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ABSTRACT
We identify a new class of vulnerabilities in implementations of

differential privacy. Specifically, they arise when computing basic

statistics such as sums, thanks to discrepancies between the imple-

mented arithmetic using finite data types (namely, ints or floats) and

idealized arithmetic over the reals or integers. These discrepancies

cause the sensitivity of the implemented statistics (i.e., how much

one individual’s data can affect the result) to be much larger than

the sensitivity we expect. Consequently, essentially all differential

privacy libraries fail to introduce enough noise to hide individual-

level information as required by differential privacy, and we show

that this may be exploited in realistic attacks on differentially pri-

vate query systems. In addition to presenting these vulnerabilities,

we also provide a number of solutions, which modify or constrain

the way in which the sum is implemented in order to recover the

idealized or near-idealized bounds on sensitivity.
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1 INTRODUCTION
Differential privacy (DP) [14] has become the prevailing framework

for protecting individual-level privacy when releasing statistics

or training machine learning models on sensitive datasets. It has

been the subject of a rich academic literature across many areas of

research, and has seen major deployments by the US Census Bu-

reau [34, 17, 2], Google [16, 4, 5, 6], Apple [44], Facebook/Meta [36,

23], Microsoft [11, 40], LinkedIn [41], and OhmConnect.
1
To facili-

tate the adoption of differential privacy, a number of researchers

and organizations have released open-source software tools for

differential privacy, starting with McSherry’s PINQ [35], and now

including libraries and systems from companies like Google [21],

Uber [29], IBM [26], and Facebook/Meta [48], and the open-source

projects OpenMined
2
and OpenDP [18].

However, implementing differential privacy correctly is subtle

and challenging. Previous works have identified and attempted to

address vulnerabilities in implementations of differential privacy

coming from side channels such as timing [22, 28] and the failure

to faithfully emulate the noise infusion mechanisms needed for

privacy when using floating-point arithmetic instead of idealized

real arithmetic [37, 27, 28].

In this work, we identify a new and arguably more basic class

of vulnerabilities in implementations of differential privacy. Specif-

ically, they arise when computing basic statistics such as sums,

thanks to discrepancies between the implemented arithmetic using

finite data types (namely, ints or floats) and idealized arithmetic

over the reals or integers. These discrepancies cause the sensitivity
of the implemented statistics — how much one individual’s data

can affect the result — to be much larger than the sensitivity we

expect. Consequently, essentially all differential privacy libraries

fail to introduce enough noise to hide individual-level information

as required by differential privacy, and we show that this may be

exploited in realistic attacks on differentially private query systems.

In addition to presenting these vulnerabilities, we also provide a

number of solutions, which modify or constrain the way in which

the sum is implemented in order to recover the idealized or near-

idealized bounds on sensitivity.

In this paper, we give an overview of our results. Precise defi-

nitions, proofs, and more details about the attack experiments are

1
https://edp.recurve.com/.

2
https://github.com/OpenMined/PyDP.
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provided in the full version of the paper, which can be found at

https://arxiv.org/abs/2207.10635 [10].

1.1 Differential Privacy
Informally, a randomized algorithm M is differentially private if
for every two datasets 𝑢,𝑢′ that differ on one individual’s data,

the probability distributions M(𝑢) and M(𝑢′) are close to each

other. Intuitively, this means that an adversary observing the output

cannot learn much about any individual, since what the adversary

sees is essentially the same as if that individual’s data were not

used.

To make the definition of differential privacy precise, we need

to specify both what it means for two datasets 𝑢 and 𝑢′ to “differ

on one individual’s data,” and how we measure the closeness of

probability distributions M(𝑢) and M(𝑢′). For the former, there

are two common choices in the differential privacy literature. In

one choice, we allow 𝑢′ to differ from 𝑢 by adding or removing

any one record; this is called unbounded differential privacy and

thus we denote this relation 𝑢 ≃unbdd 𝑢
′
. Alternatively, we can

allow 𝑢′ to differ from 𝑢 by changing any one record; this is called

bounded differential privacy and thus we will write 𝑢 ≃bdd 𝑢
′
. Note

that if 𝑢 ≃bdd 𝑢
′
, then 𝑢 and 𝑢′ necessarily have the same number

of records; thus, this is an appropriate definition when the size 𝑛

of the dataset is known and public. When 𝑢 ≃ 𝑢′ for whichever
relation we are using (≃bdd or ≃unbdd ), we call 𝑢 and 𝑢′ adjacent
with respect to ≃.

For measuring the closeness of the probability distributions

M(𝑢) andM(𝑢′), we use the standard definition of (𝜀, 𝛿)-differential
privacy [13], requiring that:

∀𝑇 Pr[M(𝑢) ∈ 𝑇 ] ≤ 𝑒𝜀 · Pr
[
M(𝑢′) ∈ 𝑇

]
+ 𝛿, (1)

where we quantify over all sets 𝑇 of possible outputs. There are

now a variety of other choices, like Concentrated DP [15, 8], Rényi

DP [38], and 𝑓 -DP [12]; our results are equally relevant to these

forms of DP, but we stick with the basic (𝜀, 𝛿) notion for simplicity.

If M satisfies (1) for all 𝑢,𝑢′ such that 𝑢 ≃ 𝑢′, then we say that

M is (𝜀, 𝛿)-DP with respect to ≃. If 𝛿 = 0, we say M is 𝜀-DP with
respect to ≃. Intuitively, 𝜀 measures privacy loss of the mechanism

M, whereas 𝛿 bounds the probability of failing to limit privacy loss

to 𝜀 (so we typically take 𝛿 to be cryptographically small).

The fundamental building block of most differentially private

algorithms is noise addition calibrated to the sensitivity of a function
𝑓 that we wish to estimate.

Definition 1.1 (Sensitivity). Let 𝑓 be a real-valued function on

datasets, and ≃ a relation on datasets. The (global) sensitivity of 𝑓

with respect to ≃ is defined to be:

Δ≃ 𝑓 = sup

𝑢≃𝑢′
|𝑓 (𝑢) − 𝑓 (𝑢′) |.

Theorem 1.2 (Laplace Mechanism [14]). For every function 𝑓
and relation ≃ on datasets, the mechanism

M(𝑢) = 𝑓 (𝑢) + Lap

(
Δ≃ 𝑓
𝜀

)
is 𝜀-DP, where Lap(𝑠) denotes a draw from a Laplace random variable
with scale parameter 𝑠 .

There are a number of other choices for the noise distribution,

leading to the Discrete Laplace (a.k.a., Geometric) Mechanism [20],

the Gaussian Mechanism [39], and the Discrete Gaussian Mecha-

nism [9], where the latter two achieve (𝜀, 𝛿)-DP with 𝛿 > 0. The key

point for us is that in all cases, the scale or standard deviation of the

noise is supposed to grow linearly with the sensitivity Δ≃ 𝑓 , so it is

crucial that the sensitivity is calculated correctly. If we incorrectly

underestimate the sensitivity as Δ = (Δ≃ 𝑓 )/𝑐 for a large constant
𝑐 , then we will only achieve 𝑐𝜀-DP; that is, our privacy loss will be

much larger than expected. Given that it is common to use privacy

loss parameters like 𝜀 = 1 or 𝜀 = 0.5, a factor of 5 or 10 increase in

the privacy-loss parameter can have dramatic effects on the privacy

protection (since 𝑒5 > 148, allowing a huge difference between the

probability distributions M(𝑢) and M(𝑢′)).
The most widely used function 𝑓 in DP noise addition mecha-

nisms is the Bounded Sum function.

Definition 1.3 (Bounded Sum). For real numbers 𝐿 ≤ 𝑈 , and a

dataset 𝑣 consisting of elements of the interval [𝐿,𝑈 ], we define
the Bounded Sum function on 𝑣 to be:

BS𝐿,𝑈 (𝑣) =
len(𝑣)∑︁
𝑖=1

𝑣𝑖 .

The restriction of BS𝐿,𝑈 to datasets 𝑣 of length 𝑛 is denoted BS𝐿,𝑈 ,𝑛 .
When we do not constrain the data to lie in [𝐿,𝑈 ], we omit the

subscripts.

Typically, the bounds 𝐿 and𝑈 are enforced on the dataset 𝑣 via

a record-by-record clamping operation. To avoid the extra notation

of the clamp operation, throughout we will work with datasets that

are assumed to already lie within the bounds.

It is well-known and straightforward to calculate the sensitivity

of Bounded Sum.

Proposition 1.4. BS𝐿,𝑈 has sensitivitymax{|𝐿 |, |𝑈 |} with respect
to ≃unbdd , and BS𝐿,𝑈 ,𝑛 has sensitivity𝑈 − 𝐿 with respect to ≃bdd .

Combining Proposition 1.4 and Theorem 1.2 (or analogs for other

noise distributions), we obtain a differentially private algorithm

for approximating bounded sums, which we will refer to as Noisy
Bounded Sum. This algorithm is pervasive throughout both the

differential privacy literature and software. Many more complex

statistical analyses can be decomposed into bounded sums, and

any machine learning algorithm that can be described in Kearns’

Statistical Query model [32] can be made DP using Noisy Bounded

Sum. Indeed, the versatility of noisy sums was the basis of the

SuLQ privacy framework [7], which was a precursor to the formal

definition of differential privacy. Noisy Bounded Sum is also at the

heart of differentially private deep learning [1], as each iteration of

(stochastic) gradient descent amounts to approximating a sum (or

average) of gradients. For this reason, every software package for

differential privacy that we are aware of supports computing noisy

bounded sums via noise addition.

1.2 Previous Research
Despite their simplicity, Noisy Bounded Sum and related differen-

tially private algorithms are surprisingly difficult to implement in

a way that maintains the desired privacy guarantees.
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In the early days of implementing differential privacy, several

challenges were pointed out by Haeberlen, Pierce, and Narayan [22].

Their attacks concern not the Bounded Sum function itself, but

dataset transformations that are applied before the Bounded Sum

function. In a typical usage, Bounded Sum is not directly applied to

a dataset 𝑢 = [𝑢1, . . . , 𝑢𝑛], but rather to the dataset

𝑞(𝑢) def= [𝑞(𝑢1), 𝑞(𝑢2), . . . , 𝑞(𝑢𝑛)]

where 𝑞 is a “microquery” mapping records to the interval [𝐿,𝑈 ].
(We can incorporate the clamping into 𝑞.) If 𝑢 ≃ 𝑢′, then 𝑞(𝑢) ≃
𝑞(𝑢′), so we if we apply Noisy Bounded Sum (or any other differ-

entially private algorithm) to the transformed dataset, we should

still satisfy differential privacy with respect to the original dataset

𝑢. Haeberlen et al.’s attacks rely on a discrepancy between this

mathematical abstraction and implementations. In code, 𝑞 may not

be a pure function, and may be able to access global state (allowing

information to flow from the execution of 𝑞(𝑢𝑖 ) to the execution

of 𝑞(𝑢 𝑗 ) for 𝑗 > 𝑖) or leak information to the analyst through side

channels (such as timing). The authors of the main differentially pri-

vate systems at the time, PINQ [35] and Airavat [42], were aware of

and noted the possibility of such attacks, but the implemented soft-

ware prototypes did not fully protect against them. As discussed in

[35, 42, 22], remedies for attacks like these include using a domain-

specific language for the microquery 𝑞 to ensure that it is a pure

function and enforcing constant-time execution for 𝑞(𝑢).
At the other end of the DP pipeline (after the calculation of

Bounded Sum), the seminal work of Mironov [37] demonstrated

vulnerabilities coming from the noise addition step. Specifically,

the Laplace distribution in Theorem 1.2 is a continuous distribution

on the real numbers, but computers cannot manipulate arbitrary

real numbers. Typical implementations approximate real numbers

using finite-precision floating-point numbers, and Mironov shows

that these approximations can lead to complete failure of the dif-

ferential privacy property. To remedy this, Mironov proposed the

Snapping Mechanism, which adds a sufficiently coarse rounding

and clamping after the Laplace Mechanism to recover differential

privacy with a slightly larger value of 𝜀. Subsequent works [19, 3, 9]

avoided floating-point arithmetic, advocating for and studying the

use of exact finite-precision arithmetic (e.g., using big integers) and

using discrete noise distributions, such as the discrete Laplace dis-

tribution [20] and the discrete Gaussian distribution [9]. However,

a recent paper by Jin et al. [28] shows that current implementations

of the discrete distribution samplers are vulnerable to timing at-

tacks (which leak information about the generated noise value and

hence of the function value it was meant to obscure). They, as well

as [25], also show that the floating-point implementations of the

continuous Gaussian Mechanism are vulnerable to similar attacks

as those shown by Mironov [37] for the Laplace Mechanism.

Ilvento [27] studies the effect of floating-point approximations on

another important DP building block, the Exponential Mechanism.

On a dataset 𝑢, the exponential mechanism samples an outcome 𝑦

from a finite set Y of choices with probability 𝑝𝑦 (𝑢) proportional
to exp

(
𝜀 𝑓𝑦 (𝑢)/(2max𝑦 Δ≃ 𝑓𝑦)

)
, where 𝑓𝑦 (𝑢) is an arbitrary mea-

sure of the “quality” of outcome 𝑦 for dataset 𝑢. She shows that the

discrepancy between floating-point and real arithmetic can lead

to incorrectly converting the quality scores 𝑓𝑦 (𝑢) into the prob-

abilities 𝑝𝑦 (𝑢) and hence violate differential privacy. To remedy

this, Ilvento proposes an exact implementation of the Exponential

Mechanism using finite-precision base 2 arithmetic. Note that, like

noise addition mechanisms, the Exponential Mechanism also is cal-

ibrated to the sensitivities Δ≃ 𝑓𝑦 of the quality functions. Here too,

if we underestimate the sensitivity by a factor of 𝑐 , our privacy loss

can be greater than intended by a factor of 𝑐 , even if we perfectly

implement the sampling or noise generation step.

Indeed, Mironov’s paper [37] also suggests that sensitivity calcu-

lations may fail to translate from idealized, real-number arithmetic

to implemented, floating-point arithmetic. He gives an example of

two datasets 𝑢 ≃bdd 𝑢
′
of 64-bit floating-point numbers such that

|BS(𝑢) −BS(𝑢′) | = 1 but |BS∗ (𝑢) −BS∗ (𝑢′) | = 129, where BS∗ is the
standard, iterative implementation of summation of floating-point

numbers, illustrated in Figure 1.

1 def iterated_sum(u):
2 the_sum = 0
3 for element in u:
4 the_sum += element
5 return the_sum

Figure 1: Iterated Summation.

However, Mironov’s example does not immediately lead to an

underestimation of sensitivity, because the datasets 𝑢 and 𝑢′ in-
clude values ranging from 𝐿 = −2−23 to 𝑈 = 2

30
, so the idealized

sensitivity suggested by Proposition 1.4 is 𝑈 − 𝐿 > 2
30 ≫ 129.

3

Mironov’s paper suggests that these potential sensitivity issues may

be addressed by replacing Iterated Summation by a Kahan Summa-
tion [31], a different way of summing floating-point numbers that

accumulates rounding errors more slowly. Unfortunately, this sec-

tion of Mironov’s paper seems to have gone mostly unnoticed, and

we are not aware of any prior work that has addressed the question

of how to correctly bound and control sensitivity in finite-precision

implementations of differential privacy.

1.3 Our Contributions
In our work, we identify new privacy vulnerabilities arising from

underestimation of the sensitivity of the Bounded Sum function

when implemented using finite data types, including 32-bit and

64-bit integers and floats. Specifically, implementations of Bounded

Sum often have sensitivities much larger than the idealized sensitiv-

ity given by Proposition 1.4, and consequently the privacy loss of

DP mechanisms using Bounded Sum is much larger than specified.

Thus, our work covers vulnerabilities arising from the “middle step”

of the DP pipeline — aggregation — sitting between the foci of pre-

vious work, which considered vulnerabilities in the preprocessing

3
As pointed out in Mironov’s paper, this example does demonstrate an underestimation

of sensitivity by a factor of 129 if we define 𝑢 ≃ 𝑢′ to mean that 𝑢 and 𝑢′ agree on
all but one coordinate and they differ by at most 1 on that coordinate. This notion of

dataset adjacency is common in the DP literature when 𝑢 and 𝑢′ represent datasets
in histogram format, where 𝑢𝑖 is the number of individuals of type 𝑖 (rather than

individual 𝑖’s data). However, in this case, the 𝑢𝑖 ’s would be nonnegative integers (so

this example would not be possible) and it would be strange to use a floating-point

data type.
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Figure 2: Illustration of the DP pipeline and the relationship
between this paper and previous works uncovering vulnera-
bilities of DP implementations.

step before aggregation and the noise generation/sampling step

after aggregation (see Figure 2).

In addition to describing the vulnerabilities that emerge due to

sensitivity underestimation in essentially all libraries of DP func-

tions and showing how to exploit them, we describe several solu-

tions that recover the idealized or near-idealized bounds on sensi-

tivity. Many of our solutions only require small modifications to

current code.

1.4 Finite-precision Arithmetic in DP Libraries
Before describing our results in more detail, we summarize how ex-

isting implementations of differential privacy address arithmetic is-

sues (at the time of our work, prior to fixes implemented in response

to our paper). A more complete description of these libraries can

be found in the full version of the paper [10]. All current DP imple-

mentations make use of the finite-precision data types (e.g., 32-bit

or 64-bit ints or floats) to which our attacks apply. Some of the li-

braries attempt to address the vulnerabilities uncovered by Mironov

at the noise addition step [37]. For example, Google’s DP library

[47] includes sampling algorithms for floating-point approxima-

tions to the Laplace and Gaussian distributions (based on Mironov’s

Snapping Mechanism) which they claim circumvent problems with

naïve floating-point implementations.
4
IBM’s diffprivlib [26]

samples a floating-point approximation to the Laplace distribu-

tion using the method described in Holohan and Braghin [25]. The

OpenDP Library acknowledges
5
the floating point vulnerabilities

discovered by Mironov, and users have access to floating-point

mechanisms only if the ‘contrib’ compilation flag is turned on

to allow components that do not have verified proofs.

Indeed, our work can be seen as following the call of the OpenDP

Programming Framework paper [18], which says that “any devi-

ations from standard arithmetic (e.g., overflow of floating-point

arithmetic) should be explicitly modelled in the privacy analysis.”

(The paper [18] goes further and advocates the use of fixed-point

and integer arithmetic as much as possible. We believe that aban-

doning floating-point arithmetic entirely may have a significant

usability cost, so we consider both solutions that operate only on

floating-point numbers and solutions that reduce floating-point

summation to integer summation.)

4
https://github.com/google/differential-privacy/blob/main/common_docs/Secure_N

oise_Generation.pdf.

5
https://docs.opendp.org/en/stable/user/measurement-constructors.html#floating-

point

In other DP software (e.g., Opacus [1], Chorus [30], Airavat [42],

PINQ [35]), we did not find any mention of potential issues or

solutions for floating-point computations.

All of the libraries we studied scale noise according to the ideal-

ized sensitivity of the Bounded Sum function (Proposition 1.4):

• Unbounded DP: Google’s sum function, SmartNoise’s sum

function, Opacus, and Airavat [42, §4.1].

• Bounded DP: IBM diffprivlib’s sum and mean, Google’s

mean, Chorus [30, §3] and SmartNoise’s sized sum function.

All of these libraries underestimate the sensitivity of the imple-

mented Bounded Sum function, for both integer and floating-point

data types, and thus are vulnerable to our attacks. We remark that

carrying out our attacks in practice (to extract sensitive individ-

ual information from real-life datasets) does seem to require an

adversary to carefully choose a microquery/row-transform 𝑞 (see

Figure 2), so these vulnerabilities are more of an immediate threat

when the DP software is used as part of an interactive query system

rather than for noninteractive data releases. However, the fact that

the DP guarantee fails raises the possibility of other attacks, which

may not require interactive queries; this possibility can be avoided

by implementing one of our solutions to recover a correct proof of

differential privacy.

1.5 Organization
In Section 2, we present the necessary notation for the paper. We

present an overview of the attacks that yield the sensitivity lower

bounds for both bounded and unbounded DP in Section 3. We

identify four different types of vulnerabilities: overflow, rounding,

repeated rounding, and reordering. In Section 4 we show how these

attacks can be carried out on the main existing DP libraries. Lastly,

in Section 5 we summarize the different solutions that we propose

to fix these vulnerabilities: dataset adjacency relations, random

permutations, checking or bounding parameters, truncated summa-

tion, split summation, sensitivity from accuracy, shifting bounds,

and reducing floats to ints. In Section 6 we propose a roadmap for

DP libraries with recommendations on how to best prioritize and

implement our solutions.

The full version of the paper [10] contains a more complete

presentation of preliminaries; formal theorem statements, proofs,

and further examples of vulnerabilities; and detailed descriptions

of solutions and their associated proofs.

2 BASIC NOTATION
Throughout, we will write 𝑇 for a finite numerical data type. We

think of 𝑇 ⊆ R, but adding two elements 𝑎, 𝑏 of 𝑇 can yield a

number outside of𝑇 , so the overflow mode and/or rounding mode of
𝑇 determine the result of the computation 𝑎 + 𝑏. For 𝐿,𝑈 ∈ 𝑇 with

𝐿 ≤ 𝑈 , we write 𝑇[𝐿,𝑈 ] = {𝑥 ∈ 𝑇 : 𝐿 ≤ 𝑥 ≤ 𝑈 }. We will consider

various implementations of the Bounded Sum function BS∗
𝐿,𝑈

and

BS∗
𝐿,𝑈 ,𝑛

on datasets consisting of elements of 𝑇[𝐿,𝑈 ] . Except when
otherwise stated, BS∗ will use the standard Iterated Summation

method from Figure 1. In such a case, the functions BS∗
𝐿,𝑈

and

BS∗
𝐿,𝑈 ,𝑛

and their sensitivities are completely determined by the

choice of overflow and/or rounding modes.

The data types𝑇 we will consider in the paper are the following:
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• 𝑘-bit unsigned integers, whose elements are {0, 1, . . . , 2𝑘 −1}.
Standard choices are 𝑘 = 32 and 𝑘 = 64.

• 𝑘-bit signed integers, whose elements are {−2𝑘−1,−2𝑘−1 +
1, . . . ,−1, 0, 1, . . . , 2𝑘−1 − 1}. Standard choices are 𝑘 = 32 and

𝑘 = 64.

• (𝑘, ℓ)-bit (normal) floats, which are represented in binary

scientific notation as (−1)𝑠 · (1.𝑀) · 2𝐸 with a 𝑘-bit mantissa

𝑀 and an exponent 𝐸 ∈ [−(2−ℓ−1 − 2), 2ℓ−1 − 1].6 In 32-bit

floats (“singles”), we have 𝑘 = 23 and ℓ = 8; and in 64-bit

floats (“doubles) we have 𝑘 = 52 and ℓ = 11. In machine

learning applications, it is sometimes common to use even

lower-precision floating-point numbers for efficiency, such

as 𝑘 = 7 and ℓ = 8 in Google’s bfloat16 [45].

We find that for these data types, the implemented sensitivity of

Bounded Sum can be much larger than the idealized sensitivity for

several reasons, described in the section below.

3 SENSITIVITY LOWER BOUNDS
More rigorous proofs of the lower bounds on sensitivity described

in this section can be found in the full version of the paper [10].

Overflow. The default way of dealing with overflow in 𝑘-bit

integers𝑇 (signed or unsigned) is wraparound, i.e., the result is com-

puted modulo 2
𝑘
. It is immediately apparent how this phenomenon

can lead to large sensitivity. If the idealized sum on one dataset 𝑢

equals the largest element of 𝑇 , call it max(𝑇 ), and on an adjacent

dataset 𝑢′ equals max(𝑇 ) + 1, then modular arithmetic will yield

results that differ by 2
𝑘 − 1. If our parameter settings allow for us

to construct two such datasets, then the implemented sensitivity of

Bounded Sum will be 2
𝑘 − 1, a completely useless bound because

every two numbers of type 𝑇 differ by at most 2
𝑘 − 1.

In the case of bounded DP on datasets of size 𝑛, we can construct

two such datasets 𝑢 and 𝑢′ if 𝑛 · (𝑈 − 𝐿) ≥ 2
𝑘
. As one example of

such a pair, consider the following datasets 𝑢 and 𝑢′ of unsigned

ints 𝑇 , where we have 𝐿 ≤ 0,𝑈 > 0, and set 𝑛 =

⌈
max(𝑇 )
𝑈

⌉
+ 1. Let

𝑀 = max(𝑇 ) − (𝑛 − 2) ·𝑈 . Then, set 𝑢 = [𝑈1, . . . ,𝑈𝑛−2, 𝑀, 0], and
𝑢′ = [𝑈1, . . . ,𝑈𝑛−2, 𝑀, 1], where𝑈𝑖 = 𝑈 for all 𝑖 .

Then, BS𝐿,𝑈 (𝑢) = max(𝑇 ), and BS𝐿,𝑈 (𝑢′) = max(𝑇 ) + 1, since

𝑀 = max(𝑇 ) − (𝑛 − 2) · 𝑈 . But because we are using modular

arithmetic, we need to evaluate both sums modulo 2
𝑘
, in which

case BS∗
𝐿,𝑈

(𝑢) = max(𝑇 ), but BS∗
𝐿,𝑈

(𝑢′) = (max(𝑇 )+1) mod 2
𝑘 =

min(𝑇 ). Hence, |BS∗
𝐿,𝑈

(𝑢)−BS∗
𝐿,𝑈

(𝑢′) | = max(𝑇 )−min(𝑇 ) = 2
𝑘−1.

However, because 𝑢 ≃bdd 𝑢
′
, the idealized sensitivity is 𝑈 − 𝐿.

When working with the type𝑇 of 64-bit unsigned ints, by setting

𝐿 = 0,𝑈 = 2
47
, and 𝑛 = ⌈max(𝑇 )/𝑈 ⌉ + 1 = 2

17 + 1, we get a

difference in sums of 2
64 − 1, which is more than a factor of 2

16

larger than these idealized sensitivities. This means, then, that a DP

mechanism that claims to offer 𝜀-DP here but calibrates its random

distribution to the idealized sensitivity would instead offer no better

than 2
16𝜀-DP.

In practice, while 𝑛 may be modest (e.g., 𝑛 = 2
15
) and much

smaller than 2
𝑘
, the bounds 𝑈 and 𝐿 are typically user-specified

6
Note that there are only 2

ℓ − 2 choices for 𝐸. The remaining choices are used to

represent subnormal floats, as well as ±∞, and NaN. For simplicity, we only consider

normal floats here; the full set of (𝑘, ℓ )-bit floats is considered in the full version of

the paper [10].

parameters. More generally, for example, we can set 𝐿 = 0 and

𝑈 = ⌈2𝑘/𝑛⌉, and we get a sensitivity that is roughly a factor of 𝑛

larger than the idealized sensitivity 𝑈 − 𝐿.
In the case of unbounded DP, 𝑛 is unconstrained, so we always

get an implemented sensitivity of 2
𝑘 − 1, provided that 𝑈 > 𝐿.

Specifically, there are datasets 𝑢 and 𝑢′ of size at most 𝑛 = ⌈2𝑘/𝑈 ⌉
such that 𝑢 ≃unbdd 𝑢

′
and |BS∗

𝐿,𝑈
(𝑢) − BS∗

𝐿,𝑈
(𝑢′) | = 2

𝑘 − 1. Again,

we get a blow-up in sensitivity of roughly a factor of 𝑛. For example,

datasets 𝑢 = [𝑈1, . . . ,𝑈𝑛−2, 𝑀] and 𝑢′ = [𝑈1, . . . ,𝑈𝑛−2, 𝑀, 1] are
adjacent with respect to ≃unbdd . However, we again obtain that

|BS∗
𝐿,𝑈

(𝑢) − BS∗
𝐿,𝑈

(𝑢′) | = max(𝑇 ) − min(𝑇 ) = 2
𝑘 − 1, which is

much greater than the idealized sensitivity max{|𝐿 |, |𝑈 |}.
Overflow also arises with floating-point arithmetic (leading to

results that are ±∞), but the semantics of arithmetic with ±∞ are

not clearly defined in the IEEE standard, and we consider it better

to avoid this possibility entirely (as discussed in our solutions in

Section 5).

Rounding. When adding two floating-point numbers, the result

may not be exactly representable as a float, but may lie strictly

between two adjacent floats. Thus, the actual result is determined by

the rounding mode. The standard, called banker’s rounding, rounds
the result to the nearest float, breaking ties by rounding to the float

whose mantissa has least-significant bit 0. By inspection, when we

round a real number 𝑧 to a (𝑘, ℓ)-bit float BRound(𝑧), the relative
effect is minimal. Specifically, |BRound(𝑧) − 𝑧 | ≤ |𝑧 |/2𝑘+1.

This may have led to an incorrect impression that floating-point

arithmetic is “close enough” to idealized real arithmetic to not cause

a significant increase in sensitivity. Unfortunately, we find that this

is not the case.

In the case of bounded DP, even a single rounding can cause a

substantial blow-up in sensitivity, as we illustrate with the following

example. Let 𝑄 be a float which is a power of 2, and let 𝑛 − 1 be a

power of 2 between 2 and 2
𝑘
. Then, we take

𝐿 =

(
1 + 𝑛 − 1

2
𝑘+1

)
·𝑄,

𝑈 =

(
1 + 𝑛 + 1

2
𝑘+1

)
·𝑄.

Thus, 𝐿 and 𝑈 are both very close to 𝑄 , but their difference is

only 𝑈 − 𝐿 = 𝑄/2𝑘 . Our datasets 𝑢 and 𝑢′ will both begin with

𝑛 − 1 copies of 𝐿. The iterated sum of these first 𝑛 − 1 elements

experiences no rounding, given that all intermediate sums can

be represented exactly as (𝑘, ℓ)-bit floats; this is because all these
intermediate sums are multiples of 2 raised to the exponent of

the floating-point value used to represent these sums, divided by

2
𝑘
. The resulting sum of these (𝑛 − 1) terms is a floating-point

number with exponent log
2
((𝑛− 1)𝑄) (since (𝑛− 1)𝐿 < 2(𝑛− 1)𝑄).

Thus, the space between adjacent floating-point numbers after this

iterated sum is (𝑛 − 1)𝑄/2𝑘 . Hence, when we add one more copy

of 𝐿 to obtain BS∗ (𝑢), the result will lie exactly halfway between

two adjacent floats (since 𝐿 is an odd multiple of (𝑛 − 1)𝑄/2𝑘+1),
and by banker’s rounding, will get rounded down. On the other

hand, when we add a copy of 𝑈 to calculate BS∗ (𝑢′), BS(𝑢′) will
lie between the same adjacent floats as BS(𝑢), but, by banker’s

rounding, the result will be rounded up. The effect of these two
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roundings gives us:

BS∗ (𝑢′) − BS∗ (𝑢) = 2

𝑛 − 1

2
𝑘+1 ·𝑄 = (𝑛 − 1) · (𝑈 − 𝐿) .

In contrast, the idealized sensitivity with respect to ≃bdd is

(𝑈 − 𝐿), so the sensitivity blows up by a factor of (𝑛 − 1), which
is dramatic even for very small datasets. We also show that this

construction applies to Kahan summation (contrary to Mironov’s

hope that it would salvage the sensitivity) and pairwise summa-

tion (another common method — the default in numpy — where the

values are added in a binary tree). Intuitively, this counterexam-

ple applies to Kahan summation and pairwise summation because

it does not rely on accumulated error (against which Kahan and

pairwise summation could protect), but on the error inherent to

rounding the sum to a 𝑘-bit float.

Repeated Rounding. The above example does not give anything

interesting for unbounded DP, since the idealized sensitivity is

max{|𝐿 |, |𝑈 |}, and BS∗ (𝑢′) − BS∗ (𝑢) ≤ 𝑄 < 𝑈 . However, we can

obtain a sensitivity blow-up by exploiting the accumulated effect

of repeated rounding. Consider a dataset whose first (𝑛/2) elements

are𝑈 . After that, each rounding can have the effect of increasing

the sum by Θ(𝑛𝑈 /2𝑘 ), for a total rounding error of Θ(𝑛2𝑈 )/2𝑘 . We

show how to exploit this phenomenon to construct two datasets

𝑢 ≃unbdd 𝑢
′
which differ on their middle element such that���BS∗𝐿,𝑈 (𝑢) − BS∗𝐿,𝑈 (𝑢′)

��� ≥ (
1 + Ω

(
𝑛2

2
𝑘

))
·𝑈 .

Thus, the sensitivity blows up by a factor of Θ(𝑛2/2𝑘 ). This allows
us to exhibit a sensitivity blow-up with datasets of size 𝑛 = Θ(2𝑘/2),
which are plausible even for 64-bit floats (where 𝑘 = 52) and quite

easy to obtain for 32-bit and lower-precision floats.

This implemented sensitivity can be obtained with the following

two datasets. Let𝑈 be a power of 2,𝑚 an integer power of 2,𝑛 = 2𝑚,

and

𝐿 = −
(
𝑈 ·𝑚
2
𝑘

)
·
(
1

2

− 1

2
𝑘

)
.

Additionally, let

𝑢 = [𝑈1, . . . ,𝑈𝑚, 𝑥1, 𝐿2, 𝑥3, 𝐿4, . . . , 𝑥𝑚−1, 𝐿𝑚],

𝑢′ = [𝑈1, . . . ,𝑈𝑚−1, 𝑥1, 𝐿2, 𝑥3, 𝐿4, . . . , 𝑥𝑚−1, 𝐿𝑚],
where𝑈𝑖 = 𝑈 , 𝐿𝑖 = 𝐿, and 𝑥𝑖 = 𝑥 for all 𝑖 , and

𝑥 =

(
𝑈 ·𝑚
2
𝑘

)
·
(
1

2

+ 1

2
𝑘

)
.

Note that𝑢 and𝑢′ are equivalent with the exception that𝑢′ contains
𝑚 − 1 copies of𝑈 rather than𝑚 copies of𝑈 , so 𝑢 ≃unbdd 𝑢

′
. All in-

termediate sums computed in the calculation of BS∗
𝐿,𝑈

[𝑈1, . . . ,𝑈𝑚]
can be represented exactly as (𝑘, ℓ)-bit floats; this is because all

these intermediate sums are multiples of 2 raised to the exponent

of the floating-point value used to represent these sums, divided by

2
𝑘
. The ability to represent these intermediate sums exactly implies

that

BS∗𝐿,𝑈 [𝑈1, . . . ,𝑈𝑚−1] = BS𝐿,𝑈 [𝑈1, . . . ,𝑈𝑚−1] = (𝑚 − 1) ·𝑈

and

BS∗𝐿,𝑈 [𝑈1, . . . ,𝑈𝑚] = BS𝐿,𝑈 [𝑈1, . . . ,𝑈𝑚] =𝑚 ·𝑈 .

However, BS𝐿,𝑈 [𝑈1, . . . ,𝑈𝑚, 𝑥] =𝑚 ·𝑈 + 𝑥 is not exactly repre-

sentable as a (𝑘, ℓ)-bit float and will be rounded up to𝑚 ·𝑈 +𝑚𝑈 /2𝑘 .
Continuing with the computation of BS∗

𝐿,𝑈
(𝑢), when we add 𝐿, the

resulting sum is not large enough to escape rounding down by

banker’s rounding. The same reasoning applies to all subsequent

additions of 𝑥 and 𝐿, where adding 𝑥 has the effect of adding𝑚𝑈 /2𝑘
and adding 𝐿 has the effect of adding 0. This yields a total sum of

BS∗𝐿,𝑈 (𝑢) =𝑚 ·𝑈 + 𝑚
2 ·𝑈
2
𝑘+1 .

In the case of 𝑢′, we have one less 𝑈 term, so we consider the

sum BS𝐿,𝑈 [𝑈1, . . . ,𝑈𝑚−1, 𝑥] = (𝑚 − 1) · 𝑈 + 𝑥 . This is again not

a representable (𝑘, ℓ)-bit float, and so BS∗
𝐿,𝑈

[𝑈1, . . . ,𝑈𝑚−1, 𝑥] =

(𝑚−1) ·𝑈 + (𝑚−1)𝑈 /2𝑘 . When we add 𝐿, the closest representable

float to the sum is (𝑚 − 1) ·𝑈 , and so by banker’s rounding the sum

gets rounded down to this value. Then, for 𝑢′, adding 𝑥 and 𝐿 in

succession has the effect of adding 0. In total, this yields

BS∗𝐿,𝑈 (𝑢′) = (𝑚 − 1) ·𝑈 .

Therefore,

|BS∗𝐿,𝑈 (𝑢) − BS∗𝐿,𝑈 (𝑢′) | = 𝑚2 ·𝑈
2
𝑘+1 +𝑈 =

𝑛2 ·𝑈
2
𝑘+3 +𝑈 ,

since 𝑛 = 2𝑚. This is a factor 𝑛2/2𝑘+3 + 1 larger than the idealized

sensitivity max{|𝐿 |, |𝑈 |} = 𝑈 .

By setting 𝑘 = 52 (as is the case for 64-bit floats), 𝐿 = −2−23 ·
( 1
2
+ 2

−52), 𝑈 = 1, and 𝑛 = 2
30
, we get a difference in sums of

2
5 +𝑈 = 33, which is a factor 33 larger than the idealized sensitivity

max{|𝐿 |, |𝑈 |} = 1.

Reordering. Finally, we exhibit potential vulnerabilities based on

ambiguity about whether datasets are ordered or unordered. In the

DP theory literature, datasets are typically considered unordered

(i.e., multisets) when using unbounded DP. (Indeed, adjacency is

often described by requiring that that the symmetric difference be-
tween the multisets 𝑢 and 𝑢′ has size at most 1, or by requiring that

the histograms of 𝑢 and 𝑢′ have ℓ1 distance at most 1.) On the other

hand, when using bounded DP, it is common to denote datasets as

ordered 𝑛-tuples. (Indeed, adjacency is often described by requiring

that the Hamming distance between the 𝑛-tuples is at most 1.) Most

implementations of DP are not explicit about these choices, but the

wording in the documentation suggests the same conventions (e.g.,

see Section 1.3 in [47]).

In theory, the distinction does not matter much, because most of

the functions we compute (such as Bounded Sum) are symmetric

functions and do not depend on the ordering.

However, when implementing these functions using finite data

types, the ordering can matter a great deal. Indeed, we show that

there are datasets 𝑢 and 𝑢′ where 𝑢′ is a permutation of 𝑢 (so define

exactly the same multisets) but���BS∗𝐿,𝑈 (𝑢) − BS∗𝐿,𝑈 (𝑢′)
��� ≥ (

1 + Ω

(
𝑛2

2
𝑘

))
·𝑈 .

That is, we can obtain the same kind of blow-ups in sensitivity

that we obtained due to rounding by instead just reordering the

dataset. (Our rounding attacks preserved order, i.e., we obtained

𝑢′ by either changing one element of the ordered tuple 𝑢, or by
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inserting/deleting one element of 𝑢 without changing the other

elements.)

This implemented sensitivity can be obtained with the following

two datasets. Let 𝐿 = 2
𝑗
for some integer 𝑗 , let𝑈 = 2

𝑗+1
, and let

𝑢 = [𝐿1, . . . , 𝐿2(𝑘+1) ,𝑈1, . . . ,𝑈2
𝑘 ],

𝑢′ = [𝑈1, . . . ,𝑈2
𝑘 , 𝐿1, . . . , 𝐿2(𝑘+1) ] .

Note that 𝑢′ is a permutation of 𝑢. The first 2𝑘+1 terms of 𝑢 can be

added exactly; i.e.,

BS∗𝐿,𝑈 [𝐿1, . . . , 𝐿2(𝑘+1) ] = 2
𝑘+1 · 𝐿.

The next 2
𝑘
terms of 𝑢 can also be added exactly, and so

BS∗𝐿,𝑈 (𝑢) = 2
𝑘+1 · 𝐿 + 2

𝑘 ·𝑈 .

Likewise, the first 2
𝑘
terms of 𝑢′ can be added exactly, and hence

BS∗
𝐿,𝑈

(𝑢′) = 2
𝑘 ·𝑈 . However, the addition of the next 2

𝑘+1 𝐿 terms

to 𝑢′ yield intermediate sums which are not representable exactly
as (𝑘, ℓ)-floats. For every 𝐿 term that we add, the sum falls exactly

in the middle of two adjacent floats, and since the corresponding

mantissa ends with an even bit, by the definition of banker’s round-

ing the sum will round down to 2
𝑘 ·𝑈 at each step. Therefore, we

get a final sum of

BS∗𝐿,𝑈 (𝑢′) = 2
𝑘 ·𝑈 .

Therefore,

|BS∗𝐿,𝑈 (𝑢) − BS∗𝐿,𝑈 (𝑢′) | = 2
𝑘+1 · 𝐿 = 2

𝑘 ·𝑈 .

Under ≃unbdd , the idealized sensitivity is max{|𝐿 |, |𝑈 |} = 𝑈 , and so

the implemented sensitivity is a factor 2
𝑘
larger than the idealized

sensitivity. Under ≃bdd , the idealized sensitivity is 𝑈 − 𝐿, and so

the implemented sensitivity is a factor 2
𝑘 ·𝑈 /(𝑈 − 𝐿) larger than

the idealized sensitivity.

As a concrete example, if we set 𝑗 = 0 (so 𝐿 = 1 and𝑈 = 2), then

for 32-bit floats (i.e., 𝑘 = 23) we get datasets of length 2
24 + 2

23
and

a difference in sums of 2
23 · 𝑈 = 2

24
, which is a factor 2

23
larger

than the idealized sensitivity max{|𝐿 |, |𝑈 |} = 2 under ≃unbdd and

a factor 2
24

larger than the idealized sensitivity 𝑈 − 𝐿 = 1 under

≃bdd .

One reason this issue may have been missed before is that

floating-point arithmetic is commutative, e.g., BRound(𝑎 + 𝑏) =

BRound(𝑏 + 𝑎), so it may seem like order does not matter. How-

ever, associativity is required for the sum to be invariant under

arbitrary permutations, which fails for floating-point arithmetic

due to rounding.

Modular integer arithmetic is associative, so this issue does

not arise for 𝑘-bit (unsigned or signed) integers with wraparound.

However, if instead we use saturation arithmetic, where values get

clamped to the range [min(𝑇 ),max(𝑇 )] (this addresses the afore-
mentioned sensitivity problems with wraparound), then addition of

signed integers is no longer associative. Indeed, if 𝑛 ·min{𝑈 ,−𝐿} ≥
2
𝑘+1

, we exhibit two datasets 𝑢,𝑢′ of length 𝑛 such that 𝑢′ is a
permutation of 𝑢 and���BS∗𝐿,𝑈 ,𝑛 (𝑢) − BS∗𝐿,𝑈 ,𝑛 (𝑢

′)
��� ≥ 2

𝑘 − 1.

That is, we get no improvement over the (trivial) sensitivity we had

with modular arithmetic.

This implemented sensitivity can be achieved with the following

two datasets. Set 𝛼 = ⌈max(𝑇 )−min(𝑇 )
|𝐿 | ⌉, 𝛽 = ⌈max(𝑇 )−min(𝑇 )

𝑈
⌉, and

let

𝑢 = [𝐿1, . . . , 𝐿𝛼 ,𝑈1, . . . ,𝑈𝛽 ],

𝑢′ = [𝑈1, . . . ,𝑈𝛽 , 𝐿1, . . . , 𝐿𝛼 ],

where𝑈 > 0 and 𝐿 < 0. This last condition is crucial, given that the

idea behind the attack is to play with the positive and negative signs

to exploit the fact that non-associativity of saturation arithmetic

only applies when the result of an intermediate sum falls outside

the saturation bounds (e.g., outside of min(𝑇 ) andmax(𝑇 )). First, by
definition of 𝛼 , we see that BS∗

𝐿,𝑈
[𝐿1, . . . , 𝐿𝛼 ] = min(𝑇 ), given that

saturation arithmetic clamps the negative values at min(𝑇 ). When

we add the next 𝛽 “𝑈 ” terms, by definition of 𝛽 , the intermediate

sums go all the way up to max(𝑇 ), and then saturation arithmetic

clamps the sum at max(𝑇 ), since all of the 𝑈 terms are positive.

Therefore,

BS∗𝐿,𝑈 (𝑢) = max(𝑇 ) .

Likewise, for 𝑢′, the first 𝛽 “𝑈 ” terms result in an intermediate sum

of max(𝑇 ), and then the sum remains clamped there. The next 𝛼

“𝐿” terms then result in an intermediate sum of min(𝑇 ), where it
remains clamped. Therefore,

BS∗𝐿,𝑈 (𝑢′) = min(𝑇 ).

The result is a difference in sums of���BS∗𝐿,𝑈 ,𝑛 (𝑢) − BS∗𝐿,𝑈 ,𝑛 (𝑢
′)
��� = max(𝑇 ) −min(𝑇 ) = 2

𝑘 − 1,

and since𝑢′ is a permutation of𝑢, we have𝑢 ≃ 𝑢′. Under≃unbdd the

idealized sensitivity is max{|𝐿 |, |𝑈 |}, and under ≃bdd , the idealized

sensitivity is 𝑈 − 𝐿, so this implemented sensitivity can be much

greater than the idealized sensitivities.

As a concrete example, if we set 𝐿 = −214, 𝑈 = 2
15
, and 𝑘 =

32, then the above construction gives us two datasets of size 𝑛 =

⌈max(𝑇 )−min(𝑇 )
|𝐿 | ⌉ + ⌈max(𝑇 )−min(𝑇 )

𝑈
⌉ where the difference in sums

is 2
𝑘 − 1 = 2

32 − 1. This is more than a factor 2
16

larger than

the idealized sensitivity max{|𝐿 |, |𝑈 |} = 2
15

under ≃unbdd and the

idealized sensitivity 𝑈 − 𝐿 = 2
15 + 2

14
under ≃bdd .

4 ATTACKS
We show that our attacks can be carried out on many existing

implementations of differential privacy. In each attack, we set the

privacy-loss parameter to 𝜀 ∈ {0.5, 1}, set the parameters 𝐿,𝑈 , and

possibly 𝑛 as required by our sensitivity lower bounds, construct

two appropriate adjacent datasets 𝑢 ≃bdd 𝑢
′
or 𝑢 ≃unbdd 𝑢

′
, and

run the supposedly 𝜀-DP Bounded Sum mechanism M on 𝑢 and

𝑢′. We show that by applying a threshold test to the outputs, we

can almost perfectly distinguishM(𝑢) andM(𝑢′). For example, in

one experiment, we succeed in correctly identifying whether the

dataset is 𝑢 or 𝑢′ in all but 3 out of 20,000 runs of the mechanism,

which we show would be astronomically unlikely for a mechanism

that is truly 0.5-DP. These attacks are described in more detail in

the full version of the paper [10].

Our overflow attack on integers works on IBM’s diffprivlib.
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Adjacency relation Implemented Conditions
sensitivity

Idealized

Bounded DP 𝑈 − 𝐿
Unbounded DP 𝑈

Modular addition
Bounded DP max(𝑇 ) −min(𝑇 ) 𝑛𝑈 > max(𝑇 )

(signed or unsigned ints)
Unbounded DP max(𝑇 ) −min(𝑇 )

Saturation (signed ints)
Bounded DP max(𝑇 ) −min(𝑇 ) 𝑛𝑈 > max(𝑇 )

𝑈 > 0 and 𝐿 < 0

Unbounded DP max(𝑇 ) −min(𝑇 ) 𝑈 > 0 and 𝐿 < 0

Floats with 𝑘-bit mantissa

Bounded DP ≥ (𝑛 − 1) · (𝑈 − 𝐿) 𝑈 ≥ 2
𝑘 · (𝑈 − 𝐿)

Unbounded DP (1 + Θ(𝑛2/2𝑘 )) ·𝑈 𝐿 ≤ −𝑈 · 𝑛/2𝑘+3
Table 1: Lower bounds obtained in our attacks for numerical type 𝑇 and −𝑈 ≤ 𝐿 ≤ 𝑈 .

Our rounding attack on floats works on Google’s DP library,

IBM’s diffprivlib, OpenDP / SmartNoise,
7
and Chorus. Our repeated

rounding attacks on floats work on Google’s DP library, IBM’s

diffprivlib, OpenDP / SmartNoise,
8
Chorus, and PINQ.

Lastly, our re-ordering attack works on Google’s DP library,

IBM’s diffprivlib, OpenDP / SmartNoise, Chorus, and PINQ. Cho-

rus only offers sensitivities for the bounded DP setting, so slight

adjustments were made for the repeated rounding attacks — specif-

ically, a value of 0 was appended to dataset 𝑣 . With the exception

of OpenDP, none of the libraries include a disclaimer indicating

that the integer overflow or floating-point rounding behaviors we

exploit could yield vulnerabilities.

Our attacks utilize contrived datasets 𝑢 and 𝑢′ that are unlikely
occur “in the wild.” However, our overflow and rounding attacks

can easily be applied to attack realistic datasets given access to a DP

system that fields external queries with user-defined microqueries

(a.k.a., mappers or row transforms). Specifically, consider a dataset

𝑥 = [𝑥1, . . . , 𝑥𝑛] where each record 𝑥𝑖 contains a known/public user
identifier uid𝑖 for the 𝑖’th individual, and a sensitive bit val𝑖 . Suppose

further that the dataset is sorted by the identifiers, i.e., uid1 ≤
uid2 ≤ · · · ≤ uid𝑛 . Then it is straightforward for an adversarial

analyst to define a simple micro-query 𝑞 such that

𝑞(𝑥) = [𝑞(𝑥1), . . . , 𝑞(𝑥𝑛)] =
{
𝑢 if val𝑖 = 1

𝑢′ if val𝑖 = 0

where𝑢,𝑢′ are the datasets in our attacks, and they differ on the 𝑖’th
record. Thus, by seeing the result of the bounded-sum mechanism

on 𝑞(𝑥), the adversary can extract the 𝑖’th individual’s bit val𝑖 with

very high probability. This can be generalized to not just attack a

particular individual, but a constant fraction of the individuals in

the dataset (e.g., any individual in the middle half of the dataset).

Note that our use of microqueries here is different than in Haeberlen

et al. [22]. Our microqueries are pure functions, not making use

of any side channels or global state, and are simple enough to be

implemented in virtually any domain-specific language (DSL) for

microqueries. Indeed, see Figure 3 for a code snippet showing how

our attack would look in SQL and Figure 4 for PINQ.

7
Our paper attacks the code at https://github.com/opendp/opendp, and the attacks also

work on OpenDP/SmartNoise-core at https://github.com/opendp/smartnoise-core.

8
In particular, we are able to attack opendp.trans.make_sized_bounded_sum and

opendp.trans.make_bounded_sum.

1 SELECT
2 SUM(CASE
3 WHEN uid < {m} THEN {U}
4 WHEN uid = {m} THEN val * {U}
5 WHEN uid % 2 = 1 THEN {pos_val}
6 ELSE {neg_val}
7 END)
8 FROM unsized_64_u

Figure 3: Example SQL code for our repeated rounding at-
tack. Here the upper clamping bound is U, the lower clamping
bound is L=-U, uid denotes the user id attribute of an individ-
ual record, m is the middle user id (the one we wish to attack),
val is the individual’s sensitive bit, and pos_val and neg_val
are particular floats in the interval [L, U] from our attack.

1 var dp_sum = new PINQueryable <string >( arr_v_queryable ,
new PINQAgentLogger(filepath))

2 .Select(l => l.Split(','))
3 .Select(terms => new Tuple <long , double >( Convert.

ToInt64(terms [0]), Convert.ToDouble(terms [1])))
4 .Select(tup => (tup.Item1 < attackUID) ? U :
5 (tup.Item1 == attackUID) ? U * tup.Item2 :
6 (tup.Item2 % 2 == 1) ? pos_val : neg_val)
7 .NoisySum (100.0 , v => v);

Figure 4: Example PINQ code for our repeated rounding at-
tack.

Since PINQ uses 64-bit floats, our repeated rounding attack re-

quires quite a large dataset (e.g., 𝑛 = 2
28
), and we were not able

to complete execution due to memory timeouts, but the attack is

possible in principle. Perhaps due to concerns about timing and

other side-channel attacks (see Section 1.2), recent DP SQL systems

such as Chorus do not support user-defined microqueries. However,

it may be still be possible to carry out our basic rounding attack (not

the repeated rounding one), since it can be implemented in such

a way that the microquery is simply the clamp function (applied

automatically in most implementations of Noisy Bounded Sum), if

we know that the dataset is sorted by the value we wish to attack

(e.g., consider a dataset of salaries, and where the employee with

second-highest salary wishes to find out the CEO’s salary). Finally,

we also hypothesize that the attack can be carried out on DP Ma-

chine Learning systems that use DP-SGD, using a user-defined loss
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function ℓ (𝜃, 𝑥𝑖 ), designed so that ∇𝜃 ℓ (𝜃, 𝑥𝑖 ) equals our desired
microquery 𝑞(𝑥𝑖 ). If we set parameters so that there is only one

iteration, using the entire dataset as a batch, then the output pa-

rameter vector 𝜃 will exactly give us a Noisy Bounded Sum. Since

these ML systems allow using low-precision floats, these attacks

should be feasible even on very small datasets.

To carry out our reordering attacks on a DP query system, we

would need a system that can be made to perform a data-dependent

reordering. These attacks indicate that we need to be explicit and

careful about how we treat ordering when we implement DP.

In any case, our attacks and experimental results reported in the

appendix already demonstrate that essentially all of the implemen-

tations of DP fail to meet their promised DP guarantees.

Responsible Disclosure. Immediately after the submission of this

paper, we shared the paper with the maintainers of all of the DP

libraries that exhibit the vulnerabilities we described and informed

them that we would wait 30 days to post the paper publicly, to give

them time to implement any needed patches (like our solutions be-

low). In response, all offered some indication that they are working

to resolve these issues, and Google’s Bug Hunter program acknowl-

edged our contribution to Google’s security with an Honorable

Mention.
9

All of the authors of this paper are members of the OpenDP team

and are involved with the development of the library. The findings

of this paper occurred while the authors were writing mathematical

proofs to accompany the algorithms that are part of the OpenDP

library as part of our vetting process, upon which we realized the

vulnerabilities described in this paper. We are updating the OpenDP

library following the roadmap described in Section 6.
10

We believe

that our findings also illustrate the importance of vetting processes

such as the one put in place for OpenDP.

Code. Code for our attacks and experiments is available in the

Github repository at https://github.com/cwagaman/underestimate-

sensitivity.

5 SOLUTIONS
Dataset Adjacency Relations. Toward addressing the potential

reordering vulnerabilities, we propose that when datasets 𝑢 =

[𝑢1, . . . , 𝑢𝑛] are stored as ordered tables, we should define and dis-

tinguish four adjacency relations ≃. Specifically, the bounded-DP
relation ≃bdd should separate into the usual ≃Ham (“Hamming”),

where 𝑢 ≃Ham 𝑢′ means that there is at most one coordinate 𝑖 such

that 𝑢𝑖 ≠ 𝑢
′
𝑖
, and ≃CO (“change-one”), where 𝑢 ≃CO 𝑢

′
means that

we can convert the multiset of elements in 𝑢 into the multiset of

elements in 𝑢′ by changing one element. Equivalently, 𝑢 ≃CO 𝑢′

iff there is a permutation 𝜋 such that 𝜋 (𝑢) ≃Ham 𝑢′. Similarly, the

unbounded-DP relation ≃unbdd should split into an ordered version

≃ID (“insert-delete”) and an unordered version ≃Sym (“symmetric

distance”). Throughout the full version of the paper [10], all of our

theorems clearly state the adjacency relation that is being used.

By being explicit about ordering in our adjacency relation, and in

particular analyzing DP and sensitivity with respect to a specific

relation, we can avoid the reordering vulnerabilities. In particular,

9
https://bughunters.google.com/profile/d946f172-9bd8-4b84-9f17-d86046f5af11.

10
For example, see https://github.com/opendp/opendp/pull/465 and https://github.c

om/opendp/opendp/pull/467.

a DP system using ordered adjacency relations should take care

to disallow data-dependent reorderings, unless they can be shown

to preserve ordered adjacency (or, more generally are stable with

respect to Hamming distance or insert-delete distance).

Random Permutations (RP) . Given the above adjacency relations,

it still remains to find implementations of Bounded Sum that achieve

a desired sensitivity with respect to them. In general, it is easier

to bound sensitivity with respect to the ordered relations ≃Ham
and ≃ID . For example, we can show that Iterated Sum of signed

integers with saturation arithmetic has the idealized sensitivities of

𝑈 − 𝐿 and max{𝑈 , |𝐿 |} with respect to ≃Ham and ≃ID , respectively,

whereas our reordering attacks show that the sensitivities can be

as large as 2
𝑘 − 1 with respect to ≃CO and ≃Sym.

Motivated by this observation, we give a general method for

converting sensitivity bounds with respect to the ordered rela-

tions into the same bounds with respect to the unordered relations:

randomly permute the dataset before applying the function. To

formalize the effect of this transformation, we need to extend the

definition of sensitivity to randomized functions. Following [43],

we say that a randomized function 𝑓 has sensitivity at most Δ with
respect to ≃ if for all pairs of datasets 𝑢,𝑢′ such that 𝑢 ≃ 𝑢′, there
is a coupling of the random variables 𝑓 (𝑢) and 𝑓 (𝑢′) such that

Pr[|𝑓 (𝑢) − 𝑓 (𝑢′) | ≤ Δ] = 1. We prove that if RP is the random

permutation transformation on datasets and 𝑓 is any function on

datasets, we have:

ΔSym (𝑓 ◦ RP) ≤ ΔID 𝑓 , and

ΔCO (𝑓 ◦ RP) ≤ ΔHam 𝑓 .

Given this result, it suffices for us to obtain sensitivity bounds with

respect to ordered adjacency relations.

Checking or Bounding Parameters. Many of our attacks only lead

to a large increase in sensitivity under certain parameter regimes,

e.g., 𝑛 ·𝑈 ≥ 2
𝑘
. In the case of bounded DP, all of these parameters

(𝑛,𝑈 , 𝐿, 𝑘) are known in advance (before we touch the sensitive

dataset), and we can prevent the problematic scenarios by either

constraining the parameters or incorporating the dependence on

those parameters into our sensitivity bounds. Indeed, we show that

many of the sensitivity lower bounds discussed in Section 3 are

tight by giving nearly matching upper bounds.

For example, in the case of integer data types with bounded

DP, we prove that the implemented sensitivity equals the idealized

sensitivity provided that𝑈 ·𝑛 ≤ max(𝑇 ) and 𝐿 ·𝑛 ≥ min(𝑇 ). These
conditions ensure that overflow cannot occur. Since for bounded

DP, 𝑈 , 𝐿, and 𝑛 are public parameters that do not depend on the

sensitive dataset, we can simply check that these conditions hold

before performing Bounded Sum.

For floats, we provide a similar-style parameter check to ensure

that a summation does not hit ±inf.

Truncated Summation. For the case of unbounded DP, we cannot
perform a parameter check involving 𝑛 as above, since 𝑛 is not

publicly known and may be sensitive information. We can, however,

achieve a similar effect by composing a solution for bounded DP

with a truncation operation on datasets, namely

Trunc𝑛 (𝑢) = [𝑢1, 𝑢2, . . . , 𝑢min{𝑛,len(𝑢 ) } ] .
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This truncation operation behaves nicely with respect to the ordered
adjacency relation≃ID . Specifically, we prove that for every function

𝑓 on datasets,

Δ≃ID (𝑓 ◦ Trunc𝑛) ≤ max

{
Δ≃ID,≤𝑛 𝑓 ,Δ≃CO,≤𝑛 𝑓

}
, (2)

where Δ≃,≤𝑛 denotes sensitivity restricted to datasets 𝑢 ≃ 𝑢′ of
length at most 𝑛. Intuitively, inserting or deleting an element from

a dataset 𝑢 either results in inserting or deleting an element from

Trunc𝑛 (𝑢) (if no truncation occurs) or changing one element of 𝑢

(if truncation occurs).

Applying (2) to the case of truncated integer summation, where

𝑓 is Iterated Summation, we recover the idealized sensitivity with

respect to ≃ID provided that 𝑛 ·𝑈 ≤ max(𝑇 ) and 𝑛 ·𝐿 ≥ min(𝑇 ) (to
prevent overflow) and both𝑈 and 𝐿 are of the same sign (so that

𝑈 − 𝐿 ≤ max{𝑈 , |𝐿 |} and the idealized sensitivity with respect to

≃CO is no larger than the idealized sensitivity with respect to ≃ID).

Split Summation. The above example of truncated integer sum-

mation with respect to unbounded DP is one of several cases where

we obtain better sensitivity bounds when 𝑈 and 𝐿 are of the same

sign. Another is integer summation with saturation arithmetic with

respect to unordered adjacency relations: when 𝑈 and 𝐿 are of dif-

ferent signs, this is vulnerable to our reordering attack, but when

they are of the same sign, we show that it has implemented sensitiv-

ity equal to the idealized sensitivity. We also give an example below

with floating-point numbers where computing sums on terms with

matching signs helps achieve an implemented sensitivity that is

closer to the idealized sensitivity.

To take advantage of the benefits that can come from summing

terms with the same sign, we introduce the split summation tech-

nique, where we separately sum the positive numbers and the

negative numbers in the dataset. That is, given a dataset 𝑢 and a

base summation method BS∗, we let pos(𝑢) be the dataset consist-
ing of the positive elements of 𝑢, neg(𝑢) be the dataset consisting
of the negative elements of 𝑢, and define

BS∗∗𝐿,𝑈 (𝑢) = BS∗
0,𝑈 (pos(𝑢)) + BS∗𝐿,0 (neg(𝑢)) .

Importantly, adding or removing an element from a dataset 𝑢 corre-

sponds to adding or removing an element from only one of pos(𝑢)
and neg(𝑢), so we do not incur a factor of 2 blow-up in sensitivity.

Using this split summation technique in combination with either

truncation or saturation arithmetic allows us to recover the ideal-

ized sensitivity for summation of signed integers with unbounded

DP.

Sensitivity from Accuracy. Our matching upper bound on the

sensitivity of Iterated Summation of floats with banker’s rounding

is obtained via reduction to accuracy. Specifically, we can use the

triangle inequality to show that we have

|BS∗ (𝑢) − BS∗ (𝑢′) | ≤
|BS(𝑢) − BS(𝑢′) | + |BS∗ (𝑢) − BS(𝑢) | + |BS∗ (𝑢′) − BS(𝑢′) |.

The first term is bounded by the idealized sensitivity, and the latter

two terms can be bounded by using known numerical analysis

results about the accuracy of iterated summation. Specifically, a

bound from Wilkinson [46] shows that

|BS∗ (𝑢) − BS(𝑢) | = 𝑂
(
𝑛

2
𝑘

𝑛∑︁
𝑖=1

|𝑢𝑖 |
)
= 𝑂

(
𝑛2 ·max{|𝐿 |, |𝑈 |}

2
𝑘

)
.

Note that the resulting upper bound on sensitivity described

above has an “𝑛” term, so it can only be applied directly in the case

of bounded DP. To handle unbounded DP, we can combine it with

the truncation technique described above.

Specifically, combining Iterated Summation BS∗ with the Trun-

cation transformation Trunc𝑛 , we get an unbounded-DP sensitivity

bound of:

Δ≃ID

(
BS∗𝐿,𝑈 ◦ Trunc𝑛

)
≤

(
1 +𝑂

(
𝑛2

2
𝑘

))
·max{|𝐿 |, |𝑈 |}, (3)

provided that 𝐿 and 𝑈 have the same sign, and similarly for the

unordered sensitivity Δ≃Sym if we also combine with a random per-

mutation. Thus, when 𝑛 ≪ 2
𝑘/2

, we recover almost the idealized

sensitivity bound of max{|𝐿 |, |𝑈 |}. Higham [24] has proven that

other summation methods for floats, such as Pairwise Summation

(which is the default in numpy) and Kahan Summation have better

bounds on accuracy, allowing us to replace the 𝑂 (𝑛2) above with
𝑂 (𝑛 log𝑛) or 𝑂 (𝑛), respectively. These methods closely approx-

imate the idealized sensitivity whenever 𝑛 ≪ 2
𝑘
, which covers

many practical scenarios (see discussion in Section 6).

Shifting Bounds. For the case of bounded DP, some of the sensi-

tivity blow-ups (such as the one exhibited in the basic rounding at-

tack) come from having𝑈 (or max{|𝐿 |, |𝑈 |}) rather than𝑈 −𝐿 in the
implemented sensitivity bound, as𝑈 can be much larger than𝑈 −𝐿.
One way to address this is to subtract 𝐿 from every element of the

dataset, so that all elements lie in the interval [𝐿′ = 0,𝑈 ′ = 𝑈 − 𝐿],
apply our solutions that have𝑈 ′

in the sensitivity bound, and then

add 𝐿 ·𝑛 at the end as post-processing. That is, we convert a method

BS∗ with sensitivity depending on max{|𝐿 |, |𝑈 |} (such as Expres-

sion (3)) into a method BS∗∗ with sensitivity depending on 𝑈 − 𝐿
as follows:

BS∗∗𝐿,𝑈 ,𝑛 (𝑢) = BS∗
0,𝑈 −𝐿,𝑛 (𝑢1 − 𝐿,𝑢2 − 𝐿, . . . , 𝑢𝑛 − 𝐿) + 𝐿 · 𝑛,

where a noisy version of the BS∗
𝐿,𝑈 ,𝑛

term is computed first and 𝐿 ·𝑛
is added as a post-processing step, after noise addition. In particular,

combining this technique with the Sensitivity-via-Accuracy anal-

ysis of Iterated Summation, we obtain a bounded-DP sensitivity

bound of

Δ≃HamBS
∗∗
𝐿,𝑈 ,𝑛 (𝑢) ≤

(
1 +𝑂

(
𝑛2

2
𝑘

))
· (𝑈 − 𝐿) .

Reducing Floats to Ints. Another attractive solution for floating-

point summation is to reduce it to integer summation, since the

latter achieves the idealized sensitivity with simple solutions. The

idea behind this method is to cast floats to fixed-point numbers,

which we can think of as 𝑘-bit integers. To achieve this casting,

we introduce a discretization parameter 𝐷 (which is chosen by the

data analyst and corresponds to the precision with which numbers

are represented – e.g., setting 𝐷 = 0.01 means that values are

represented to the hundredths place), round each of the dataset

elements according to the discretized interval, and apply one of

our integer solutions. We can think of this process of “integerizing”
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as a dataset transform. This idea of mapping floating-point values

to integers is similar to the technique of performing quantization
to work with low-precision number formats in machine learning

applications [33].

To make use of the full range of integers available to us, we

first center each term; that is, we subtract the midpoint of 𝑈 and 𝐿,

namely (𝑈 + 𝐿)/2, from every term. Then, we divide each resulting

floating-point value by some (small) analyst-specified discretization

parameter 𝐷 ; and we then round the result to the nearest integer.

For some intuition, a smaller value of𝐷 means that the sum is being

computed with higher precision since fewer distinct floating-point

values will map to the same integer.

We provide a complete description and analysis of this solution

in the full version of the paper. To simplify the description here,

we present the solution in the specific case where 𝐿 = −𝑈 . In the

general case, it will be necessary to shift the discretization range so

that the mid-point is𝑀 = (𝑈 +𝐿)/2, in order to take full advantage

of the range of signed integers and obtain improved accuracy as

compared to the no-shift strategy.

Before describing this method formally, we provide some intu-

ition. The idea behind this strategy is to group floating-point values

into buckets (where close values are put into the same bucket or

close buckets) and enumerate the buckets. More specifically, given

the bounds 𝐿 and𝑈 for our floats and the discretization parameter

𝐷 , where 𝐿 = −𝑈 and 𝐾 = ⌊𝑈 /𝐷⌋, we round all elements of the

interval [𝐿,𝑈 ] to the nearest element of the sequence

−𝐾𝐷,−(𝐾 − 1)𝐷, . . . ,−𝐷, 0, 𝐷 . . . , 𝐾𝐷,

so |𝐿 | ≈ 𝑈 ≈ 𝐾𝐷. We then use the signed integers to enumerate

this sequence. If 𝐾 ≤ (2𝑘−1 − 1), we can think of the rounded

elements as corresponding to 𝑘-bit integers, which we can then

sum using a summation method for integers. We can then post-

process the resulting (noisy) sum into a (noisy) floating-point sum.

We discuss the optimal choice of the discretization parameter 𝐷

after the description of the method.

Formally, we can consider the row-by-row transformation map-

ping a dataset𝑢 = [𝑢1, . . . , 𝑢𝑛] of floats to the signed integer dataset

Float2Int𝐿,𝑈 ,𝐷 (𝑢) = [round (𝑢1/𝐷), . . . , round (𝑢𝑛/𝐷)],

where round (·) denotes rounding to the nearest integer (we further
explore the role of the round (·) function below). We can then apply

a summation method BS∗−𝐾,𝐾 for 𝑘-bit integers, and then rescale

and shift to obtain our floating-point result:

BS∗∗𝐿,𝑈 ,𝐷 (𝑢) = (BS∗−𝐾,𝐾 ◦ Float2Int𝐿,𝑈 ,𝐷 ) (𝑢) · 𝐷. (4)

The sensitivity of (4) can be bounded: as long as we apply one of our

solutions for integers, the Bounded Sum of the integers will have

the idealized sensitivity. However, to bound the sensitivity of the

overall function, we would still need to account for the potential

rounding that can occur when multiplying the integer sum by 𝐷 .

An even better approach for the summation than (4) is to perform

noise addition and obtain DP before scaling back to floats. That is,

we consider the DP mechanism

M𝐿,𝑈 ,𝐷 (𝑢) =
(
(BS∗−𝐾,𝐾 ◦ Float2Int𝐿,𝑈 ,𝐷 ) (𝑢) + Noise(𝐾/𝜀)

)
· 𝐷,

where Noise(𝑠) denotes a noise distribution with scale 𝑠 suitable for

𝑘-bit integers (e.g., the discrete Laplace Mechanism [20]). Then the

privacy of M follows from the privacy of the noisy integer sum-

mation together with the post-processing property of differential

privacy, and there is no need to analyze any floating-point round-

ing effects in either the sensitivity analysis or the noise addition

step. Indeed, implementing discrete noise-addition mechanisms

is much simpler than implementing floating-point noise-addition

mechanisms (such as Mironov’s Snapping Mechanism [37]).

One remaining question is how to pick the discretization parame-

ter 𝐷 to maximize accuracy. A choice that maintains high precision

and reduces the risk of (still-private) answers that overflow is

𝐷 = (𝑈 − 𝐿) · 𝑛max/(2𝑚−2 − 𝑛max),

where 𝑛max is the maximum expected dataset size and 𝑚 is the

bitlength of the integers we are using (e.g.,𝑚 = 64).

This choice of𝐷 ensures that𝐾 ·𝑛max < 2
𝑚/4; note that𝐾 ·𝑛max is

the largest attainable value by the sum. Therefore, all possible inte-

ger sums (before noise addition) are contained in the middle 50% of

the set of signed integers, which means that the noisy integer sum-

mation is very unlikely to experience overflow/saturation. (Note

that, although we are guaranteed to avoid overflow and saturation

in the deterministic summation as long as we perform appropriate

parameter checks, we also want to avoid overflow and saturation in

the noisy summation to offer statistically useful outputs from the

noisy summation.) For example, when working with the discrete

Laplace Mechanism, by analyzing the tail bounds of the distribu-

tion, the probability of overflow for the Noisy Bounded Sum can

be shown to be exp(−Ω(𝐾 · 𝑛max/(𝐾/𝜀))) = exp(−Ω(𝜀 · 𝑛max)),
which will be astronomically small for typical settings of parame-

ters.

We should also analyze the impact of the rounding in Float2Int
on accuracy. The rounding affects the sum of the elements in

Float2Int𝐿,𝑈 ,𝐷 (𝑢) by at most ±𝑛/2 (since, when rounding to the

nearest integer, 𝑢𝑖/𝐷 can get rounded by at most ±1/2, and we add

up 𝑛 elements) on a worst-case dataset of size 𝑛, and by ±𝑂 (
√
𝑛)

on typical datasets (since we expect elements to be equally likely to

be rounded up as rounded down). If we use randomized round-

ing for the round (·) function, then we can obtain an accuracy

of ±𝑂 (
√
𝑛) even for worst-case datasets. Scaled back to float-

ing point numbers, this yields a final accuracy impact of at most

𝐷 · 𝑛/2 = 𝑂 ((𝑈 − 𝐿) · 𝑛 · 𝑛max/2𝑚) on worst-case datasets and

𝑂 ((𝑈 − 𝐿) ·
√
𝑛 · 𝑛max/2𝑚) on typical datasets. These errors are

comparable to the accuracy bounds for non-private iterated sum-

mation of (𝑘, ℓ)-bit floats [24], with the advantage of not affecting

the sensitivity or privacy analysis.

This solution is a variant of the common suggestion to replace

floating-point arithmetic in DP libraries with integer or fixed-point

arithmetic [3, 18]. However, for a data analyst, our solution retains

the usability benefits of floating-point numbers, such as the large

dynamic range afforded by the varying exponents. Indeed, the input

dataset and output result remain as floating-point numbers, and

the conversion to and from integer/fixed-point representation only

happens internal to the (noisy) sum. In particular, the mapping

between floating-point numbers and fixed-point numbers is deter-

mined dynamically based on the parameters 𝐿 and 𝑈 , in contrast

to adopting a single fixed-point representation throughout a DP

library.
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Modular Sensitivity. One way to address the large sensitivity of

Bounded Sum over 𝑘-bit integers with wraparound is to change

our definition of sensitivity, measuring the distance between 𝑘-

bit integers as if they are equally spaced points on a circle. That

is, we replace |𝑓 (𝑢) − 𝑓 (𝑢′) | in the definition of sensitivity with

min{|𝑓 (𝑢) ⊖ 𝑓 (𝑢′) |, |𝑓 (𝑢′) ⊖ 𝑓 (𝑢) |}, where ⊖ is subtraction with

wraparound over the integer type 𝑇 on which Bounded Sum is

being computed; we call this the modular sensitivity of 𝑓 . With

this change, Bounded Sum recovers its idealized sensitivity. But

this begs the question of whether functions with bounded modular

sensitivity can still be estimated in a DP manner. Fortunately, we

show that the answer is yes: if we add integer-valued noise (such as

in the Discrete Laplace [20] or Discrete Gaussian [8] Mechanisms)

and also do the noise addition with wraparound, then the result

achieves the same privacy parameters as if we had done everything

exactly over the integers, with no wraparound. Indeed, by the fact

that modular reduction is a ring homomorphism, we can analyze

the output distribution as if we had done modular reduction only

at the end, which amounts to post-processing.

Several DP libraries already implement this solution, because it

happens by default when everything is a 𝑘-bit integer. The reason

we were able to attack IBM’s diffprivlib with the overflow attackis

that, while it computes the Bounded Sum using integer arithmetic,

the noise addition is done using floating-point arithmetic.

It is not clear whether there is an analogue of this solution for the

use of sensitivity in the Exponential Mechanism (see Section 1.2.)

Changing Overflow Mode. As mentioned above, another solu-

tion for the case of 𝑘-bit integers is to replace wraparound with

saturation arithmetic, combining it with either the random permu-

tation technique or split summation in order to handle unordered

adjacency relations.

Changing RoundingMode. For our rounding attacks against floating-
point numbers, another solution (beyond those based on sensitivity-

via-accuracy) is to replace the default banker’s rounding with an-

other standard rounding mode, namely round toward zero (RTZ).

We show that this gives an implemented sensitivity of

Δ≃unbddBS
∗
𝐿,𝑈 ,𝑛 ≤

(
max

{
1 +𝑂

(
𝑛

2
𝑘

)
, 2

})
·max{|𝑈 |, |𝐿 |},

provided that (a) all elements of the datasets have the same sign

(i.e., 𝐿 ≥ 0 or 𝑈 ≤ 0), and (b) we work with an ordered dataset

adjacency relation. To handle the case of mixed signs, we can use the

shifting technique (in case of bounded DP) or split summation (in

the case of unbounded DP). To handle unordered dataset relations,

we can apply the random permutation technique. Altogether these

solutions maintain a sensitivity that is within a small constant factor

of the idealized sensitivity in all cases.

6 ROADMAP FOR IMPLEMENTING
SOLUTIONS

In this section, we present a set of recommendations aimed at

DP practitioners who wish to fix the vulnerabilities that we have

presented. Table 2 presents several solutions and their associated

sensitivities. Several of the solutions can be implemented with only

a few alterations to current code.

6.1 Integer Summation
We recommend the following solutions for integer summation:

(1) Modular sensitivity: In many programming languages, the

default method for handling integer overflow is wraparound,

which is equivalent to modular summation. Thus, many DP

libraries luckily already implement the modular solution.

One point of caution is that both the summation and noise

addition steps must occur in this modular fashion. (Mod-

ular summation coupled with non-modular noise addition

caused the privacy violation that we found in IBM’s diff-

privlib. Wraparound is a standard feature of arithmetic on

integer data types, so this solution should not create new

unexpected behaviors for data analysts.

If library maintainers are uncomfortable with the possibility

of wraparound or unable to offer modular noise addition, we

encourage the following two solutions.

(2) Checking parameters: In the bounded DP setting, perform

a check on the parameters ensuring that overflow cannot

occur, e.g., check that 𝑛 ·𝑈 < 2
𝑘
in the setting of unsigned

𝑘-bit integers.

(3) Split summation: In the unbounded DP setting, we recom-

mend switching to saturation arithmetic (where overflow

is handled by clamping to the range [min(𝑇 ),max(𝑇 )]) and
applying split summation, where we separately sum the pos-

itive and negative numbers. For 𝐿 and 𝑈 both non-negative

or both non-positive, split summation is equivalent to stan-

dard summation. If split summation is not desirable, then we

recommend using saturation arithmetic, and either applying

a randomized permutation to the dataset or using an ordered

notion of neighboring datasets and being careful about sta-

bility with respect to ordering in all dataset transformations.

6.2 Floating-point Summation
For libraries that have or are implementing a (correct) version of

(noisy) integer summation, we recommend using our Float2Int

solution if feasible.

If floating-point summation must be used (e.g. due to a machine-

learning pipeline or exernal compute engine that has hardwired

numerical types), we recommend using the implemented sensitivity

bounds that come from accuracy bounds (see Table 2) for whatever

floating-point summationmethod is already implemented. Typically

this will be Iterated Summation, but some libraries (e.g., those

based on numpy) may already using a better method like Pairwise

Summation. For bounded DP, using these sensitivities only requires

also checking the parameters to ensure that overflow cannot occur.

To achieve unbounded DP, truncated summation together with a

random permutation and should be used as well. These solutions

should work very well for 64-bit floats, as they give an implemented

sensitivity that is at most 1.5 ·𝑈 for datasets of size smaller than

67 million. If it is important to have sensitivity close to𝑈 − 𝐿, then
the “shifting bounds” technique can be used as well.

For data consisting of lower-precision floats, another attractive

approach is to keep the values as low-precision floats (e.g., to keep

the memory footprint small in machine learning pipelines) but

accumulate the sum in a 64-bit float, which will allow the above

solutions to apply. For huge datasets (e.g., more than 67 million
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Data type
Solution name

implemented sensitivity
idealized sensitivity

Conditions

ints RP

Dataset adjacency relations

Checking parameters

Modular noise addition

Floats Reducing floats to ints 1 +𝑂 (𝑛
√
𝑛/2𝑚)

Floats
RP + Split summation + RTZ

min{(1 +𝑂 (𝑛/2𝑘 )), 2} sign(𝑈 ) = sign(𝐿)
min{(2 +𝑂 (𝑛/2𝑘 )), 5} sign(𝑈 ) ≠ sign(𝐿)

Floats

Sensitivity from accuracy

Iterative 1 + Θ(𝑛2/2𝑘 )
+ Truncated summation Pairwise 1 +𝑂 (𝑛 log(𝑛)/2𝑘 ) 𝑛 < 2

𝑘

Kahan 1 +𝑂 (𝑛/2𝑘 ) 𝑛 < 2
𝑘

Table 2: Upper bounds obtained in our solutions for numerical type 𝑇 , −𝑈 ≤ 𝐿 ≤ 𝑈 , and datasets of length 𝑛. The parameter
𝑘 is the number of bits (for 𝑘-bit ints) and the mantissa length (for (𝑘, ℓ)-bit floats); the parameter𝑚 is the bit-length of the
integer data type to which the floats were reduced. We remark that in the iterative, pairwise, and Kahan sensitivities, the 1
factor becomes a 2 in the case where 𝑛 is unknown and sign(𝑈 ) ≠ sign(𝐿). Note that all the methods listed in a given solution
box need to be used in combination (e.g., RP, Split Summation, and RTZ all need to be used together).

records), a 128-bit accumulator could be used or the summation

method could be switched to a method where the accuracy bounds

grow more slowly with 𝑛 (e.g., pairwise or Kahan summation).

Otherwise, we recommend considering the “changing rounding

mode” solution, which requires changing the rounding mode from

the standard banker’s rounding to round toward zero.
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