction 2 (coding-theoretic). Pick q = � 16
δ ln 2

ε � independent keys κ1, . . . , κq.

Let C : {0, 1}�in
′ → ({0, 1}�in)q be an error-correcting code with minimum relative

distance 1 − δ
8 (e.g., the Reed-Solomon code), where �in

′ = Θ(δq�in). On input x ∈
{0, 1}�in

′
, output hκ1(C(x)1) ◦ hκ2(C(x)2) ◦ · · · ◦ hκq(C(x)q).

Proposition 2 (Construction 2). Fix some security parameter n. Suppose there exists
a (s, 1 − δ)-CRHF Hn from {0, 1}�key × {0, 1}�in to {0, 1}�out. Then, Construction 2
yields an (s′, ε)-CRHF H′

n from {0, 1}�key
′ × {0, 1}�in

′
to {0, 1}�out

′
with the following

parameters:

– �in
′ = Θ(�in log 1

ε ) and �out
′ = Θ( �out

δ log 1
ε ) and �key

′ = Θ( �key

δ log 1
ε )

– # hash calls = Θ(1
δ log 1

ε )
– security reduction : s′ = s · Θ(1

ε log 1
δ )−1

Proof. Suppose A finds collisions on H′
n with probability at least ε, and consider the

following algorithm A′ for finding collisions on Hn: on input κ,

1. chooses κ1, . . . , κq at random, i ∈ [q] at random, and sets κi = κ.
2. runs A(κ1, . . . , κq) to obtain x0, x1, and outputs C(x0)i, C(x1)i.

To analyze the success probability for A′, first fix any set S of keys κ of density δ
2 . By

a Chernoff bound (the multiplicative variant), we have

Pr
κ1,...,κq

[A(κ1, . . . , κq) outputs a collision (x0, x1)
∧

at least δ
4 fraction of κj’s lies in S]

≥ ε − e−δq/16 ≥ ε
2

Conditioned on the above event, for a δ
8 fraction of j’s in {1, 2, . . . , q}, we have

C(x0)j �= C(x1)j and κj ∈ S (since the former occurs for a 1 − δ
8 fraction of j’s

and the latter occurs for a δ
4 fraction of j’s). Hence,

Pr
κ1,...,κq,i

[A(κ1, . . . , κq) outputs a collision (x0, x1)∧ κi ∈S∧ C(x0)i �= C(x1)i] ≥ δε
16
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On the other hand,

Pr
κ1,...,κq,i

[A(κ1, . . . , κq) outputs a collision (x0, x1) ∧ κi ∈ S ∧ C(x0)i �= C(x1)i]

= δ
2 · Pr

κ∈S
Pr[A′(κ) outputs a collision for hκ]

≤ δ
2 · max

κ∈S
Pr[A′(κ) outputs a collision for hκ]

This implies that for any set S of density δ
2 ,

max
κ∈S

Pr[A′(κ) outputs a collision for hκ] ≥ ε
8

Hence,

Pr
κ

[
Pr[A′(κ) outputs a collision for hκ] ≥ ε

8

]
≥ 1 − δ

2

Again by running A′ a total of O(1
ε log 1

δ ) times, we can find collisions on Hn with
probability 1 − δ. ��

3.3 Reducing the Key Size

From a theoretical point of view, it is useful to have hash functions with short
descriptions (i.e. short keys). Short keys may also be of interest from a practical point
of view, although for the most common application of collision-resistant hash functions
(digital signatures) the key would be standardized and only distributed once. Starting
with a 160-bit key, the above transformations could yield a key that is much longer.
Fortunately, there is no inherent cause for this blow-up: we may reduce the key size in
each of the above constructions using randomness-efficient sampling [9], namely, we
want to sample q keys in {0, 1}�key using r bits of randomness, where r � q�key.

To accomplish this, we will use the randomness-efficient hitter in [9, Appendix C],
with a slightly different analysis showing that for the parameters we are interested in,
the construction satisfies a stronger sampler-like property. The weaker hitter guarantee
is sufficient to reduce the key size for Construction 1, whereas the stronger sampler-like
property is necessary for Construction 2. For our application, we will also require that
that the hitter satisfy a certain reconstructibility property, previously used in [5]. This
is used in the security reduction to generate challenges for the adversary breaking H′

given a key for H.
We stress here that for specific concrete parameters, we may use different choices

of hitters and samplers for ease of implementation and optimality for those specific
parameters.

Lemma 1. There exists a constant c such that for every δ, ε > 0, there is an efficient
randomized procedure G : {0, 1}r → ({0, 1}�key)q with the following properties:

— (sampler) for every subset S ⊆ {0, 1}�key of density δ, with probability at least 1−ε,
at least δq

2c of the strings output by G lie in S.
— (complexity) the randomness complexity r is �key + O(log 1

ε ) and the sample
complexity q is O(1

δ log 1
ε ).
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— (reconstructible) there exists an efficient algorithm that on input (i, x), outputs a
uniformly random element from the set {σ | G(σ)i = x}.

Proof (sketch). The construction (based on that in [9]) proceeds in three stages:

– First, we construct a hitter that generates c
δ samples in {0, 1}�key using �key random

bits with the following property: for every subset S of {0, 1}�key with density δ,
with probability at least 2

3 , at least one sample lies in S. We may obtain such a
hitter using Ramanujan graphs of degree c

δ and vertex set {0, 1}�key, wherein we
pick a random vertex v, and the samples are the indices of the neighbors of v [9].

– Next, we construct a sampler that generates d = O(log 1
ε ) samples in {0, 1}�key

using �key + O(d) random bits with the following property: for every subset S′ of
{0, 1}�key with density 2

3 , with probability at least 1− ε, at least 1
2 of the samples lie

in S′. We may obtain such a sampler by taking a random walk of length d − 1 on a
constant-degree expander with vertex set {0, 1}�key [9].

– Finally, we compose the sampler and the hitter as follows: we consider a random
walk of length d−1 on the expander, and use each of the d vertices along the path as
random coins for the hitter. Overall, we will run the hitter d times, which generate
a total of q = d · c

δ samples using a total of �key + O(d) random bits. This yields
the desired query and randomness complexity.

The sampler guarantee follows fairly readily. Fix S of density δ. Let S′ be the set of
random coins for the hitter such that at least one sample lies in S, so S′ has density
at least 2

3 . We know that with probability at least 1 − ε (over the random walk), we
generate at least d

2 samples in S′, which in turn yields d
2 = δq

2c samples that lie in S.
Finally, we check each of the two components in our construction is reconstructible,

from which it follows that the combined construction is also reconstructible. For the
expander-based hitter, this means that given i, x, we need to compute the vertex v whose
i’th neighbor is labeled x. For the expander-based sampler, we need to given i, x, sample
a start vertex and a path such that the i’th vertex on the path is labeled x. Indeed, both
properties are readily satisfied for standard explicit constructions of constant-degree
expanders. ��

The next construction is obtained from Construction 2 by replacing independent
sampling of the q keys with randomness-efficient sampling using G, and using a code
with slightly different parameters:

Construction 3 (reduced key size). Run G to obtain q keys κ1, . . . , κq ∈ {0, 1}�key.
Let C : {0, 1}�in

′ → ({0, 1}�in)q be an error-correcting code with minimum relative
distance 1 − δ

4c (e.g., the Reed-Solomon code), where �in
′ = Θ(δq�in). On input x ∈

{0, 1}�in
′
, output hκ1(C(x)1) ◦ hκ2(C(x)2) ◦ · · · ◦ hκq(C(x)q).

It is straight-forward to verify that an analogue of Proposition 2 holds for Construction
3 if the CRHF is public-coin, and with essentially the same parameters except that
the key size is now reduced to �key + O(log 1

ε ) (i.e., the randomness complexity of
G). We now state our main result for hardness amplification of collision-resistance,
which is essentially a restatement of Proposition 2 for independent sampling and for
randomness-efficient sampling:
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Parameters Construction 0 Construction 1 Construction 2 Construction 4
input length �in

′ �in Θ(�in log 1
ε
) �in − Δ − log �in

output length �out Θ( �out
δ

log 1
ε
) Θ( �out

δ
log 1

ε
) �out − Δ

# hash calls �in
′−�in

�out−�in
Θ( 1

δ
log 1

ε
) Θ( 1

δ
log 1

ε
) Θ(2Δ�in)

key size �key Θ( �key
δ

log 1
ε
) Θ( �key

δ
log 1

ε
) Θ(�in

2 + Δ)
(public-coin) �key �key + Θ(log 1

ε
) �key + Θ(log 1

ε
) Θ(�in

2 + Δ)

Fig. 1. Summary of parameters for Constructions 0, 1, 2, & 4. In order to compare constructions
1 and 2 on inputs of the same length, we could apply the Merkle-Damgård transformation first, in
which case the latter offers a Θ(log 1

ε
) factor improvement in the number of hashing operations.

For the key size, the second line refers that achieved using Construction 3 for public-coin hash
functions.

Theorem 1. Fix some security parameter n. Suppose there exists a (s, 1 − δ)-CRHF
Hn from {0, 1}�key × {0, 1}�in to {0, 1}�out. Then, there exists an (s′, ε)-CRHF H′

n from
{0, 1}�key

′ × {0, 1}�in
′

to {0, 1}�out
′

with the following parameters:

– �in
′ = Θ(�in log 1

ε ) and �out
′ = Θ( �out

δ log 1
ε ) and �key

′ = Θ( �key

δ log 1
ε )

– # hash calls = Θ(1
δ log 1

ε )
– security reduction : s′ = s · Θ(1

ε log 1
δ )−1

Moreover, if the CRHF is public-coin, then we may reduce �key
′ to �key + Θ(log 1

ε ).

3.4 Reducing the Output Length

We show that it is possible to reduce the output size of any CRHF by an additive factor
of Δ, with a negligible loss in the the probability of finding collisions, but at the price
of an exponential (in Δ) multiplicative increase in the complexity of the function, along
with a similar decrease in the size of adversaries tolerated. This imposes a limitation of
Δ = O(log n) for all reasonable settings.

Proposition 3. Suppose there exists a (s, ε)-CRHF H from {0, 1}�in to {0, 1}�out. Let
Δ = O(log n). Then, there exists a (s − poly(2Δ, n), ε + 2−Ω(�in))-CRHF from
{0, 1}�in−Δ−log �in−2 to {0, 1}�out−Δ. The complexity of the new CRHF is increases by
a factor poly(2Δ, �in).

This result follows the randomized black-box combiner in the following theorem,
setting t′ = t = 1.

Theorem 2. There is a randomized black-box (t′, t)-combiner (C, R) achieving para-
meters �in

′ = �in − Δ − log �in − 2 and �out
′ = (t − t′ + 1)·(�out − Δ) for any positive

Δ such that �in
′ > �out

′ > 0. The running times of C and R are polynomial in n and
2Δ and the randomness complexity of C is O(�in

2 + Δ).

We may in fact use this combiner instead of the trivial combiner for our hardness
amplification constructions. However, since we do not optimize on the output length
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of our hardness amplification within constant multiplicative factors, it does not make
sense to try to cut down on the additive terms.

Overview of combiner. We begin with the case t′ = t = 1 and suppose h = h1

is “highly regular”, and we have a partition of {0, 1}�in into 2�in−Δ sets {Sx̃ | y ∈
{0, 1}�in−Δ} each of size 2t with the following property: for every x̃, Sx̃ contains a
unique string x such that h(x) has prefix 0Δ. Then, we define h̃(x̃) to be the (�out −Δ)-
bit suffix of h(x). It is easy to see how every collision (x̃, x̃′) for h̃ yields a collision
(x0, x1) for h. To arrive at the general construction (which is where randomness plays
a role),

– We replace 0Δ with a string z ∈ {0, 1}Δ that is relatively popular in the sense
that it occurs in at least an Ω(1/2Δ) fraction of the images of h. Such a z can be
identified by evaluating h on O(�in · 22Δ) random inputs. To bring the randomness
complexity down to O(�in + Δ), we choose these inputs using the randomness-
efficient Boolean sampler for approximating the mean within an additive error of
1
2 · 2−Δ with probability 1 − 2−2�in in [9].

– We replace the fixed partitioning with a random partitioning induced by a family
G of �in-wise independent functions from {0, 1}�in to {0, 1}�in−Δ−log �in−2. Given
g ∈ G, we take Sx̃ = g−1(x̃). This gives us a partition of {0, 1}�in into sets each
of size Õ(2Δ�in). With overwhelming probability over g, for every x̃, there exists
x ∈ Sx̃ such that h(x) has prefix z (we set x to be the lexicographically first string
with this property).

Construction and analysis. We formally state the construction for t′ = t = 1. For
simplicity, we present the construction using independent samples ui and defer the
randomness-efficient version to the full version.

Construction 4. Let G = {g : {0, 1}�in → {0, 1}�in−Δ−log �in−2} be a family of 6�in-
wise independent hash functions that such that given y, the set g−1(y) is computable in
time poly(2Δ, n). (This can be achieved using univariate polynomials of degree 6�in).
On input x̃ ∈ {0, 1}�in−Δ−log �in−2 and randomness r ∈ {0, 1}O(Δ+�in

2), we compute
h̃r(x̃) ∈ {0, 1}�out−Δ as follows:

1. Parse r as g ∈ G and u1, . . . , um ∈ {0, 1}�in, where m = Θ(22Δ�in).
2. Let z ∈ {0, 1}Δ be the lexicographically first string that occurs at least a 1/2Δ

fraction of times as a prefix among h(u1), . . . , h(um) (where h = h1);
3. Compute Sx̃ = g−1(x̃) in order to find a string x in Sx̃ such that h(x) has prefix z.

Choose the lexicographically first string if there are more than 1; output 0�out−Δ if
no such string exists or if |Sx̃| > 8�in · 2Δ.

4. Output the (�out − Δ)-bit suffix of h(x).

For general t′, t, we may simply apply the above construction to each of h1, . . . , ht−t′+1

and concatenate the output; it will be clear from the analysis that we may use the
same randomness r for all t functions. Theorem 2 follows readily once we establish
the following technical claim for t′ = t = 1.

Claim. With probability 1 − 2−Ω(�in) over r = (g, u1, . . . , um), the following
statements hold simultaneously:
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– |Γz| ≥ 2�in−Δ−1, where z is as in the construction and Γz = {x ∈ {0, 1}�in | h(x)
has prefix z};

– for all x̃, we have Sx̃ ∩ Γz �= ∅ (where Sx̃ = g−1(x̃));
– for all x̃, we have |Sx̃| ≤ 8�in · 2Δ.

Suppose we have a collision (x̃0, x̃1) for h̃r, where the conditions in the technical claim
do hold for r. Then, we could in poly(2Δ, �in) time compute (x0, x1) ∈ Sx̃0 ×Sx̃1 such
that h(x0) = z ◦ hr(x̃0) and h(x1) = z ◦ hr(x̃1). This implies (x0, x1) is a collision
for h.

Proof (of claim). By a Chernoff bound, we have that for each Δ-bit prefix w, if w occurs
in a pw fraction of outputs of h as a prefix, then with probability at least 1 − 2−2�in

over the ui’s, w will occur at most a pw + 1
2 · 2−Δ fraction of times (as a prefix)

among the h(ui)’s. Taking a union bound over all 2Δ < 2�in prefixes, we see that
with probability at least 1 − 2−�in , the prefix z must satisfy pz ≥ 1

2 · 2−Δ and thus
|Γz| ≥ 2�in−Δ−1. We assume in the rest of the proof that this is the case. Then, for each
y ∈ {0, 1}�in−Δ−log �in−2: E[|Sx̃ ∪ Γz|] = |Γz| · 2−�in+t+log �in+2 ≥ 2�in. Applying a tail
bound for 6�in-wise independence [22], we obtain:

Pr
g

[Sx̃ ∩ Γz = ∅] ≤ 2−2�in

Taking a union bound over all y ∈ {0, 1}�in−Δ−log �in−2, we have:

Pr
g

[∃y : Sx̃ ∩ Γz = ∅] ≤ 2−2�in · 2�in−Δ−log �in−2 = 2−Ω(�in)

Finally, for each y, E[|Sx̃|] = 4�in · 2Δ. Again, by using the tail bound for 6�in-wise
independence and a union bound, we have Pr[∃y : |Sx̃| > 8�in · 2Δ] < 2−Ω(�in). ��

4 Limitations

We begin by presenting the class of constructions for which we prove lower bounds:

Definition 2. We say that (C, R) is a black-box (1 − δ, ε)-amplifier for collision
resistance if C = (Ckey, Chash) is a pair of deterministic (oracle) TMs, and R =
(Rkey, Rcoll) is a pair of randomized (oracle) TMs, and both pairs of TMs run in time
poly(n, 1

δ , 1
ε ). In addition, for all H = {{0, 1}�key × {0, 1}�in → {0, 1}�out}:

CONSTRUCTION. C compute H′ = {{0, 1}�key
′ × {0, 1}�in

′ → {0, 1}�out
′}

where �out
′ > �in

′ as follows: given a key κ′ and a string x, we run Ckey(κ′) to

obtain κ1, . . . , κq and then set h′
κ′(x) to be C

hκ1 ,...,hκq

hash (κ′, x).

REDUCTION. There exists a constant c such that for every TM A that outputs
a collision on h′

κ′ with probability at least ε and any subset S of {0, 1}�key of
density at least δ/2, there exists κ ∈ S such that

Pr
σ,Rcoll

[
Rkey(κ; σ) = κ′; RH

coll(i, σ, A(κ′)) outputs a collision on hκ

]
>

(δε

n

)c
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Note that a black-box amplifier should provide an efficient reduction that converts any
adversary A that finds collisions in h′

κ′ with probability ε into an adversary A′ that
finds collisions in hκ with probability 1 − δ. Indeed, Definition 2 guarantees that for
a 1 − δ

2 fraction of keys κ, RA,H(κ) outputs a collision for hκ with probability ( δε
n )c.

Running R a total of O(( n
δε )

c log 1
δ ) yields the desired reduction. The above reduction

is more restrictive than an arbitrary black-box reduction due to the following structural
restrictions we place on the construction and the reduction, and this makes our result
weaker.

Construction. We do not allow constructions that use the input as a key into the
underlying family hash functions. We enforce this constraint by having a key
generation algorithm Ckey select the members hκ1 , . . . , hκq of the underlying
family given only the new key κ′, and restrict the actual computation Chash to only
query hκ1 , . . . , hκq . We will refer to q as the query complexity of the construction,
the idea being that Chash will query each of the functions hκ1 , . . . , hκq at least once
by having Ckey not generate extraneous keys.

Reduction. The restriction on the reduction states that the reduction only requires
a single collision from A′ to break H with noticeable probability. This is true
of the reductions used in our constructions and of all known reductions used
in hardness amplification for one-way functions (c.f. [15]): all these reductions
generate multiple challenges to the adversary and if the adversary successfully
answers any of the challenges, the reduction succeeds with high probability.

We present lower bounds for the query complexity of the construction q and the output
length �out

′.

Theorem 3. Suppose (C, R) is a black-box (1 − δ, ε)-amplifier for collision resistance
with ε ≤ δ

2 . Then,

q ≥ Ω(1
δ log 1

ε ) and �out
′ ≥ 1

δ ·
(
�out − O(log n + log 1

ε + log 1
δ )

)
− 2

The lower bound for q follows closely the lower bound in [15], by arguing that
Ckey must compute a randomness-efficient hitting sampler, and is omitted due to
lack of space. To obtain a lower bound for �out

′, we begin with an observation of
a connection between black-box hardness amplification and randomized black-box
combiners. Intuitively, a (1 − δ)-CRHF could comprise � 1

δ � functions, of which it is
hard to find collisions on just one of them. In this case, the black-box (1−δ, ε)-amplifier
acts like a randomized black-box (1, � 1

δ �)-combiner. To derive a lower bound for the
latter, we use the probabilistic argument in Pietrzak’s work [19]. We also note that the
probabilistic argument is already sufficient to obtain the lower bounds for deterministic
black-box combiners, therefore simplifying the lower bounds in [2,19] by eliminating
an additional randomization argument therein.

Proof. Set t to be a power of 2 in the interval [ 1δ , 2
δ ). Pick t random functions

f1, . . . , ft : {0, 1}�in → {0, 1}�out and identify {0, 1}�key with {1, 2, . . . , t} and H with
{f1, . . . , ft}. Consider the following procedure R̃ for finding collisions in f1, . . . , ft

given oracle access to these functions:
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— picks x′
0, x

′
1 ∈ {0, 1}�in

′
and κ′ ∈ {0, 1}�key

′
at random;

— for each i = 1, 2, . . . , t, sample a random σi such that Rkey(i; σi) = κ′,
and output Rf1,...,ft

coll (i, σi, (x′
0, x

′
1)).

We note that for all f1, . . . , ft and for all κ′, the function h′
κ′ maps {0, 1}�in

′
to

{0, 1}�out
′
. By the standard lower bound on collision probability or a simple application

of Cauchy-Schwartz, we have

Pr
x′
0,x′

1

[(x′
0, x

′
1) is a collision for h′

κ′ ] ≥ 2−�out
′
− 2−�in

′
≥ 2−�out

′−1

Consider a procedure A that outputs collisions on every h′
κ′ by repeatedly choosing

(x′
0, x

′
1) at random until it finds a collision. By our choice of t, each {i} is a subset of

{0, 1}�key of density 1
t ≥ δ/2, for i = 1, 2, . . . , t. The reduction then guarantees that

Pr
σ,Rcoll

[
Rkey(i; σ) = κ′; RH

coll(i, σ, A(κ′)) outputs a collision on fi

]
>

(
δε
n

)c

In fact, the above statement is true even if we restrict A to only output collisions for
κ′ lying in some subset S′ of {0, 1}�key

′
of density ε. By a probabilistic argument, this

implies that for every subset S′ of {0, 1}�key
′

of density ε, there exists κ′ ∈ S′ such that:

Pr
[
σ ← Rkey(i; ·) = κ′; RH

coll(i, σ, A(κ′)) outputs a collision on hκ

]
>

(
δε
n

)c

Call such a κ′ i-good. Then, for each i, a 1 − ε fraction of κ′ is i-good. By a union
bound, there exists a 1 − tε fraction of κ′ that are i-good, for all i = 1, 2, . . . , t. Hence,

Pr
R̃

[
R̃f1,...,ft outputs collisions for each of f1, . . . , ft

]

≥ (1 − tε) · 2−�out
′−1 ·

(
δε
n

)ct

Note that the preceding inequality holds for all functions f1, . . . , ft and thus also
holds for random functions f1, . . . , ft. On the other hand, by the birthday paradox and
independence of the t functions, we know that the probability (over random functions)

R̃ outputs collisions in each of f1, . . . , ft is at most
(

Q2

2�out

)t

, where Q = poly(n, 1
δ , 1

ε )

is the query complexity of R̃. Comparing the two bounds and solving for �out
′ yields

the desired bound. ��
The above argument also yields a lower bound on the output length for (t′, t)-
combiners. The idea is to use R to find t − t′ + 1 collisions amongst random functions
f1, . . . , ft and observe that the probability is bounded by

(
t

t−t′+1

)
· ( Q2

2�out )
t−t′+1. This

establishes the optimality of our construction in Theorem 2 (up to constant factors in
the O(log n) term):

Theorem 4. Suppose (C, R) is a randomized black-box (t′, t)-combiner for CRHFs.
Let Q be an upper bound on the query complexity of R. Then,

�out
′ ≥ (t − t′ + 1)(�out − 2 log Q) − t − 1

Acknowledgments. We would like to thank Krzysztof Pietrzak for helpful discussions
on combiners.
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