Pseudorandom Walks on Regular Digraphs
and the RL vs. L Problem -~

Omer ReingoldT
Dept. of Computer Science
Weizmann Institute of Science
Rehovot, Israel

omer.reingold@weizmann.ac.ll

ABSTRACT

We revisit the general RL vs. L question, obtaining the
following results.

1. Generalizing Reingold’s techniques to directed graphs,
we present a deterministic, log-space algorithm that
given a regular directed graph G (or, more generally,
a digraph with Eulerian connected components) and
two vertices s and t, finds a path between s and ¢ if
one exists.

2. If we restrict ourselves to directed graphs that are reg-
ular and consistently labelled, then we are able to pro-
duce pseudorandom walks for such graphs in logarith-
mic space (this result already found an independent
application).

3. We prove that if (2) could be generalized to all regular
directed graphs (including ones that are not consis-
tently labelled) then L = RL. We do so by exhibiting
a new complete promise problem for RL, and showing
that such a problem can be solved in deterministic log-
arithmic space given a log-space pseudorandom walk
generator for regular directed graphs.

Categories and Subject Descriptors

F.1.3 [Computation by abstract devices]: Complexity
Measures and Classes

*Work supported by US-Israel Binational Science Founda-
tion Grant 2002246. A preliminary full version of this paper
is posted on ECCC [21].

JrIncumben‘c of the Walter and Elise Haas Career Develop-
ment Chair

iAlso supported by NSF grant CCF 0515231

§Also supported by NSF grant CCR-0133096, ONR grant
N00014-04-1-0478, and a Sloan Research Fellowship

. I
Luca Trevisan
Computer Science Division
U.C. Berkeley

luca@cs.berkeley.edu

Salil Vadhan'
DEAS
Harvard University
Cambridge, MA, USA

salil@eecs.harvard.edu

General Terms
Algorithms, Theory

Keywords

Expander Graphs, Zig-Zag Product, Space-Bounded Com-
putation, Universal Traversal Sequence, Mixing Time, De-
randomization

1. INTRODUCTION

The research on derandomization of space-bounded com-
putations deals with the tradeoff between two basic resources
of computations: memory (or space) and randomness. Can
randomness save space in computations? Alternatively, can
every randomized algorithm be derandomized with only a
small increase in space? These questions received the most
attention in the context of log-space computations, and with
respect to the following complexity classes: L (the class of
problems solvable in deterministic log-space), RL, and BPL
(the classes of problems solvable by randomized log-space
algorithms making one-sided and two-sided errors respec-
tively). It is widely believed that L = RL = BPL and
proving this conjecture is the ultimate goal of this body of
research.

It turns out that the derandomization of RL is related to
determining the space complexity of one of the most basic
graph problems, UNDIRECTED S-T CONNECTIVITY: Given
an undirected graph and two vertices, is there a path be-
tween the vertices? (The corresponding search problem is
to find such a path). The space complexity of this problem
and the derandomization of space-bounded computations
have been the focus of a vast body of work, and brought
about some of the most beautiful results in complexity the-
ory. The connection between the two was made by Aleliunas
et. al. [2], who gave an RL algorithm for UNDIRECTED S-T
CONNECTIVITY. The algorithm simply runs a random walk
from the first vertex s for a polynomial number of steps,
and accepts if and only if the walk visits the second vertex
t. This beautifully simple algorithm is undoubtedly one of
the most interesting examples of the potential power of ran-

Permission to make digital or hard copies of all or part of this work for domization. It casts the space complexity of UNDIRECTED
personal or classroom use is granted without fee provided that copies areS-T CONNECTIVITY as a specific example and an interesting
not made or distributed for profit or commercial advantage and that copies test case for the derandomization of space-bounded compu-
bear this notice and the full citation on the first page. To copy otherwise, o tations. (In particular, if RL = L, then UNDIRECTED S-
republish, to post on servers or to redistribute to lists, requires prior specific CONNECTIVITY can be solved in deterministic log-space.)

issi fee. . .
permission and/or a fee Since then progress on the general and the specific problems

STOC’06, May 21-23 2006 Seattle WashingtonUSA. . . .
Copyright 2006 ACM 1-59593-134-1/06/0C...$5.00. alternated with a fluid exchange of ideas (as demonstrated

457

by [26, 1, 4, 17, 16, 18, 25, 3], to mention just a few high-
lights of this research). See the surveys of Saks [24] and
Wigderson [29] for more on these vibrant research areas.
The starting point of our research is a recent result of
Reingold [20] that showed that UNDIRECTED S-T CONNEC-
TIVITY has a deterministic log-space algorithm. On the
other hand, the best deterministic space bound on RL in

general remains O(log®/? n), established by Saks and Zhou [25].

1.1 Our Results

In this paper, we revisit the general RL vs. L question in
light of Reingold’s results, and obtain the following results:

1. Generalizing Reingold’s techniques to directed graphs
(aka. digraphs), we present a deterministic, log-space
algorithm that a graph such that each vertex has an
outdegree equal to its indegree (i.e. a digraph with
Eulerian connected components) and two vertices s
and ¢, finds a path between s and ¢ if one exists. This
involves a new analysis of the zig-zag graph product
of [22] that generalizes to regular digraphs, which may
be of independent interest.

. For the special case of “consistently labelled” regular
digraphs we provide a “pseudorandom walk genera-
tor.” A digraph is regular of degree D, or D-regular,
if all vertices have indegree D and outdegree D; a D-
regular digraph is consistently labelled if the D edges
leaving each vertex are numbered from 1 to D in such
a way that at each vertex, the labels of the incom-
ing edges are all distinct. Roughly speaking, given a
random seed of logarithmic length, our generator con-
structs, in log-space, a “short” pseudorandom walk
that ends at an almost-uniformly distributed vertex
when taken in any consistently-labelled regular digraph.

Pseudorandom generators that fool space-bounded com-
putations, are very interesting tools even beyond the
RL vs. L problem (see [9, 28, 8, 7] for just a few of their
applications). In particular, even the pseudorandom
walks given in this paper already found an applica-
tion in the construction of almost k-wise independent
permutations [10]. Unfortunately, such “oblivious” de-
randomizations are more difficult, due to the inability
to look at the input. For example, while it is true that
every regular digraph has a consistent labelling, it is
not clear how to transform a pseudorandom generator
that works for consistently-labelled regular digraphs
such that it would also work for arbitrarily-labelled
regular digraphs.

. We prove that if our pseudorandom generator from
Item 2 could be generalized to all regular digraphs (in-
stead of just consistently labelled ones), then RL = L.

We do so by exhibiting a new complete problem for
RL: S-T CONNECTIVITY restricted to digraphs for
which the random walk is promised to have polynomial
“mixing time,” as measured by a directed analogue of
the spectral gap introduced by Mihail [15]. We then
show that a pseudorandom walk generator for regular
digraphs can be used to solve our complete problem
deterministically in logarithmic space.

458

1.2 Perspective

We now discuss possible interpretations of the aforemen-
tioned results for the derandomization of RL.

First, let us consider Reingold’s algorithm for undirected
ST-connectivity. What are the properties of undirected graphs
that are intrinsic to this algorithm? One property of undi-
rected graphs is reversibility — a walk on the graph can
immediately undo any of its steps by taking the last edge
again (in the reverse direction). A second property is that
the stationary distribution of the walk on an undirected
graph is well-behaved (the probability of a vertex is pro-
portional to its degree), and such graphs can easily be re-
duced to regular graphs where the stationary distribution
is uniform. Our result (1), where we extend the algorithm
to Eulerian digraphs indicates that the latter property of
undirected graphs is much more important here than the
former. After all, Eulerian digraphs are non-reversible but
their stationary distribution is well-behaved and they can
easily be reduced to regular digraphs where the stationary
distribution is again uniform (the reduction is described in
Section 5).

A “pseudorandom walk generator” that works for every
consistently labelled regular undirected graph is implicit in
[20]. (Actually, the generator requires a more restrictive
form of labelling). Our result (2) formalizes this generator
and generalizes it to (consistently-labelled regular) digraphs.
In order to get a general pseudo-random generator for space-
bounded generators (which as mentioned above is a goal of
independent interest) there are two restrictions to overcome:
regularity and consistency of the labelling.

It is well known that every regular digraph has a consis-
tent labelling . Furthermore, regularity already proved cru-
cial in our result (1). It may therefore seem that the most
stringent of the requirements in our construction is regu-
larity rather than consistent labelling. Our final result (3)
shows that in this context (of derandomization with pseudo-
random walks) regularity is essentially irrelevant. Consis-
tent labelling is in fact the only obstacle towards a full de-
randomization of RL. It remains to be seen how difficult
this is to overcome.

Why is consistent labelling so important? First, as we
noted above, in the context of pseudorandom walks it is not
clear how useful is the mere fact that consistent labelling
ezists. A pseudorandom walk is an operation that is obliv-
ious to the particular input graph, but on the other hand,
consistently labelling a graph may not be oblivious (and in
fact seems rather “global”). Therefore, it is not clear how
to transform a pseudorandom walk for regular consistently-
labelled digraphs into one that is pseudorandom for general
regular digraphs. An intuitive reason for the importance of
the labelling is that for any fixed sequence of edge labels,
the corresponding walk on a graph with consistent labels
cannot lose entropy (the distribution of the final vertex has
as much entropy as the distribution of the start vertex). On
the other hand, without the assumption on the labelling,
entropy losses may occur. Therefore progress made in one
part of a pseudorandom walk (i.e. an increase in entropy)
may be lost later in the same walk.

1.3 Techniques

The main technical step in the proof of our results (1)
and (2) is an analysis of a zig-zag graph product of Rein-
gold, Vadhan, and Wigderson [22] applied to regular di-

graphs. More specifically, we bound the spectral gap (as
defined by Mihail [15] and Fill [6] in the context of nonre-
versible Markov chains) of the graph obtained by the zig-zag
product of two regular digraphs. An analogous bound was
proven in [22] for undirected regular graphs, but their proof
is not immediately applicable to our setting because it uses
properties of symmetric matrices. It turns out that our new
analysis is actually simpler than the one in [22], even though
it applies to a more general setting. The proof we present
here is even simpler than the one that appeared in the pre-
liminary version of this paper [21]. The new proof is based
on an approach of [23], who used it to analyze a new ‘de-
randomized squaring’ operation.

Another contribution, that may be of independent inter-
est is the new complete promise problem we present for RL.
Very loosely, this problem is st-connectivity in rapidly mix-
ing Markov chains (where in the ‘Yes’ case, both nodes s
and t have noticeable probability mass under the stationary
distribution of walks starting at s). A complete problem for
RL based on Markov chains was previously known (see the
survey of Saks [24]). However, in that problem one exam-
ines the behavior of a walk at a particular time step ¢. On
the other hand, in the new complete problem we discuss the
behavior of the walk 4n its limit (i.e., we are interested in the
stationary distribution). Such a problem seems much more
amenable to the techniques of [20]. In particular, even in the
undirected case, we do not know how to space-efficiently and
deterministically simulate the distribution reached by a ran-
dom walk after a fixed number of steps (unless this walk was
long enough to approach the stationary distribution).

In the proof of our result (3), we define (as a mental ex-
periment) a regular digraph which can be thought of as a
“blow-up” of the input graph in the new complete promise
problem for RL. More specifically, every vertex in the input
graph corresponds to a set of vertices in the blow-up graphs,
with multiplicity that is linearly related to the weight of the
original vertex under the stationary distribution. Intuitively,
as heavy vertices are split into many more vertices in the
blow-up graph, we indeed obtain a graph where the station-
ary distribution is uniform (and is therefore regular). We
are not able to construct this blow-up graph efficiently but
we can show (again as a mental experiment) that for some
(inconsistent) labelling of the edges in the blow up graph
a walk on the blow-up graph naturally “projects” onto the
original graph. Furthermore, the projected walk can be eas-
ily and efficiently simulated by only referring to the origi-
nal input graph. By assumption, we know how to generate
pseudorandom walks for the blow-up graph and as we show,
simulating the projection of such walks on the original graph
is sufficient to solve the promise problem.

It is natural to attempt the general framework of deran-
domization studied here with a different measure of expan-
sion (rather than analogues of eigenvalue gap). We also
consider here the combinatorial measure of edge expansion.
We show that edge expansion is preserved and degree is re-
duced, by taking a replacement product with an expander
graph. We show, however, that edge expansion is not neces-
sarily improved by powering in digraphs, and it is not clear
that there is any other “local” operation that increases edge
expansion. Details are omitted from this version.

459

2. PRELIMINARIES

2.1 Graphs and Markov Chains

In this paper, we consider directed graphs (digraphs
for short), and allow them to have multiple edges, and have
self-loops. A graph is out-regular (resp., in-regular) if
every vertex has the same number D of edges leaving it;
D is called the out-degree (resp., in-degree). A graph is
regular if it is both out-regular and in-regular.

Given a graph G on N vertices, we consider the random
walk on GG described by the transition matrix Mg whose
(v,u)’th entry equals the number of edges from u to v, di-
vided by the outdegree of v.!

More generally, if MY >N is a matrix with non-negative
entries such that for every v € [N] we have | M(v,u) =1,
then we say that M is a Markov chain on state space
[N]. For a Markov chain M *¥ we define the underlying
graph of M as the graph G = ([N], E) such that (u,v) € E
if and only if M(v,u) > 0. A distribution 7 € RY is
stationary for a Markov chain M if M7 = w. Note that if
7 is stationary for M, then supp(r) % {v:7(v) >0} is a
closed subset of M in the sense that there are no transitions
from supp(n) to its complement; thus M is well-defined as
a Markov chain restricted to supp(w). A Markov chain M is
time reversible with respect to a stationary distribution
m if for every two vertices u,v € [N] we have 7(u)M (v, u) =
m(v)M (u,v). If G is an undirected graph, then M¢ is time
reversible with respect to the stationary distribution ()
d(u)/2m, where d(u) is the degree of v and m is the number
of edges. A random walk on a directed graph, however, is
typically not time reversible.

We are interested in the rate at which a Markov chain M
converge to a stationary distribution For a time-reversible
Markov chain M, it is well-known that the rate of conver-
gence is characterized by the second largest (in absolute
value) eigenvalue A2(M) of the matrix M. If M is not
time-reversible (for example, if M is the random walk on
a directed graph), then M need not have real eigenvalues,
and the stationary distribution need not have the largest
eigenvalue in absolute value, so the time-reversible theory is
not immediately applicable.

Following Mihail [15] and Fill [6], we introduce a parame-
ter A\(M) which is equal to A2(M) if M is time-reversible,
but that remains well-defined even for non-time-reversible
Markov chain. For a probability distribution 7 € RY on
vertices, we define a normalized inner product on RY by:

dor X z(v) - y(v)
<'T7 y>7\' =)
(v)
vEsupp(m)
det P—+ . .
and a norm ||z|]|l» = (z,z)r. Note that this normaliza-

tion makes 7 itself a unit vector (i.e. gjm||» = 1), and also
implies that x is orthogonal to = iff ~ x(v) = 0. (Tech-
nically, (-,-,)» is only an inner product on the subspace
{z € RY : supp(z) C supp(m)}, since there are nonzero
vectors = outside this subspace such that ||z|| = 0. How-
ever, it will be convenient to use this notation for arbitrary
vectors in R™.)

1Often the transition matrix is defined to be the transpose
of our definition. Our choice means taking a random walk
corresponds to left-multiplication by Mg.

DEFINITION 2.1. Let M be a Markov chain and m be a
stationary distribution for M. We define the spectral ex-
pansion of M with respect to 7 to be
[Mz|[~

2€ERN (z,7) r =0 HJ»’“W ’

Ar (M) &

For a digraph G and a stationary distribution of Mg, we
often write Ax(G) instead of Ax(Mg).

As noted above, when M is time-reversible, then A\ (M)
equals the second largest eigenvalue (in absolute value) of
M (more precisely, the submatrix of M consisting of the
rows and columns in supp(w)). In general, Az(M) equals
the square root of the second largest (in absolute value) of
MM, where M (u,v) = m(u)M (v,u)/m(v) (again, restricting
to submatrices so that u,v € supp(n)).

The following lemma shows that if Ax(M) is small, then
the Markov chain converges quickly to . The proof is omit-
ted.

LEMMA 2.2. Let 7 be a stationary distribution of Markov
chain M on [N], and let o be any distribution on [N] such
that supp(a) C supp(w). Then

Mo =7z < Ax(M)" - o = 7|

In particular, if we start at a vertex v € supp(w) and run
M for t steps, then we end at vertex w € supp(w) with

probability at least w(w) — Ar(M)' -~ m(w)/7(v).

The above lemma refers to convergence in (normalized)
{o distance. The following lemma shows that this implies
convergence in standard variation distance. The proof is
omitted.

LEMMA 2.3. For any distribution «, the variation dis-
tance between « and 7 is at most ||o — || x.

It is well-known that (connected, nonbipartite) undirected
graphs G always satisfy Ar(G) < 1 — 1/poly(N, D), where
N is the number of vertices and D the degree [12]. That
is, undirected graphs have at most polynomial mixing time.
However, in general directed graphs, A-(G) can be expo-
nentially close to 1, and thus the mixing time exponentially
large.

Just as in the undirected case, the spectral expansion can
be bounded in terms of the sizes of cuts in the underlying
graph.

DEFINITION 2.4. Let M be a Markov chain with N ver-
tices and 7 a stationary distribution. The conductance of
M with respect to 7 is deﬁnedltjo be

ucA,vgA W(U)M(’U, ’U,)

def
h=(M)= = i
(M) A;0<Eg}41§51/2 m(A)
LEMMA 2.5 ([27, 15, 6]). Let M be a Markov chain on

N wertices such that M (u,u) > 1/2 for every u (i.e. M is
“strongly aperiodic”), and let w be a stationary distribution
of M. Then Ae(M) <1 — h(M)?/2.

The proof is omitted.

When the stationary distribution 7 is uniform on the ver-
tices of GG, then the conductance defined above coincides
exactly with the “edge expansion” of G, defined below.?
2To see that £(G) = h.(G) when 7 is the uniform distrib-
ution, note that the fact that the stationary distribution is
uniform implies that G is biregular, which in turn implies

that E(A,A) = E(A, A).

460

DEFINITION 2.6. Let G = (V, E) be a directed graph in
which every vertexr has outdegree D. Then the edge ex-
pansion of G is defined to be

E(A,A)
D -min{|A],|A[}"

where_the minimum is taken over sets of wvertices A and
E(A, A) is the set of edges (u,v) where uw € A and v ¢ A.

2.2 Complexity Classes

We let L, RL, NL, BPL denote the standard logspace
complexity classes. That is, L is the class of decision prob-
lems solvable by deterministic logarithmic space Turing ma-
chines, RL is the class of decision problems solvable by prob-
abilistic logarithmic space Turing machines with bounded
one-sided error, BPL is the class of decision problems solv-
able by probabilistic logarithmic space Turing machines with
bounded two-sided error, and NL is the class of decision
problems solvable by non-deterministic logarithmic space
Turing machines. We require our machines to always termi-
nate for every input and for every sequence of random coins
or non-deterministic choices. In particular, this implies that
every computation terminates within polynomial time.

We also define the promise version of log-space complexity
classes. A promise problem is a pair (Y, N) of disjoint sets
of instances. A promise problem (Y, N) is in the class prL
if there is a deterministic log-space Turing machine that ac-
cepts all the inputs in Y and rejects all the inputs in N. A
promise problem (Y, N) is in prRL if there is a probabilis-
tic logarithmic space Turing machine that accepts inputs
in Y with probability at least 1/2 and accepts inputs in N
with probability 0. A promise problem (Y, N) is in prBPL
if there is a probabilistic logarithmic space Turing machine
that accepts inputs in Y with probability at least 3/4 and
accepts inputs in N with probability at most 1/4. When
dealing with promise problems, we require probabilistic ma-
chines to halt for every input in YUN and for every sequence
of random coins. (We allow infinite loops for inputs not in
YUN,)

Finally, we define complexity classes of search problems.
A search problem is simply a relation R C X* x ©*. For a

relation R and a string = we define R(z)déf{y : R(z,y)}. The
computational problem associated with a search problem R
is the following: given x such that R(z) # 0, output a string
y in R(z).

A relation (or search problem) R is log-space if there is
a polynomial p such that y € R(z) implies |y| < p(|z|) and
if the predicate (z,y) € R can be decided by a log-space
deterministic Turing machine that has two-way access to x
and one-way access to y.

A logspace search problem R is in searchL if there is a
logarithmic space transducer A such that A(z) € R(z) for
every z such that R(zx) # 0. (A transducer is a Turing
machine with a read-only input tape, a work tape, and a
write-only output tape. The writing head on the output tape
is constrained to always move right after writing a symbol,
but the machine has two-way access to the input tape.)

A logspace search problem R is in searchRL if there is
a logarithmic space probabilistic transducer A and a poly-
nomial p such that Pr[A(z) € R(z)] > ﬁ for every x such
that R(z) # 0. (We require the transducer to halt for
every sequence of random coins and for every x such that

R(z) #0.)

e(G) = min

All reductions in this paper are deterministic logspace
reductions. The definition of reduction is standard for de-
cision problems and promise problems. The definition for
search problems is omitted.

3. ANEW COMPLETE PROBLEM FOR RL

S-T CONNECTIVITY and its search version, FIND PATH,
both defined below, are two of the most basic problems in
computer science.

S-T CONNECTIVITY.
Input: (G, s,t), where G = (V, E) is a directed graph, s,t €
14

YES instances: There is a path from s to ¢ in G.
NO instances: There is no path from s to ¢t in G.

FIND PATH.

Input: (G,s,t), where G = (V,FE) is a directed graph,
s,t€V,and k € N.

Promise: There is a path from s to ¢t in G.

Output: A path from s to ¢t in G.

It is well-known that S-T CONNECTIVITY is complete for
NL, and the same argument shows that FIND PATH is com-
plete for searchNL. Here we are interested in the com-
plexity of restrictions of these problems. The recent result
of Reingold [20] shows that their restrictions to undirected
graphs, UNDIRECTED S-T CONNECTIVITY and UNDIRECTED
FIND PATH, are in L and searchL, respectively.

It was known (see [24]) that a certain restriction of S-
T CONNECTIVITY was complete for prRL, specifically one
where we look at the probability that a random walk of a
particular length goes from s to t:

SHORT-WALK S-T CONNECTIVITY.

Input: (G,s,t,1%), where G = (V, E) is a directed graph,
s,teV.

YES instances: A random walk of length k started from
s ends at ¢t with probability at least 1/2.

NO instances: There is no path from s to ¢t in G.

However, this problem does not seem to capture the prop-
erties of UNDIRECTED S-T CONNECTIVITY used in Rein-
gold’s algorithm [20]. His algorithm uses relies on a mea-
sure of expansion, specifically the spectral gap, which refers
to the long-term behavior of random walks in G (as opposed
to walks of a particular length k). We give a complete prob-
lem that seems much closer, specifically by restricting to
graphs of polynomial mixing time (as measured by A-(G)).

Pory-MixiNG S-T CONNECTIVITY.

Input: (G,s,t,1%), where G = (V, E) is a out-regular di-
rected graph, s,t € V, and k € N.

YES instances: The random walk on G has a stationary
distribution 7 such that A\x(G) < 1—1/k, and =(s), 7 (t) >
1/k.

NO instances: There is no path from s to ¢t in G.

Pory-MixiNG FIND PATH.

Input: (G,s,t,1%), where G = (V, E) is a out-regular di-
rected graph, s,t € V', and k € N.

Promise: \;(G) <1—1/k, and ms(s),ms(t) > 1/k.

461

Output: A path from s to t in G.

The completeness of these two problems is given by the
following theorem.

THEOREM 3.1. POLY-MIXING S-T CONNECTIVITY %s com-
plete for prRL. PoLy-MIXING FIND PATH is complete for
searchRL.

PrOOF. First, we show that these problems are in prRL
and searchRL, respectively, by giving randomized logspace
algorithms for them. Given an instance (G, s, t, 1k), we take
a random walk of length m = 2k-1n k from s, where IV is the
number of vertices in G. The searchRL algorithm simply
outputs this walk, and the prRL algorithm accepts if this
walk ends at t. If (G,s,t,1%) is a YES instance, then by
Lemma 2.2, the random walk will end at ¢ with probability
at least

w0 -x0n”-Prae =t -1 v
1 1 1

Now we show that every problem in prRL and searchRL,
respectively, reduce to PoLy-MIXING S-T CONNECTIVITY
and PoLy-MIXING FIND PATH. Let M be a randomized
logspace machine, running in time at most p(n) < poly(n).
Given an input x of length n for M, we construct a graph G
whose vertices are of the form (¢, 7), where i € {1,...,p(n)}
is a “layer”, and 7 € {0,1}°0°¢™ describes a possible con-
figuration of M (i.e. the state, the contents of the work tape,
and the position of the input head). We let s = (1, a) where
a is the unique start configuration of M, and t = (p(n), 8)
where 3 is the (wlog unique) accepting configuration of M.
(In the case of a searchRL algorithm, we have M accept if
any of the strings it outputs satisfy the relation R.) We cre-
ate four outgoing edges from each vertex (7,7v). Two edges
are always self-loops. If ¢ = p(n), then the other two edges
go to s. If i < p(n), then the they go to vertices of the form
(i+1,7") and (i +1,~"), for 7/,~" as follows. If «y is a con-
figuration where M reads a new random bit, then we take
~" and 7" to be the two configurations that M would enter
depending on the two possible values of the random bit. If
~ is a configuration where M does not read a new random
bit, then we set v = 4" to be the unique next configuration
in M’s computation on x. If v is a halting configuration of
M, then we set v/ =" = .

Let us analyze the stationary distribution and mixing time
of a random walk on G. It can be verified that the following
distribution 7 is on vertices (7, 7) is stationary for G: choose
¢ uniformly at random from {1,...,p(n)}, run M for ¢ steps
on input z, and let 7 be M’s configuration. We see that if
x € L, then w(t) > 1/2p(n), and if ¢ L, then w(¢t) = 0. In
both cases w(s) = 1/p(n).

To bound the mixing time, we observe that a random walk
of length 3p(n) started at any vertex visits s with probability
1—279®™) > 1/9 Lemma 3.2 below says that G has a
stationary distribution 7’ such that A (G) < 1 —1/(8 -
(3p(n))?) and 7'(s) > 0. Tt follows that 7' is the unique
stationary distribution on G, since a random walk started
at any vertex eventually passes through s and thus converges
to 7' (by Lemma 2.2). So 7' = 7.

To conclude, in our reduction, we output (G, s, ¢, 1¥), where
k= 72p(n)2. From the analysis above, this gives a logspace

reduction from any problem in prRL to POLY-MIXING S-
T CONNECTIVITY. Similarly, it gives a reduction from any
problem in searchRL to FIND PATH, because with one-way
access to any path from s to ¢t in G, in logspace we can
construct polynomially many computation paths of M, at
least one of which is accepting, and this in turn, can be used
to obtain a polynomially many strings y1,...,y¢ at least of
which is in R(x).

The above proof required the following lemma (proof is
omitted), which says that to show that a Markov chain has
polynomial mixing time, it suffices to prove that there is
a vertex s such that a random walk of polynomial length
started at any vertex will visit s with high probability.

LEMMA 3.2. Let M be a Markov chain that is strongly
aperiodic (i.e. self-loop probability at least 1/2 at each ver-
tex). Suppose there is a vertex s and a number £ € N such
that from every verter v reachable from s, a random walk of
length ¢ from v visits s with probability at least 1/2. Then M
has a stationary distribution 7 such that A-(G) < 1 —1/8¢*
and w(s) > 1/2¢.

In fact, the converse is also true — if a Markov chain has
polynomial mixing time then there is a vertex s such that a
random walk of polynomial length started at any vertex will
visit s with high probability. Indeed, if Az (M) <1 —~ and
we take s to be any vertex such that 7(s) > 1/N (where N is
the number of states), then Lemma 2.2 says that a random
walk of length £ = O((1/7) - log(N/pmin)) will end at s
with probability at least 1/2N, where ppin is the minimum
(nonzero) probability mass under . Repeating O(N) times,
we visit s with high probability. In cases we are interested
in (e.g. random walks on graphs), pm:n is only exponentially
small, so the walk length ¢ - N is polynomial.

We note that the proof of Theorem 3.1 can be modified to
give a complete problem for prBPL, specifically where the
NO instances are replaced with instances such that A (G) <
1—1/k, w(s) > 1/k and w(t) < 1/2k.

4. OPERATIONS ON DIRECTED GRAPHS

Given the RL-complete problem from the previous sec-
tion, it is natural to ask whether Reingold’s algorithm [20]
for UNDIRECTED S-T CONNECTIVITY can be generalized to
work for the complete problem. Recall that the algorithm
works by taking any undirected graph G and applying a se-
quence of operations to improve its expansion, as measured
by spectral gap. Specifically, it relies on a pair of opera-
tions that doubles the spectral gap while keeping the degree
constant (and increasing the number of vertices by a con-
stant factor). Since the initial (non-bipartite, connected)

undirected graph G has spectral gap v(G) defy ANG) >
1/poly(N), after O(log N) operations, we have a graph G’
with v(G') > 1/2. That is, G’ is a (constant-degree) ex-
pander graph and in particular has diameter O(log N) (in
each connected component). Then s-t connectivity can be
decided in logspace by enumerating all paths of O(log N)
from s.

Attempting to generalize this approach to the RL-complete
problem PoLy-MixING S-T CONNECTIVITY, we observe that
the initial condition y(G) > 1/poly (V) holds by the promise
(taking N to be the length of the input). In addition, if we
manage to convert G into a constant-degree graph G’ with

v(G") > 1/2 while maintaining the fact that s and ¢ have
stationary probability at least 1/poly(NN), then Lemma 2.2
implies that there is a path of length O(log N) from s to ¢
and we can solve s-t connectivity by enumerating all such
paths.

Thus, the “only” missing part of the algorithm is general-
izing the operations used by Reingold to improve expansion
(without increasing the degree) to directed graphs. Below
we suggest some possibilities.

Labellings. Let G be a digraph with N vertices such that
every vertex has outdegree at most D,y and indegree at
most Din. (Recall that we allow multiple edges and self-
loops.) A two-way labelling of G provides a numbering of
the edges leaving each vertex of GG using some subset of the
numbers from 1 to Dout, as well as a numbering of edges
entering each vertex of G using some subset of the numbers
from 1 to Din. (No two edges leaving a vertex can have
the same number, and no two edges entering a vertex can
have the same number.) Such a graph together with its two-
way labelling can be specified by a rotation map Rotg :
[N] X [Dout] — ([N] % [Din])U{L}, where Rota(v,7) = (u, j)
if there is an edge numbered ¢ leaving v and it equals the
edge numbered j entering u, and Rotg(v,7) = L if there is
no edge numbered ¢ leaving v. The operations below will be
defined in terms of 2-way labellings, as specified by rotation
maps.

Operations. The first operation used by Reingold [20] to
improve expansion is powering, simply replaces the edge set
with all walks of length ¢ in the graph.

DEFINITION 4.1 (POWERING). Let G be a two-way la-
belled graph given by rotation map Rote : [N] x [D] —
[N] x [B]. The t’th power of G is the graph G* with rota-
tion map is given by Rotge : [N] x [D]t — [N] x [B]" defined
by Rota, (vo, (k1,k2,...,kt)) = (ve, (e, be—1,...,¢1)), where
these values are computed via the rule (vi, £;) = Rota(vi—1, ki)
(and if any of these evaluations yield L, then the final output
is also L).

In directed graphs, powering improves expansion (i.e. re-
duces mixing time) as well as it does in undirected graphs:

LEMMA 4.2. For any stationary distribution w of G,
M (GH) < A (G)E3

Powering alone does not suffice, because it increases the
degree of the graph. Thus, Reingold [20] requires an ad-
ditional operation to reduce the degree while maintaining
the expansion. For this, there are two possibilities — the
replacement product and zig-zag product. These opera-
tions were defined and analyzed by Reingold, Vadhan, and
Wigderson [22] for undirected regular graphs, and it is not
clear what is the ‘right’ generalization to irregular directed
graphs (particularly non-Eulerian graphs, where the inde-
gree and outdegree of an individual vertex may be unequal).
Here we suggest one possibility. For simplicity, we restrict
to rotation maps where the outdegree bound D is the same
as the indegree bound B.

In the replacement product, we combine a graph G with
N, vertices and a rotation map of degree D; with a graph

3In undirected graphs this is actually an equality, but in
digraphs it need not be.

G2 that has D2 vertices and a rotation map of degree Ds.
The product graph has D;N; vertices, that we think of as
being grouped into Ni “clouds” of size D1, one cloud for
each vertex of G1. Each cloud is a copy of the graph G». In
addition, if the ¢-th outgoing edge from vertex v in G was
the j-th incoming edge in w (that is, if Rotg, (v,1) = (w, j),
then, in the product graph, there is an edge from the i-th
vertex in the cloud of v to the j-th vertex in the cloud of w.
The formal definition follows.

DEFINITION 4.3 (REPLACEMENT PRODUCT). If G1 is a
two-way labelled graph on Ni vertices with rotation map
Rota, : [Ni] x [Di] — [Ni] x [D1] and G2 is a two-way
labelled graph on Di wertices with rotation map Rota,
[D1] X [D2] — [D1] x [D2], then their replacement prod-
uct G1(MDGs is defined to be the graph on [N1] x [D1] vertices
whose rotation map Rotg,@qa, : ([N1] x [D1]) x [D2 4 1] —
([N1] x [D1]) x [D2 + 1] is as follows:

ROtG1®GQ ((’U, k)? 7‘):

1. Ifi < Dg, let (m, j) = Rota, (k, i) and output ((v,m), j).

2. If i = D2 + 1, output (Rota, (v, k),).

3. If the computation of Rotg, or Rota, yields L, then
the output is L.

A variant, called the balanced replacement product
G1 ® G2 in [22], gives equal weight to the edges coming
from G1 and from G2, by duplicating edges that go between
clouds (ie edges of the type 2) Ds times, for a total degree
of 2D2

The zig-zag product, introduced in [22], combines, as be-
fore, a graph G with N; vertices and a rotation map of
degree D; with a graph G2 that has D; vertices and de-
gree D2. The product graph has NiD; vertices as in the
replacement product, but now there is an edge between two
vertices if there is a length-three path in the replacement
product graph between them, and the middle edge in the
path crosses between two clouds. In particular, the degree
of the zig-zag product graph is D2, instead of Dy + 1. The
formal definition is below.

DEFINITION 4.4 (ZIG-ZAG PRODUCT [22]). IfG1 is ala-
belled graph on Ny vertices with rotation map Rotg, : [IN1] X
[D1] — [N1] X [D1] and G2 is a labelled graph on Dy ver-
tices with rotation map Rota, : [D1] x [D2] — [D1] x [D2],
then their zig-zag product G1 @ G2 is defined to be the
graph on [N1]x [D1] vertices whose rotation map Rotg,@q,
([N1] x [D1]) x [D3] — ([N1] x [D1]) x [D3] is as follows:

ROtG1®G2 (v, k), (4,4))-
1. Let (K',i") = Rota, (k,).
2. Let (w,?') = Rotg, (v, k).
3. Let (£,j") = Rotg, (¢, 7).
4. Output (w,0), (7)),

In typical applications of the zig-zag or replacement prod-
ucts (e.g. [22, 20], G2 is taken to a constant-degree expander
graph (i.e. v(G2) = Q(1)). Then, for the case of undirected

463

graphs, it is known that the zig-zag product and the bal-
anced replacement product have spectral gap that is at most
a constant factor smaller than the spectral gap of G1 [22,
14].* Thus they roughly maintain expansion while reduc-
ing the degree to a constant, and this suffices for Reingold’s
algorithm [20].

Unfortunately, we do not know how to analyze the effect
of the zig-zag and/or replacement products (or variants) on
spectral gap for directed graphs in general. Indeed, even
the stationary distribution is not well-behaved under these
products; we can construct examples where the stationary
probability of a vertex t goes from being noticeable (e.g.
1/N?) to exponentially small. In the full version we show
that the replacement product can actually be analyzed with
respect to edge expansion, but then it turns out that pow-
ering no longer behaves well.

We can analyze these products (and thus extend Rein-
gold’s algorithm) for the case of regular digraphs, and these
results are presented in the next section.

5. REGULAR (AND EULERIAN) GRAPHS

We define REGULAR DIGRAPH S-T CONNECTIVITY and
REGULAR DIGRAPH FIND PATH to be the problems obtained
by restricting S-T CONNECTIVITY and FIND PATH to reg-
ular digraphs, and similarly EULERIAN S-T" CONNECTIVITY
and EULERIAN FIND PATH to be the restrictions to digraphs
where every connected component is Eulerian, i.e. where
every vertex has the same in-degree as out-degree. There
is no additional promise in these problems. As observed in
[11], EULERIAN S-T CONNECTIVITY reduces to UNDIRECTED
S-T CONNECTIVITY, simply by making all edges undirected.
Whether or not s and ¢ are connected is maintained because,
in an Eulerian graph, every cut has the same number of
edges crossing in both directions. Note, however, that this is
not a reduction from EULERIAN FIND PATH to UNDIRECTED
FIND PATH. Nevertheless, here we give a logspace algorithm
for EULERIAN FIND PATH by generalizing the ideas under-
lying Reingold’s algorithm [20] to the directed case.

THEOREM 5.1. EULERIAN FIND PATH s in searchL.

Actually, to prove Theorem 5.1, it suffices to provide a
logspace algorithm for REGULAR DIGRAPH FIND PATH, be-
cause Eulerian digraphs can be reduced to the case of 2-
regular digraphs by replacing each vertex v with a directed
cycle C, of deg(v) vertices, where we connect one outgoing
edge of v and one incoming edge of v to each of the vertices
in Cy. Thus in the rest of this section we focus on regular
digraphs.

5.1 Basic Facts

In a regular digraph of degree D, the rotation map Rotg :
[N] x [D] — [N] x [D] is a permutation. Note that the
uniform distribution is a stationary distribution of the ran-
dom walk on a regular digraph. Thus, when working with
regular digraphs, the inner product (-,-)» and the spectral
expansion A (G) will always be with respect to 7w being the

4 Actually, the undirected definitions of these products are
restricted to two-way labellings that are undirected in the
sense that every edge {u,v} has the same label as an edge
leaving v as it does entering u. That is, Rot o Rot is the
identity.

uniform distribution, and we will usually omit 7 from the
notation.

First, we note that regular digraphs have nonnegligible
spectral gap, just like in the undirected case, provided every
vertex has a self-loop.> The proof is omitted.

LEMMA 5.2. Let G be a connected, D-reqular digraph on
N wvertices in which every vertex has at least aD self-loops.
Then M\(G) < 1 — Q(a/DN?).

5.2 Zig-zag Product

In this section, we generalize the Zig-Zag Theorem of [22]
to regular digraphs.

THEOREM 5.3. If A(G1) < 1 — 71 and A(G2) < 1 — 72,
then M(G1 @G2) <1 — 1 -73.

Our algorithm, like [20], we will only use the following
consequence of the second bound above: if G2 is a good ex-
pander in the sense that A(G2) is bounded by a constant less
than 1 and A(G1) < 1 — 1, then A(G1 @G2) <1 —Q(m1).
In the preliminary version of this paper [21], we presented a
proof of this 1 — (1) that was conceptually simpler than
the previous proofs of this bound in the undirected case, for
either the zig-zag or replacement products.® In the full ver-
sion, we give an even simpler proof, based on an approach
of Rozenman and Vadhan [23], who used it to analyze a
new ‘derandomized squaring’ operation (that gives an alter-
native to Reingold’s algorithm as well our generalization to
Eulerian digraphs). The proof is omitted.

5.3 The Path-Finding Algorithm

We have seen that powering and the zig-zag graph prod-
uct has essentially the same affect on regular digraphs as on
undirected graphs. Therefore, both the decision and search
versions of the st-connectivity algorithm of [20] can be ex-
tended (without any substantial change) to regular digraphs.
This implies Theorem 5.1, which states that REGULAR Di-
GRAPH FIND PATH is in searchL. The algorithm here is
essentially the same as in [20], it is omitted from this ver-
sion.

6. OBLIVIOUS ALGORITHMS FOR

CONSISTENTLY LABELLED GRAPHS

The algorithm given for REGULAR DIGRAPH FIND PATH in
the previous section is in the standard computational model,
where the input graph is given explicitly to the logspace al-
gorithm. However, for s-t connectivity problems, it is also
interesting to seek “oblivious” algorithms that do not ex-
plicitly get the input graph, but are only able to walk on
the graph by specifying a sequence of outgoing edge labels.

5In the preliminary version of this paper [21], we erroneously
used the standard notion of aperiodicity (i.e. gecd of all cycle
lengths is 1) instead of requiring self-loops. However, the
lemma is false in this case; see [23].

The basic analysis of the undirected zig-zag product in [22]

only gives a bound of 1 — Q(yf). Only a much more com-
plicated and less intuitive analysis, that uses the undirect-
edness of G in additional ways, gives the 1 — Q(~1) bound.
The Martin—Randall [14] decomposition theorem for Markov
chains also implies a 1 — Q(v1) bound for the undirected re-
placement products, but its full proof (relying on [5]) is also
fairly involved.

464

That is, the algorithm is given the parameters of the input
graph G (namely, number of vertices N and degree D), and
then tries to produce a walk w € [D]* such that the walk in
G obtained starting at s and following the edge labels in w
visits t at some point.

Notice that the behavior of such an oblivious algorithm is
sensitive to the labelling of outgoing edges in GG, but incom-
ing edge labels are irrelevant. Thus, now we think of our
D-regular digraph G as being specified with a one-way la-
belling; that is, the outgoing edges from each vertex are num-
bered from 1 to D. (In contrast, the algorithm presented in
the previous section can be thought of as being given an un-
labelled graph, then it constructs its own two-way labelling
to facilitate the applications of the zig-zag product.)

Here we present two types of oblivious algorithms for reg-
ular digraphs, one being a deterministic, logspace construc-
tion of “universal traversal sequences” and the other being a
logspace-computable “pseudorandom generator” for random
walks on the graph.

These algorithms will only work on regular digraphs that
are consistently labelled, which means that all the edges
coming into any vertex of the graph have distinct labels,

i.e. no vertex v can be both u’s ith—neighbor and w’s ith—
neighbor (for any distinct vertices u and w). In other words,
if we use the same labels to number the edges incoming at
each vertex (if (u,v) is the i’th edge leaving u, we consider
it to be the ¢’th edge entering v), we obtain a legal two-
way labelling of the graph (in that each label in [D] will get
used exactly once as an incoming label each vertex). Every
regular digraph has a consistent labelling; this is equivalent
to the fact that every D-regular bipartite graph is the union
of D perfect matchings. However, finding a consistent
labelling may not be feasible in log-space, and in any case
an oblivious algorithm does not have the freedom to relabel
the graph.

We remark that oblivious algorithms like the ones we de-
scribe often have applications that non-oblivious algorithms
may not. For example, pseudorandom generators fooling
logspace algorithms, such as [17, 19], have a variety of ap-
plications that do not seem to follow arbitrary deterministic
simulations of RL, e.g. [9, 28, 8, 7]. Even our pseudo-
random generator in Section 6.2 below has already found an
application in the construction of almost k-wise independent
permutations [10]. All proofs are omitted from this section.

6.1 Universal Traversal Sequences

DEFINITION 6.1 ([2]). Let D and N be two integers and
let G be a subset of the labelled D-regular connected digraphs
on N wvertices. We say that a sequence of values in [D] is
a universal traversal sequence for G, if for every graph
G € G, and every vertex s € [N], the walk that starts in s
and follows the edges of G according to the sequence of labels
visits all the vertices of the graph.

We will show how the REGULAR DIGRAPH FIND PATH
algorithm described in the previous section also implies a
log-space constructible universal traversal sequence for con-
sistently labelled regular digraphs.

THEOREM 6.2. There exists a log-space algorithm that on
input 1V, 1P produces a universal traversal sequence for all
connected, consistently labelled D-regular digraphs G on N -
vertices.

6.2 A Pseudorandom Generator

In this section we show that the path finding algorithm
also implies a generator with logarithmic seed length that
produces in log-space a “pseudorandom walk” for consis-
tently labelled regular digraphs. This means that from any
start vertex, following the pseudorandom walk leads to an
almost uniformly distributed vertex. In other words, just
as the random walk, the pseudorandom walk converges to
the stationary distribution. This seems to be a result of in-
dependent interest. In particular, we show in Section 7
that a similar pseudorandom generator (or even weaker),
that works for regular digraphs with arbitrary labels, would
prove that RL = L.

The intuition for the generator is as follows. In the path-
finding algorithm, an expander graph Gexp is constructed.
In this graph a short random walk converges to the uniform
distribution. As in the proof for the universal traversal se-
quences, the sequence of labels of the (random) walk on
Gexp can be translated to a (pseudorandom) sequence of
labels for a walk on G. Furthermore, this sequence of la-
bels is independent of G (and can be computed in log-space
without access to G). Note that all nodes of the original
graph G are expanded to “clouds” of equal size. Therefore,
the pseudorandom walk converges to the uniform distribu-
tion on the vertices of G (which is the projection on G of the
uniform distribution on the vertices of Gexp). Formalizing
the above arguments will indeed imply a generator that pro-
duces a pseudorandom walk of length polynomial in the size
of the graph. However, a truly random walk will converge
faster if G has a larger eigenvalue gap. Theorem 6.3 takes
this into account and implies, in this case, a pseudorandom
walk that is shorter as well.

THEOREM 6.3. For every N,D € N, §,v > 0, there is a
generator PRG = PRGN, psy @ {0,1}" — [D]* with seed
length r = O(log(ND/dv)), and walk length £ = poly(1/v) -
log(ND/§), computable in space O(log(ND/dv)) such that
for every consistently labelled (N, D,1 —) regular digraph
G and every vertex s in G, talking walk PRG(U,) from s
ends at a vertex that is distributed §-close to uniform (in
variation distance).

7. REDUCING ALL OF RL TO THE

REGULAR CASE

In this section, we prove that if there exists a pseudoran-
dom generators for walks on regular digraphs whose edges
are arbitrarily labelled, then RL = Lh and also searchRL =
searchL. Theorem 6.3 implies a generator for walks on
regular digraphs with the additional restriction that the la-
belling of the edges is consistent. Lifting this restriction
would imply that RL = L. In fact, such a generator would
also imply BPL = L. However, we concentrate in this pre-
liminary version on the case of RL.

THEOREM 7.1. There is a universal constant o > 0 such
that the following holds for every constant a € N. Sup-
pose that for every N, D € N, 6,y > 0, there is a generator
PRC = PRCn.psy : {0,1}" — [D]* with seed length r =
alog(ND/év), and walk length £ = (1/(v9))* - (ND)®, com-
putable in space alog(ND/§v) such that for every (N, D,1—
v) regular digraph G = (V, E) and every vertexr s € V and
every subset T C 'V of density at least §, the walk from s fol-

465

lowing the labels PRG(U,) wvisits T with probability at least
(67)*/(ND)*. Then RL = L and searchRL = searchL.

Note that the above theorem requires that the length ¢ of
the pseudorandom walks have limited dependence on N and
D, being bounded by (ND)“ rather than being polynomial
or even linear in ND. Still, this is a much milder require-
ment than what is achieved by our generator for consistently
labelled graphs (Thm. 6.3), which achieves logarithmic de-
pendence. We also note that a pseudorandom generator
for logspace algorithms with logarithmic seed length would
imply the above theorem, because a truly random walk of
length O(1/7) - O(log(ND/d)) would end at T with proba-
bility at least §/2, and such a walk can be implemented in
space O(log(ND/év)).

Roughly speaking, we will prove Theorem 7.1 by showing
that for every poly-mixing graph G, there exists a regular
digraph Greg such that the correctness of the generator on
Greg implies the correctness of (a modification of) the gen-
erator on GG. Thus, if we have a generator that works well
on regular digraphs, we obtain a generator that works well
on instances of PoLy-MIxXING S-T CONNECTIVITY, which
we have shown to be RL-complete (Theorem 3.1). The con-
struction of Greg from G is given by the following lemma.
We stress that this construction is only done in the analysis,
and thus need not be computable in log-space.

LEMMA 7.2. There is a universal constant ¢ such that the
following holds. Let G = (V, E) be any d-outregular graph on
n vertices with vertices s,t € V and stationary distribution
m such that w(s) > 1/k, w(t) > 1/k, and A= (G) <1 —1/k.
Then for every € > 0, if we set Nieg = (ndk/€)®, Dreg = C -
Nreg/e, v = 1/(ndk)®, there is a (Nyeg, d: Dreg, 1 —7)-regular
digraph Greg such that the following holds. The vegtex set
of Greg can be decomposed into “clouds” Vieg = evc
with |Cs|, |Ct| > |Vieg|/2k. There is a bad set of edge labels
B C [d] X [Dreg| of density € such that for every u € V,
verter & € Cy and edge label (i,7) € ([d] X [Dreg]) \ B, the
(%, 4) ’th neighbor of 4 in Greg 1s in cloud C, where v is the
i’th neighbor of u in Greg.

The proof of this lemma can be found in the full ver-
sion [21]; here we show how it implies Theorem 7.1.

Proof of Theorem 7.1: Let (G, s,t,1%) be any instance
of POLY-MIXING FIND PATH, where G is d-outregular, has n
vertices, and has (promised) stationary distribution = with
w(s),m(t) > 1/k and A\x(G) < 1—1/k. Set 6 = 1/2k, and
e = 1/(ndk)® for a large constant b to be specified later, and
let Nyeg = (ndk/€)®, Dreg = - Nreg/e, v = 1/(ndk)® be the
parameters of the regular digraph guaranteed by Lemma 7.2.
Let PRG = PRGN,y .d-Dreg.o.v * 10,1} — ([d] X [Dicg])” be
the generator hypothesized in Theorem 7.1, with seed length
r = alog(Nreg Dreg /07) = O(abclog(ndk)). and walk length
€= (1/70)* - (Nreg - dDreg)® = (”dk)o(ac)) ("dk/f)o(ac) =
(ndk)©(@®) /929 Without loss of generality we may as-
sume that each component in PRG(U,) is uniformly dis-
tributed in [d] X [Dreg]. (Shift each component of the output
by adding a random element s <« [d] X [Dyeg]. This only
increases the seed length by a constant factor and preserves
the pseudorandomness of the output because it is equivalent
to shifting all labels in the regular digraph by —s.)

The algorithm for PoLy-MIXING FIND PATH works as fol-
lows. We enumerate the 2" = (nkd)?®*® seeds of PRG,

for each obtaining a walk w € ([d] X [Dreg])’ of length
L= (nkd)o<abc>. Taking the first components of each step
in 10, we obtain an induced walk w € [d]¢, which we perform
on G, starting at s. If any of these walks end at ¢, we output
that walk.

To analyze this algorithm, we consider a walk @ «— PRG(U,)

taken in Greg, starting at any vertex of Cs. Since A(Greg) <
1 — v, C; has density at least 1/2k, and 6 = 1/2k, such a
walk will end in C¢ with probability at least

(U0 - (Vo - D) = £ (0

We now argue that the induced walk w in G will end at ¢
with nearly the same probability. By the properties of Greg,
this will be the case provided the walk w does not use any
edge label from B. Since B has density at most € and each
edge label in w is uniformly distributed, the probability any
label from B is used is at most

e = (ndk)C@) . g =Oe),

Thus the walk w in G ends at ¢t with probability at least
EO(ac)

(ndk)o(ac) - (ndk)O(ac> .61_O(QC) >0,

provided a < ¢/k and € < (1/ndk)® for a b > kac, where &
is a sufficiently large universal constant. In particular, there
exists a seed of PRG that will produce a walk from s to
t.

Acknowledgments

We are grateful to Irit Dinur for her invaluable collaboration
during the early stages of this work. We also thank David
Zuckerman, Eyal Rozenman, David Karger, and Nati Linial
for helpful discussions and suggestions.

8. REFERENCES

[1] M. Ajtai, J. Komlds, and E. Szemerédi. Deterministic
simulation in LOGSPACE. In Proc. 19th STOC, pp.
132-140, 1987.
R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovész,
and C. Rackoff. Random walks, universal traversal
sequences, and the complexity of maze problems. In
Proc. 20th FOCS, pp. 218-223, 1979.
R. Armoni, A. Ta-Shma, A. Wigderson, and S. Zhou.
An o(log(n)*/?) space algorithm for (s,t) connectivity
in undirected graphs. J. ACM, 47(2):294-311, 2000.
L. Babai, N. Nisan, and M. Szegedy. Multiparty
protocols, pseudorandom generators for logspace, and
time-space trade-offs. J. Computer and System Sci.,
pp- 204-232, 1989.
S. Caracciolo, A. Pelissetto, and A. Sokal. Two
remarks on simulated tempering. Unpublished
manuscript (see [13]), 1992.
J. A. Fill. Eigenvalue bounds on convergence to
stationarity for nonreversible markov chains with an
application to the exclusion process. Ann. Applied
Probability, 1:62-87, 1991.
1. Haitner, D. Harnik, and O. Reingold. On the power
of the randomized iterate. ECCC TR05-135, 2005.
A. Healy, S. Vadhan, and E. Viola. Using
nondeterminism to amplify hardness. In 36th STOC,
pp- 192-201, 2004.

2]

466

[9] P. Indyk. Stable distributions, pseudorandom
generators, embeddings and data stream computation.
In 41st FOCS, pp. 189-197, 2000.

E. Kaplan, M. Naor, and O. Reingold. Derandomized
constructions of k-wise (almost) independent
permutations. In Proc. 8th RANDOM, Springer LNCS
3624, pp. 354 — 365, 2005.

H. R. Lewis and C. H. Papadimitriou. Symmetric
space-bounded computation. Theor. Comput. Sci.,
19:161-187, 1982.

L. Lovasz. Combinatorial problems and exercises.
North-Holland, Amsterdam, 2nd ed., 1993.

N. Madras and D. Randall. Markov chain
decomposition for convergence rate analysis. Ann. of
Applied Probability, 12:581-606, 2002.

R. A. Martin and D. Randall. Sampling adsorbing
staircase walks using a new markov chain
decomposition method. In Proc. 41st FOCS, pp.
492-502, 2000.

M. Mihail. Conductance and convergence of markov
chains: a combinatorial treatment of expanders. In
Proc. 37th FOCS, pp. 526-531, 1989.

Nisan. RL C SC. In Proc. 24th STOC, pp. 619-623,
1992.

N. Nisan. Pseudorandom generators for space-bounded
computation. Combinatorica, 12(4):449-461, 1992.

N. Nisan, E. Szemeredi, and A. Wigderson.
Undirected connectivity in o(log'®n) space. In Proc.
30th FOCS, pp. 24-29, 1989.

N. Nisan and D. Zuckerman. Randomness is linear in
space. J. Computer and System Sci., 52(1):43-52,
1996.

O. Reingold. Undirected st-connectivity in log-space.
In Proc. of the 87th STOC, pages 376-385, 2005.

O. Reingold, L. Trevisan, and S. Vadhan.
Pseudorandom walks in biregular graphs and the RL
vs. L problem. ECCC TR05-022, 2005.

O. Reingold, S. Vadhan, and A. Wigderson. Entropy
waves, the zig-zag graph product, and new
constant-degree expanders. Ann. Mathematics, 155(1),
2001.

E. Rozenman and S. Vadhan. Derandomized squaring
of graphs. In Proc. 8th RANDOM, Springer LNCS
3624, pp. 436-447, 2005. See also full version, ECCC
TR05-92.

M. Saks. Randomization and derandomization in
space-bounded computation. In IEEFE 11th Annual
Conference on Structure in Complexity Theory, 1996.
M. Saks and S. Zhou. bp, space(S) C dspace(S°/?). J.
Computer and System Sci., 58(2):376-403, 1999.

J. Savitch. Relationship between nondeterministic and
deterministic tape complexities. J. Computer and
System Sci., 4(2):177-192, 1970.

A. Sinclair and M. Jerrum. Approximate counting,
uniform generation and rapidly mixing Markov chains.
Inform. and Comput., 82(1):93-133, 1989.

D. Sivakumar. Algorithmic derandomization via
complexity theory. In Proc. 34th STOC, pp. 619-626,
2002.

A. Wigderson. The complexity of graph connectivity.
In Proc. 17th FOCS, pp. 112-132, 1992.

(10]

(19]

20]

(21]

(28]

29]

