25.1

Computational Entropy

Salil Vadhan

Introduction

The foundations of cryptography laid by Shafi Goldwasser and Silvio Micali in
the 1980s provided remarkably strong security definitions (e.g., semantic secu-
rity Goldwasser and Micali[1984]) and amazingly rich cryptographic functionalities
(e.g., zero-knowledge proofs Goldwasser et al. [1988]) that could be achieved from
precisely stated complexity assumptions (e.g., the quadratic residuosity assump-
tion [Goldwasser and Micali 1984]). This naturally led to an important project of
understanding what are the minimal complexity assumptions needed to each of
the many cryptographic primitives that were emerging.

The pinnacle of success in this effort was to show that a given cryptographic
primitive could be based on the existence of mere one-way functions, as defined in
the work of Diffie and Hellman [1976] that initiated complexity-based cryptography.
The notion of a one-way function is both very general, with many concrete candi-
dates for instantiation, and very simple to state, allowing the candidates to crypt-
analyzed more easily. Moreover, almost all primitives in complexity-based cryptog-
raphy imply the existence of one-way functions [Impagliazzo and Luby 1989], so
one-way functions are in some sense the minimal assumption we could hope for.

Remarkably, it was discovered that a wide array of cryptographic primitives
could be constructed assuming only the existence one-way functions. These in-
cluded such powerful objects as chosen-ciphertext-secure symmetric encryption,
pseudorandom functions, digital signatures, and zero-knowledge proofs and statis-
tical zero-knowledge arguments for all of NP [Goldreich et al. 1986, Goldreich et al.
1991, Hastad et al. 1999, Naor and Yung 1989, Rompel 1990, Naor 1991, Haitner
et al. 2009a]. All of these constructions begin by converting the “raw hardness” of
a one-way function to one of the following more structured cryptographic prim-
itives: a pseudorandom generator [Blum and Micali 1984, Yao 1982], a universal

694 Chapter 25 Computational Entropy

one-way hash function [Naor and Yung 1989], or a statistically hiding commitment
scheme [Brassard et al. 1988].

The goal of this survey is to convey how this conversion from one-wayness to
structured hardness is possible, focusing on the cases of constructing pseudoran-
dom generators and statistically hiding commitments. The common answer that
has emerged through a series of works is as follows:

1. The security properties of these (and other) cryptographic primitives can be
understood in terms of various computational analogues of entropy, and in
particular how these computational measures of entropy can be very differ-
ent from real information-theoretic entropy.

2. It can be shown that every one-way function directly exhibits some gaps
between real entropy and the various computational entropies.

3. Thus we can construct the desired cryptographic primitives by amplifying
and manipulating the entropy gaps in a one-way function, through forms of
repetition and hashing.

This viewpoint (of identifying and manipulating computational entropy) was al-
ready present in the original constructions of pseudorandom generators, universal
one-way hash functions, and statistically hiding commitments from arbitrary one-
way functions [Hastad et al. 1999, Rompel 1990, Haitner et al. 2009a], but those
constructions were quite complicated and inefficient, making it hard to distinguish
the essential ideas from technicalities. Over the past decade, a clearer picture has
emerged through the introduction of new, refined notions of computational en-
tropy [Haitner et al. 2009b, Haitner et al. 2013, Haitner et al. 2010, Vadhan and
Zheng 2012, Agrawal et al. 2019]. The resulting constructions of pseudorandom
generators and statistically hiding commitments from one-way functions are much
simpler and more efficient than the original ones, and are based entirely on natural
manipulations of computational entropy. The two constructions are “dual” to each
other, whereby the construction of pseudorandom generators relies on a form of
computational entropy (“pseudoentropy”) being larger than the real entropy, while
the construction of statistically hiding commitments relies on a form of computa-
tional entropy (“accessible entropy”) being smaller than the real entropy. Beyond
that difference, the two constructions share a common structure, using a very sim-
ilar sequence of manipulations of real and computational entropy.

In this survey, we will describe the main ideas behind these recent constructions
of pseudorandom generators and statistically hiding commitments from one-way
functions. We will warm up by “deconstructing” the classic construction of pseudo-

25.1 Introduction 695

random generators from one-way permutations [Blum and Micali 1984, Yao 1982,
Goldreich and Levin 1989]using the modern language of computational entropy, as
it will provide intuition and context for what follows. We will then present the state-
of-art construction of pseudorandom generators from general one-way functions,
using the computational entropy notions of “conditional KL-hardness” and “next-
block pseudoentropy” [Haitner et al. 2013, Vadhan and Zheng 2012]. Finally, we
will introduce the dual notion of “next-block accessible entropy” and explain how
itis used in constructing statistically hiding commitments from one-way functions
in a way that parallels the aforementioned construction of pseudorandom genera-
tors [Haitner et al. 2009b].

Beyond the specific constructions covered, we hope that the surveyed notions
of computational entropy and the tools for reasoning about them will prove useful
elsewhere, for example in some of the other application areas for computational
entropy mentioned below.

Other Reading. For general background on the foundations of cryptography and
the theory of pseudorandomness, we recommend Goldreich [2019], Goldreich
[2008, Ch. 8], and Vadhan [2012]. A more detailed and technical tutorial on the
constructions of pseudorandom generators and statistically hiding commitments
from one-way functions using computational entropy is given by Haitner and Vad-
han [2017]. While we focus on its role in constructions of cryptographic primitives
from one-way functions, computational analogues of entropy have been studied
from a number of other angles. Yao [1982] introduced a notion of computational
entropy for the purposes of studying efficient data compression and error correc-
tion. Barak et al. [2003] carry out a systematic study of several different notions of
computational entropy (some of which appear here). Forms of computational en-
tropy have also found applications in leakage-resilient cryptography [Dziembowski
and Pietrzak 2008], deterministic encryption [Fuller et al. 2015], memory delega-
tion [Chung et al. 2011], and differential privacy [Mironov et al. 2009], and these
areas of research have developed the theory of computational entropy in other
ways. Recently, Haitner et al. [2018] have introduced a computational analogue of
independence for outputs from a 2-party protocol that they use to characterize the
2-party cryptographic primitives whose existence is equivalent to the existence of
key agreement protocols.

Acknowledgments. I vividly recall the thrill of learning about the foundations of
cryptography from Shafi and Silvio with my fellow graduate students at MIT in
the late 1990s. Time and time again, it felt like we were seeing how the seemingly

696 Chapter 25 Computational Entropy

25.2

Definition 25.1

impossible could be achieved. We saw how philosophical and psychological con-
cepts (e.g., knowledge, persuasion, impersonation) could be given convincing
mathematical definitions, and cryptographic schemes for controlling these con-
cepts could be constructed based on simple complexity assumptions. Decades
later, the desire to better understand how this all could be possible has remained
with me, and is a major motivator for the line of research described in this survey.
At a more concrete level, much of this work was a direct outgrowth of the line of
research that Shafi started me on as her Ph.D. student—namely, the complexity
of statistical zero-knowledge proofs [Vadhan 1999]. Attempting to understand the
complexity of the prover in statistical zero-knowledge proofs led to a characteriza-
tion of statistical zero knowledge in terms of “instance-dependent” commitment
schemes [Bellare et al. 1990, Itoh et al. 1997, Micciancio and Vadhan 2003, Nguyen
and Vadhan 2006, Ong and Vadhan 2007]. The ideas underlying that characteriza-
tion inspired the construction of statistically hiding commitments from one-way
functions [Haitner et al. 2009a], including the use of computational entropies in
that work and the subsequent ones discussed in this survey. Thank you, Shafi and
Silvio, for creating and leading us to such a beautiful landscape to explore, and for
your mentorship and friendship throughout our lives!

Iam grateful to Oded Goldreich for his unwavering support and patience for my
writing of this survey, and lots of helpful feedback. Thanks also to Hugo Krawczyk,
whose encouragement motivated me to write this survey based on my lectures at
the 2016 IACR-COST School on Randomness in Cryptography. The writing of this
survey was supported by NSF grant CCF-1763299.

Basic Information-Theoretic Notions
We review a number of information-theoretic notions, before introducing their
computational analogues, which will be the main focus of this survey.

Basic Definitions. We begin with the most intuitive measure of distance between
probability distributions:

(Statistical difference) Let X and Y be discrete random variables taking values in
a universe Y. Then the statistical difference (a.k.a. total variation distance) between
XandVYis

d(X,Y):rpaz{(|Pr[X € T]— Pr[Y € T]| € [0, 1].
C

We say X and Y are e-close if d(X,Y) <e.

We will also discuss a number of different measures of entropy:

Definition 25.2

Definition 25.3

Lemma 25.1

25.2 Basic Information-Theoretic Notions 697

(Entropy measures) Let X be a discrete random variable. Then:

e The (Shannon) entropy of X is

1
00 =2, [0 (=) |

e The min-entropy of X is

. 1 _ 1
0 =i 18 ()| s ()

e The max-entropy of X is
Hy(X) = log | Supp(X).

Above, and throughout this survey, all logarithms are base 2 (except where
explicitly noted otherwise) and Supp(X) = {x : Pr[X = x] > 0} denotes the support
of the random variable X.

H(X) measures the average number of bits of randomness in X, while H_,(X)
and H,(X) are worst-case lower and upper bounds on H(X). Indeed, we have

H(X) = H(X) = Ho(X),
with equality if and only if X is uniform on Supp(X); that is, X is a flat distribution.

Extraction and Compression. The usefulness of min-entropy in theoretical com-
puter science was advocated by Chor and Goldreich [1988]. Specifically, having a
random variable with high min-entropy is preferable to having a random variable
with high Shannon entropy because high min-entropy can be converted into nearly
uniform randomness via extractors:

(Randomness extractors Nisan and Zuckerman [1996]) A function Ext : {0, 1}" x
{0, 1}¢ — {0, 1) is a strong (k, e)-extractor if for every random variable X dis-
tributed on {0, 1}" with H,,(X) > k, the random variable (U, Ext(X, U,)) is e-close
to (Uy, U,,) where U, and U,, are uniformly distributed on {0, 1} and {0, 1}™, re-
spectively, and X, U, U,, are mutually independent.

Above, and throughout, when the same random variable appears twice in an expres-
sion (e.g., the U, in (U, Ext(X, U,))), they take the same value with probability 1.

(Leftover hash lemma Bennett et al. [1988], Hastad et al. [1999]) For every n,
k <n,and e > 27%/2 there is a polynomial-time computable strong (k, &)-extractor

698 Chapter 25 Computational Entropy

Lemma 25.2

Ext : {0, 1}" x {0, 1}¢ — {0, 1}"" that has output lengthm = |k — 21og(1/¢)] and seed
length d = n. Specifically, we can take Ext(x, h) = h(x) where h comes from a 2-
universal family of hash functions mapping {0, 1}" to {0, 1}".

Note that the extractors given by the Leftover Hash Lemma extract almost all of
the min-entropy out of the source, except for a 2 log(1/¢) entropy loss, which is nec-
essary for any extractor [Radhakrishnan and Ta-Shma 2000]. The seed length d = n,
however, is suboptimal, and there is a long line of research on randomness extrac-
tors that gives explicit constructions of extractors with seed length depending only
logarithmically on n. (See Vadhan [2012, Chapter 6] and the references therein.)

Similarly, having a random variable with low max-entropy is often preferable to
having one with low Shannon entropy because low max-entropy allows for “com-
pression”.

For every n, k <n, and ¢ > 0, there is a polynomial-time computable encoding
function Enc: {0, 1}" x {0, 1} — {0, 1} with output length m = k + log(1/¢) and
seed length d = n such that for every random variable X distributed on {0, 1}" with
Hy(X) <k, there is a (not necessarily efficient) decoding function Dec: {0, 1} x
{0, 1}¢ — {0, 1}" such that:

Pr [Dec(Enc(X, Uy), Uy = X| > 1—e.

Again we can take Enc(x, 1) = h(x) where & comes from a 2-universal family of hash
functions mapping {0, 1}" to {0, 1}"".

That is, if the max-entropy is low, then we do not need to reveal much informa-
tion (just the m bits output by Enc to uniquely determine) to determines x with high
probability.

Min-entropy and max-entropy are rather brittle, in that making a small change
to the probability distribution can dramatically change the amount of measured
entropy. For this reason, it is common to work with “smoothed” forms of these
entropies [Renner and Wolf 2005]. Specifically, we consider a random variable
X to have smoothed min-entropy at least k if X is e-close to a random variable
X’ with Hy (X') > k, for a negligible ¢. And we consider a random variable X to
have smoothed max-entropy at most k if X is e-close to a random variable X’ with
Hy(X’) < k. Notice that smoothed min-entropy and smoothed max-entropy sup-
port randomness extraction and compression, as above, with the smoothing error
adding to the error parameter of the randomness extraction or decoding.

Conditional Entropies. We will also make use of conditional forms of entropy. For
Shannon entropy, there is a standard definition:

Definition 25.4

Definition 25.5

Lemma 25.3

Lemma 25.4

25.2 Basic Information-Theoretic Notions 699

(Conditional entropy) For jointly distributed discrete random variables (X, Y),
the conditional Shannon entropy of X given Y is

H(X|Y) = E Xy [H (Xly=,)],
where X | is the notation we use for conditioning the randomvariable X on event E.

There are a number of natural ways to define conditional min-entropy and
conditional max-entropy, but for the case of min-entropy the following has proved
to be particularly convenient in cryptographic applications.

(Average min-entropy Dodis et al. [2008]) For jointly distributed discrete random
variables (X, Y), the average min-entropy of X given Y is

1

[ZHOO (X|Y=y)i|

Despite the somewhat complicated definition, average min-entropy has a very

H,(X|Y) =log

R
Ey<—Y

natural operational interpretation as measuring the maximum probability of guess-
ing X from Y:

(Guessing min-entropy) For every pair of jointly distributed discrete random vari-
ables (X, Y), the average min-entropy H,, (X |Y) equals the guessing min-entropy of
X given Y, defined as

1
X|Y) =1
Hauess(X|Y) = log (maxA Pr[A(Y)=XJ>’

where the maximum is over all functions A (regardless of computational com-
plexity).

The proof of this lemma follows from observing that g e (¥lr=)

x|Y = y],which is exactly the success probability of an optimal strategy for guessing
X giventhat Y = y.

In addition to having this nice operational interpretation, average min-entropy
also supports randomness extraction. Indeed, it turns out that every randomness

=max, Pr[X =

extractor for ordinary min-entropy is also one for average min-entropy with only a
small loss in the error parameter:

(vadhan [2012, Problem 6.8]) Let Ext:{0, 1} x {0, 1}¢ — {0, 1} be a (k, ¢)-
extractor for k <n — 1, and let (X, Y) be any pair of jointly distributed discrete

700 Chapter 25 Computational Entropy

Lemma 25.5

random variables with X taking values in {0, 1}" such that H, (X|Y) > k. Then
Uy, Ext(X,Uy,), Y)is 3e-close to (U, U,,, Y),where Uy, U,,,and (X, Y) are mutually
independent.

The above lemma is proven by showing that on one hand, a (k, ¢)-extractor also
extracts nearly uniform bits when applied to sources of min-entropy &’ slightly
smaller than k, and on the other hand, if X has average min-entropy at least k
given Y, then Xy_, is very unlikely (over the choice of y £ Y) to have min-entropy
much smaller than %, In fact, the extractor of the leftover hash lemma can directly
be shown to be an extractor for average min-entropy with no loss in the error
parameter [Dodis et al. 2008].

Flattening. Although min-entropy and max-entropy are more directly useful in
cryptographic applications, many of the results we will discuss will begin by es-
tablishing statements involving Shannon entropy. These can converted into state-
ments about (smoothed) min-entropy and max-entropy by taking many indepen-
dent samples:

(Flattening) Let X be a random variable distributed on {0, 1}, and let X’ consist
of t independent samples of X. Then for every ¢ € (0, 1/2), the random variable X’
is e-close to a random variable X’ such that

H, (X)) = -H(X) — O (Wﬂ) and
Hy(X) <1 -H(X) + 0 (/- Tog(1/e))

The flattening lemma can be viewed as a quantitative form of the standard
“asymptotic equipartition property” in information theory. Various forms of it ap-
pear in the literature, including in Hastad et al. [1999]; the tight version above is
from Holenstein and Renner [2011].

Note that the Shannon entropy of X’ is exactly 7 - H(X), which grows linearly
with . The above lemma says that, after some smoothing, the min-entropy and max-
entropy of X’ are close to the Shannon entropy of X, with a difference that grows
only like /7. In particular, for ¢ =n~ 198" and r = n? - log® n, the smoothed min-
and max-entropies are guaranteed to be 7 - (H(X) &£ 0(1)). This is referred to as a
“flattening” lemma because the only random variables where the Shannon entropy
equals the min-entropy or max-entropy are flat random variables (ones that are
uniform on their support), whereas X’ is close to a distribution in which the min-
and max-entropies are relatively close (i.e., are o(z) away). Flattening also works for

25.3

Definition 25.6

25.3 Basic Computational Notions 701

jointly distributed random variables (X, Y); see Holenstein and Renner [2011] for
a precise statement.

Basic Computational Notions

We review the standard notions of one-way functions, computational indistin-
guishability, and pseudorandom generators, highlighting notational choices and
conventions we will use throughout this survey.

One-Way Functions. A one-way function is a function that is easy to compute in the
forward direction, but very hard to invert, even on average.

(One-way functions Diffie and Hellman [1976]) A function f : {0, 1} — {0, 1}" is
a one-way function (OWF) if:

1. f is computable in time poly(n).

2. For some s(n) =n®® and e(n) = 1/n*Y, and all nonuniform algorithms A
running in time s(n), we have

Pr[A(f(X) € fTHf(XN] < e,
where the probability is taken over X &£ {0, 1} and the coin tosses of A.

Note that the asymptotics are somewhat hidden in the above definition. As usual,
the definition actually refers to an infinite family of functions {f, : {0, 1} —
{0, 1}"},,cn, one for each value of the security parameter n. Condition 1 means that
there should be a single uniform algorithm that can evaluate f = f, in time poly(n)
for all n. On the other hand, we require security to hold even against nonuniform
algorithms. We adopt this nonuniform model of security because it simplifies a
number of the definitions and proofs, but all of the results we will discuss have
uniform-security analogues. The time bound s(n) on the complexity of the nonuni-
form algorithm A should be interpreted as a bound on both the running time and
program size; this is equivalent (up to a polynomial loss) to taking s(n) to be a
bound on the size of A as a Boolean circuit.

The security bound n®® refers to any functions that is asymptotically larger
than every polynomial function. It is more common in the literature to state secu-
rity definitions for cryptographic primitives in the form “for every constant ¢ and
every nonuniform algorithm A running in time n¢, the success probability of A inin-
verting f is at most 1/n¢ for all sufficiently large n.” Definition 25.6 can be shown to
be equivalent to such formulations [Bellare 2002]. Note that the functions s(n) and
&(n) in Definition 25.6 are not necessarily efficiently computable. However, we will

702 Chapter 25

Definition 25.7

Definition 25.8

Computational Entropy

ignore that subtlety in this survey, and pretend that they are efficiently computable
when it makes the exposition simpler.

Note that we have taken the security parameter n to equal the input and output
lengths of the one-way function. When we define other primitives (such as pseu-
dorandom generators below), we will allow their input and output lengths to be
polynomially related to the security parameter, rather than equal to the security
parameter. This will allow us to have a more fine-grained discussion of the complex-
ity of constructing these primitives from one-way functions, where we will keep the
security parameter n equal to the input length of the underlying one-way function.

We stress that Definition 25.6 does not require the function f to be one-to-
one, and thus the adversary A succeeds if it finds any preimage of its input f(X).
Overcoming the challenges introduced by general, many-to-one one-way functions
f is a major theme in this survey.

Computational Indistinguishability. The fundamental concept of computational in-
distinguishability was introduced in the seminal paper of Goldwasser and Micali
[1984]. It is the computational analogue of statistical difference (Definition 25.1),
obtained by restricting to statistical tests 7 that are efficiently computable:

(Computational indistinguishability Goldwasser and Micali [1984]) Let X and Y
be random variables distributed over {0, 1}"* for m = poly(n), where n is a security
parameter. We say that X and Y are computationally indistinguishable, written
X =, if for some s(n) = n®® and e(n) = 1/n~“®, and all nonuniform algorithms
T running in time s(n), we have

[Pr[T(X) =1] - Pr[T(Y) =1]| < e(n), (25.1)

where the probability is taken over X, Y, and the coin tosses of 7. If Y is identi-
cally distributed to U,,, the uniform distribution on {0, 1}, then we say that X is
pseudorandom.

If Inequality (25.1) holds for all (computationally unbounded) functions 7 (i.e.,
X and Y are ¢(n)-close in statistical difference for some &(n) = n=“®), then we say
that X and Y are statistically indistinguishable and write X =Y.

Computational indistinguishability is the basis of many concepts in modern
cryptography, including the fundamental notion of a pseudorandom generator:

(Pseudorandom generators Blum and Micali [1984], Yao [1982]) A function G :
{0, 1}¢ — {0, 1)"*, where £, m = poly(n) for a security parameter n, is a pseudorandom
generator (PRG) if:

Theorem 25.1

25.3 Basic Computational Notions 703

1. G is computable in deterministic time poly(n).
2. G(Uy) = U,
3. m> 4.

We call ¢ the seed length of G and m the output length.

Note that the above definition only requires that the output length is larger than
the seed length by at least one bit (m > ¢). Many applications of pseudorandom
generators require generating many pseudorandom bits from a short seed (m >> £).
Fortunately, there is a generic length-expansion technique that converts pseudo-
random generators that stretch by one bit into ones that stretch by any desired
length (without increasing the seed length) [Goldreich and Micali 1984]. Thus in
this survey we will not specify the stretch of the pseudorandom generators.

Pseudorandom Generators from One-Way Functions. A celebrated result in the foun-
dations of cryptography is that pseudorandom generators can be constructed from
any one-way function.

(PRGs from OWFs Hastad et al. [1999]) If there exists a one-way function f :
{0, 1}" — {0, 1}"*, then there exists a pseudorandom generator G’ :{0,1}¢ - {0, 1}

The original construction of Hastad et al. [1999] proving Theorem 25.1 was quite
complex and inefficient. The pseudorandom generator G/ has a seed length of
¢ = ©(n'% and requires evaluating the one-way function at least ¢ = Q (n'°) times.
Quantifying these complexity parameters makes sense because the pseudorandom
generator construction is a “(fully) black-box” one [Reingold et al. 2004], where the
given one-way function is used as an oracle in the algorithm for computing G (so ¢
counts the number of oracle queries), and the security of the construction is proven
via a reduction that uses any oracle T that distinguishes G/ (U,) from U, to invert
f with nonnegligible probability. (The reduction also uses an oracle for f and may
use nonuniform advice when working in the nonuniform security model, as we are.)

One might think that the large polynomial complexity of the construction does
not matter because the “polynomial security” formulations of Definitions 25.6
and 25.8 are invariant to polynomial changes in the security parameter n. For

example, G could invoke f on inputs of length n1/10

and thereby achieve seed length
£ = O(n). But this does not really change anything. In either case, the problem is
that the security of the pseudorandom generator on seed length ¢ is related to the
security of the one-way function on inputs of length @ (¢1/1%), which amounts to an
unsatisfactory loss in security. This becomes even more apparent when quantifying

the security more finely. For example, even if the one-way function had “optimal”

704 Chapter 25 Computational Entropy

25.4

Definition 25.9

hardness, with security against algorithms running time s(n) = 2" for a constant
¢ > 0 on inputs of length n, we would only be guaranteed that the pseudorandom
generator is secure against algorithms running in time s(n)®® = 20¢”) which is
very far from the 2c't security that we might hope for. Thus it is important to seek
more efficient constructions.

Pseudoentropy

A pseudorandom generator G : {0, 1}* — {0, 1} with large stretch (¢ < m) starkly
demonstrates the difference between computational and information-theoretic no-
tions. On one hand, the output distribution G(U,) has entropy at most ¢ (since ap-
plying a deterministic function cannot increase entropy), but it is computationally
indistinguishable from the distribution on {0, 1}"" with maximal entropy—namely,
U,,. Thus, as an intermediate step toward constructing pseudorandom generators,
it is natural to consider a more quantitative measure of the amount of “computa-
tional entropy,” as done by Hastad et al. [1999] in their proof of Theorem 25.1:

(Pseudoentropy Hastad et al. [1999]) Let X be a random variable distributed on
strings of length poly(n) for a security parameter n. We say that X has pseudoentropy
at least k if there exists a random variable X’ such that

1. X' = X.
2. H(X') > k.

If Condition 2 is replaced with H, (X’) > k, then we say that X has pseudo-min-
entropy at least k.

As discussed above, constructing a pseudorandom generator requires produc-
ing an efficiently samplable distribution whose pseudoentropy (and pseudo-min-
entropy) is larger than its actual entropy. We have formulated the definition of
pseudoentropy to only allow for expressing such lower bounds on computational
entropy (e.g., “X has pseudoentropy atleastk”). Using the same template as a defini-
tion of “pseudoentropy at most k” yields a nonuseful definition, since every random
variable can be shown to have pseudoentropy at most polylog(n) via a probabilistic
argument akin to the one used in Goldreich and Krawczyk [1992]. In Section 25.7,
we shall see a different approach that leads to a useful definition of upper bounds
on computational entropy.

The Hastad et al. [1999] notion of pseudoentropy is very useful, thanks to the
power of computational indistinguishability, which says that two random variables
are essentially equivalent for the purposes of any efficient computation on them. In

Lemma 25.6

25.4 Pseudoentropy 705

particular, pseudo-min-entropy supports randomness extraction, by any efficiently
computable extractor:

Let X be arandom variable distributed on strings of length m = poly(n) for a security
parameter n with pseudo-min-entropy at least k, and let Ext : {0, 1} x {0, 1}¢ —
{0, 1}’”/ be a strong (k,)-extractor computable in time poly(n), with error e = n=*®,

Then (U,, Ext(X, Uy,)) is pseudorandom.

In particular, using the leftover hash lemma (Lemma 25.1), the pseudoentropy loss
k —m’ incurred by extraction is only 2 log(1/¢), which we can take to be any function
that is w (log n).

As with the information-theoretic notions, randomness extraction requires
pseudo-min-entropy rather than plain pseudoentropy. Fortunately, flattening also
works in the context of pseudoentropy, and using Lemma 25.5, it can be shown
that if X has pseudoentropy at least k, then for any = poly(n), the product X’ has
pseudo-min-entropy at least 7 - k — /7 - O (m), where m is the bitlength of X.!

In light of these facts, the approach of [Hastad et al. 1999] to constructing pseu-
dorandom generators from one-way functions is the following three-step process:

1. Computational Entropy Gap. From an arbitrary one-way function, construct
an efficiently samplable distribution X that has pseudoentropy at least
H(X) + A for some A > 1/ poly(n).

2. Flattening. Use flattening to obtain an efficiently samplable distribution
whose pseudo-min-entropy is significantly larger than its (smoothed) max-
entropy.

3. Hashing. Use randomness extraction and hashing (as in Lemma 25.1 and
Lemma 25.2) to obtain a generator G whose output distribution is pseudo-
random while it is generated using a short seed (and in particular has small
max-entropy).

1. Here we are using the fact that we have defined computational indistinguishability with respect
to nonuniform distinguishers, in order to ensure that X =X implies that X' = (X)!. The latter
implication does not hold in general for uniform distinguishers Goldreich and Meyer [1998]. The
implication does hold if X and X’ can be sampled in polynomial time, but the constructions we
will describe do not seem to have that property for X’. In [Haitner et al. 2013], this is remedied by
a more complicated definition, where we require indistinguishability even by distinguishers that
have an oracle for sampling from X', but where we also allow X’ to depend on the distinguisher.

706 Chapter 25 Computational Entropy

Definition 25.10

25.5

Theorem 25.2

Unfortunately, the construction of [Hastad et al. 1999] ended up being much more
complex and inefficient than this outline suggests. The main reasons are that in
Step 1, (a) we do not know the real entropy H(X) of the samplable distribution
X, and (b) the entropy gap A is quite small (and thus requires more repetitions
for flattening to preserve the gap). In Section 25.6 we will see how to avoid these
difficulties by using more refined notions of pseudoentropy.

Before proceeding, we define conditional versions of pseudoentropy that will be
useful in later sections.

(Conditional pseudoentropy Hsiao et al. [2007]) Let (X, Y) be a pair of jointly
distributed random variables of total length poly(n) for a security parameter n. We
say that X has conditional pseudoentropy at least k given Y if there is a random
variable X, jointly distributed with Y, such that:

1. (X,Y) =X, Y).
2. HX'|Y) > k.

If Condition 2 is replaced with H,,(X'|Y) > k, then we say that X has pseudo-min-
entropy at least k given Y.

Similarly to the unconditional versions, conditional pseudoentropy supports flat-
tening and randomness extraction by efficiently computable extractors.

One-Way Permutations to Pseudorandom Generators

In this section, we present the classic construction of pseudorandom generators
from one-way permutations using the language of computational entropy. Specifi-
cally, we will prove the following theorem:

(PRGs from OWPs Blum and Micali [1984], Yao [1982], Goldreich and Levin [1989])
If there exists a one-way permutation f : {0, 1} — {0, 1}", then there exists a pseu-
dorandom generator G’ :{0,1}¢* - {0, 1}". Moreover, G/ makes g = 1 query to f
and has seed length ¢ = O (n).

Note that this construction is extremely efficient, with only one query to the one-way
function and a linear seed length.

Our presentation of the proof of Theorem 25.2 will use more complex concepts
than the traditional presentation, in order to set the stage for Section 25.6, where we
handle general one-way functions. The construction and security reduction implicit
in the proof are actually the same as in the traditional presentation; they are just
described using different language.

Definition 25.11

Lemma 25.7

25.5 One-Way Permutations to Pseudorandom Generators 707

The first step of the proof is to observe that the definition of one-wayness can
be directly related to a computational analogue of guessing entropy, as defined in
Lemma 25.3, simply by restricting the guesser A to be efficient:

(Guessing pseudoentropy Hsiao et al. [2007]) Let X and Y be jointly distributed
random variables of total length poly(n) for a security parameter n. We say that
X has guessing pseudoentropy?® at least k given Y if for some s(n) =n®® and all
nonuniform algorithms A running in time s(n), we have

PriA(Y)=X]<27F,
where the probability is taken over (X, Y) and the coin tosses of A.

If we take Y = f(X) for a one-way function f, then the one-wayness of f implies
that the above definition is satisfied for 27% = n=*®:

If f : {0, 1}" — {0, 1}" isa one-way function, and X is uniformly distributed in {0, 1}",
then X has guessing pseudoentropy w(log n) given f(X).

Recall that guessing entropy is equal to average min-entropy in the information-
theoretic setting (Lemma 25.3). In the computational setting, however, they are not
equivalent; that is, guessing pseudoentropy is not in general equal to pseudo-min-
entropy. Indeed, if f is a one-to-one one-way function, then X has negligible pseudo-
min-entropy given f(X), since for every X’ such that H,,(X’| f (X)) is nonnegligible,
the efficient test 7'(x, y) that outputs 1 iff y = f(x) distinguishes (X, f(X)) from
X', (X))

Nevertheless, guessing pseudoentropy does support randomness extraction,
not by arbitrary extractors, but ones meeting the following definition, which re-
quires that the extractor is efficiently “list-decodable,” in the sense that any test
T that distinguishes the output of the extractor (on a fixed but unknown source
element x) from uniform can be used to efficiently describe a list of at most
2k elements that includes x. We will allow this list-decoding to be probabilistic
and require it to succeed with some constant probability over its randomness r.
Rather than asking the decoder to explicitly write down all 2% elements of the
list, we will index into the list by strings z of length k provided as input to the
decoder.

2. This was called “unpredictability entropy” by Hsiao et al. [2007], but we use the term guessing
pseudoentropy to highlight its relationship with guessing entropy (which happens to equal average
min-entropy).

708 Chapter 25 Computational Entropy

Definition 25.12

Lemma 25.8

Proof

List-decodable extractors Trevisan [2001], Ta-Shma and Zuckerman [2004], Barak
etal. [2003], Vadhan [2012].3 A function Ext : {0, 1}" x {0, 1}¢ — {0, 1}" is a (¢, k, €)-
list-decodable extractor if there is a nonuniform time r oracle algorithm Dec:
{0, 1}* x {0, 1}* — {0, 1}" such that the following holds: for every x € {0,1}" and T :
{0, 1}4 x {0, 1" — {0, 1} satisfying |Pr[T (U,, Ext(x, U,)) = 1] — Pr[T (U, U,,) =1]|
> ¢, we have

Pr [Elz e {0, 1}" Dec’ (z,r) =x] > 1
r&10,1¢ 2

It is known that if we remove the time bound on the decoder ¢ (i.e., set t =
00), then list-decodable extractors are equivalent to standard (k, ¢) randomness
extractors up to an additive log(1/¢) + O(1) change in the min-entropy k£ and a
constant factor in the error parameter ¢. (See Vadhan [2012, Props. 6.23 and 7.72].)

Our reason for considering list-decodable extractors is that they extract pseudo-
random bits from guessing pseudoentropy:

(Extraction from guessing pseudoentropy Ta-Shma and Zuckerman [2004], Hsiao
et al. [2007]) Let X and Y be jointly distributed random variables of total length
poly(n) for a security parameter n, and where X has length m. Suppose X has
guessing pseudoentropy at least k given Y, and that for every t = n®™, there is
an & =n~®® such that Ext : {0, 1} x {0, 1}¢ — {0, 1} is a (¢, k — log(3/¢), &)-list-
decodable extractor. Then (U, Ext(X, Uy,), Y) = (Uy, U, Y).

By the definition of guessing pseudoentropy, there is an s = n®® such that for every
nonuniform A running in time s,

Pr{A(Y) = X] <27k

Let t = /s =n®Y, By hypothesis, there is an ¢ = n~“" such that Ext is a (¢, &/, ¢)-
list-decodable extractor for k" = k —log(3/¢). Let Dec : {0, 1}¥ x {0, 1}¢ > {0, 1}" be
as guaranteed by Definition 25.12.

We will show that no nonuniform time ¢ algorithm 7 can distinguish (U,,
Ext(X,U,),Y) and (Uy, U,,, Y) with advantage greater than 2¢. Suppose for con-
tradiction that there is a nonuniform time ¢ algorithm 7" such that

3. This is a variant of definitions that appear in the literature under different names, such as
“reconstructive extractors” and “black-box pseudorandom generator constructions.” In particular
the definition in Vadhan [2012] of “black-box pseudorandom generator constructions” amounts
to a definition of locally list-decodable extractors, where we only measure the time complexity of
computing any one bit of the source string x, rather than all n bits at once.

Theorem 25.3

Proof

25.5 One-Way Permutations to Pseudorandom Generators 709

|Pr(T (U, Ext(X, Uy, Y) =1]—Pr[T(U,, U, Y) =1]| > 2.
Then with probability at least € over (x, y) & (X, Y), we have
|Pr[T (Uy, Ext(x, Uy), y) = 1] — Pt[T (U, U, y) =1]| > .
When this event occurs, we have

Pr [Elz € {0, 1}]‘/ Dec! M (z,) = x] >
r£{0,1}f

N =

Therefore, if we define A(y) = Dec’»»¥)(Z, R), where Z and R are both chosen
uniformly at random, we have

1 /
Pr{A(Y) = X]>¢ - 3 27k S o7k,

Moreover, being obtained from the time ¢ algorithm Dec with an oracle T that is
also a time 7 algorithm, A is a nonuniform algorithm running in time at most 2 = s.
This contradicts the guessing pseudoentropy of X given Y.]

One of the many interpretations of the celebrated Goldreich-Levin Hardcore Bit
Theorem is as providing a list-decodable extractor.

(GL extractor Goldreich and Levin [1989]) For every ¢ > 0, the function Ext(x, r) =
(>, x;r;) mod 2 is a (poly(n, 1/¢), 2 log(1/¢) + O(1), ¢)-list-decodable extractor.

Note that for any k = w(log n), the GL extractor satisfies the conditions of Lemma

25.8. Indeed, for any r = n®Y | if we set & = max{1/r"/¢

, k/4} for a large enough con-
stant ¢, then Theorem 25.3 ensures that Ext is a (¢, k — log(3/¢), ¢)-list-decodable
extractor.

We now can prove Theorem 25.2, constructing a pseudorandom generator from

any one-way permutation.

(of Theorem 25.2) Let f:{0,1}" — {0, 1}" be a one-way permutation, and let
Ext(x, r) = (}_; x;r;) mod 2. Define

G’ (x,r) = (r, Ext(x, r), f(x)).

Note that G/ is polynomial-time computable with one query to f, has seed length
¢ = 2n, and has output length m = 2n + 1.

All that remains is to prove the pseudorandomness of G/ (U,). Let X and R be
random variables uniformly distributed in {0, 1}, set Y = f(X). By Lemma 25.7, X

710 Chapter 25 Computational Entropy

Theorem 25.4

25.6

Theorem 25.5

has guessing pseudoentropy w (log n) given Y. By Theorem 25.3 and Lemma 25.8,
we have

G/(X,R)= (R,Ext(X,R),Y) = (R, U,Y)=Uy1q. W

Before moving on to the case of general one-way functions, we revisit the re-
lationship between guessing pseudoentropy and ordinary pseudo-min-entropy. As
noted above, the example ¥ = f(X) for a one-to-one one-way function f shows
that X having noticeable guessing pseudoentropy given ¥ does not in general im-
ply that X has noticeable pseudo-min-entropy given Y. However, it turns out that
this implication does hold when X is short:

(Guessing pseudoentropy vs. pseudo-min-entropy Zheng [2014], Skorski et al.
[2015]) Let (X, Y) be jointly distributed random variables, where X is distributed
over strings of length ¢ = O (log n) and Y is distributed over strings of length poly(n),
for a security parameter n. Then for every k € [0, £], the following are equivalent:

1. There is a negligible ¢ = ¢(n), such that X has guessing pseudoentropy at
least k — ¢ given Y.

2. There is a negligible ¢ = ¢(n) such that X has pseudo-min-entropy at least
k —egiven Y .4

As discussed by Zheng [2014], the case of Boolean X (i.e., £ = 1) amounts
to a reinterpretation of (tight) versions of Impagliazzo’s Hardcore Theorem
[Impagliazzo 1995, Klivans and Servedio 2003, Barak et al. 2009, Sudan et al. 2001].
We also remark that the version of Theorem 25.4 by Skoérski, Golovnev, and Pietrzak
[Skorski et al. 2015] relaxes the condition that X is short (i.e., £ = O(log n)) to the
pseudoentropy deficiency being small (i.e., £ — k = O (log n)).

One-Way Functions to Pseudorandom Generators
We now turn to constructing pseudorandom generators from arbitrary one-way
functions. Specifically, we will sketch the most efficient construction to date:

(Improved PRGs from OWFs Haitner et al. [2013], Vadhan and Zheng [2012]) If
there exists a one-way function f :{0, 1}" — {0, 1}", then there exists a pseudo-

4. Actually, we can replace Item 2 with the statement that X has pseudo-min-entropy at least k
given Y, with no negligible loss, by exploiting the slackness afforded by indistinguishability. In-
deed, suppose (X, Y) = (X, Y) where Ho,(X'|Y) > k — .It can be shown that (X', ¥) is statistically
indistinguishable from some (X", ¥) such that H,,(X”|Y) > k. Then (X, Y) is also computationally
indistinguishable from (X", Y), and hence X has pseudo-min-entropy at least k given Y.

Definition 25.13

Definition 25.14

25.6 One-Way Functions to Pseudorandom Generators 711

random generator G/ : {0, 1} — {0, 1} with seed length ¢ = O(n®) that makes
g = O(n®) queries to f.

Pseudoentropy from One-Way Functions. Like the proof of Theorem 25.2 given
above, we will begin the proof of Theorem 25.5 by looking for some form of pseu-
doentropy in an arbitrary one-way function f. Note that the fact that X has guessing
pseudoentropy w(log n) given f(X) (Lemma 25.7) holds for every one-way function,
regardless of whether or not it is one-to-one. However, when f is many-to-one, this
fact may hold for trivial information-theoretic reasons. Indeed, consider any func-
tion f thatignores the first half of its input. Then X has average min-entropy at least
n/2 given f(X), so in particular has guessing pseudoentropy at leastn/2 = w(log n)
given f(X), regardless of the one-wayness of f.

Thus, we need to replace guessing pseudoentropy with a notion that captures
the gap between the computational and information-theoretic hardness in X given
f(X). To do so, we need to exploit the fact that one-wayness guarantees that it
is hard to find any preimage of f(X), something that is not captured by guessing
pseudoentropy. We will do this by using a computational analogue of KL divergence
(a.k.a. relative entropy). We begin with the information-theoretic definition.

(KL divergence) Let A and A’ be two discrete random variables. The Kullback-
Leibler (KL) divergence from A to A’ is

, (Pr[A =a]
KL (A|A") =E_x, [log (Mﬂ .
It can be shown that KL (A||A’) > 0, with equality iff A and A’ are identically dis-
tributed. Thus KL divergence can be thought of as a measure of “distance” be-
tween probability distributions, but note that it is not symmetric and does not
satisfy the triangle inequality. Also note that KL (A||A/) is infinite if (and only if)
Supp(A) Z Supp(A’).

For intuition about KL divergence, it is useful to consider the case of flat distribu-
tions (where A and A’ are uniform on their supports). Then, if Supp(A) € Supp(4’),
KL (AJ|A") =log(| Supp(A")|/| Supp(A)]), so KL(A||A") measures how densely A is
contained in A’. More generally, if A’ is flat and A is an arbitrary random variable
such that Supp(A) € Supp(A”), then KL (A[|A’) = log | Supp(A”)| — H(A) = H(A) —
H(A).

We will also refer to a conditional version of KL divergence.

(Conditional KL divergence) Let (A, B) and (A’, B) be two pairs of discrete ran-
dom variables. The Kullback-Leibler (KL) divergence from A|B to A'|B’ is

712 Chapter 25

Definition 25.15

Lemma 25.9

Proof Sketch

Computational Entropy

KL (A|B||A'|B) = E, x, [KL (Alp=pll Al pr=p)]
=KL ((A, B)|(A’, B)) — KL (B||B’) .

Note that the dependence of KL (A|B||A’|B’) on (A’, B') involves only the family of
conditional probability distributions {A’| z:_,}. In particular, it does not depend on
the marginal distribution of B’.

The computational analogue of KL divergence we will use is the following:

(Conditional KL-hardness Vadhan and Zheng[2012]) Let (X, Y) be a pair of jointly
distributed random variables of total length poly(n), where n is the security param-
eter. We say that X is A-KL-hard given Y iff for some s(n) = n®Y) and all nonuniform
algorithms A running in time s(n), we have

KL (X|Y||A(Y)|Y) > A.
Equivalently, we require
KL ((X,)[[(A(Y), ¥)) = A.

The goal of the adversary A is to minimize the divergence KL (X|Y||A(Y)|Y). To
make the divergence small, A(y) should output a distribution that is as close as
possible to the conditional distribution X |y_,. That s, the distribution A(y) should
contain the distribution X|y_, as tightly as possible.

A computationally unbounded adversary A can achieve zero divergence by hav-
ing A(y) be distributed exactly according to the conditional distribution X|y_,.
Therefore, X being A-KL-hard-to-sample given Y for a nonzero A is a statement
purely about computational hardness, not information-theoretic hardness. This is
in contrast to guessing pseudoentropy, which can be large for purely information-
theoretic reasons (as discussed earlier).

We can still show that an arbitrary one-way function gives us KL hardness:

(KL-hardness from one-way functions Vadhan and Zheng [2012]) If f:{0,1}" —
{0, 1} is a one-way function and X is uniformly distributed in {0, 1}", then X is
o (log n)-KL-hard given f(X).

Like statistical difference, KL divergence has the property it cannot be increased
by applying a function. That is, for all functions 7' and random variables W and Z,
KL (T(W)|T(Z)) <KL (W] Z). This fact is known as the data-processing inequality
for KL divergence. We will apply this inequality with the test 7'(x, y) that outputs
1if y = f(x) and 0 otherwise. Specifically, for every adversary A running in time

Theorem 25.6

Lemma 25.10

Proof Sketch

25.6 One-Way Functions to Pseudorandom Generators 713

s(n) =n®® we have

KL ((X, f(XDNAF (X)), f(X)))
>KL(T(X, fXDIT(A(f (X)), f(X))) (data-processing inequality)

1
—1 PHT(X, F(X)=1]=1
o8 <Pr[T(A(f(X)), FX)) = 1]) (PTG, FOOy=1=1
—log < 1) (def of T)
PrlA(f(X)) € f~1(f(X)]
= log(n‘”(l)) (one-wayness of f)
= w(log n). [}

Similarly to Theorem 25.4, we can also relate KL-hardness to pseudoentropy
when X is short:

(KL-hardness vs. pseudoentropy Vadhan and Zheng [2012]) Let (X, Y) be jointly
distributed random variables, where X is distributed over strings of length ¢ =
O(log n) and Y is distributed over strings of length poly(n), for a security parameter
n. Then for every A € [0, £ — H(X|Y)], the following are equivalent:

1. There is a negligible ¢ = ¢(n) such that X is (A — ¢)-KL-hard given Y.

2. There is a negligible ¢ = ¢(n) such that X has pseudoentropy at least
H(X|Y) + A — ¢ given Y0

Note that, as we desired, the KL-hardness quantifies the gap between the pseudoen-
tropy and the real entropy H(X|Y).

However, we cannot directly combine Theorem 25.6 and Lemma 25.9, since the
input X to a one-way function is not short. Fortunately, KL-hardness is preserved if
we break X up into short blocks:

(Blockwise KL-hardness [Vadhan and Zheng 2012]) Let (X, Y) be a pair of jointly
distributed random variables of total length poly(n), where n is the security param-

eter, and let X = (X4, ..., X,,) be a partition of X into blocks. If X is A-KL-hard
given Y, then for / uniformly distributed in {1, ..., m} X; is (A /m)-KL-hard given
Y, X4y, X7_1)-

Suppose for contradiction that there is an efficient adversary A such that

KL ((Y’ X17 H ',XI)”(YaXl; . ‘1X[71; A(Y7X17 N '7X171))) < A/m

5. Similarly to Footnote 4, the negligible loss of ¢ in Item 2 can be removed.

714 Chapter 25 Computational Entropy

Definition 25.16

That is, A samples one block X, given Y and the previous blocks X1, ..., X;_; with
approximately the correct distribution. We now construct an adversary B that uses
A iteratively to sample all of X given only Y. Specifically, B(y) defined as follows:

e Fori=1,...,m,letx;=A(y,Xxq,...,X_1)-
e Outputx = (xq,...,x,).
Notice that if A achieves divergence zero—that is, A(y, x4, ..., x;_1) is always dis-

tributed exactly according to the conditional distribution X;ly_, x,—,,... x, ,=x,_,
—then B will also achieve divergence zero, i.e., B(y) is always identically distributed
to X|y—,. More generally, it can be shown that the divergence achieved by B equals

the sum of the divergences achieved by A over the m blocks. That is,

KL (X|Y [B(Y)[Y)

m
= KL (XY, Xy, oo, X DIAY, Xy, oo, X DIV, Xy ey Xi2))
i=1

=m - KL (XI|(Ya Xl) ceey XI—l)”A(Ya Xl; R XI—1)|(Y) Xl; ey XI—l)) ’
<A,
contradicting the KL hardness of X given Y.]

Combining Lemma 25.10 and Theorem 25.6, we see that if X is A-KL-hard given
Y and we partition X into m short blocks, then, on average, those blocks will have
pseudoentropy larger than their real entropy by A /m (given the previous blocks and
Y). The latter conclusion can be reinterpreted using the following blockwise notion
of pseudoentropy:

(Next-block pseudoentropy Haitner et al. [2013]) Let X = (X, X4,..., X,,,) be a
sequence of random variables distributed on strings of total length poly(n) for a
security parameter n. We say that X has next-block pseudoentropy at least k if there
isasequence of randomvariables (X, X/, ..., X,), jointly distributed with X, such
that:

1. Foreachi=0,...,m, (Xo, X1, ..., Xi_1, X)) = (X, X1, ..., Xi_1, X))
2. YL HX [Xy ooy Xig) Z k.

That is, to an “online” adversary that observes the random variables (X, ...,
X,,) in sequence, at each step the next block X; looks like a “higher entropy”
random variable X/. For comparison, consider the notion of next-bit pseudo-
randomness, where each of the blocks is of length 1 and (Xy,..., X;_q, X;) =
(X1, ..., X;_1, X)) where X! is a uniformly random bit independent of (X, ...,

Theorem 25.7

25.6 One-Way Functions to Pseudorandom Generators 715

X;_1). As asserted by Yao, next-bit pseudorandomness is equivalent to both the
notion of next-bit unpredictability of Blum and Micali [1984] as well as to pseudo-
randomness of the entire sequence as in Definition 25.7. Next-block pseudoentropy
can be thought of as a quantitative generalization of this classic notion, but, im-
portantly, it is not generally equivalent to pseudoentropy of the entire sequence as
demonstrated by the following theorem and discussion:

(Next-block pseudoentropy from OWFs Vadhan and Zheng [2012]) Let f :{0, 1}"
— {0, 1}" be a one-way function, let X be uniformly distributed in {0, 1}"*, and
let X =(X4,...,X,,) be a partition of X into blocks of length O(log n). (For ex-
ample, we can set m =n and set X; to be the i’th bit of X.) Then the sequence
(f(X), X4, ..., X,,) has next-block pseudoentropy at least n + w(log n).

As discussed earlier, the global pseudoentropy of the random variable (f(X), X) is
atmostn +n~“D since the test T (v, x) that checks whether y = f(x) distinguishes
(f(X), X) from every distribution of entropy noticeably more than n. Theorem
follows combining Lemma 25.9, Lemma 25.10, and Theorem 25.6.

Notice that the amount of next-block pseudoentropy in (f(X), X) is w(log n)
bits larger than the number of random bits we need to generate it (choosing
a uniformly random X). Thus, if we can extract this pseudoentropy to produce
pseudorandomness, we will have a pseudorandom generator. Unfortunately, Theo-
rem 25.7 only guarantees pseudoentropy in the Shannon sense, whereas we need
(pseudo-)min-entropy to extract (Lemma 25.6). Thus, we first need to apply flatten-
ing (Lemma 25.5).

Flattening Pseudoentropy. By Theorem 25.7, there are real numbers kg, k¢, .. .,
k,, > 0 such that if we let Xy = f(X) and X = (X4, ..., X,,), we have:

1. > " ki =n+w(logn).

2. X, has pseudoentropy at least k; given X, ..., X; _{fori=0,...,m.
To flatten, we take ¢ independent inputs X, ... X sampled uniformly from
{0, 1}" for the one-way function f, define blocks for each by setting Xé’) = f(Xx©)
and (X\", ..., X1y = X®, and create larger blocks Xy, . . ., X,, as follows:

o Xo=(f(XD), fFXD), ..., FXD)).

o X =x",x® ... xD)fori=1,...,m.

Then using Lemma 25.5 (and its generalization to conditional entropy) with & =
n=19¢" it can be shown that for each i, the block X; has pseudo-min-entropy at
least k; =1 - k; — O(+/7 -log n - £;), where ¢; is the bit-length of the ith block.

716 Chapter 25 Computational Entropy

For t = n?, it can be checked that Y l;,» =t-(n+ w(log n)), so the pseudo-min-
entropy in the blocks X; is (significantly) larger than the 7 - n bits used to generate
them. Applying a randomness extractor to each of these larger blocks, we obtain
the following pseudorandom generator.

A “Nonuniform” Pseudorandom Generator. The following construction requires
knowledge of the entropy thresholds k;, which may be hard to compute and thus
are provided as nonuniform advice to the pseudorandom generator. Later we will
see how to remove this nonuniformity.

The seed of our pseudorandom generator consists of the ¢ independent inputs
x® ..., x® to f, and descriptions of universal hash functions A, ..., h,, where
h; has output length k; — w(log 1), and the output is

GIax®, . xD gy hy) = (hgy e vy By Bo(Rg) s« vy By (B).

Pictorially:
Xo Xy X
[I I
(1)
+@ = f(x(l)) x) ce x’(nl)
(2)
x@ — £ (x@) X} e xr(nz)
O = Fx®) X e x®
1 = \ =
seed — ho hy .. Ry, — output
) ! !
ho(Fo) hy () o+ | hu(,) | - output

It can be proven, following the arguments sketched above, that the output of this
generator is indeed pseudorandom and longer than its seed length.

Entropy Equalization. We address the nonuniformity issue above by the following
“entropy equalization” technique, which converts any next-block pseudoentropy
generator into one where every block has guaranteed to have at least the average
amount of pseudoentropy of the blocks in the original generator. It works by con-
catenating many independent samples of the next-block-pseudoentropy generator,
but left-shifted by a random offset from {0, 1, . . . , m}, so that each block of the new
generator has equal probability of being each of the m + 1 blocks of the original

Lemma 25.11

25.6 One-Way Functions to Pseudorandom Generators 717

generator. We do not use a cyclic shift, but rather drop appropriate parts of the first
and last blocks.

(Entropy equalization Haitner et al. [2009b], Haitner et al. [2013]) Let X = (X,
., X,,) be a random variable distributed on strings of length poly(n), where n
is a security parameter. Suppose X has next-block pseudoentropy at least k. For a
parameter u € N, consider the random variable X defined as follows:
1. Let XM, ..., X® be u independent samples of X, with blocks X = (x{",
X)
ce X0,

2. Choose J <& {0,...,m}.

3. Output
X = (XO$ le ey X(ufl)-(m+1))
def 1 1 2 —1
=X XYL XD X, XD Xy
XD xe0 L x).
.o 5 J+i+ +1 :
That is, X, = J and X; = X§5(+i—ifm)”rlr)1{)(£r(lm+)ii fori=1,...,u—1)-(m+1).
Then foreveryi =1,...,(u —1) - (m + 1),)A(i has pseudoentropy at least k/(m + 1)

giVen Xo, ey Xi—l'

As stated above, the left-shifting is not cyclic; we drop J blocks of X and m +
1— J blocks of X®. Intuitively, X; has pseudoentropy at least k/(m + 1) given
the previous blocks because X; is a copy of X (J+it+mymod(m+1) and (J +i + m) mod
(m + 1) is uniformly distributed in {0, ..., m}. Notice that the total next-block
pseudoentropy guaranteed in the blocks)A(l- fori >1is((t—1)-(m+1)) - (k/(m +
1)) = (¢t — 1) - k. We generated X using ¢ copies of X, which had ¢ - k bits of next-
block pseudoentropy, but we lost one copy’s worth of pseudoentropy by discarding
a prefix of the first copy and a suffix of the last copy.

Applying this to the next-block pseudoentropy generator of Theorem 25.7, with
k=n+ w(log n), we can take u =n/ log n and have

w—1)-k=u-(n+wlogn)) —k=u-n-+ wdlogn)),

so we still have much more pseudoentropy than the u - n + log u bits used to gen-
erate X.

Applying the flattening and extraction procedure to this entropy-equalized next-
block pseudoentropy generator (rather than to the one of Theorem 25.7), we obtain
a uniformly computable pseudorandom generator that makes ¢ =u -t = O(n®)

718 Chapter 25 Computational Entropy

25.7

Theorem 25.8

queries to the one-way functions (with a factor of # = O (n?) coming from flattening
and a factor of u = O (n) from entropy equalization), and has seed length O(g - n) =
0 (n*).

To save an extra factor of n in the seed length as claimed in Theorem 25.5,
the idea is to show that the repetitions used for entropy equalization need not be
independent, and instead randomness can be (adaptively) recycled in a way that is
similar to the length expansion for pseudorandom generators. We refer to Vadhan
and Zheng [2012] for more details.

One-Way Functions to Statistically Hiding Commitments

In this section, we describe how another form of computational entropy, inacces-
sible entropy, is used to construct statistically hiding commitment schemes from
one-way functions. In doing so, we will highlight the duality between the con-
struction and notions used below and those that were used above for constructing
pseudorandom generators.

Commitment Schemes. Recall that a commitment scheme is a two-party protocol
between a sender S and a receiver R. The protocol consists of two phases. In the
commit phase, the sender takes as input a message m of length poly(n), in addition
to both parties receiving the security parameter n. In the reveal phase, the sender
reveals the message m to the receiver and “proves” that m is the message to which
it committed in the first phase, after which the receiver accepts or rejects. Without
loss of generality, the sender’s proof can consist of the coin tosses r she used in the
commit phase, and the receiver simply checks that the transcript of the commit
phase is consistent with the behavior of the sender algorithm S(m;r) on message
m and coin tosses r.

A commitment scheme has two security requirements. Informally, the hiding
property requires that the receiver should learn nothing about the message m
during the commit phase. The binding property requires that after the commit
phase, there should be a unique message m that the sender can successfully reveal.
Typically, one of these two security properties is statistical (with security against
computationally unbounded adversaries), while the other is computational.

Statistically binding commitments can be constructed from any pseudorandom
generator [Naor 1991], and hence from any one-way function by Theorem 25.1.
Thus, our focus in this section is on the analogous result for statistically hiding
commitments:

(Statistically hiding commitments from OWF Haitner et al. [2009a]) If there exists
a one-way function, then there exists a statistically hiding commitment scheme.

Definition 25.17

25.7 One-Way Functions to Statistically Hiding Commitments 719

The original proof of Theorem 25.8 was even more complex than the original proof
of Theorem 25.1. Haitner, Reingold, Vadhan, and Wee [Haitner et al. 2009b] gave
a much simpler and more conceptual proof using a new computational notion
of entropy, called inaccessible entropy. That construction actually predated and
inspired the more efficient construction of pseudorandom generators from one-
way functions given in Section 25.6.

Commitment Schemes and Computational Entropy. We begin by explaining, at an
intuitive level, the relationship between commitment schemes and notions of
computational entropy.

A statistically binding commitment scheme is very related to pseudorandomness
and pseudoentropy. As mentioned above, Naor [1991] exhibited a very efficient con-
struction of statistically binding commitments from any pseudorandom generator.
Conversely, consider running a statistically binding commitment protocol on a uni-
formly random message M, and let T' be the transcript of the commit phase. Then
the statistical binding property implies that M has negligible real entropy given
T (since with all but negligible probability over ¢t <— T, there should be only one
message m in the support of M|r_,). On the other hand, the computational hiding
property implies that M is pseudorandom given 7 (i.e., (M, T) = (U, T), where U
is a uniformly random message independent of M and 7). So the pseudoentropy
of M given T is much higher than the real entropy of M given 7.

Let us now consider the case of a statistically hiding commitment scheme. The
statistical hiding property implies that M is statistically close to uniform given T
(i.e., (M, T) = (U, T)). On the other hand, the computational binding property says
that, from the perspective of a polynomial-time sender, M is effectively determined
by T. That is, although M has a lot of real entropy given 7, a computationally
bounded algorithm cannot “access” this entropy. This motivates the following
definition of (next-block) accessible entropy, which should be thought of as “dual”
to (next-block) pseudoentropy (Definition 25.16):

(Next-block accessible entropy Haitner et al. [2009b]) Let n be a security param-
eter, and Y = (Y4, ..., Y,,) be a random variable distributed on strings of length
poly(n). We say that Y has next-block accessible entropy at most k if the following
holds for some s(n) = n®®.

Let G be any nonuniform, probabilistic algorithm running in time s(n) that
takes a sequence of uniformly random strings R = (R;, ..., R,,) and outputs a
sequence Y = (f’l, ceey fm) in an “online fashion” by which we mean that ¥; =
G(Ry, ..., R;) depends on only the first i random strings of G fori =1,...,m.

Suppose further that Supp(Y) < Supp(Y).

720 Chapter 25 Computational Entropy

Theorem 25.9

Then we require
m
D H IRy, ..., R) <k.
i=1

For intuition, think of each individual block Y; as corresponding to a message
being committed to in a statistically hiding commitment scheme, and the prefix
Y_;=(Yq,...,Y;_,) as the transcript of a commit phase for Y;. The adversary G is
analogous to a sender trying to break the computational binding property of the
commitment scheme. G is trying to generate a message Y¥; with as much entropy
as possible, conditioned on its internal state after the commit phase, which is
represented by its prior coin tosses Ry, ..., R;_;. The condition that Supp(¥)
Supp(Y) is analogous to the fact that the reveal phase of a commitment scheme
demands that the message revealed is consistent with the transcript of the commit
phase. Indeed, the security properties of a statistically hiding commitment scheme
can be captured by using a generalization of the definition of accessible entropy to
messages in interactive protocols [Haitner et al. 2009b].

(Next-block) accessible entropy differs from (next-block) pseudoentropy in two
ways:

1. Accessible entropy is useful as an upper bound on computational entropy,
and is interesting when it is smaller than the real entropy H(Y). We refer to
the gap H(Y) — k as the inaccessible entropy of Y.

2. The accessible entropy adversary G is trying to generate the random variables
Y; conditioned on the history rather than recognize them. Note that we take
the “history” to not only be the previous blocks (171, e, Yi_l), but the coin
tosses (Ry, ..., R;_;) used by G to generate those blocks. This ensures that
the randomness we measure in ¥; comes only from R;, so G really needs to
operate in an online fashion. ©

The proof of Theorem 25.8 begins by showing that every one-way function has
next-block inaccessible entropy:

(Inaccessible entropy from OWFs Haitner et al. [2009b]) Let f :{0, 1}" — {0, 1}"
be a one-way function, let X be uniformly distributed in {0, 1}, and let (Y4, ...,Y,,)

6. If we had conditioned only on the prior output blocks Y5, ..., ¥;_;, then an adversary that
runs an honest sampling algorithm once for Y = (Y3, ..., Y,,) would achieve accessible entropy
> HY;|Yy, ..., Y)= > H(Y;|Yq, ..., Y;_y) = H(Y). Here the entire sequence is determined
by Ry, the coin tosses for generating Y, but we can get nonzero entropy for blocks 2-m since Y;
will not determine R, in general.

25.7 One-Way Functions to Statistically Hiding Commitments 721

be a partition of Y = f(X) into blocks of length O (log n). Then (Y3, ..., Y,,, X) has
next-block accessible entropy at most n — w(log n).

Notice that this statement is similar to Theorem 25.7, except that it refers to acces-
sible entropy rather than pseudoentropy, it asserts an upper bound rather than a
lower bound on the computational entropy, and that it requires partitioning f(X)
rather than X into short blocks.

Given Theorem 25.9, the construction of statistically hiding commitments from
one-way functions (Thm. 25.8) follows the same template as what we saw for pseu-
dorandom generators in Section 25.6:

1. An “entropy equalization” step that converts ¥ = (Y, Y,, ..., Y,,,,) into a
random variable ¥ = Yy, Ys, ..., Y;) generator where (a lower bound on) the
real entropy in each block conditioned on the prior blocks before it is known,
and the total next-block accessible entropy is significantly smaller than the
total real entropy. The construction is exactly the same as in Lemma 25.11.

2. A “flattening” step that converts the real Shannon entropy guarantees into
real min-entropy. Specifically, after flattening each block will have high
(smoothed) min-entropy, while the total next-block accessible entropy is sig-
nificantly smaller than the total smoothed min-entropy. This construction is
again exactly the same as what we saw for pseudorandom generators. Note
that we do not claim that the accessible entropy gets converted into acces-
sible max-entropy by flattening; the reason is that the adversarial generator
need not behave independently across the repetitions of flattening.

3. A “hashing” step that converts the high min-entropy in each block to nearly
uniform randomness, and turns the low accessible entropy into a weak bind-
ing property (uniquely determining the block with noticeable probability,
similar in spirit to Lemma 25.2). The reason that the binding property is weak
comes from the fact that we only have a bound on accessible Shannon en-
tropy (as discussed above) and from the fact that an adversarial generator has
freedom in how to spread the accessible entropy across the blocks. Moreover,
in order to tolerate potentially malicious senders (as is required for bind-
ing), it is not enough to directly apply universal hashing, as the sender could
then decide on the message/block ¥; after seeing the hash function. Instead,
we use (information-theoretic) “interactive hashing” [Naor et al. 1998, Ding
etal. 2007], which is designed to address this issue. Constructing full-fledged
statistically hiding commitments in this step also utilizes universal one-way

722 Chapter 25 Computational Entropy

hash functions [Naor and Yung 1989], which can be constructed from one-
way functions [Rompel 1990], as well some additional repetitions to amplify
the weak binding property. Without universal one-way hash functions, we
obtain a non-standard weak binding property, which nevertheless suffices
for some applications, such as constructing statistical zero-knowledge argu-
ments for all of NP.

For the proof of Theorem 25.9, we recommend the recent work of Agrawal, Chen,
Horel, and Vadhan [Agrawal et al. 2019], which gives a new, more modular proof
that uses a strengthening of KL-hardness (Definition 25.15), which further illu-
minates the duality between next-block pseudoentropy and next-block accessible
entropy.

References

R. Agrawal, Y.-H. Chen, T. Horel, and S. Vadhan. 2019. Unifying computational entropies via
Kullback-Leibler divergence. Technical Report 1902.11202 [cs.CR], arXiv. 694, 722

B. Barak, R. Shaltiel, and A. Wigderson. 2003. Computational analogues of entropy. In
S.Arora, K. Jansen, J. D. P. Rolim, and A. Sahai, editors, Approximation, Randomization,
and Combinatorial Optimization: Algorithms and Techniques, pp. 200-215. Springer.
DOI: 10.1007/978-3-540-45198-3_18. 695, 708

B. Barak, M. Hardt, and S. Kale. 2009. The uniform hardcore lemma via approximate
Bregman projections. In Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA *09, pp. 1193-1200. Society for Industrial and Applied
Mathematics, Philadelphia. DOI: 10.1137/1.9781611973068.129. 710

M. Bellare. 2002. A note on negligible functions. Journal of Cryptology, 15(4): 271-284. DOI:
10.1007/s00145-002-0116-x. 701

M. Bellare, S. Micali, and R. Ostrovsky. 1990. Perfect zero-knowledge in constant rounds.
In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, STOC ’90,
pp. 482-493. ACM, New York. DOI: 10.1145/100216.100283. 696

C. H. Bennett, G. Brassard, and J.-M. Robert. 1988. Privacy amplification by public
discussion. SIAM Journal on Computing,17(2): 210-229. Special issue on cryptography.
DOI: 10.1137/0217014. 697

M. Blum and S. Micali. 1984. How to generate cryptographically strong sequences of
pseudorandom bits. SIAM Journal on Computing, 13(4): 850-864. DOI: 10.1137/
0213053. 693, 695, 702, 706, 715

G. Brassard, D. Chaum, and C. Crépeau. 1988. Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences, 37(2): 156-189. DOI: 10.1016/0022-
0000(88)90005-0. 694

http://dx.doi.org/10.1007/978-3-540-45198-3_18
http://dx.doi.org/10.1137/1.9781611973068.129
http://dx.doi.org/10.1007/s00145-002-0116-x
http://dx.doi.org/10.1145/100216.100283
http://dx.doi.org/10.1137/0217014
http://dx.doi.org/10.1137/0213053
http://dx.doi.org/10.1137/0213053
http://dx.doi.org/10.1016/0022-0000(88)90005-0
http://dx.doi.org/10.1016/0022-0000(88)90005-0

References 723

B. Chor and O. Goldreich. 1988. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM journal on Computing, 17(2): 230~
261. DOI: 10.1137/0217015. 697

K.-M. Chung, Y. T. Kalai, F.-H. Liu, and R. Raz. 2011. Memory delegation. In Proceedings
of the 31st Annual Conference on Advances in Cryptology, CRYPTO ’11, pp. 151-165.
Springer-Verlag, Berlin. DOI: 10.1007/978-3-642-22792-9_9. 695

W. Diffie and M. E. Hellman. 1976. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6): 644-654. DOI: 10.1109/T1T.1976.1055638. 693, 701

Y. Z. Ding, D. Harnik, A. Rosen, and R. Shaltiel. 2007. Constant-round oblivious transfer
in the bounded storage model. Journal of Cryptology, 20(2): 165-202. DOI: 10.1007/
$00145-006-0438-1. 721

Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. 2008. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal of Computing, 38(1):
97-139. DOI: 10.1137/060651380. 699, 700

S. Dziembowski and K. Pietrzak. 2008. Leakage-resilient cryptography. In Proceedings of the
2008 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 293-302.
IEEE Computer Society, Washington, DC. DOI: 10.1109/FOCS.2008.56. 695

B. Fuller, A. O’Neill, and L. Reyzin. 2015. A unified approach to deterministic encryption:
New constructions and a connection to computational entropy. Journal of Cryptology,
28(3): 671-717. DOI: 10.1007/s00145-013-9174-5. 695

O. Goldreich. 2001. Foundations of Cryptography: Volume 1, Basic Techniques. Cambridge
University Press, Cambridge. 723

O. Goldreich. 2008. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, Cambridge. 695

O. Goldreich. 2019. On the foundations of cryptography. In Providing Sound Foundations
for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, Chapter 17.
Association for Computing Machinery and Morgan & Claypool. This volume. 695

O. Goldreich and H. Krawczyk. 1992. Sparse pseudorandom distributions. Random Structures
& Algorithms, 3(2): 163-174. DOI: 10.1002/rsa.3240030206. 704

O. Goldreich and L. A. Levin. 1989. A hard-core predicate for all one-way functions. In
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 25-32.
Seattle. DOI: 10.1145/73007.73010. 695, 706, 709

O. Goldreich and B. Meyer. 1998. Computational indistinguishability: Algorithms vs. circuits.
Theoretical Computer Science, 191(1-2): 215-218. DOI: 10.1016/S0304-3975(97)
00162-X. 705

O. Goldreich and S. Micali, 1984. Unpublished manuscript. See Goldreich [2001, Sec. 3.3.2].
703

0. Goldreich, S. Goldwasser, and S. Micali. 1986. How to construct random functions.
Journal of the ACM, 33(4): 792-807. DOI: 10.1145/6490.6503. 693

http://dx.doi.org/10.1137/0217015
http://dx.doi.org/10.1007/978-3-642-22792-9_9
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1007/s00145-006-0438-1
http://dx.doi.org/10.1007/s00145-006-0438-1
http://dx.doi.org/10.1137/060651380
http://dx.doi.org/10.1109/FOCS.2008.56
http://dx.doi.org/10.1007/s00145-013-9174-5
http://dx.doi.org/10.1002/rsa.3240030206
http://dx.doi.org/10.1145/73007.73010
http://dx.doi.org/10.1016/S0304-3975(97)00162-X
http://dx.doi.org/10.1016/S0304-3975(97)00162-X
http://dx.doi.org/10.1145/6490.6503

724 Chapter 25 Computational Entropy

O. Goldreich, S. Micali, and A. Wigderson. 1991. Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):
690-728. DOI: 10.1145/116825.116852. 693

S. Goldwasser and S. Micali. 1984. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2): 270-299. DOI: 10.1016/0022-0000(84)90070-9. 693, 702

S. Goldwasser, S. Micali, and R. L. Rivest. 1988. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM journal on Computing, 17(2): 281-308.
Preliminary version in FOCS ’84. DOI: 10.1137/0217017. 693

I. Haitner and S. P. Vadhan. 2017. The many entropies in one-way functions. In Y. Lindell,
editor, Tutorials on the Foundations of Cryptography—Dedicated to Oded Goldreich,
pp. 159-217. Springer. Also posted as ECCC TR17-084. DOI: 10.1007/978-3-319-
57048-8_4. 695

I. Haitner, M. Nguyen, S. Ong, O. Reingold, and S. Vadhan. 2009a. Statistically hiding
commitments and statistical zero-knowledge arguments from any one-way function.
SIAM Journal on Computing, 39(3): 1153-1218. DOIL: 10.1137/080725404. 693, 694,
696, 718

I. Haitner, O. Reingold, S. Vadhan, and H. Wee. 2009b. Inaccessible entropy. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, pp. 611-620. ACM, New
York. DOI: 10.1145/1536414.1536497. 694, 695, 717, 719, 720

L. Haitner, T. Holenstein, O. Reingold, S. Vadhan, and H. Wee. 2010. Universal one-way hash
functions via inaccessible entropy. In Proceedings of the 29th Annual International
Conference on Theory and Applications of Cryptographic Techniques, EUROCRYPT ’10,
pp. 616-637. Springer-Verlag, Berlin. DOI: 10.1007/978-3-642-13190-5_31. 694

I. Haitner, O. Reingold, and S. Vadhan. 2013. Efficiency improvements in constructing
pseudorandom generators from one-way functions. SIAM Journal on Computing,
42(3): 1405-1430. DOIL: 10.1137/100814421. 694, 695, 705, 710, 714, 717

I. Haitner, K. Nissim, E. Omri, R. Shaltiel, and J. Silbak. 2018. Computational two-party
correlation: A dichotomy for key-agreement protocols. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science, pp. 136-147. DOIL: 10.1109/FOCS
.2018.00022. 695

J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. 1999. A pseudorandom generator from
any one-way function. SIAM journal on Computing, 28(4): 1364-1396. DOI: 10.1137/
$0097539793244708. 693, 694, 697, 700, 703, 704, 705, 706

T. Holenstein and R. Renner. 2011. On the randomness of independent experiments.
IEEE Transactions on Information Theory, 57(4): 1865-1871. DOI: 10.1109/TIT.2011
.2110230. 700, 701

C.-Y. Hsiao, C.-J. Lu, and L. Reyzin. 2007. Conditional computational entropy, or toward
separating pseudoentropy from compressibility. In M. Naor, editor, Advances in
Cryptology—EUROCRYPT 2007, pp. 169-186. Springer, Berlin. DOI: 10.1007/978-3-
540-72540-4_10. 706, 707, 708

http://dx.doi.org/10.1145/116825.116852
http://dx.doi.org/10.1016/0022-0000(84)90070-9
http://dx.doi.org/10.1137/0217017
http://dx.doi.org/10.1007/978-3-319-57048-8_4
http://dx.doi.org/10.1007/978-3-319-57048-8_4
http://dx.doi.org/10.1137/080725404
http://dx.doi.org/10.1145/1536414.1536497
http://dx.doi.org/10.1007/978-3-642-13190-5_31
http://dx.doi.org/10.1137/100814421
http://dx.doi.org/10.1109/FOCS.2018.00022
http://dx.doi.org/10.1109/FOCS.2018.00022
http://dx.doi.org/10.1137/S0097539793244708
http://dx.doi.org/10.1137/S0097539793244708
http://dx.doi.org/10.1109/TIT.2011.2110230
http://dx.doi.org/10.1109/TIT.2011.2110230
http://dx.doi.org/10.1007/978-3-540-72540-4_10
http://dx.doi.org/10.1007/978-3-540-72540-4_10

References 725

R. Impagliazzo. 1995. Hard-core distributions for somewhat hard problems. In 36th Annual
Symposium on Foundations of Computer Science, pp. 538-545. IEEE, Milwaukee. DOI:
10.1109/SFCS.1995.492584. 710

R. Impagliazzo and M. Luby. 1989. One-way functions are essential for complexity based
cryptography. In Proceedings of the 30th Annual Symposium on Foundations of Computer
Science, pp. 230-235. IEEE Computer Society, Washington, DC. DOI: 10.1109/SFCS
.1989.63483. 693

T. Itoh, Y. Ohta, and H. Shizuya. 1997. A language-dependent cryptographic primitive.
Journal of Cryptology, 10(1): 37-49. DOI: 10.1007/s001459900018. 696

A. R. Klivans and R. A. Servedio. 2003. Boosting and hard-core set construction. Machine
Learning, 51(3): 217-238. DOI: 10.1023/A:1022949332276. 710

D. Micciancio and S. Vadhan. 2003. Statistical zero-knowledge proofs with efficient provers:
Lattice problems and more. In D. Boneh, editor, Advances in Cryptology—CRYPTO ’03,
vol. 2729 of Lecture Notes in Computer Science, pp. 282-298. Springer-Verlag. DOI:
10.1007/978-3-540-45146-4_17. 696

I. Mironov, O. Pandey, O. Reingold, and S. Vadhan. 2009. Computational differential privacy.
In S. Halevi, editor, Advances in Cryptology—CRYPTO *09, vol. 5677, Lecture Notes in
Computer Science, pp. 126-142. Springer-Verlag. DOI: 10.1007/978-3-642-03356-8_8.
695

M. Naor. 1991. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):
151-158. DOI: 10.1007/BF00196774. 693, 718, 719

M. Naor and M. Yung. 1989. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the 21 st Annual ACM Symposium on Theory of Computing,
pp. 33-43. ACM, New York. DOI: 10.1145/73007.73011. 693, 694, 722

M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. 1998. Perfect zero-knowledge arguments
for NP using any one-way permutation. Journal of Cryptology, 11(2): 87-108. DOI: 10
.1007/s001459900037. 721

M. Nguyen and S. Vadhan. 2006. Zero knowledge with efficient provers. In Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, pp. 287-295. DOI: 10.1145/
1132516.1132559. 696

N. Nisan and D. Zuckerman. 1996. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1): 43-52. DOI: 10.1006/jcss.1996.0004. 697

S.J. Ong and S. Vadhan. 2007. Zero knowledge and soundness are symmetric. In M. Naor,
editor, Advances in Cryptology—EUROCRYPT ’07,vol. 4515, Lecture Notes in Computer
Science, pp. 187-209. Springer-Verlag. DOI: 10.1007/978-3-540-72540-4_11.pdf. 696

J. Radhakrishnan and A. Ta-Shma. 2000. Bounds for dispersers, extractors, and depth-two
superconcentrators. SIAM Journal on Discrete Mathematics, 13(1): 2-24, (electronic).
DOI: 10.1137/S0895480197329508. 698

0. Reingold, L. Trevisan, and S. Vadhan. 2004. Notions of reducibility between cryptographic
primitives. In M. Naor, editor, Proceedings of the First Theory of Cryptography

http://dx.doi.org/10.1109/SFCS.1995.492584
http://dx.doi.org/10.1109/SFCS.1989.63483
http://dx.doi.org/10.1109/SFCS.1989.63483
http://dx.doi.org/10.1007/s001459900018
http://dx.doi.org/10.1023/A:1022949332276
http://dx.doi.org/10.1007/978-3-540-45146-4_17
http://dx.doi.org/10.1007/978-3-642-03356-8_8
http://dx.doi.org/10.1007/BF00196774
http://dx.doi.org/10.1145/73007.73011
http://dx.doi.org/10.1007/s001459900037
http://dx.doi.org/10.1007/s001459900037
http://dx.doi.org/10.1145/1132516.1132559
http://dx.doi.org/10.1145/1132516.1132559
http://dx.doi.org/10.1006/jcss.1996.0004
http://dx.doi.org/10.1007/978-3-540-72540-4_11.pdf
http://dx.doi.org/10.1137/S0895480197329508

726 Chapter 25 Computational Entropy

Conference, TCC ’04,vol. 2951, Lecture Notes in Computer Science, pp. 1-20. Springer-
Verlag. DOI: 10.1007/978-3-540-24638-1_1. 703

R. Renner and S. Wolf. 2005. Simple and tight bounds for information reconciliation and
privacy amplification. In Proceedings of the 11th International Conference on Theory
and Application of Cryptology and Information Security, ASIACRYPT "05, pp. 199-216.
Springer-Verlag. DOI: 10.1007/11593447_11. 698

J. Rompel. 1990. One-way functions are necessary and sufficient for secure signatures. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pp. 387-394.
ACM, New York. DOI: 10.1145/100216.100269. 693, 694, 722

M. Skorski, A. Golovnev, and K. Pietrzak. 2015. Condensed unpredictability. In M. M.
Halldérsson, K. Iwama, N. Kobayashi, and B. Speckmann, editors, Automata,
Languages, and Programming, pp. 1046-1057. Springer. DOI: 10.1007/978-3-662-
47672-7_85.710

M. Sudan, L. Trevisan, and S. Vadhan. 2001. Pseudorandom generators without the XOR
lemma. Journal of Computer and System Sciences, 62: 236-266. 710

A. Ta-Shma and D. Zuckerman. 2004. Extractor codes. IEEE Transactions on Information
Theory, 50(12): 3015-3025. DOI: 10.1109/TIT.2004.838377. 708

L. Trevisan. 2001. Extractors and pseudorandom generators. Journal of the ACM, 48(4):
860-879 (electronic). DOI: 10.1145/502090.502099. 708

S.Vadhan and C. J. Zheng. 2012. Characterizing pseudoentropy and simplifying pseudoran-
dom generator constructions. In Proceedings of the 44th Annual ACM Symposium on
Theory of Computing, pp. 817-836. ACM, New York. DOI: 10.1145/2213977.2214051.
694, 695, 710, 712, 713, 715, 718

S. P. Vadhan. 1999. 4 Study of Statistical Zero-Knowledge Proofs. Ph.D. thesis, Massachusetts
Institute of Technology. 696

S. P. Vadhan. 2012. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3): 1-336. DOI: 10.1561/0400000010. 695, 698, 699, 708

A. C. Yao. 1982. Theory and application of trapdoor functions. In 23rd Annual Symposium
on Foundations of Computer Science, pp. 80-91. DOI: 10.1109/SFCS.1982.45. 693, 695,
702, 706

C. J. Zheng. 2014. A Uniform Min-Max Theorem and Characterizations of Computational
Randomness. Ph.D. thesis, Harvard University. http://nrs.harvard.edu/urn-3:HUL
InstRepos:11745716. 710

http://dx.doi.org/10.1007/978-3-540-24638-1_1
http://dx.doi.org/10.1007/11593447_11
http://dx.doi.org/10.1145/100216.100269
http://dx.doi.org/10.1007/978-3-662-47672-7_85
http://dx.doi.org/10.1007/978-3-662-47672-7_85
http://dx.doi.org/ 10.1109/TIT.2004.838377
http://dx.doi.org/10.1145/502090.502099
http://dx.doi.org/10.1145/2213977.2214051
http://dx.doi.org/10.1561/0400000010
http://dx.doi.org/10.1109/SFCS.1982.45
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11745716
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11745716

	Contents
	Preface
	Acknowledgments
	Photo and Text Credits
	PART I. BIOGRAPHIES, INTERVIEWS, AND AWARD LECTURES
	1. A Story Behind Every Problem: A Brief Biography of Shafi Goldwasser
	2. One Obsession at a Time: A Brief Biography of Silvio Micali
	3. An Interview with Shafi Goldwasser
	4. An Interview with Silvio Micali
	5. The Cryptographic Lens: Shafi Goldwasser’sTuring Lecture
	6. Proofs, According to Silvio: Silvio Micali’s Turing Lecture
	PART II. ORIGINAL PAPERS
	7. Probabilistic Encryption
	8. The Knowledge Complexity of Interactive Proof Systems
	9. How to Generate Cryptographically Strong Sequences of Pseudorandom Bits
	10. How to Construct Random Functions
	11. A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks
	12. Proofs that Yield Nothing but Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems
	13. How to Play Any Mental Game: A Completeness Theorem for Protocols with Honest Majority
	14. Non-Interactive Zero-Knowledge (NIZK) Proof Systems
	15. Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation
	16. Multi-Prover Interactive Proofs: How to Remove Intractability Assumptions
	PART III. PERSPECTIVES
	17. On the Foundations of Cryptography
	18. On the Impact of Cryptography on Complexity Theory
	19. On Some Noncryptographic Works of Goldwasser and Micali
	20. Fundamentals of Fully Homomorphic Encryption
	21. Interactive Proofs for Lattice Problems
	22. Following a Tangent of Proofs
	23. A Tutorial on Concurrent Zero-Knowledge
	24. Doubly Efficient Interactive Proofs
	25. Computational Entropy
	26. A Survey of Leakage-Resilient Cryptography
	Editor and Author Biographies

