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Abstract. We give an improved explicit construction of highly unbalanced bipartite expander graphs
with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices).
Both the degree and the number of right-hand vertices are polynomially close to optimal, whereas the
previous constructions of Ta-Shma et al. [2007] required at least one of these to be quasipolynomial
in the optimal. Our expanders have a short and self-contained description and analysis, based on the
ideas underlying the recent list-decodable error-correcting codes of Parvaresh and Vardy [2005].

Our expanders can be interpreted as near-optimal “randomness condensers,” that reduce the task
of extracting randomness from sources of arbitrary min-entropy rate to extracting randomness from
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sources of min-entropy rate arbitrarily close to 1, which is a much easier task. Using this connection,
we obtain a new, self-contained construction of randomness extractors that is optimal up to constant
factors, while being much simpler than the previous construction of Lu et al. [2003] and improving
upon it when the error parameter is small (e.g., 1/poly(n)).
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1. Introduction

One of the exciting developments in the theory of pseudorandomness has been the
discovery of intimate connections between a number of fundamental and widely
studied objects—expander graphs, randomness extractors, list-decodable error-
correcting codes, pseudorandom generators, and randomness-efficient samplers.
Indeed, substantial advances have been made in our understanding of each of these
objects by translating intuitions and techniques from the study of one to the study of
another. In this work, we continue in this tradition. Specifically, we use ideas from
recent breakthrough constructions of list-decodable codes, due to Parvaresh and
Vardy [2005], to give improved and simplified constructions of both unbalanced
bipartite expander graphs and randomness extractors.

1.1. UNBALANCED EXPANDER GRAPHS. Expanders are graphs that are sparse
yet very highly connected. They have a wide variety of applications in theoretical
computer science, and there is a rich body of work on constructions and properties
of expanders. (See the survey of Hoory et al. [2006].) The classic measure of
the connectivity of an expander is vertex expansion, which asks that every set S
of vertices that is not too large have significantly more than |S| neighbors. This
property is formalized for bipartite graphs through the following definitions.

Definition 1.1. A bipartite (multi)graph with N left-vertices, M right-vertices,
and left-degree D is specified by a function � : [N ] × [D] → [M], where �(x, y)
denotes the yth neighbor of x . For a set S ⊆ [N ], we write �(S) to denote its set of
neighbors {�(x, y) : x ∈ S, y ∈ [D]}.

Definition 1.2. A bipartite graph � : [N ] × [D] → [M] is a (K , A) expander
if for every set S ⊆ [N ] of size K , we have |�(S)| � A · K . It is a (�Kmax, A)
expander if it is a (K , A) expander for all K � Kmax.

The typical goals in constructing expanders are to maximize the expansion factor
A and minimize the degree D. In this work, we are also interested minimizing the
size M of the right-hand side, so M � N and the graph is highly unbalanced.
Intuitively, this makes expansion harder to achieve because there is less room in
which to expand. Using the probabilistic method, it can be shown that very good
expanders exist—with expansion A = (1 − ε) · D, degree D = O(log(N/M)/ε),
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and M = O(Kmax D/ε) = O(Kmax A/ε) right vertices. Thus, if M � N c for some
constant c < 1, then the degree is logarithmic in N , and logarithmic degree is in fact
necessary if M = O(Kmax A).1 However, applications of expanders require explicit
constructions—ones where the neighbor function � is computable in polynomial
time (in its input length, log N + log D)—and the best known explicit constructions
still do not match the ones given by the probabilistic method.

Most classic constructions of expanders, such as Margulis [1973], Gabber and
Galil [1981], Lubotzky et al. [1988], and Margulis [1988], focus on the balanced
(or nonbipartite) case (i.e., M = N ), and thus are able to achieve constant degree
D = O(1). The expansion properties of these constructions are typically proven
by bounding the second-largest eigenvalue of the adjacency matrix of the graph.
While such “spectral” expansion implies various combinatorial forms of expansion
(e.g., vertex expansion) and many other useful properties, it seems insufficient
for deducing vertex expansion beyond D/2 [Kahale 1995] or for obtaining highly
imbalanced expanders with polylogarithmic degree [Wigderson and Zuckerman
1999]. This is unfortunate, because some applications of expanders require these
properties. A beautiful example of such an application was given by Buhrman et al.
[2002]. They showed that a (�Kmax, A) expander with N left-vertices, M right-
vertices, and expansion A = (1 − ε)D yields a method for storing any set S ⊆ [N ]
of size at most Kmax/2 in an M-bit data structure so that membership in S can be
probabilistically tested by reading only one bit of the data structure. An optimal
expander would give M = O(Kmax log N ), only a constant factor more than what
is needed to represent an arbitrary set of size Kmax/2 (even without supporting
efficient membership queries).

Explicit constructions of expanders with expansion A = (1−ε)D were obtained
by Ta-Shma et al. [2007] for the highly imbalanced (and nonconstant-degree) case
and Capalbo et al. [2002] for the balanced (and constant-degree) case. The construc-
tions of Ta-Shma et al. [2007] can make either one of the degree or right-hand side
polynomially larger than the nonconstructive bounds mentioned above, at the price
of making the other quasipolynomially larger. That is, one of their constructions
gives D = poly(log N ) and M = quasipoly(Kmax D)

def= exp(poly(log(Kmax D))),
whereas the other gives D = quasipoly(log N ) and M = poly(Kmax D). The
quasipolynomial bounds were improved recently [Ta-Shma and Umans 2006], but
remained superpolynomial.

We are able to simultaneously achieve D = poly(log N ) and M = poly(KD), in
fact with a good tradeoff between the degrees of these two polynomials.

THEOREM 1.3. For all constants α > 0: for every N ∈ N, Kmax � N, and
ε > 0, there is an explicit (�Kmax, (1 − ε)D) expander � : [N ] × [D] → [M] with
degree D = O((log N )(log Kmax)/ε)1+1/α and M � D2 · K 1+α

max .

The construction of our expanders is based on the recent list-decodable codes
of Parvaresh and Vardy [2005], and can be described quite simply. The proof of
the expansion property is inspired by the list-decoding algorithm for the PV codes,
and is short and self-contained. An overview of this “list-decoding approach” to
proving expansion is provided in Section 2.1.

1More generally, the degree must be at least �(log(N/Kmax)/ log(M/(Kmax A))), as follows from the
lower bounds on the degree of dispersers [Radhakrishnan and Ta-Shma 2000].
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1.2. RANDOMNESS EXTRACTORS. One of the main motivations and applica-
tions of our expander construction is the construction of randomness extractors.
These are functions that convert weak random sources, which may have biases and
correlations, into almost-perfect random sources. For general models of weak ran-
dom sources, this is impossible, so the extractor is also provided with a short “seed”
of truly random bits to help with the extraction [Nisan and Zuckerman 1996]. This
seed can be so short (e.g., of logarithmic length) that one can often eliminate the
need for any truly random bits by enumerating all choices for the seed. For example,
this allows extractors to be used for efficiently simulating randomized algorithms
using only a weak random source [Zuckerman 1996; Nisan and Zuckerman 1996].
Extractors have also found a wide variety of other applications in theoretical com-
puter science beyond their original motivating application, and thus a long body of
work has been devoted to providing efficient constructions of extractors. (See the
survey of Shaltiel [2002].)

To formalize the notion of an extractor, we need a few definitions. Following
Chor and Goldreich [1988] and Zuckerman [1996], the randomness in a source
is measured by min-entropy: a random variable X has min-entropy at least k iff
Pr[X = x] � 2−k for all x . Sometimes we refer to such a random variable as a
k-source. A random variable Z is ε-close to a distribution D if for all events A,
Pr[Z ∈ A] differs from the probability of A under the distribution D by at most ε.
Then an extractor is defined as follows:

Definition 1.4 [Nisan and Zuckerman 1996]. A function E : {0, 1}n ×
{0, 1}d → {0, 1}m is a (k, ε) extractor if for every X with min-entropy at least
k, E(X, Y) is ε-close to uniform, when Y is uniformly distributed on {0, 1}d . An
extractor is explicit if it is computable in polynomial time.

The competing goals when constructing extractors are to obtain a short seed
length and to obtain a long output length. Nonconstructively, it is possible to simul-
taneously have a seed length d = log n + 2 log(1/ε) + O(1) and an output length
of m = k + d − 2 log(1/ε) − O(1), and both of these bounds are optimal up to
additive constants (for k � n/2) [Radhakrishnan and Ta-Shma 2000]. It remains
open to match these parameters with an explicit construction.

Building on a long line of work, Lu et al. [2003] achieved seed length and output
length that are within constant factors of optimal, provided that the error parameter
ε is not too small. More precisely, they achieve seed length d = O(log n) and output
length m = (1−α)k for ε � n−1/ log(c) n , where α and c are any two positive constants.
For general ε, they pay with either a larger seed length of d = O((log∗ n)2 log n +
log(1/ε)), or a smaller output length of m = k/ log(c) n for any constant c.

In this work, we also achieve extractors that are optimal up to constant factors,
but are able to handle the full range of error parameters ε.

THEOREM 1.5 (MAIN EXTRACTOR RESULT). For every constant α > 0, and
all positive integers n, k and all ε > 0, there is an explicit construction of a (k, ε)
extractor E : {0, 1}n × {0, 1}d → {0, 1}m with d � log n + O(log(k/ε)) and
m � (1 − α)k.

Our extractor is also substantially simpler than that of Lu et al. [2003], which
is a complex recursive construction involving many tools. The key component
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FIG. 1. Extractors in this article for min-entropy k and error ε. Above, γ ∈ (0, 1) is an arbitrary
constant.

in our construction is the interpretation of our expander graph as a randomness
condenser:

Definition 1.6. A function C : {0, 1}n × {0, 1}d → {0, 1}m is an k →ε k ′
condenser if for every X with min-entropy at least k, C(X, Y) is ε-close to a
distribution with min-entropy k ′, when Y is uniformly distributed on {0, 1}d . A
condenser is explicit if it is computable in polynomial time. A condenser is called
lossless if k ′ = k + d.

Observe that a k →ε k ′ condenser with output length m = k ′ is an extractor,
because the unique distribution on {0, 1}m with min-entropy m is the uniform dis-
tribution. Condensers are a natural stepping-stone to constructing extractors, as
they can be used to increase the entropy rate (the ratio of the min-entropy in a
random variable to the length of the strings over which it is distributed), and it
is often easier to construct extractors when the entropy rate is high. Condensers
have also been used extensively in less obvious ways to build extractors, often as
part of complex recursive constructions; for example, Impagliazzo et al. [2000],
Reingold et al. [2006], and Lu et al. [2003]. Nonconstructively, there exist loss-
less condensers with seed length d = log n + log(1/ε) + O(1), and output length
m = k + d + log(1/ε) + O(1).

As shown by Ta-Shma et al. [2007], lossless condensers are equivalent to bi-
partite expanders with expansion close to the degree. Applying this connection to
Theorem 1.3, we obtain the following condenser:

THEOREM 1.7. For all constants α ∈ (0, 1): for every n ∈ N, k � n, and ε > 0,
there is an explicit k →ε k +d (lossless) condenser C : {0, 1}n ×{0, 1}d → {0, 1}m

with d = (1 + 1/α) · (log n + log k + log(1/ε)) + O(1) and m � 2d + (1 + α)k.

Consider the case that α is a constant close to 0. Then, the condenser has seed
length O(log(n/ε)) and output min-entropy rate roughly 1/(1+α). Thus, the task of
constructing extractors for arbitrary min-entropy is reduced to that of constructing
extractors for min-entropy rate close to 1, which is a much easier task. Indeed, when
ε is constant, we can use a well-known and simple extractor based on expander
walks. When ε is subconstant, we can use Zuckerman’s extractor for constant
entropy rate [Zuckerman 1997] to obtain the proper dependence on ε as long as ε >

exp(−k/2O(log∗ k)). Moreover, by combining our condenser with ideas from the early
constructions of extractors (the Leftover Hash Lemma, block-source extraction,
and simple compositions), we are able to give a completely self-contained proof of
Theorem 1.5 with no constraint on the error parameter ε at all.

Our main extractors and condensers are summarized in Figures 1 and 2.

1.3. ORGANIZATION AND POINTERS TO MAIN RESULTS. We begin with a high
level overview of our construction and proof method in Section 2. We describe and
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FIG. 2. Condensers in this article for min-entropy k and error ε. Above, γ > 0 is an arbitrary
constant.

analyze our expander construction in Section 3 (our main Theorem 1.3 concerning
expanders is proved as Theorem 3.5). We then interpret our expander as a lossless
condenser and use it to obtain a simple extractor for constant error in Section 4.
In Section 5, we use our lossless condensers and some standard methods for com-
posing extractors to give a self-contained recursive construction of extractors that
are optimal up to constant factors, with no constraint on the error parameter. (Our
main Theorem 1.5 concerning extractors is proved as Theorem 5.12.)

In Section 7, we analyze a variant of our main condenser that has a simpler
description in terms of just Reed-Solomon codes and is a univariate analogue of
Shaltiel and Umans [2005], and whose analysis is based on Guruswami and Rudra
[2008]. We give two variants of such condensers, both of which have parameters
slightly worse than our main condenser. Specifically, one is lossless but limited to
achieving entropy rate 1/2, and the other can achieve entropy rate close to 1 but
loses a constant fraction of the source min-entropy. The latter is analyzed using a
list-decoding view of lossy condensers that we describe in Section 6. In Section 8,
we describe an application of our lossless expanders to dictionary data structures for
answering set membership queries in the bitprobe model, following Buhrman et al.
[2002] who first made this beautiful connection. Finally, we conclude in Section 9
with some open problems.

1.4. NOTATION. Throughout this article, we use boldface capital letters for
random variables (e.g., “X”), capital letters for indeterminates, and lower case
letters for elements of a set. Also throughout the article, Ut is the random vari-
able uniformly distributed on {0, 1}t . The support of a random variable X is
supp(X)

def= {x : Pr [X = x] > 0}. The statistical distance between random vari-
ables (or distributions) X and Y is maxT | Pr [X ∈ T ] − Pr [Y ∈ T ] |. We say X and
Y are ε-close if their statistical distance is at most ε. All logs are base 2. A random
variable X is a k-source if the min-entropy of X is at least k.

2. Overview of Our Approach

In this section, we give a high-level overview of our construction and the proof
technique.

2.1. EXPANSION VIA LIST-DECODING. Before explaining our approach, we
briefly review the basics of list-decodable codes. A code is mapping C : [N ] →
[M]D, encoding messages of bit-length n = log2 N to D symbols over the al-
phabet [M]. (Contrary to the usual convention in coding theory, we use differ-
ent alphabets for the message and the encoding.) The rate of such a code is
ρ = n/(D log2 M). We say that C is (ε, K ) list-decodable if for every r ∈ [M]D,
the set LIST(r, ε)

def= {x : Pry[C(x)y = ry] � ε} is of size at most K . We think of r
as a received word obtained by corrupting all but an ε fraction of symbols in some
codeword. The list-decodability property says that there are not too many messages
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x that could have led to the received word r . The goal in constructing list-decodable
codes is to optimize the tradeoff between the agreement ε and the rate ρ, which are
typically constants independent of the message length n. Both the alphabet size M
and the list-size K should be relatively small (e.g., constant or poly(n)). Compu-
tationally, we would like efficient algorithms both for computing C(x) given x and
for enumerating the messages in LIST(r, ε) given a received word r .

The classic Reed-Solomon codes were shown to achieve these properties with
polynomial-time list-decoding in the seminal work of Sudan [1997]. The tradeoff
between ε and ρ was improved by Guruswami and Sudan [1999], and no better
result was known for a number of years. Indeed, their result remains the best known
for decoding Reed-Solomon codes. Recently, Parvaresh and Vardy [2005] gave an
ingenious variant of Reed-Solomon codes for which the agreement-rate tradeoff is
even better, leading finally to the optimal tradeoff (namely, ρ = ε − o(1)) achieved
by Guruswami and Rudra [2008] using “folded” Reed-Solomon codes.

Our expanders are based on the Parvaresh-Vardy codes. Specifically, for a left-
vertex x ∈ [N ] and y ∈ [D], we define the yth neighbor of x to be �(x, y) =
(y, C(x)y), where C : [N ] → [M]D is a Parvaresh-Vardy code with a somewhat
unusual setting of parameters. (Note that here we take the right-hand vertex set to
be [D] × [M].) To prove that this graph is an expander, we adopt a ‘list-decoding’
view of expanders. Specifically, for a right-set T ⊆ [D] × [M], we define

LIST(T )
def= {x ∈ [N ] : �(x) ⊆ T }.

Then, the property of � being a (K , A) expander can be reformulated as follows:

for all right-sets T of size less than AK , we have |LIST(T )| < K .

We note that a similar formulation of expansion appears in Galvin and Tetali [2006]
(where it is restricted to sets T of the form �(S) for sets S ⊆ [N ] of size at most
K ).

Let us compare this to the standard list-decodability property for error-correcting
codes. Notice that for a received word r ∈ [M]D,

LIST(r, ε) = {x : Pr
y

[C(x)y = ry] � ε}
= {x : Pr

y
[�(x, y) ∈ Tr ] � ε},

where Tr = {(y, ry) : y ∈ [D]}. Thus, the two list-decoding problems are related,
but have the following key differences:

—In the coding setting, we only need to consider sets T of the form Tr . In partic-
ular, these sets are all very small—containing only D of the possible DM right
vertices.

—In the expander setting, we only need to bound the number of left-vertices whose
neighborhood is entirely contained in T , whereas in the coding setting we need
to consider left-vertices for which even an ε fraction of neighbors are in Tr .

—In the coding setting, it is desirable for the alphabet size M to be small (constant
or poly(n)), whereas our expanders are most interesting and useful when M is
in the range between, say, nω(1) and 2n/2.

—In the coding setting, the exact size of LIST(r, ε) is not important, and generally
any poly(n/ε) bound is considered sufficient. In the expander setting, however,
the relation between the list size and the size of T is crucial. A factor of 2 increase
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in the list size (for T of the same size) would change our expansion factor A
from (1 − ε)D to (1 − ε)D/2.

For these reasons, we cannot use the analysis of Parvaresh and Vardy [2005] as
a black box. Indeed, in light of the last item, it is somewhat of a surprise that we
can optimize the bound on list size to yield such a tight relationship between |T |
and |LIST(T )| and thereby provide near-optimal expansion.

This list-decoding view of expanders is related to the list-decoding view of
randomness extractors that was implicit in Trevisan’s breakthrough extractor con-
struction [Trevisan 2001] and was crystallized by Ta-Shma and Zuckerman [2004].
There one considers all sets T ⊆ [D] × [M] (not just ones of bounded size) and
bounds the size of LIST(T, μ(T ) + ε) = {x : Pry[�(x, y) ∈ T ] � μ(T ) + ε},
where μ(T )

def= |T |/(DM) is the density of T . Indeed, our work began by ob-
serving a strong similarity between a natural “univariate” analog of the Shaltiel–
Umans extractor [Shaltiel and Umans 2005] and the Guruswami–Rudra codes
[Guruswami and Rudra 2008], and by hoping that the list-decoding algorithm for
the Guruswami–Rudra codes could be used to prove that the univariate analog
of the Shaltiel–Umans construction is indeed a good extractor (as conjectured in
[Kalyanaraman and Umans 2006]). However, we were only able to bound
|LIST(T, ε)| for “small” sets T , which led to constructions of lossy condensers,
as in the preliminary version of our article [Guruswami et al. 2006]. In the present
version, we instead bound the size of LIST(T ) = LIST(T, 1), and this bound is
strong enough to yield expanders with expansion (1 − ε) · D and thus directly im-
plies lossless condensers, as discussed above. (We still consider lossy condensers
in Section 6 of this article for the purpose of analyzing a variant of our main
construction.)

It is also interesting to compare our construction and analysis to recent con-
structions of extractors based on algebraic error-correcting codes, namely those of
Ta-Shma et al. [2006] and Shaltiel and Umans [2005]. Both of those constructions
use multivariate polynomials (Reed–Muller codes) as a starting point, and rely on
the fact that these codes are locally decodable, in the sense that any bit of the
message can be recovered by reading only a small portion of the received word.
While the advantage of local decodability is clear in the computational setting (i.e.,
constructions of pseudorandom generators [Sudan et al. 2001; Shaltiel and Umans
2005; Umans 2003]), where it enables efficient reductions, it is less clear why it is
needed in the information-theoretic setting of extractors, where the “decoding” only
occurs in the analysis. Indeed, Trevisan’s extractor [Trevisan 2001] corresponds to
the pseudorandom generator construction of Sudan et al. [2001], but with the lo-
cally list-decodable code replaced by a standard list-decodable code. However, the
extractor analyses of Ta-Shma et al. [2006] and Shaltiel and Umans [2005] seem
to rely essentially on multivariate polynomials and local (list-)decodability. Our
construction works with univariate polynomials and the analysis does not require
any local decoding – indeed, univariate polynomial (Reed-Solomon) codes are not
locally decodable.

2.2. PARVARESH-VARDY CODES AND THE PROOF TECHNIQUE. Our construc-
tions are based on Parvaresh-Vardy codes [Parvaresh and Vardy 2005], which in
turn are based on Reed-Solomon codes. A Reed-Solomon codeword is a univari-
ate degree n − 1 polynomial f ∈ Fq[Y ], evaluated at all points in the field. A
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Parvaresh-Vardy codeword is a bundle of several related degree n − 1 polynomials
f0, f1, f2, . . . , fm−1, each evaluated at all points in the field. The evaluations of the
various fi at a given field element are packaged into a symbol from the larger al-
phabet Fqm . The purpose of this extra redundancy is to enable a better list-decoding
algorithm than is possible for Reed-Solomon codes.

The main idea in Parvaresh and Vardy [2005] is to view degree n−1 polynomials
as elements of the extension field F = Fq[Y ]/E(Y ), where E is some irreducible
polynomial of degree n. The fi (now viewed as elements of F) are chosen so that
fi = f hi

0 for i � 1, and a positive integer parameter h. As explained in Section 2.1,
our expander is constructed directly from Parvaresh-Vardy codes as follows:

�( f0, y) = [y, f0(y), f1(y), . . . , fm−1(y)].

In the analysis, our task is to show that for any set T of size L , the set LIST(T ) =
{ f0 : �( f0) ⊆ T } is small. To do this, we follow the list-decoding analysis of
Parvaresh and Vardy [2005], which in turn has the same general structure as the
list-decoding algorithms for Reed–Solomon codes [Sudan 1997; Guruswami and
Sudan 1999]. We first produce a non-zero polynomial Q : F

1+m
q → Fq that vanishes

on T . Now, for every f0 ∈ LIST(T ), we have

Q(y, f0(y), . . . , fm−1(y)) = 0 ∀y ∈ Fq,

and by ensuring that Q has small degree (which is possible because T
is not too large), we will be able to argue that the univariate polynomial
Q(Y, f0(Y ), . . . , fm−1(Y )) is the zero polynomial. Recalling the definition of the
fi , and viewing the fi as elements of the extension field F = Fq[Y ]/E(Y ), we
observe that f0 is a root of the univariate polynomial

Q∗(Z )
def= Q(Y, Z , Z h, Z h2

, . . . , Z hm−1
) mod E(Y ).

This is because when simplifying the formal polynomial Q∗( f0(Y )) mod E(Y ), we
can first take each f0(Y )hi

term modulo E(Y ), resulting in fi (Y ), and we have just
argued that Q(Y, f0(Y ), . . . , fm−1(Y )) is the zero polynomial, so it is still the zero
polynomial modulo E(Y ). This argument holds for every f0 ∈ LIST(T ), and so we
can upper-bound |LIST(T )| by the degree of Q∗.

3. Expander Graphs

We first formally develop the list-decoding view of expanders described in
Section 2.1.

Definition 3.1. For a bipartite graph � : [N ]×[D] → [M] and a set T ⊆ [M],
define

LIST(T ) = {x ∈ [N ] : �(x) ⊆ T }.
The proof of the next lemma follows from the definitions:

LEMMA 3.2. A graph � is a (K , A) expander iff for every set T of size at most
AK − 1, LIST(T ) is of size at most K − 1.
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3.1. THE CONSTRUCTION. Fix the field Fq and let E(Y ) be an irreducible poly-
nomial of degree n over Fq . We identify elements of F

n
q with univariate polynomials

over Fq with degree at most n − 1. Fix an integer parameter h.
Our expander is the bipartite graph � : F

n
q × Fq → F

m+1
q defined as:

�( f, y)
def= [y, f (y), ( f h mod E)(y), ( f h2

mod E)(y), . . . , ( f hm−1
mod E)(y)].

(1)

In other words, the bipartite graph has “message” polynomials f (Y ) on the left,
and the y’th neighbor of f (Y ) is simply the y’th symbol of the Parvaresh-Vardy
encoding of f (Y ). For ease of notation, we will refer to ( f hi

mod E) as “ fi .”

THEOREM 3.3. The graph � : F
n
q × Fq → F

m+1
q defined in Eq. (1) is a

(�Kmax, A) expander for Kmax = hm and A = q − (n − 1)(h − 1)m.

PROOF. Let K be any integer less than or equal to Kmax = hm , and let A =
q − (n −1)(h −1)m. By Lemma 3.2, it suffices to show that for every set T ⊆ F

m+1
q

of size at most AK − 1, we have |LIST(T )| � K − 1. Fix such a set T .
Our first step is to find a nonzero “low-degree” polynomial Q(Y, Y1, . . . , Ym) that

vanishes on T . Specifically, Q will only have nonzero coefficients on monomials
of the form Y i M j (Y1, . . . , Ym) for 0 � i � A − 1 and 0 � j � K − 1 � hm − 1,
where M j (Y1, . . . , Ym) = Y j0

1 · · · Y jm−1
m and j = j0 + j1h + · · · + jm−1hm−1 is the

base-h representation of j . (For simplicity, one may think of K = hm , in which
case we are simply requiring that Q has degree at most h − 1 in each variable Yi .)
For each z ∈ T , requiring that Q(z) = 0 imposes a homogeneous linear constraint
on the AK coefficients of Q. Since the number of constraints is smaller than the
number of unknowns, this linear system has a nonzero solution. Moreover, we may
assume that among all such solutions, Q is the one of smallest degree in the variable
Y . This implies that if we write Q in the form

Q(Y, Y1, . . . , Ym) =
K−1∑
j=0

p j (Y ) · M j (Y1, . . . , Ym)

for univariate polynomials p0(Y ), . . . , pK−1(Y ), then at least one of the p j ’s is not
divisible by E(Y ). Otherwise Q(Y, Y1, . . . , Ym)/E(Y ) would have smaller degree
in Y and would still vanish on T (since E is irreducible and thus has no roots in
Fq).

Consider any polynomial f (Y ) ∈ LIST(T ). By the definition of LIST(T ) and
our choice of Q, it holds that

Q(y, f0(y), f1(y), . . . , fm−1(y)) = 0 ∀y ∈ Fq .

That is, the univariate polynomial R f (Y )
def= Q(Y, f0(Y ), . . . , fm−1(Y )) has q ze-

roes. Since the degree of R f (Y ) is at most (A − 1) + (n − 1)(h − 1)m < q, it must
be identically zero. So

Q(Y, f0(Y ), . . . , fm−1(Y )) = 0
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as a formal polynomial. Now recall that fi (Y ) ≡ f (Y )hi
(mod E(Y )). Thus,

Q(Y, f (Y ), f (Y )h, . . . , f (Y )hm−1
)

≡ Q(Y, f0(Y ), . . . , fm−1(Y )) ≡ 0 (mod E(Y )).

So if we interpret f (Y ) as an element of the extension field F = Fq[Y ]/E(Y ), then
f (Y ) is a root of the univariate polynomial Q∗ over F defined by

Q∗(Z )
def= Q

(
Y, Z , Z h, Z h2

, . . . , Z hm−1)
mod E(Y )

=
K−1∑
j=0

(p j (Y ) mod E(Y )) · M j
(
Z , Z h, . . . , Z hm−1)

=
K−1∑
j=0

(p j (Y ) mod E(Y )) · Z j .

Since this holds for every f (Y ) ∈ LIST(T ), we deduce that Q∗ has at least |LIST(T )|
roots in F. On the other hand, Q∗ is a nonzero polynomial, because at least one of
the p j (Y )’s is not divisible by E(Y ). Thus, |LIST(T )| is bounded by the degree of
Q∗, which is at most K − 1.

Remark 3.4. Observe that for all S ⊆ Fq , the subgraph of � that comes from
taking only yth edges for y ∈ S, is a (�Kmax, A) expander for A = |S| − (n −
1)(h − 1)m by the same argument.

3.2. SETTING PARAMETERS. The following theorem differs from Theorem 1.3
only by allowing α to be non constant.

THEOREM 3.5 (THM. 1.3, GENERALIZED). For all positive integers N, Kmax �
N, all ε > 0, and all α ∈ (0, log x/ log log x) for x = (log N )(log Kmax)/ε, there
is an explicit (� Kmax, (1 − ε)D) expander � : [N ] × [D] → [M] with degree
D = O(((log N )(log Kmax)/ε)1+1/α) and M � D2 · K 1+α

max . Moreover, D and M are
powers of 2.

PROOF. Let n = log N and k = log Kmax. Let h0 = (2nk/ε)1/α, h = �h0�, and
let q be the power of 2 in the interval (h1+α/2, h1+α].

Set m = �(log Kmax)/(log h)�, so that hm−1 � Kmax � hm . Then, by
Theorem 3.3, the graph � : F

n
q ×Fq → F

m+1
q defined in (1) is a (�hm, A) expander

for A = q − (n − 1)(h − 1)m. Since Kmax � hm , it is also a (�Kmax, A) expander.
Note that the number of left-vertices in � is qn � N , and the number of

right-vertices is

M = qm+1 � q2 · h(1+α)·(m−1) � q2 · K 1+α
max .

The degree is

D def= q � h1+α � (h0 + 1)1+α

� O
(
h1+α

0

)
� O

(
((log N )(log Kmax)/ε)1+1/α

)
.

where we can justify the second-to-last inequality as follows. For α � 1, we
have h0 = (2nk/ε)1/α � 1 and (1 + 1

h0
)1+α � 21+α � 4. For α > 1, we
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argue as follows. Due to the upper bound on α, h0 = (2nk/ε)1/α � α. Hence,
(1 + 1

h0
)1+α � (1 + 1

α
)1+α � (1 + 1

α
) · e < 2e.

To see that the expansion factor A = q − (n − 1)(h − 1)m � q − nhk is at least
(1 − ε)D = (1 − ε)q, note that

nhk � ε

2
· h1+α � εq,

where the first inequality holds because hα � 2nk/ε.
Finally, the construction is explicit because a representation of Fq for q a

power of 2 (i.e., an irreducible polynomial of degree log q over F2) as well
as an irreducible polynomial E(Y ) of degree n over Fq can be found in time
poly(n, log q) = poly(log N , log D) [Shoup 1990].

Remark 3.6. In this proof, we work in a field Fq of characteristic 2, which has
the advantage of yielding a polynomial-time construction even when we need to
take q to be superpolynomially large (which occurs when ε(n) = n−ω(1)). When
ε � 1/poly(n), then we could use any prime power q instead, with some minor
adjustments to the construction and the parameters claimed in the theorem.

In the above theorem, α is restricted to be slightly sublogarithmic in nk/ε. We
next state the following variant, which corresponds to a logarithmic value of α and
yields a degree with a linear dependence on log N . We will make use of this variant
to obtain a constant of 1 in front of the log n in the O(log(n/ε)) seed length in our
final extractor result (Theorem 5.12).

THEOREM 3.7. For all positive integers N, Kmax � N, and all ε > 0, there
is an explicit (� Kmax, (1 − ε)D) expander � : [N ] × [D] → [M] with degree
D � 2(log N )(log Kmax)/ε and M � (4Kmax)log D. Moreover, D and M are powers
of 2.

PROOF. The proof is along the same lines as that of Theorem 3.5, except we
take h = 2, q ∈ (nk/ε, 2nk/ε], and m = �log Kmax�. Then, we can bound the
degree by D = q � 2nk/ε, the number of right-hand vertices by M = qm+1 =
(4 · 2m−1)log q � (4Kmax)log q , and the expansion by A = q − (n − 1)(h − 1)m �
q − nk � (1 − ε)D.

4. Lossless Condensers and Extractors with Constant Error

In this section, we first interpret our expander as a lossless condenser. We then
combine it with a simple back-end extractor for high min-entropy rate to construct
extractors optimal up to constant factors for constant error.

4.1. LOSSLESS CONDENSERS. We first interpret the expanders constructed in the
previous section as lossless condensers (see Definition 1.6). This connection, due to
Ta-Shma et al. [2007], is based on viewing a function C : {0, 1}n×{0, 1}d → {0, 1}m

as the neighbor function of a bipartite graph with 2n left-vertices, 2m right-vertices,
and left-degree 2d . It turns out that C is a lossless condenser if and only if this graph
has expansion close to the degree. (We only state and prove the “if” direction here,
because it is all we will use.)
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LEMMA 4.1 (TA-SHMA ET AL. 2007). For n, m, d ∈ N, ε ∈ (0, 1), and k ∈
[0, n] such that 2k ∈ N, C : {0, 1}n ×{0, 1}d → {0, 1}m is a k →ε k +d condenser
if the corresponding bipartite graph G is a (2k, (1 − ε) · 2d) expander.

We include a proof for completeness.

PROOF. Every k-source2 (for 2k ∈ N) is a convex combination of random
variables X that are uniform on sets of size 2k . Thus it suffices to prove for such a
random variable X that C(X, Ud) is ε-close to a source with min-entropy at least
k + d.

Let X be a random variable distributed uniformly on some subset S ⊆ {0, 1}n of
cardinality 2k . Because G is an (2k, (1 − ε) · 2d) expander, we have that |�(S)| �
(1 − ε)2k+d , and this implies that all but at most ε2k+d of the vertices in �(S) have
unique neighbors in S. For each z ∈ �(S) with a unique neighbor in S, we have
Pr[C(X, Ud) = z] = 2−(k+d). Redistributing the mass on those z in �(S) without
unique neighbors in S yields a random variable Z that is uniform on a set T ⊇ �(S)
of size 2k+d and ε-close to C(X, Ud), as required.

One minor technicality in the above connection is that it requires that 2k be an
integer, whereas the notion of condenser makes sense for all k ∈ [0, n]. However,
this is easily handled by rounding, if we allow a tiny increase in the error parameter
ε. Specifically, we have the following generalization of Lemma 4.1:

LEMMA 4.2. For n, m, d ∈ N, ε ∈ (0, 1), and k ∈ [0, n], C : {0, 1}n ×
{0, 1}d → {0, 1}m is a k →ε k + d condenser if the corresponding bipartite graph
is a (�2k�, (1 − ε) · 2d) expander and a (�2k�, (1 − ε) · 2d) expander.

PROOF. Let K = 2k /∈ N and L = �K �. Every k-source is a convex combina-
tion of sources X in which some set S of L elements each have probability mass
exactly 1/K , and one element x /∈ S has probability 1 − L/K ; thus it suffices to
prove the lemma for such sources X. We can decompose X = pX1 + (1 − p)X2

where X1 is uniform on S, X2 is uniform on S ∪ {x}, and p ∈ [0, 1] satisfies
p/L + (1 − p)/(L + 1) = 1/K (so that all elements of S have probability exactly
1/K ).

By Lemma 4.1, C(X1, Ud) is ε-close to a source Z1 of min-entropy log(L D),
where D = 2d , and C(X2, Ud) is ε-close to a source Z2 of min-entropy log((L +
1)D). Then, C(X, Ud) is ε-close to Z = pZ1 + (1 − p)Z2. We now claim that Z is
a (k + d)-source. Indeed, for every z,

Pr[Z = z] = p · Pr[Z1 = z] + (1 − p) · Pr[Z2 = z]

� p · 1

L D
+ (1 − p) · 1

(L + 1)D
= 1

K D
,

which completes the proof.

Using this lemma, the following are immediate consequences of Theorems 3.5
and 3.7.

2 Recall that a k-source is a random variable with min-entropy at least k.
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THEOREM 4.3 (THM 1.7, GENERALIZED). For every n ∈ N, kmax � n, ε >
0, and α ∈ (0, log(nkmax/ε)/ log log(nkmax/ε)), there is an explicit function C :
{0, 1}n ×{0, 1}d → {0, 1}m with d = (1+1/α)·(log n+log kmax+log(1/ε))+O(1)
and m � 2d + (1 + α)kmax such that for all k � kmax, C is a k →ε k + d (lossless)
condenser.

THEOREM 4.4. For every n ∈ N, kmax � n, and ε > 0, there is an explicit
function C : {0, 1}n × {0, 1}d → {0, 1}m with d � log n + log kmax + log(1/ε) + 1
and m � d · (kmax + 2) such that for all k � kmax, C is a k →ε k + d (lossless)
condenser.

Once we have condensed almost all of the entropy into a source with high entropy
rate (as in Theorem 4.3), extracting (most of) that entropy is not that difficult. All
we need to do is to compose the condenser with an extractor that works for high
entropy rates. The following standard fact makes the composition formal:

PROPOSITION 4.5. Suppose C : {0, 1}n × {0, 1}d1 → {0, 1}n′
is an k →ε1 k ′

condenser, and E : {0, 1}n′ × {0, 1}d2 → {0, 1}m is a (k ′, ε2)-extractor, then E ◦C :

{0, 1}n × {0, 1}d1+d2 → {0, 1}m defined by (E ◦ C)(x, y1, y2)
def= E(C(x, y1), y2) is

a (k, ε1 + ε2)-extractor.

In the next section, we will use this proposition to compose our condenser with
a simple extractor for high entropy rates to obtain our main extractor theorem
(Theorem 1.5) for the case of constant error ε. For subconstant error, we could
compose with Zuckerman’s extractor for constant entropy rate [Zuckerman 1997],
which works provided ε > exp(−k/2O(log∗ k)). Instead, in Section 5, we combine our
condenser with ideas from the early constructions of extractors (the Leftover Hash
Lemma, block-source extraction, and simple compositions), to obtain a completely
self-contained proof of Theorem 1.5 with no constraint on the error parameter ε at
all.

4.2. EXTRACTORS FOR CONSTANT ERROR. In this section, we prove
Theorem 1.5 for the case of constant error ε (which suffices for many applica-
tions of extractors). It is obtained by composing our condenser with a extractor
for min-entropy rate close to 1. A standard extractor construction for this setting
is based on expander walks [Gillman 1998; Zuckerman 1997; Zuckerman 2006].
Specifically, such an extractor can be obtained by combining the equivalence be-
tween extractors and “averaging samplers” [Zuckerman 1997], and the fact that
expander walks are an averaging sampler, as established by the Chernoff bound for
expander walks [Gillman 1998].3

THEOREM 4.6. For all constants α, ε > 0, there is a constant δ < 1 for which
the following holds: for all positive integers n, there is an explicit construction of
a (k = δn, ε) extractor E : {0, 1}n × {0, 1}t → {0, 1}m with t � log(αn) and
m � (1 − α)n.

For completeness, we present the short proof:

3 Impagliazzo and Zuckerman [1989] and Cohen and Wigderson [1989] prove hitting properties of
expander walks, and observe that these imply objects related to (but weaker than) extractors, known
as dispersers.
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PROOF. Let m = �(1−α)n�, and for some absolute constants c > 1 and λ < 1,
let G be an explicit 2c-regular expander on 2m vertices (identified with {0, 1}m) and
second eigenvalue λ = λ(G) < 1. Let L be the largest power of 2 at most (n −m)/c
(so L > (n −m)/(2c)), and let t = log L � log(αn). The extractor E is constructed
as follows. Its first argument x is used to describe a walk v1, v2, . . . , vL of length L
in G by picking v1 based on the first m bits of x , and each further step of the walk
from the next c bits of x—so in all, L must satisfy n = m + (L − 1)c. The seed y
is used to pick one of the vertices of the walk at random. The output E(x, y) of the
extractor is the m-bit label of the chosen vertex.

Let X be a random variable with min-entropy k = δn. We wish to prove that for
any S ⊆ {0, 1}m , the probability that E(X, Ut) is a vertex in S is in the range μ ± ε
where μ = |S|/2m . Fix any such subset S. Call an x ∈ {0, 1}n “bad” if∣∣ Pr

y
[E(x, y) ∈ S] − μ

∣∣ > ε/2.

The known Chernoff bounds for random walks on expanders [Gillman 1998] imply
that the number of bad x’s is at most

2n · e−�(ε2(1−λ)L) = 2n · e−�(ε2(1−λ)αn/c) = 2n · 2−�(ε2αn)

(since c, λ are absolute constants). Therefore, the probability that X is bad is at
most 2−δn · 2n · 2−�(ε2αn), which is exponentially small for large enough δ < 1.
Therefore

| Pr[E(X, Ut) ∈ S] − μ| � ε/2 + 2−�(n) � ε,

implying that E is a (k, ε)-extractor.

Combining this with our condenser, we obtain the following extractor:

THEOREM 4.7 (THM. 1.5 FOR CONSTANT ERROR). For all constants α, ε > 0:
for all positive integers n, k, there is an explicit construction of a (k, ε) extractor
E : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n) and m � (1 − α)k.

PROOF. Given constant α, ε > 0, apply Theorem 4.6 to obtain a δ = 1 − γ for
a constant γ > 0 and an explicit (k, ε/2) extractor E : {0, 1}a × {0, 1}t → {0, 1}m

with a = �k/(1 − γ )�, t � log a, and m � (1 − α)a � (1 − α)k.
By Theorem 4.3, there is an explicit k →ε/2 k + d condenser C : {0, 1}n ×

{0, 1}u → {0, 1}b with u = O(log n) and b � (1 + γ /2) · k + 2u � a, where
the latter inequality holds because we may assume k � (4u + 2)/γ . (Otherwise, a
trivial extractor that outputs its seed will satisfy the theorem.)

By Proposition 4.5, we obtain a (k, ε) extractor E : {0, 1}n × {0, 1}d → {0, 1}m

with seed length d = t + u = O(log n) and output length m � (1 − α)k.

5. Extractors for Arbitrary Error

In this section, we provide a self-contained construction of extractors that are op-
timal up to constant factors, with no constraint on the error parameter. It is ob-
tained by combining our condenser with the ideas from the early constructions
of extractors [Zuckerman 1996, 1997; Nisan and Zuckerman 1996; Srinivasan and
Zuckerman 1999; Goldreich and Wigderson 1997]. Beyond our condenser, the only
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tools needed are the universal hashing and some simple (and standard) methods to
compose extractors.

5.1. THE LEFTOVER HASH LEMMA. The Leftover Hash Lemma [Impagliazzo
et al. 1989], which predates the general definition of extractors [Nisan and
Zuckerman 1996], shows that universal hash functions are randomness extractors,
albeit with a large seed length:

LEMMA 5.1 (IMPAGLIAZZO ET AL. 1989). For all n ∈ N, k � n, and ε > 0,
there is an explicit (k, ε) extractor E : {0, 1}n × {0, 1}d → {0, 1}m with d = n and
m � k + d − 2 log(1/ε).

Note that the output length is optimal, but the seed length is linear rather than
logarithmic in n. Nevertheless, this extractor was a very useful component in early
constructions of extractors with (poly)logarithmic seed length [Zuckerman 1996,
1997; Nisan and Zuckerman 1996]. Indeed, it was dubbed the “Mother of all Ex-
tractors” by Nisan and Ta-Shma [1999].

PROOF SKETCH. We associate {0, 1}n = {0, 1}d with the finite field F of size
2n . Given x, y ∈ F, we define E(x, y) = (y, xy|l), where xy|l is the first l =
�k −2 log(1/ε)� bits of the product xy ∈ F. Define m = d + l to be the total output
length of E . Let L = 2l and M = 2m .

The fact that this is a (k, ε) extractor follows from the Leftover Hash Lemma
[Impagliazzo et al. 1989] and the fact that the set of functions hy(x) = xy|l is
2-universal. For completeness, we sketch the proof here. Let X be a k-source on
{0, 1}n , and Y be uniform on {0, 1}d . Then, it can be shown that the collision
probability4 of E(X, Y) = (Y, XY|l) is at most

(1/D) · (1/K + 1/L) � (1 + 2ε2)/(DL) = (1 + 2ε2)/M.

(1/D is the collision probability of Y, 1/K is the collision probability of X, and
1/L is the probability that xY = x ′Y for any two distinct x �= x ′.) This is equivalent
to saying that the �2 distance of the distribution E(X, Y) from uniform is at most√

2ε2/M � 2ε/
√

M . Then the statistical distance to uniform equals 1/2 the �1

distance, which in turn is at most a factor of
√

M larger than the �2 distance.

We note that by composing our lossless condenser (Theorem 4.3) with this ex-
tractor via Proposition 4.5, we can reduce the seed length from n to O(k+log(n/ε)),
matching the low min-entropy extractors of Srinivasan and Zuckerman [1999]
(which are based on generalization of the Leftover Hash Lemma to almost-universal
hash functions):

LEMMA 5.2. For every constant α > 0, for all n ∈ N, k � n, and ε > 0,
there is an explicit extractor E : {0, 1}n × {0, 1}d → {0, 1}m with d = (1 + α)k +
O(log(n/ε)) and m � k + d − 2 log(1/ε) (the constant in O(log(n/ε)) depends on
α).

Remark 5.3. It was pointed out to us by Michael von Korff and Kai-Min Chung
that the seed length can be reduced further to αk + O(log(n/ε)) for an arbitrarily

4 The collision probability of a random variable Z is
∑

z Pr[Z = z]2 = Pr[Z = Z′], where Z′ is an iid
copy of Z.
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small constant α > 0 by condensing to length n′ = (1 + α)k + O(log(n/ε)),
and then applying the “high min-entropy” extractor of Goldreich and Wigderson
[1997], which requires a seed of length n′ − k + O(log(1/ε)) = αk + O(log(n/ε))
and has optimal output length m = k + d − 2 log(1/ε) − O(1) (if implemented
using Ramanujan expander graphs). In the next section, we will see another way
(Lemma 5.4) to achieve this constant-factor savings in seed length, which has the
advantage of being self-contained (not relying on Ramanujan expanders) but has
the disadvantage of only extracting a constant fraction of the min-entropy.

5.2. AN EXTRACTOR WITH SEED MUCH SHORTER THAN ITS OUTPUT. Our goal
in this section is to construct the following extractor, which will be the main building
block for our recursive construction:

LEMMA 5.4. For every constant t > 0 and all positive integers n � k and all
ε > 0, there is an explicit (k, ε) extractor E : {0, 1}n × {0, 1}d → {0, 1}m with
m = �k/2� and d � k/t + O(log(n/ε)).5

The point is that this extractor has a seed length that is an arbitrarily large constant
factor (namely t/2) smaller than its output length. This will be useful as a building
block for our recursive construction of extractors optimal up to constant factors
in Section 5.3. We now turn to defining block sources and collecting basic results
about extracting randomness from them.

A block source is a useful model of a weak random source that has more structure
than an arbitrary k-source:

Definition 5.5 [Chor and Goldreich 1988]. X = (X1, X2, . . . , Xt) is a
(k1, k2, . . . , kt ) block source if for every x1, . . . , xi−1, Xi|X1=x1,... ,Xi−1=xi−1 is a ki -
source. If k1 = k2 = · · · = kt = k, then we call X a t × k block source.

Note that a (k1, k2, . . . , kt ) block source is also a (k1 + · · · + kt )-source, but
it comes with additional structure—each block is guaranteed to contribute some
min-entropy. Thus, extracting randomness from block sources is an easier task than
extracting from general sources. Indeed, we have the following standard lemma:

LEMMA 5.6. Let E1 : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 be a (k1, ε1)-extractor,
and E2 : {0, 1}n2 × {0, 1}d2 → {0, 1}m2 be a (k2, ε2)-extractor with m2 � d1.
Define E ′((x1, x2), y2) = (E1(x1, y1), z2), where (y1, z2) is obtained by partitioning
E2(x2, y2) into a prefix y1 of length d1 and a suffix z2 of length m2 − d1.

Then, for every (k1, k2) block source X = (X1, X2) taking values in {0, 1}n1 ×
{0, 1}n2 , it holds that E ′(X, Ud2

) is (ε1 + ε2)-close to Um1
× Um2−d1

.

PROOF. Note that (X1, Y1, Z2) = (X1, E2(X2, Ud2
)) is ε2-close to (X1, Um2

) =
(X1, Ud1

, Um2−d1
).

Thus, (E1(X1, Y1), Z2) is ε2-close to (E1(X1, Ud1
), Um2−d1

), which is ε1-close
to (Um1

, Um2−d1
).

By the triangle inequality, E ′(X, Ud2
) = (E1(X1, Y1), Z2) is (ε1 + ε2)-close to

(Um1
, Um2−d1

).

5 Here the constant hidden in the big-Oh notation can depend on t . We will only apply this lemma
with t being an absolute constant, in fact at most 16.
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The benefit of this composition is that the seed length of E ′ equals that of only
one of the extractors (namely E2), rather than being the sum of the seed lengths.
Thus, we get to extract from multiple blocks at the “price of one.” Moreover, since
we can take d1 = m2, which is typically larger than d2, the seed length of E ′ can
even be much smaller than that of E1.

The lemma extends naturally to extracting from many blocks:

LEMMA 5.7. For i = 1, . . . , t , let Ei : {0, 1}ni × {0, 1}di → {0, 1}mi be a
(ki , εi )-extractor, and suppose that mi � di−1 for every i = 1, . . . , t , where we
define d0 = 0. Define E ′((x1, . . . , xt ), yt ) = (z1, . . . , zt ), where for i = t, . . . , 1,
we inductively define (yi−1, zi ) to be a partition of Ei (xi , yi ) into a di−1-bit prefix
and a (mi − di−1)-bit suffix.

Then for every (k1, . . . , kt ) block source X = (X1, . . . , Xt) taking values in
{0, 1}n1 × · · · {0, 1}nt , it holds that E ′(X, Udt

) is ε-close to Um for ε = ∑t
i=1 εi

and m = ∑t
i=1(mi − di−1).

In light of this composition, many constructions of extractors work by first con-
verting the source into a block source and then applying block-source extraction
as above. Our construction will also use this approach (recursively). It is based on
the observation that our condenser gives a very simple way to convert a general
source into a block source. Indeed, every source of sufficiently high min-entropy is
already a block source. The following standard lemma states this; we include the
proof for the sake of completeness.

LEMMA 5.8. If X is a (n − �)-source of length n, and X = (X1, X2) is a
partition of X into blocks of lengths n1 and n2, then (X1, X2) is ε-close to some
(n1 − �, n2 − � − log(1/ε)) block source.

PROOF. The intuition is that if X is missing only � bits of min-entropy, then no
substring of it can be missing more than � bits of min-entropy (even conditioned
on the others). The additional log(1/ε) bits of entropy loss in X2 is to ensure that
the min-entropy of X2 is high conditioned on all but an ε fraction of values of X1.
The formal proof follows:

Define T = {x1 ∈ {0, 1}n1 | Pr[X1 = x1] < ε ·2−n1}. Observe that Pr[X1 ∈ T ] <
|T | · ε · 2−n1 � ε. In addition, for every x1 ∈ {0, 1}n1 \ T and every x2 ∈ {0, 1}n2 ,
we have:

Pr[X2 = x2|X1 = x1] = Pr [X = (x1, x2)]

Pr [X1 = x1]
� 2−(n−�)

ε · 2−n1
= 1

2n2−�−log(1/ε)
.

Define a new source Z = (Z1, Z2) as follows. Sample (x1, x2) from X = (X1, X2).
If x1 /∈ T , return (x1, x2) as the sample from Z. Otherwise, return (x1, x ′

2) for a
uniformly random x ′

2 ∈ {0, 1}n2 . Since Pr [X1 ∈ T ] < ε, X and Z are ε-close.
Finally, we argue that Z is a (n1 −�, n2 −�− log(1/ε)) block source. For every

x1 ∈ {0, 1}n1 , Pr [Z1 = x1] = Pr [X1 = x1] � 1/2n1−�. Also the conditional prob-
ability Pr [Z2 = x2 | Z1 = x1] equals Pr [X2 = x1 | X1 = x1] � 1/2n2−�−log(1/ε)

when x1 /∈ T and equals 1/2n2 otherwise.

Consider a k-source X of length n = (4/3)k, that is, the source has min-entropy
rate 3/4, as can be achieved by applying our condenser. Then, setting � = k/3
and breaking X into two halves of length n/2 = (2/3)k, we have a block source in
which each block has min-entropy roughly k/3. Then, by Lemma 5.6, if we want
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to extract �(k) bits using a seed of length O(log n), it suffices to have a (k/3, ε)
extractor E1 with output length m1 = �(k) and a (k/3, ε) extractor E2 with seed
length d2 = O(log n) such that the output length m2 of E2 is at least the seed length
d1 of E1 (e.g., both can be poly(log k)). By now, there are many such pairs (E1, E2)
in the literature, some of which are quite clean and direct. Still, we do not use that
approach here, because it is not self-contained, and, more importantly, it does not
yield extractors with arbitrarily small error ε.

By induction, we have the following:

COROLLARY 5.9. If X is a (n − �)-source of length n, and X =
(X1, X2, . . . , Xt) is a partition of X into t blocks, each of length at least n′, then
(X1, X2, . . . , Xt) is tε-close to some t × (n′ − � − log(1/ε)) block source.

Returning to our goal of constructing the extractors of Lemma 5.4, here is our
plan for the proof. To convert a general k-source X into a block source with t = O(1)
blocks, we can first use our condenser of Theorem 4.3 to obtain a k-source X′ of
length (1 + α)k for a sufficiently small constant α, which we then break into t
equal-sized blocks. By applying Corollary 5.9 with � = αk, the result will be
close to a source with min-entropy at least k/t − αk = �(k) per block, provided
α < 1/t . Applying block-source extraction with the extractor of Lemma 5.1, we
obtain extractor promised in Lemma 5.4. The formal details follow.

PROOF OF LEMMA 5.4. Round t up to an integer, and set ε0 = ε/(4t + 1). Given
a k-source X, we apply the condenser of Theorem 4.3 with error ε0 and parameter
α = 1/(6t). With a seed of length d ′ = O(log(n/ε0)) = O(log(n/ε)), this provides
us with an X′ of length at most n′ = (1 + α)k + O(log(n/ε)) that is ε0-close to a
k-source.

Next, we partition X′ into 2t blocks, each of size n′′ = �n′/(2t)� or n′′ + 1. By
Corollary 5.9, the result is (ε0 + 2tε0)-close to a 2t × k ′′ source, where

k ′′ = n′′− αk− O(log(n/ε)) � k/(2t)− αk − O(log(n/ε)) = k/(3t)− O(log(n/ε)).

Now we perform block-source extraction using the “Leftover Hash Lemma” ex-
tractor E ′′ of Lemma 5.1 with input length n′′ + 1, min-entropy k ′′, and error ε0 to
extract from each block. The seed length for E ′′ is d ′′ � n′′+1 = k/t +O(log(n/ε),
and output length m ′′ � max{d ′′, k ′′ + d ′′ − 2 log(1/ε0)}. (Output length m ′′ = d ′′
is always achievable by simply having the extractor output its seed.)

Applying the block-source extractor of Lemma 5.7 with Ei = E ′′ for every i ,
the number of bits we extract is

m � 2t · (m ′′ − d ′′) � 2t · (k ′′ − 2 log(1/ε0)) = 2k/3 − O(log(n/ε)) � �k/2�
(the last step follows since if k � O(log(n/ε)) we can simply output the seed). The
statistical distance increases by at most 2t ·ε0, for an output that has distance at most
(4t + 1) · ε0 = ε from uniform. The total seed length needed for the block-source
extraction is d ′ + d ′′ = k/t + O(log(n/ε)).

5.3. THE RECURSION AND EXTRACTORS OPTIMAL UP TO CONSTANT FACTORS.
We now apply the above techniques recursively to construct an extractor that is
optimal up to constant factors for all settings of parameters. This extractor outputs
only half of the min-entropy from the source, but we will be able to easily boost
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this to an output length of (1 − α)k for any desired constant α > 0, using standard
techniques (Theorem 5.12).

THEOREM 5.10. For all positive integers n, k and all ε > 0, there is an ex-
plicit construction of a (k, ε) extractor E : {0, 1}n × {0, 1}d → {0, 1}m with
d = O(log n + log(1/ε)) and m � k/2.

Overview of the Construction. Note that for small min-entropies k, namely
k = O(log(n/ε)), this is already achieved by Lemma 5.4 with seed length d smaller
than the output length m by any constant factor. (If we allow d � m, then extraction
is trivial—just output the seed.) Thus, our goal will be to recursively construct
extractors for large min-entropies using extractors for smaller min-entropies. Of
course, if E : {0, 1}n × {0, 1}d → {0, 1}m is a (k0, ε) extractor, say with m = k0/2,
then it is also a (k, ε) extractor for every k � k0. The problem is that the output
length is only k0/2 rather than k/2. Thus, we need to increase the output length. This
can be achieved by simply applying extractors for smaller min-entropies several
times.

LEMMA 5.11 (WIGDERSON AND ZUCKERMAN 1999; RAZ ET AL. 2002). Sup-
pose E1 : {0, 1}n × {0, 1}d1 → {0, 1}m1 is a (k1, ε1) extractor and E2 :
{0, 1}n × {0, 1}d2 → {0, 1}m2 is a (k2, ε2) extractor for k2 � k1 − m1 − s.
Then E ′ : {0, 1}n × {0, 1}d1+d2 → {0, 1}m1+m2 defined by E ′(x, (y1, y2)) =
E1(x, y1) ◦ E2(x, y2) is a (k1, (1/(1 − 2−s)) · ε1 + ε2) extractor.

The intuition is that most outputs of E1 have probability mass ≈ 2−m1 ; thus after
conditioning on the output of E1, the source still has min-entropy ≈ k1 − m1.

To see how we might apply this, consider setting k1 = .8k and m1 = k1/2,
ε1 = ε2 = ε, s = 1, k2 = k1 − m1 − 1 ∈ [.3k, .4k], and m2 = k2/2. Then,
we obtain a (k, 3ε) extractor E ′ with output length m = m1 + m2 > k/2 from
two extractors for min-entropies k1, k2 that are smaller than k by a constant factor,
and we can hope to construct the latter two extractors recursively via the same
construction.

Now, however, the problem is that the seed length grows by a constant factor in
each level of recursion (e.g., if d1 = d2 = d in Lemma 5.11, we get seed length 2d
rather than d). Fortunately, block source extraction (Lemma 5.6, with the extractor
of Lemma 5.4 as E2) gives us a method to reduce the seed length by a constant
factor. (The seed length of the composed extractor E ′ in Lemma 5.6 is the same of
that as E2, which will be a constant factor smaller than its output length m2, which
we can take to be equal to the seed length d1 of E1. Thus, the seed length of E ′
will be a constant factor smaller than that of E1.) In order to apply block source
extraction, we first need to convert our source to a block source; by Corollary 5.9,
we can do this by using our condenser to make its entropy rate close to 1.

One remaining issue is that the error ε still grows by a constant factor in each
level of recursion. However, we can start with polynomially small error at the base
of the recursion and there are only logarithmically many levels of recursion, so we
can afford this blow-up.

We now proceed with the proof details. It will be notationally convenient to do
the steps in the reverse order from the description above—first we will reduce the
seed length by a constant factor, and then apply Lemma 5.11 to increase the output
length.
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PROOF OF THEOREM 5.10. Fix n ∈ N and ε0 > 0. Set d = c log(n/ε0) for an
error parameter ε0 and a sufficiently large constant c to be determined in the proof
below. (To avoid ambiguity, we will keep the dependence on c explicit throughout
the proof, and all big-Oh notation hides universal constants independent of c.) For
k ∈ [0, n], let i(k) be the smallest nonnegative integer i such that k � 2i · 8d.
This will be the level of recursion in which we handle min-entropy k; note that
i(k) � log k � log n.

For every k ∈ [0, n], we will construct an explicit Ek : {0, 1}n × {0, 1}d →
{0, 1}�k/2� that is a (k, εi(k)) extractor, for an appropriate sequence ε0 � ε1 � ε2 · · · .
Note that we require the seed length to remain d and the fraction of min-entropy
extracted to remain 1/2 for all values of k. The construction will be by induction
on i(k).

Base Case. i(k) = 0, i.e. k � 8d. The construction of E follows from
Lemma 5.4, setting t = 9 and taking c to be a sufficiently large constant.

Inductive Case. We construct Ek for i(k) � 1 from extractors Ek ′ with i(k ′) <
i(k) as follows. Given a k-source X of length n, Ek works as follows.

(1) We apply our condenser (Theorem 4.3) to convert X into a source X′ that
is ε0-close to a k-source of length (9/8)k + O(log(n/ε0)). This requires a seed of
length O(log(n/ε0)).

(2) We divide X′ into two equal-sized halves (X1, X2). By Corollary 5.9, (X1, X2)
is 2ε0-close to a 2 × k ′ block source for

k ′ = k/2 − k/8 − O(log(n/ε0)) .

Note that i(k ′) < i(k). Since i(k) � 1, we also have k ′ � 3d − O(log(n/ε0)) � 2d,
for a sufficiently large choice of the constant c.

(3) Now we apply block-source extraction as in Lemma 5.6. We take E2 to be
a (2d, ε0) extractor from Lemma 5.4 with parameter t = 16, which will give us
m2 = d output bits using a seed of length d2 = (2d)/16 + O(log(n/ε0)). For E1,
we use our recursively constructed Ek ′ , which has seed length d, error εi(k ′), and
output length �k ′/2� � k/6 (where the latter inequality holds for a sufficiently large
choice of the constant c, because k > 8d > 8c log(1/ε)).

All in all, our extractor so far has seed length at most d/8 + O(log(n/ε0)), error
at most εi(k)−1 + O(ε0), and output length at least k/6. This would be sufficient for
our induction except that the output length is only k/6 rather than k/2. We remedy
this by applying Lemma 5.11.

With one application of the extractor above, we extract at least m1 = k/6 bits of
the source min-entropy. Then with another application of the extractor above for
min-entropy threshold k2 = k − m1 − 1 = 5k/6 − 1, by Lemma 5.11, we extract
another (5k/6 − 1)/6 bits and so on. After four applications, we have extracted
all but (5/6)4 · k + O(1) � k/2 bits of the min-entropy. Our seed length is then
4 · (d/8 + O(log(n/ε0))) � d and the total error is εi(k) = O(εi(k)−1).

Solving the recurrence for the error, we get εi = 2O(i) · ε0 � poly(n) · ε0, so we
can obtain error ε by setting ε0 = ε/poly(n). As far as explicitness, we note that
computing Ek consists of four evaluations of our condenser from Theorem 4.3, four
evaluations of Ek ′ for values of k ′ such that i(k ′) < (i(k)−1), four evaluations of the
explicit extractor from Lemma 5.4, and simple string manipulations that can be done
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in time poly(n, d). Thus, the total computation time is at most 4i(k) · poly(n, d) =
poly(n, d).

5.4. MAIN EXTRACTOR THEOREM. The extractor of Theorem 5.10 extracts
only half of the min-entropy from the source, but we can obtain extractors that
obtain any constant fraction of the min-entropy or all the min-entropy by repeated
application of Lemma 5.11.

THEOREM 5.12 (MAIN EXTRACTOR RESULT). For every constant α > 0: for
all positive integers n � k and all ε > 0, there is an explicit (k, ε) extractor
E : {0, 1}n × {0, 1}d → {0, 1}m with m � (1 − α)k and d � log n + O(log(k/ε)).

PROOF. Achieving the parameters in the theorem, except with seed length
O(log(n/ε)) follows immediately by applying Lemma 5.11 O(1/α) times with
both extractors being taken from Theorem 5.10. To achieve the promised seed
length log n + O(log(k/ε)), we first apply our condenser from Theorem 4.4 to
the source. This requires a seed of length d � log n + log k + log(1/ε) + 1
to condense the source to length n′ � d · (k + 2) = O(k · log(n/ε)), while
retaining all of the min-entropy (up to statistical distance ε). Then extracting
a constant fraction of the min-entropy only requires an additional seed length
O(log(n′/ε)) = O(log k + log log n + log(1/ε)) = O(log(k/ε)). (We assume
k � log n; otherwise we can use the trivial extractor that just outputs the seed.)

Note that an additional improvement of Theorem 5.12 over Theorem 5.10 is
that it achieves a constant of 1 in front of the log n. Indeed, when k = no(1) and
ε = 1/no(1), the seed length is within a (1 + o(1)) factor of the optimal bound
log n + 2 log(1/ε) + O(1), improving over the extractors of Lu et al. [2003] in
which the seed length is only optimal to within some large constant factor. (In the
conference version of this article [Guruswami et al. 2007], we also showed how
to use our techniques together with Zuckerman [2006] to improve the seed length
of Theorem 5.12 to (1 + γ ) log n + log k + O(1) for arbitrarily small constants
ε, γ > 0; we omit that result here because the improvement is only for a rather
limited range of parameters.)

5.5. EXTRACTING ALL THE MIN-ENTROPY. Next, we give an extractor that ex-
tracts all of the min-entropy. In order to also get the min-entropy of the seed, we
will use the following variant of Lemma 5.11, where the second extractor is also
applied to the seed of the first extractor.

LEMMA 5.13 (RAZ ET AL. 2002). Suppose E1 : {0, 1}n1 × {0, 1}d1 → {0, 1}m1

is a (k1, ε1) extractor and E2 : {0, 1}n1+d1×{0, 1}d2 → {0, 1}m2 is a (k2, ε2) extractor
for k2 � k1 + d1 − m1 − s. Then E ′ : {0, 1}n1 × {0, 1}d1+d2 → {0, 1}m1+m2 defined
by E ′(x, (y1, y2)) = E1(x, y1) ◦ E2((x, y1), y2) is a (k1, (1/(1 − 2−s)) · ε1 + ε2)
extractor.

THEOREM 5.14. For all positive integers n � k and all ε > 0, there is an
explicit (k, ε) extractor E : {0, 1}n × {0, 1}d → {0, 1}m with m = k + d −
2 log(1/ε) − O(1) and d = log n + O(log k · log(k/ε)).

PROOF. Similar to the proof of Theorem 5.12, we show how to get the larger
seed length O(log k · log(n/ε)) first; then the result follows by composing the
extractor with our condenser from Theorem 4.4.
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By applying Lemma 5.11 (with s = 1) to our extractors from Theorem 5.10 (with
error ε0 = ε/6k) log k times, we obtain a (k, ε1) extractor E1 : {0, 1}n ×{0, 1}d1 →
{0, 1}m1 with seed length d1 = O(log k · log(n/ε0)) = O(log k · log(n/ε)), output
length m1 = k, and error ε1 � 2 · 2log k · ε0 = ε/3. (With s = 1, each application of
Lemma 5.11 doubles the error and adds ε0.) Now we use Lemma 5.13 to compose
E1 with the (k2, ε2) extractor E2 : {0, 1}n+d1 ×{0, 1}d2 → {0, 1}m2 from Lemma 5.2,
for min-entropy k2 = k + d1 − m1 − 1 = d1 − 1 and error ε2 = ε/3. E2 has seed
length d2 = k2 + O(log((n + d1)/ε2)) = O(log k · log(n/ε)), and output length
m2 = k2 + d2 − 2 log(1/ε2) − O(1). The final extractor E ′ from Lemma 5.13
has seed length d1 + d2 = O(log k · log(n/ε)) and output length m1 + m2 =
k + d1 + d2 − 2 log(1/ε) − O(1).

Remark 5.15. In some applications of extractors, it is useful to have strong
extractors, where the seed appears as a substring of the output in a fixed set
of coordinates. All of our extractors (namely Theorem 5.10, Theorem 5.12, and
Theorem 5.14) can be made to have this property (with no loss in the claimed
parameters).6 To achieve this, we first observe that our condenser (Theorem 4.3)
is already strong. (Indeed, the seed y is the first component of the output of C = �
in Eq. (1).) Then the fact that C is a k →ε k + d condenser implies that for ev-
ery k-source X, C(X, Ud) is ε-close to a joint distribution (Ud, Z) where for every
y ∈ {0, 1}d , Z|Ud=y is a k-source. Thus, whenever we condense the source in our
construction, we can simply save the seed for the output, and operate only on Z
as our condensed source. All of the other compositions and transformations in our
construction preserve this notion of strongness.

Remark 5.16. One of the major remaining open problems about extractors is to
extract all of the min-entropy (as in Theorem 5.14) with a seed length of O(log(n/ε))
(as in Theorem 5.12). To this end, it is worth pointing out where we lose entropy
in the proof of Theorem 5.12. The first place is in Lemma 5.4, but as pointed out
in Remark 5.3 this can be avoided by combining our condenser with extractors
from Ramanujan expanders. The other place we lose entropy is in our (repeated)
use of Lemma 5.8, where we view a high min-entropy source as a block source.
Intuitively, the entropy loss comes because we do not know from which of the two
blocks the entropy is missing, so we pessimistically assume it is missing from both.
This entropy loss problem has arisen in previous work, and in fact the “zig-zag
product” for extractors [Reingold et al. 2001] solves it for the case of very high
min-entropy n−� (where we can find optimal extractors for sources of length O(�)
by exhaustive search). Needless to say, it would be very interesting to eliminate the
entropy loss in our setting too.

6. List-Decoding View of Lossy Condensers

In Section 7, we give a (arguably simpler) construction of condensers from Reed-
Solomon codes instead of Parvaresh-Vardy codes. is that the resulting objects are

6 Another common definition of strong extractor requires that the joint distribution of the seed and
output is ε-close to uniform. A strong extractor with output length m in that definition is equivalent
to a strong extractor with output length m + d in our definition.
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no longer lossless condensers, but instead just ordinary (lossy) condensers.7 In this
section, we develop a list-decoding characterization of lossy condensers that will
be used in the subsequent sections. For this, we will need some lemmas about
min-entropy.

PROPOSITION 6.1. A distribution D with min-entropy log(K − c) is c/K -close
to some distribution with min-entropy log K .

PROOF. The distance from D to the closest distribution with min-entropy log K
is ∑

a:D(a)�1/K

(D(a) − 1/K ) � 1 − (K − c) · 1/K = c/K .

The following lemma gives a useful sufficient condition for a distribution to be
close to having large min-entropy:

LEMMA 6.2. Let Z be a random variable and K a positive integer.

(1) Suppose that for all sets T of size K , Pr[Z ∈ T ] � ε. Then, Z is ε-close to
having min-entropy at least log(K/ε).

(2) Conversely, if Z is ε-close to having min-entropy at least log(K/ε), then Pr[Z ∈
T ] � 2ε for all sets T of size K .

PROOF

(1) Let T be a set of the K heaviest elements x (under the distribution of Z). Let
2−� be the average probability mass of the elements in T . Then ε � Pr[Z ∈
T ] = 2−�K , so � � log(K/ε). But every element outside T has weight at most
2−�, and with all but probability ε, Z hits elements outside T .

(2) Suppose that Z′ is the random variable of min-entropy at least log(K/ε) that is
ε-close to Z, and let T be a set of size K . Then Pr[Z ∈ T ] � Pr[Z′ ∈ T ] + ε �
|T | · (ε/K ) + ε = 2ε.

Now we can develop a “list-decoding” view of lossy condensers, analogous to
the one we have used for expanders (Lemma 3.2) and the one known for extrac-
tors [Ta-Shma and Zuckerman 2004]. The following definition should be compared
to Definition 3.1:

Definition 6.3. For a function C : {0, 1}n × {0, 1}d → {0, 1}m and a set T ⊆
{0, 1}m , define

LIST(T, ε)
def=

{
x : Pr

y
[C(x, y) ∈ T ] > ε

}
.

Similar to the situation with expanders, if we can bound the size of LIST(T, ε)
for all sets T that are not too large, then we have a condenser:

7 We are able to get a lossless condenser from Reed-Solomon codes when the output entropy rate is
less than 1/2.
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LEMMA 6.4. Fix a function C : {0, 1}n × {0, 1}d → {0, 1}m and positive
integers H and L.

(1) Suppose that every set T ⊆ {0, 1}m of size at most L, we have |LIST(T, ε)| � H.
Then C is a

log(H/ε) →2ε log(L/ε) − 1

condenser.
(2) Conversely, suppose that C is a

log H →ε log(L/ε)

condenser. Then for every set T ⊆ {0, 1}m of size at most L, we have
|LIST(T, 2ε)| � H.

PROOF

(1) We have a random variable X with min-entropy log(H/ε). For a fixed T of size
at most L , the probability that X is in LIST(T, ε) is at most ε; if that does not
happen, then the probability C(X, Ut) lands in T is at most ε. Altogether the
probability C(X, Ut) falls in T is at most 2ε. Now apply Lemma 6.2.

(2) Suppose that there is a set T ⊆ {0, 1}m of size at most L for which
|LIST(T, 2ε)| > H . Let X be a random variable uniformly distributed over
LIST(T, 2ε); note that X has min-entropy greater than log H . The probabil-
ity that C(X, Ut) lands in T is greater than 2ε. By Lemma 6.2, C(X, Ut) is
not ε-close to any random variable of min-entropy log(L/ε), contradicting the
condenser property.

Thus, up to a constant factor in the error ε and log(1/ε) bits of source min-
entropy, proving that a function is a condenser is equivalent to bounding the size
of |LIST(T, ε)| for sets T of some size L . In the conference version of this article
[Guruswami et al. 2007], we used this list-decoding view of lossy condensers
to show that we can eliminate the log k in the seed length of the condenser of
Theorem 4.3 (for k = kmax), at the price of losing a constant fraction of the min-
entropy. (The idea was to use the “multiple roots” trick of Guruswami and Sudan
[1999] in the list-decoding analysis.) We omit that result in this version because
the improvement is rather small, and instead use the lossy condenser framework to
analyze a “Reed–Solomon” version of our construction.

7. Condensers from Reed-Solomon Codes

We use one of the main ideas from the folded Reed-Solomon code construction
of Guruswami and Rudra [2008] to argue that a small modification to our con-
struction gives a good condenser from (folded) Reed-Solomon codes, answering
a question raised in Kalyanaraman and Umans [2006]. There are two variants of
the Reed-Solomon construction: the first is lossy (it loses a constant fraction of
the source entropy), but it achieves entropy rate arbitrarily close to 1 (just like the
main condenser of Theorem 4.3); the second (pointed out to us by Ariel Gabizon)
is lossless, but it only achieves entropy rate 1/2.
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7.1. LOSSY REED-SOLOMON CONDENSER. Let q be an arbitrary prime power,
and let ζ ∈ Fq be a generator of the multiplicative group F

∗
q . Then the polynomial

E(Y ) = Y q−1 − ζ is irreducible over Fq [Lidl and Niederreiter 1986, Chap. 3,
Sec. 5]. The following identity holds for all f (Y ) ∈ Fq[Y ]:

f (Y )q ≡ f (Y q) ≡ f (Y q−1Y ) ≡ f (ζY ) (mod E(Y )) .

In this case, if we modify our basic function � (see (1)) slightly so that we raise f to
successive powers of q rather than h, we obtain the function C : F

n
q × Fq → F

m+1
q

defined by:

C( f, y)
def= [y, f (y), ( f q mod E)(y), ( f q2

mod E)(y), . . . , ( f qm−1
mod E)(y)]

= [y, f (y), f (ζ y), . . . , f (ζ m−1 y)]. (2)

In other words, our function interprets its first argument as describing a univariate
polynomial over Fq of degree at most n−1 (i.e., a Reed-Solomon codeword), it uses
the seed to select a random location in the codeword, and it outputs m successive
symbols of the codeword, together with the seed. This is precisely the analogue
of the Shaltiel-Umans q-ary extractor construction [Shaltiel and Umans 2005],
for univariate polynomials rather than multivariate polynomials. Alternatively (and
following the correspondence with codes described in Section 2.1), C( f, y) is the
yth symbol in an encoding of the “message” f in the “folded Reed–Solomon code”
of Guruswami and Rudra [2008]. (Actually, the folded Reed-Solomon codes only
take y’s from a subset of Fq in order to save on the codeword length.)

With a minor modification to the proof of Theorem 3.3, we show that this is good
condenser:

THEOREM 7.1. Define C as in Eq. (2) and LIST(T, ε) with respect to C as in
Definition 6.3. Then for every T ⊆ F

m+1
q of size at most L = Ahm − 1, we have

|LIST(T, ε)| � (h − 1) · qm − 1

q − 1
,

where A = εq − (n − 1)(h − 1)m.

PROOF. Let T ⊆ F
m+1
q with |T | � Ahm − 1. The proof follows along the

lines of Theorem 3.3. We interpolate a nonzero polynomial Q(Y, Y1, Y2, . . . , Ym)
that vanishes on T , and and has degree at most A − 1 in Y and at most (h − 1) in
each Y j . The number of coefficients of such a Q equals Ahm which exceeds |T |,
and therefore such a nonzero polynomial Q indeed exists. We can also ensure that

E(Y ) does not divide Q. For every f (Y ) ∈ LIST(T, ε), the polynomial R f (Y )
def=

Q(Y, f (Y ), f (ζY ), . . . , f (ζ m−1Y )) has more than εq roots, and degree at most
(A − 1) + (n − 1)(h − 1)m, and therefore must be the zero polynomial. We define
Q∗ slightly differently:

Q∗(Z )
def= Q(Y, Z , Zq, Zq2

, . . . , Zqm−1
) mod E(Y ).

As before, Q∗ is a nonzero polynomial over the extension field F = Fq[Y ]/(E(Y )).
Further, every f (Y ) ∈ LIST(T, ε), viewed as an element of the extension field F, is
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a root of Q∗. It follows that |LIST(T, ε)| � deg(Q∗). The degree of Q∗ is at most

(h − 1)(1 + q + q2 + · · · + qm−1) = (h − 1) · qm − 1

q − 1
,

and this proves the claimed bound.

By picking parameters suitably in the above construction, we obtain the following
condenser. Unlike our basic condenser (Theorem 4.3), this condenser is no longer
lossless. Instead, the ratio of the input and output min-entropies is ≈ (1 + 1/α),
which means that we retain only a α/(1 + α) fraction of the min-entropy.

THEOREM 7.2 (REED-SOLOMON LOSSY CONDENSER). For every n ∈ N, � � n
such that 2� is an integer, and α, ε > 0, there is an explicit function C : {0, 1}n ×
{0, 1}d → {0, 1}n′

defined in (2) that is a

(1 + 1/α)�t + log(1/ε) →3ε �t + d − 2

condenser with d � (1+1/α)t and n′ � (1+1/α)�t+d, where t = �α log(4n�/ε)�,
provided �t � log(1/ε).

PROOF. Set h = 2t and note that h1/α � 4n/ε. Let q be the power of 2 in
(h1+1/α/2, h1+1/α]. Set m = �. Note that

A def= εq − (n − 1)(h − 1)m � εq − nhm � εq/2,

because q � h1+1/α/2 � 2nh�/ε, and m = �.
Consider the function C : F

n
q × Fq → F

m+1
q defined in (2). By Theorem 7.1, for

every T ⊆ F
m+1
q of size at most L = Ahm − 1 we have |LIST(T, ε)| � qm − 1.

Applying Lemma 6.4, we find that C is a

log

(
qm − 1

ε

)
→2ε log

(
Ahm − 1

2ε

)

condenser. By Proposition 6.1, the output distribution of the condenser C is within
statistical distance 1

Ahm � 2−�t � ε of a distribution with min-entropy at least

log

(
Ahm

2ε

)
� log q + �t − 2 = �t + d − 2 .

We can thus conclude that C is a

(1 + 1/α)�t + log(1/ε) →3ε �t + d − 2

condenser. This is the claimed condenser; the upper bounds on d and n′ follow from
the fact that q = 2d � 2(1+1/α)t .

Finally, the construction is explicit because a representation of Fq for q a power
of 2 as well as a generator of F

∗
q can be found in time poly(log q) [Shoup 1990].

7.2. LOSSLESS REED-SOLOMON CONDENSER. The variant in this subsection is
lossless, and so it is most convenient to describe it as an expander graph first and then
apply Lemma 4.2. The construction is again obtained by a careful choice of h and
the irreducible E(Y ). In this variant we require that the parameter h is a prime power
greater than n, and that q is a power of h (so Fq contains a subfield Fh). Let ζ ∈ Fh
be a generator of the multiplicative group F

∗
h (compare with the previous section

Journal of the ACM, Vol. 56, No. 4, Article 20, Publication date: June 2009.



20:28 V. GURUSWAMI ET AL.

which selected a generator of F
∗
q), and define the polynomial E(Y ) = Y h−1 − ζ .

The advantage of these choices for our construction was pointed out to us by Ariel
Gabizon.

We identify elements of F
n
h with polynomials over Fh that have degree at most

n − 1 (compare with the previous section in which the polynomials were over Fq).
The following identity holds for all f (Y ) ∈ Fh[Y ] and i � 0:

f (Y )hi = f (Y hi
) = f (Y (h−1)(hi−1+hi−2+···+h+1)Y ) ≡ f (ζ i Y ) (mod E(Y )). (3)

As usual, for ease of notation, we will refer to ( f hi
mod E) as “ fi .” Our expander

is the bipartite graph �RS : F
n
h × Fq → F

m+1
q defined as:

�RS( f, y)
def= [y, f0(y), f1(y), f2(y), . . . , fm−1(y)]

= [y, f (y), f (ζ y), f (ζ 2 y), . . . , f (ζ m−1 y)]. (4)

Analogous to Theorem 3.3, we have the following:

THEOREM 7.3. The graph �RS : F
n
h × Fq → F

m+1
q defined in Eq. (4) is a

(�Kmax, A) expander for Kmax = hm and A = q − (n −1)(h −1)m, provided logh q
and h − 1 are relatively prime.

PROOF. The proof is exactly the same as the proof of Theorem 3.3, after noting
two facts: first, by Eq. (3) the degree of each of the fi is at most n −1 (even if h −1
is larger than n); second, E(Y ) as defined in this section is irreducible over Fq [Lidl
and Niederreiter 1986, Chap. 3, Sec. 5] (this is where the coprime requirement on
logh q and h − 1 is used).

Setting parameters we obtain (compare to Theorem 3.5):

THEOREM 7.4 (REED-SOLOMON EXPANDER). For all positive integers N,
Kmax � N, and all 1 � ε > 0, there is an explicit (� Kmax, (1 − ε)D) ex-
pander �RS : [N ] × [D] → [M] with degree D = O((log N )(log Kmax)/ε)2 and
M � (DKmax)2. Moreover, D and M are powers of 2.

PROOF. We set n = log N , k = log Kmax, and h to be the power of 2 in the
range ((nk/ε), 2(nk/ε)]. Set q = h2. Observe that h − 1 and 2 are relatively prime,
so Theorem 7.3 applies. The remainder of the proof proceeds exactly as the proof
of Theorem 3.5 with α = 1.

Finally, applying Lemma 4.2, we immediately obtain the following lossless con-
denser based on Reed-Solomon codes:

THEOREM 7.5 (REED-SOLOMON LOSSLESS CONDENSER). For every n ∈ N,
kmax � n, and ε > 0, there is an explicit function C : {0, 1}n × {0, 1}d → {0, 1}m

with d = 2(log n + log kmax + log(1/ε)) + O(1) and m � 2(d + kmax) such that for
all k � kmax, C is a k →ε k + d (lossless) condenser.

7.3. LIMITATION OF THE REED-SOLOMON CONDENSERS. For the Reed-
Solomon-based construction, a relatively simple argument shows that the entropy
rate must in general be a constant less than 1. The example below comes from
Guruswami et al. [2002] and Ta-Shma and Zuckerman [2004] (it applies to the
function �RS as well as the function C from Eq. (2), for which it is stated):
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LEMMA 7.6. Define C as in Eq. (2). For every positive integer p < n such that
p|(q − 1), there is a source X with min-entropy at least �n/p� · log q for which
the support of C(X, Ulog q) is entirely contained within a set of size wm, where
w = (q − 1)/p + 1.

PROOF. Take the source to be pth powers of all polynomials over Fq of de-
gree at most �(n − 1)/p�. Every output symbol of C is an evaluation of such
a polynomial, and therefore must be a pth power or 0. There are thus only w =
(q −1)/p+1 possible output symbols, so the output is contained within a set of size
wm .

For such a source X, the output min-entropy of C is at most m log w and the
output length is m log q. Thus the output entropy rate is at most

log w
log q

≈ 1 − log p
log q

.

So for example, for a source obtained when p ≈ √
n, the Reed-Solomon condenser

C yields constant entropy rate bounded away from 1 unless the seed length log q
is ω(log n).

This implies that the entropy rates obtained in Theorems 7.2 and 7.5 are not
artifacts of the analysis. That is, it is not possible to improve the entropy rates (e.g.,
to 1 − o(1)) simply by giving a different, improved analysis.

8. Application to Storing Sets

Buhrman et al. [2002] showed that unbalanced expanders with expansion close to
the degree can be used to construct the following kind of data structures for storing
sets:

Definition 8.1. A randomized bitprobe data structure for set membership con-
sists of two algorithms:

—A (deterministic) encoding algorithm that takes a set S ⊆ [N ] of size L (specified
as a list of elements), a parameter ε > 0, and outputs an encoding X ∈ {0, 1}M .

—A (randomized) decoding algorithm that is given the parameters N , L , ε, an
element x ∈ [N ], and oracle access to the encoding X , and outputs a bit b.

We require that if X is the output of the encoding algorithm on set S, then for
every x , the decoding algorithm’s output will correctly indicate whether or not
x is in S, with probability at least 1 − ε over the algorithm’s coin tosses. A q-
query scheme is one in which the decoding algorithm makes at most q queries
to the encoding X . M is called the length of the data structure, and ε the error
probability.

We say the data structure is explicit if the encoding can be computed in time
polynomial in its input and output lengths, that is, time poly(L , log N , log(1/ε), M)
and the decoding can be computed in time polynomial in its input length, that is,
time poly(log N , log(1/ε)).

The construction of such data structures from expanders is given by the following
theorem. As observed by Ta-Shma [2002], to have an explicit data structure, we
need an expander that not only has an efficiently computable neighbor function but
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which can also be efficiently “list decoded.” The following theorem is implicit in
Buhrman et al. [2002] and explicit in Ta-Shma [2002]:

THEOREM 8.2 (BUHRMAN ET AL. 2002; TA-SHMA 2002). If there is a (�2L ,
(1 − ε)D) expander � : [N ] × [D] → [M], then there is a randomized one-query
bitprobe data structure for subsets of [N ] of size at most L with length M and error
probability at most 4ε.

Moreover, if the expander is explicit and for every set T ⊆ [M] of size at most
L D, we can compute LIST(T, 4ε) in time poly(L , log N , log(1/ε), M), then the
data structure is explicit.

With an optimal expander we have M = O(L D) = O(L · (log N )/ε); therefore,
the length of the data structure is only an O(1/ε) factor larger than the L log N bits
that are needed describe the set S without concern for efficient membership tests.

We now observe that our expanders have the list-decoding property needed for
Theorem 8.2:

LEMMA 8.3. Define � : F
n
q × Fq → F

m+1
q as in Eq. (1). Then given T ⊆ F

m+1
q

and ε > 0, we can compute LIST(T, ε) in time poly(|T |, n, m, q, log h) provided
that |T | � Ahm − 1, where A = εq − (n − 1)(h − 1)m.

PROOF. The observation is that essentially the proof of Theorem 3.3 gives an
algorithm for computing LIST(T, ε). (The proof of Theorem 3.3 corresponds to the
case that ε = 1, but as seen in the proof of Theorem 7.1, it generalizes to arbitrary
ε if we set A = εq − (n − 1)(h − 1)m.) We go through the steps here:

—Set H = �(|T | + 1)/A�. Find a polynomial Q(Y, Y1, . . . , Ym) vanishing on
T with nonzero coefficients on monomials of the for Y i M j (Y1, Y2, . . . , Ym) for
0 � i � A − 1 and 0 � j � H − 1 (borrowing the notation from the proof of
Theorem 3.3). This requires solving a linear system over Fq with |T | equations
and AH unknowns. To ensure Q is not divisibly by E(Y ), we repeatedly remove
factors of E(Y ); there can by at most A/(n − 1) such factors.

—As in the proofs of Theorems 3.3 and 7.1, every f (Y ) ∈ LIST(T, ε) is
a root of the polynomial Q∗(Z ) = Q(Y, Z , Z h, . . . , Z hm−1

) mod E(Y ) over
F = Fq[Y ]/E(Y ). We construct Q∗ by first substituting the Z variable and
then reducing H different univariate polynomials p j (Y ), each of degree at most
A − 1, modulo E(Y ), which is of degree at most n − 1.

—Find the roots f of Q∗(Z ), which is a polynomial of degree at most H − 1 over
the field F, which is of size qn .

—For each such root f , check whether it is an element of LIST(T, ε), which can
be done by counting how many of its q neighbors �( f, y) are in T .

All of these steps can be done in time poly(|T |, n, m, q, log h).

Plugging our expanders into Theorem 8.2, we obtain the following:

THEOREM 8.4. For every N, L � N, and ε, α > 0, there is a randomized
one-query bitprobe data structure for subsets of [N ] of size at most L with error
probability at most ε and length

M =
(

log N
ε

)O(1+1/α)

· L1+α.
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PROOF. We show how to achieve the claimed length with error probability at
most 4ε for any ε > 0, which is equivalent to the above theorem up to a change
in the hidden constant. We will apply Theorem 8.2 with our expander � defined in
Eq. (1). We will set the parameters n, m, q, and h as in the proof of Theorem 3.5,
for Kmax = �L/3ε�. (Note that the upper bound on α is not a problem, since here
we may assume α � 1 without loss of generality.) This gives a right-hand side of
size

M � D2 · K 1+α
max =

(
log N

ε

)O(1+1/α)

· L1+α,

since D = ((log N )/ε)O(1+1/α).
Since Kmax � 2L , we have an explicit (� 2L , (1 − ε)D) expander and the

first condition of Theorem 8.2 is satisfied. For the second condition, we will use
Lemma 8.3 to ensure that we can efficiently compute LIST(T, 4ε) for every T of
size at most L D. Recalling that D = q, this imposes the constraint Lq � Ahm −1,
where A = 4εq − (n − 1)(h − 1)m. The settings in Theorem 3.5 ensure that
q � (n − 1)(h − 1)m/ε, so we have A � 3εq. They also ensure that hm � Kmax.
Thus, we have

Ahm � 3εq Kmax > Lq + 1,

as desired. Thus, we can compute LIST(T, 4ε) for |T | � L D in time poly(|T |, n,
m, q, log h) = poly(M).

The optimal setting of α in the above theorem is α =
�(

√
(log log N + log(1/ε))/ log L), which leads to a bound of

M = L ·
(

log N
ε

)O(1)

· exp
(√

(log log N + log(1/ε)) · log L
)

.

Previous explicit constructions achieved M = O(L2 · (log N )/ε2) [Buhrman et al.
2002] and M = L · exp((log log N + log(1/ε))3) [Ta-Shma 2002]. Our bound is an
improvement when

((log N )/ε)ω(1) � L � exp(o((log log N + log(1/ε))5)).

Remark 8.5. In this application, the data structure is constructed using the algo-
rithm outlined above for enumerating sets of the form LIST(T, ε) for small values
of ε. The algorithm also implies a bound on the size of such sets (namely the degree
of the polynomial Q∗) but this bound turns out to be insufficient for the analysis of
the data structure (in the proof of Theorem 8.2 in [Buhrman et al. 2002]). Instead,
the sizes are bounded using the fact that the graph is a lossless expander, which
we establish using a bound on the size of sets of the form LIST(T ′, 1). It would
be interesting if such an approach—bounding the size of LIST(T, ε) using bounds
on LIST(T ′, ε′)—could be used to improve list-size bounds in coding-theoretic
settings.

Remark 8.6. Nelson and Woodruff [2008] recently found other applications of
our constructions, namely to (slightly) extend the range of parameters for Armoni’s
generator for space-bounded computation [Armoni 1998] and to construct space-
efficient streaming algorithms. For these applications, they also showed how to
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modify our extractor so that it is computable in linear space (in addition to polyno-
mial time).

9. Conclusions

The “list-decoding” view of expanders and condensers used in this paper seems
to be quite powerful, leading to constructions that are more direct, achieve im-
proved parameters. It is thus natural to ask how far this approach can be pushed.
Constructing unbalanced expanders with expansion close to the degree where the
degree and/or size of the right-hand side are within constant factors of optimal is a
natural next goal. This is closely related to question of constructing truly optimal
extractors, ones that are optimal up to additive constants in the seed length and/or
output length. Towards this end, we wonder if there is some variant of our con-
struction with a better entropy rate – the next natural threshold is to have entropy
deficiency only ko(1). Another interesting question is whether some variant of these
constructions can give a block-wise source directly. Depending on the actual pa-
rameters, either of these two improvements have the potential to lead to extractors
with optimal output length (i.e., ones extract all the min-entropy). Alternatively,
if we can find an extractor with optimal output length for high min-entropy (say
.99n), then, by composing it with our condenser, we would get one for arbitrary
min-entropy. Yet another approach is to eliminate the entropy loss in our recursive
construction; see Remark 5.16.

We also wonder whether these new techniques can help in other settings. For
example, can we use them to argue about computational analogues of the objects
in this article – pseudorandom generators and pseudoentropy generators? Or, can
variants of our constructions yield so-called “2-source” objects, in which both the
source and the seed are only weakly random? In recent work [Rao and Zuckerman
2008], a 3-source extractor was constructed using the techniques from this article,
for the case when one of the sources is much shorter than the other two. Whether
one can remove this length restriction and construct a general 3-source (or even
2-source) extractor remains open.
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