
On the works of Avi Wigderson∗

Boaz Barak1, Yael Kalai2, Ran Raz3, Salil Vadhan1, and Nisheeth K. Vishnoi4

Abstract This is an overview of some of the works of Avi Wigderson, 2021 Abel
prize laureate. Wigderson’s contributions span many fields of computer science and
mathematics. In this survey we focus on four subfields: cryptography, pseudoran-
domness, computational complexity lower bounds, and the theory of optimization
over symmetric manifolds. Even within those fields, we are not able to mention all
of Wigderson’s results, let alone cover them in full detail. However, we attempt to
give a broad view of each field, as well as describe how Wigderson’s papers have
answered central questions, made key definitions, forged unexpected connections,
or otherwise made lasting changes to our ways of thinking in that field.

1 Introduction

In a career that has spanned more than 40 years, Wigderson has resolved long-
standing open problems, made definitions that shaped entire fields, built unexpected
bridges between different areas, and introduced ideas and techniques that inspired
generations of researchers. A recurring theme in Wigderson’s work has been uncov-
ering the deep connections between computer science and mathematics. His papers
have both demonstrated unexpected applications of diverse mathematical areas to
questions in computer science, and shown how to use theoretical computer science
insights to solve problems in pure mathematics. Many of these beautiful connections
are surveyed in Wigderson’s own book [283].

In writing this chapter, we were faced with a daunting task. Wigderson’s body of
work is so broad and deep that it is impossible to do it justice in a single chapter, or

School of Engineering and Applied Sciences, Harvard University. ·Microsoft Research and MIT ·
Department of Computer Science, Princeton University. · Department of Computer Science, Yale
University.

∗ To appear in H. Holden, R. Piene: The Abel Laureates 2018–2022, Springer, 2024

1

ar
X

iv
:2

30
7.

09
52

4v
1

 [
cs

.C
C

]
 1

8
Ju

l 2
02

3

2 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

even in a single book. Thus, we chose to focus on a few subfields and, within those,
describe only some of Wigderson’s central contributions to these fields.

In Section 2 we discuss Wigderson’s contribution to cryptography. As we de-
scribe there, during the second half of the 20th century, cryptography underwent
multiple revolutions. Cryptography transformed from a practical art focused on “se-
cret writing” to a science that protects not only communication but also computa-
tion, and provides the underpinning for our digital society. Wigderson’s works have
been crucial to this revolution, vastly extending its reach through constructions of
objects such as zero-knowledge proofs and multi-party secure computation.

In Section 3, we discuss Wigderson’s contribution to the field of pseudorandom-
ness. One of the great intellectual achievements of computer science and mathemat-
ics alike has been the realization that many deterministic processes can still behave
in “random-like” or pseudorandom manner. Wigderson has led the field in under-
standing and pursuing the deep implications of pseudorandomness for problems in
computational complexity, such as the power of randomized algorithms and circuit
lower bounds, and in developing theory and explicit constructions of “pseudoran-
dom objects” like expander graphs and randomness extractors. Wigderson’s work
in this field used mathematical tools from combinatorics, number theory, algebra,
and information theory to answer computer science questions, and has applied com-
puter science abstractions and intuitions to obtain new results in mathematics, such
as explicit constructions of Ramsey graphs.

Section 4 covers Wigderson’s contribution to the great challenge of theoretical
computer science: proving lower bounds on the computational resources needed
to achieve computational tasks. Algorithms to solve computational problems have
transformed the world and our lives, but for the vast majority of interesting computa-
tional tasks, we do not know whether our current algorithms are optimal or whether
they can be dramatically improved. To demonstrate optimality, one needs to prove
such lower bounds, and this task has turned out to be exceedingly difficult, with the
famous P vs. NP question being but one example. While the task is difficult, there
has been some progress in it, specifically in proving lower bounds for restricted
(but still very useful and interesting) computational models. Wigderson has been a
central contributor to this enterprise.

Section 5 covers a line of work by Wigderson and his co-authors on developing
and analyzing continuous optimization algorithms for various problems in compu-
tational complexity theory, mathematics, and physics. Continuous optimization is
a cornerstone of science and engineering. There is a very successful theory and
practice of convex optimization. However, progress in the area of nonconvex opti-
mization has been hard and sparse, despite a plethora of nonconvex optimization
problems in the area of machine learning. Wigderson and his co-authors, in their
attempt to analyze some nonconvex optimization problems important in complex-
ity theory, realized that these are no ordinary nonconvex problems – nonconvexity
arises because the objective function is invariant under certain group actions. This
insight led them to synthesize tools from invariant theory, representation theory,
and optimization to develop a quantitative theory of optimization over Riemannian
manifolds that arise from continuous symmetries of noncommutative matrix groups.

On the works of Avi Wigderson 3

Moreover, this pursuit revealed connections with and applications to a host of dis-
parate problems in mathematics and physics.

All of us are grateful for having this opportunity to revisit and celebrate Wigder-
son’s work. More than anything, we feel lucky to have had the joy and privilege of
knowing Avi as a mentor, colleague, collaborator, and friend.

2 Cryptography

Cryptography has been used for thousands of years, going back to ancient Egypt,
Sumeria, and Greece. However, throughout the vast majority of that time, it had two
major limitations. First, there was no formal analysis of cryptographic schemes,
leading to a “cat and mouse” game in which ciphers are continuously designed and
then broken, leading Edgar Allan Poe to say in 1847 that “Human ingenuity can-
not concoct a cipher which human ingenuity cannot resolve.” Second, cryptography
was synonymous with “secret writing”: the design of schemes that enable two par-
ties that share some secret information (i.e., secret key) to communicate by using
encryption and decryption.

In the second half of the 20th century, cryptography broke out of these two limi-
tations. First, starting with the work of Shannon [250], cryptography was placed on
solid mathematical foundations. Second, with their invention of public key cryptog-
raphy, Diffie and Hellman [78] ushered in a new era where cryptography extended
far beyond secret writing. However, neither Shannon nor Diffie and Hellman could
imagine how far cryptography would grow. First, in almost all settings, analyzing
cryptographic schemes required going beyond the information-theoretic methods
of Shannon, and to use computational complexity as a basis. Second, in the 1980s,
cryptography was extended to protect not only communication but also computation,
with a crowning achievement being “secure multiparty computation” protocols that
allow any number of parties to compute arbitrary functions on their secret inputs,
controlling precisely what information would be revealed and to whom.

Avi Wigderson played a key role in these developments. He was instrumental in
mapping out the computational assumptions required for many cryptography tools
and proving the central feasibility result for secure multiparty computation.

In this section, we survey some of Wigderson’s contributions to cryptography,
focusing on two central themes.

1. Building cryptographic schemes that are secure under computational assump-
tions (which can be viewed as stronger variants of the famous P ̸= NP conjec-
ture). This line of works is covered in Section 2.1.

2. Building cryptographic schemes that are proven to be secure unconditionally,
without relying on any computational assumptions, but rather on certain environ-
mental conditions such as a trusted majority of parties. This field is sometimes
known as information-theoretically secure cryptography, and some of Wigder-
son’s contributions to it are covered in Section 2.2.

4 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Two objects play a central role in both fields: zero-knowledge proofs, and multi-
party secure computation. These are the foundational tools for extending cryptog-
raphy from only securing communication to securing computation. Wigderson has
made seminal contributions to constructing these objects in both the computational
and information-theoretic regimes, enabling many follow-up works that used these
tools to achieve a vast range of cryptographic applications. The description below
is informal in parts, and many proofs are omitted. However they can be found in
Goldreich’s excellent textbook [108, 109]. See also the recent text [271] for more
on information-theoretic cryptography.

2.1 Cryptography under computational assumptions

Cryptography is intimately connected to computational complexity. Indeed, achiev-
ing most cryptographic goals requires the existence of functions that are computa-
tionally hard to compute. The necessity of computational hardness for encryption
was realized early on by Shannon [250]. However, in the early 1980s, researchers
realized that computational hardness is sufficient for achieving applications that ex-
tend far beyond encryption. Avi Wigderson played a key role in this revolution that
vastly expanded the domain of cryptography beyond its classical goals of protecting
the confidentiality and authenticity of communications.

2.1.1 Zero knowledge proofs for all languages in NP

Zero-knowledge proofs achieve the seemingly paradoxical notion of convincing a
party (known as the “verifier”) that a particular statement X is true, without giving
any information to the verifier as to why that statement is true. For example, a prover
that knows the factorization of the number N = 1,013,883,390,263,903 as N =
32,722,259× 30,984,517 can easily prove the statement “N is composite and has
a factor with least-significant digit 7” by providing the factorization, but a zero-
knowledge proof allows them to prove this fact without revealing the prime factors.2

In 1982, Goldwasser, Micali and Rackoff [116] defined the notion of zero knowl-
edge proofs, and gave such proofs for particular examples of languages, such as
quadratic residuosity, for which no efficient algorithm is known. To do this, [116]
needed to extend the notion of proofs to include interaction— the prover and veri-
fier exchange messages rather than just a static piece of text— and randomization—
the verifier’s algorithm is randomized, and it is only convinced of the proof validity
with high probability.

2 Simply proving that a number N is composite can be done easily, since the verifier can use an
efficient primality testing algorithm [2], and so even an empty proof suffices. Also, current classical
(i.e., non quantum) algorithms can be used to efficiently factor numbers with up to a few hundred
digits [177, 49].

On the works of Avi Wigderson 5

We now formally define interactive proofs in general and zero-knowledge proofs
in particular. We restrict our attention to proof systems for languages in NP, which
is the case of most practical relevance in cryptography. Recall that the class NP
consists of all languages for which membership can be efficiently verified. Formally,
we define an NP-relation to be a relation R ⊆ {0,1}∗×{0,1}∗ such that there is a
polynomial-time algorithm to check whether a pair (x,y) is in R and such that there
is a polynomial p such that for every pair (x,y) ∈ R, |y| ≤ p(|x|). For a relation R,
we define the lanaguage corresponding to R to be LR = {x|(x,y)∈ R}. The class NP
is the set of all languages L such that L = LR for some NP-relation R. Given a string
x, one can prove that x is in L by providing the string y such that (x,y) ∈ R. By the
definition of an NP relation, the string y will be of length at most polynomial in |x|
and the membership of (x,y) in R can be verified efficiently.

An interactive algorithm is a (potentially randomized) algorithm that, given a
current state si and the message received mi, outputs the updated state si+1 and the
message it sends mi+1. An interaction between two interactive algorithms A and B
given inputs a,b, respectively, proceeds in the natural way: the initial states of A and
B are a,b, respectively. Then we iterate between each algorithm, computing its new
state and message sent based on the previous state and message received from the
other party. (For concreteness, we assume that A sends the first message, and thus
gets the empty message and its initial state as input to compute it.) We say that an
interactive algorithm A is polynomial time if there are some polynomials p,q such
that, letting n be the length of A’s input: (1) the total number of rounds A will interact
with before halting, as well as the length of each message it sends and its internal
state, is at most p(n), (2) A computes every message and updated state using at most
q(n) operations.

Definition 2.1 (Interactive proofs for NP languages) Let R be an NP relation and
L = LR the corresponding NP language. An (efficient) interactive proof system for
R is a pair of interactive randomized polynomial-time algorithms P,V that satisfy
the following properties:

Completeness: For every (x,y) ∈ R, if P gets x,y as input and V gets x as input,
then at the end of the interaction, V will output 1 with probability 1.

Soundness: For every interactive algorithm P∗ (even inefficient one) and every
x ̸∈ L, if V gets x as input and interacts with P∗, then the probability that V
outputs 1 at the end of the interaction is at most 1

2 .3

The formal definition of Zero-Knowledge proofs uses the notion of a simulator.
The idea is that to demonstrate that a verifier V did not learn anything from an
interaction with a prover P, we show that V could have simulated the interaction by
itself.

Definition 2.2 (Zero-knowledge proofs) Let R be an NP relation and (P,V) be an
efficient interactive proof system for R. We say that (P,V) is zero knowledge if the

3 The probability 1/2 of error can be reduced to 2−k by the standard trick of repeating the protocol
k times sequentially.

6 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

following holds. For every polynomial-time interactive algorithm V ∗ there exists
a (non-interactive) randomized polynomial-time algorithm S∗ such that: for every
(x,y) ∈ R, if we let s∗ be the random variable corresponding to V ∗’s state, then s∗ is
computationally indistinguishable from the random variable S∗(x).

Let {Xα}α∈I and {Yα}α∈I be two parameterized collections of random variables,
with I ⊆ {0,1}∗, and Xα ,Yα supported on strings of length at most polynomial in
|α|. We say that {Xα} and {Yα} are computationally indistinguishable, denoted
by {Xα} ≈c {Yα} if there exists some function µ : N→ (0,1] such that µ(n) =
n−ω(1) (i.e., limn→∞

log µ(n)
logn = −∞) and such that for every Boolean circuit Cα of

size at most 1/µ(|α|), |Pr[Cα(Xα) = 1]−Pr[Cα(Yα) = 1]|< µ(|α|). We often omit
the subscript α when it is clear from context and so use the notation Xα ≈c Yα or
simply X ≈c Y . For example, the condition of Definition 2.2 is that there is some
function µ : N→ [0,1] such that µ(n) = n−ω(1) and such that for every Boolean
circuit C of size ≤ 1/µ(|x|), |Pr[C(s∗) = 1]−Pr[C(S∗(x)) = 1]|< µ(|x|).

At the time of Goldwasser et al’s result, it was not clear that zero-knowledge
proofs are not a mere “curiosity” restricted to very specific examples. (Indeed, the
[116] paper famously took three years before it was accepted for publication.) In
Wigderson’s work with Goldreich and Micali [112] they showed that this is decid-
edly not the case. Rather, they showed that (under standard cryptographic assump-
tions) every language in NP has a zero-knowledge proof.

One way to define NP is that it consists of languages L such that the membership
of a string x in L can be proven by an efficient mathematical proof (i.e., a piece of text
at most polynomially long in |x|, which can be verified in polynomial time). Hence
[112]’s result can be thought of as saying that if a statement x has an efficient proof
at all, then it also has an efficient proof in which the verifier learns nothing except
that the statement is true.4 The way that [112] proved their theorem was ingenious.
They used the celebrated Cook-Levin Theorem, which is typically considered as a
negative or impossibility result, to show give a positive result.

We now describe their protocol. The Cook-Levin Theorem says that there are
concrete problems that are NP-complete in the sense that any other problem in NP
reduces to them. One example of an NP-complete language is three coloring or
3COL, which is defined as follows. For a graph G = (V,E), G ∈ 3COL if and only if
there exists χ : V →{1,2,3} such that for every {u,v} ∈ E, χ(u) ̸= χ(v). A classical
result is the following:

Theorem 2.3 (Cook-Levin-Karp [73, 178, 158]) 3COL is NP-complete. That is, for
every L ∈ NP there exists a polynomial-time reduction r : {0,1}∗ → {0,1}∗ such
that for every x ∈ {0,1}∗,

x ∈ L⇔ r(x) ∈ 3COL .

4 This way of phrasing is a bit cheating, since the first instance of “proof” corresponds to a stan-
dard mathematical proof— a static deterministically-verifiable piece of text— while the second
one corresponds to the extended notion of [116] which includes interaction and randomness. A
followup work [37] extended this by showing that everything that can be proven by a randomized
interactive proof, also has such a proof which is zero knowledge.

On the works of Avi Wigderson 7

Moreover, if R is the NP-relation corresponding to L, there exists polynomial-time
algorithms r′,r′′ such that

1. For every (x,y) ∈ R, r′(x,y) is a valid 3-coloring for the graph r(x).
2. For every x ∈ {0,1}∗ and G = r(X), if χ is a valid 3-coloring for G then

(x,r′′(G,χ)) ∈ R.

The “moreover” part of Theorem 2.3 was already implicit in the classical works
of [73, 178, 158], and was explicitly discussed by Levin (which is why a triple
(r,r′,r′′) as above is sometimes known as a “Levin reduction”). Wigderson and his
coauthors used this insight to show that in order to give a zero-knowledge proof
system for all L ∈ NP, it suffices to give a zero-knowledge proof system for 3COL.
Specifically, for every NP language L, let rL,r′L,r

′′
L the reductions from L to 3COL

as in Theorem 2.3. Given a zero-knowledge protocol (P3COL,V3COL) for 3COL we
can obtain a protocol (PL,VL) as follows:

• Verifier and prover get x as input, and the prover gets in addition y such that
(x,y) ∈ RL

• Verifier and prover compute G = rL(x) and prover computes χ = r′L(x,y).
• Verifier and prover run the protocol (P3COL,V3COL) with inputs G and (G,χ)

respectively.

2.1.2 Computationally secure multiparty computation

Obtaining a zero-knowledge proof system for every problem in NP is an intellectu-
ally satisfying result on its own merits. But does it have further applications? In
another work of Wigderson with Goldreich and Micali [113], they showed that
the answer is a resounding yes. They introduced a general technique to use zero-
knowledge proofs as a way to compile protocols that achieve a very weak form
of security into ones that achieve a very strong one. Using their technique, [113]
proved what is arguably “The Fundamental Theorem of Cryptography”— a proto-
col for secure multiparty computation.

Secure multiparty computation (MPC) is a vast generalization of many tasks in
cryptography, including encryption, electronic voting, voting, privacy-preserving
data mining, and more. Full proofs and even the precise definition of MPC with
all its variants is beyond the scope of this section. Lindell’s survey [183] gives an
excellent introduction, while the books [109, 74] go into more detail.

The setup is that there are n parties holding private inputs x1 ∈X1, . . . ,xn ∈Xn,
and they wish to compute a (potentially probabilistic) map

F : X1×·· ·×Xn→ Y1×·· ·×Yn

such that (roughly speaking) the following properties hold:

Completeness Every party i will learn the value yi where (y1, . . . ,yn)=F(y1, . . . ,yn).

8 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Privacy A party i will not learn anything else apart from yi about the private
inputs of the other parties. More generally, every adversary that controls some
set A ⊆ [n] of parties will not learn more about the private inputs {xi}i̸∈A of the
other parties beyond what could be derived from the outputs {yi}i∈A.

Soundness An adversary that controls A as above cannot modify the outputs yi of
i ̸∈ A beyond its choice of the inputs {xi}i∈A.5

Up to considerations of computational efficiency, as well as allowing for inter-
active communication between parties, we can cast almost any cryptography prob-
lem as an instance of MPC. For example, the encryption task can be thought of
as computing the function F(x,) = (,x) where is the “empty” input/output. That
is, computing F corresponds to ensuring that the second party learns x and that no
one learns anything else. Conducting an auction could correspond to computing the
function F(x1, . . . ,xn) = (y1, . . . ,yn) where yi = 1i=argmax{xi}. (That is, each party
only learns whether or not they were the highest bidder.)

Yao [289] gave a version of MPC that was restricted in two ways. First, Yao’s
protocol was only for two parties. Second, and more importantly, Yao’s protocol
assumed a very restricted (and unrealistic) adversary: one that follows precisely the
protocol’s instructions but tries to extract information from the communication it
is involved in. Such adversaries are known in cryptographic parlance as passive or
honest-but-curious. Since in general, we have no reason to expect attackers to obey
our protocol’s instructions, honest-but-curious is not a realistic model for security.

Wigderson’s work [113] solved both issues. First, they gave a general MPC
protocol for n parties in the hones-but-curious model. Second, they used zero-
knowledge proofs to provide a general transformation or “compiler” from protocols
that are only secure against honest-but-curious adversaries into ones that are secure
against general (also known as malicious) adversaries. Since their work, the general
paradigm of using zero-knowledge proofs to “boost” security from passive to active
adversaries has found numerous uses in theory and practice.

The details of [113]’s protocol are complex, and we omit them here. However,
some of the techniques are illustrated in Section 2.2, which describes a different
multiparty secure computation protocol of Wigderson in the information-theoretic
setting. In both cases, the general idea is that (1) we can describe a general function
F as a Boolean circuit, which is a composition of simple gates, and (2) once we
do so, we can achieve a secure computation protocol by performing a gate-by-gate
computation of intermediate values that are “encrypted” in the sense that no party
(or strict subset of parties) can recover them on its own.

Arguably, it is [113]’s honest-but-curious to malicious compiler which had had
the most significant impact. The idea behind this compiler is simple yet ingenious:
Every party in the protocol will use zero-knowledge proofs to prove that it has fol-
lowed the protocol’s instructions. For example, suppose that at a given step in the
protocol, the party i has private input xi, and has received messages m1, . . . ,mt . Sup-
pose that according to the protocol’s instructions, the party should compute its next

5 The adversary might also be able to abort the protocol; we ignore this issue of aborts in this
section, but it is discussed extensively in the literature.

On the works of Avi Wigderson 9

message as
mt+1 = Πi(xi,m1, . . . ,mt) (1)

where Πi is some known polynomial-time function that is specified by the protocol.
A simple way for i to convince the other parties that it computed mt+1 correctly is
to reveal all the inputs used in the computation, including the private input xi. But
that would, of course, violate i’s privacy. However, the statement “there exists xi that
satisfies (1)” is an NP statement. Hence, it can be proved in zero knowledge, and so
in a way that does not reveal xi.

While this is the general idea, implementing it involved additional complications,
including ensuring consistency (that the same private input xi is used in all mes-
sages), dealing with randomized protocols (that are inherent to cryptography), and
more. Using tools such as commitment schemes and coin-tossing protocols, [113]
overcame those obstacles and proved that (under standard cryptographic assump-
tions), there exists a secure multiparty computation protocol for every polynomial
time (potentially probabilistic) map F : X1×·· ·×Xn→ Y1×·· ·×Yn. This is one
of the most fundamental theorems in all of cryptography and shows that if we are
willing to allow for (polynomial-time) computation and communication overhead,
every protocol problem can be solved. Although the road from such a theoretical
proof of existence to practical constructions is long and arduous, the results of [113],
as well as the techniques they introduced, served as guiding lights for theorists and
practitioners alike.

2.2 Information Theoretic Cryptography

In the previous section we showed how to construct zero-knowledge interactive
proofs for all of NP, and how to use them to construct secure multi-party computa-
tion protocols. These works [112, 113] rely on cryptographic assumptions (such as
the existence of a one-way function) and assume that the malicious parties are com-
putationally bounded and cannot break the underlying cryptographic assumption.
In particular, these protocols do not offer everlasting security. Namely, even if dur-
ing the execution of the protocol the parties did not learn any information (beyond
the validity of the statement or the output of the computation), if many years later
the computers become stronger and manage to break the underlying cryptographic
assumption, then at that point information can be leaked.

This motivates the question of whether we can obtain everlasting security. In
other words, can we construct a zero-knowledge interactive proof and a secure MPC
protocol that do not rely on cryptographic assumptions and provide security against
all-powerful adversaries? Wigderson, together with Ostrovsky [214], proved that the
answer is no for zero-knowledge interactive proofs. Namely, they showed that one-
way functions are necessary for constructing zero-knowledge interactive proofs for
all of NP (assuming NP ̸= BPP). Similarly, Wigderson, together with Ben-Or and
Goldwasser [39], showed that cryptographic assumptions are necessary for secure
MPC (with the security guarantees as presented in Section 2.1).

10 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

For Wigderson and his coauthors, these lower bounds were nothing but an in-
vitation to surpass them. In the case of zero-knowledge they managed to do so by
changing the model in a clever and interesting way. Specifically, to obtain infor-
mation theoretic zero knowledge, Wigderson, together with Ben-Or, Goldwasser
and Kilian [38], considered a new proof model: Rather than considering a verifier
that is interacting with a single prover, they considered a verifier that is interacting
with two non-communicating provers. They constructed information theoretic zero-
knowledge 2-prover interactive proofs. We elaborate on this construction and on the
immense impact of the 2-prover model in Section 2.2.1. For the case of secure MPC,
Wigderson, together with Ben-Or, Goldwasser [39] managed to get an information
theoretic security by restricting the fraction of parties the adversary is allowed to
corrupt to be less than 1/2 in the honest-but-curious setting and less than 1/3 in
the general malicious setting. They constructed an ingenious MPC protocol that is
information theoretic secure assuming the adversary is restricted as above, and as-
suming that each pair of parties is connected via a secure channel. This result is a
true breakthrough and has served as a foundation for numerous subsequent works.
We elaborate on it in Section 2.3.1.

2.2.1 Multi-Prover Zero-Knowledge Interactive Proofs

In the multi-prover interactive proof model, there are multiple provers who can co-
operate and communicate between them to decide on a common optimal strategy
before the interaction with the verifier starts. But, once they start to interact with
the verifier, they can no longer interact nor can they see the messages exchanged
between the verifier and the other provers.

Definition 2.4 (2-prover interactive proof) A 2-prover interactive proof for a lan-
guage L ∈ NP consists of two provers (P1,P2) and a probabilistic polynomial time
verifier V such that the verifier takes as input an instance x and each prover takes
as input both x and a corresponding witness w. The verifier samples two queries
(q1,q2) and sends qi to prover Pi. Each prover Pi computes an answer ai =Pi(x,w,qi)
and sends ai to the verifier V , who then outputs a verdict bit b =V (x,q1,q2,a1,a2)
indicating accept or reject.

The following two properties are required to hold:

• Completeness. For every x ∈ L and any corresponding witness w s.t. (x,w)∈ RL,
the verifier V (x), who generates queries q1 and q2, accepts the answers a1 =
P1(x,w,q1) and a2 = P2(x,w,q2), with probability 1.

• Soundness. For every x /∈ L and any two (computationally unbounded) cheating
provers P∗1 and P∗2 , the probability that the verifier V (x), who generates queries
q1 and q2, accepts the answers a1 = P∗1 (x,q1) and a2 = P∗2 (x,q2), is at most 1/2.

Theorem 2.5 Every language L ∈ NP has a two-prover perfect zero-knowledge in-
teractive proof-system.

On the works of Avi Wigderson 11

Proof idea. Recall that in Section 2.1.1 we showed how to construct a computational
zero-knowledge interactive proof. The computational aspect follows from the use of
a commitment scheme, whose hiding property is only computational.

The main new ingredient in the 2-prover zero-knowledge proof is an information
theoretic commitment. Recall that in the zero-knowledge proof presented in Sec-
tion 2.1.1, in the first step the prover sends a commitment (in the case 3-coloring,
this is a commitment to a legal coloring). To achieve zero-knowledge we need this
commitment scheme to be hiding and for soundness this commitment must be bind-
ing. It is known that any commitment scheme that is statistically binding can only
be computationally hiding, and this is precisely where the cryptographic hardness
assumption comes in.

Wigderson et. al. [38] get around this barrier by constructing a commitment
scheme that is both statistically binding and statistically hiding in a model where
there are two committers, who are assumed to be non-communicating. In what fol-
lows, we present a slightly simplified version of their commitment scheme. We show
how to commit to a single bit, and one can commit to arbitrarily many bits by repe-
tition.

2.2.2 Bit commitment scheme in the 2-prover setting.

In what follows we show how two provers P1 and P2 commit to a bit b ∈ {0,1}.
First, before the protocol begins, they share a random string w ← {0,1}n and a
single random bit d ← {0,1} which are hidden from the verifier V . n controls the
binding failure; taking n = 1 will guarantee binding with probability 1/2 whereas
taking a general n will guarantee binding with probability 2−n.

Commitment phase:

1. The verifier V chooses a random string r ← {0,1}n, and sends r to P1. He
sends nothing to P2.

2. Prover P1 sends x = (d · r)⊕w and the prover P2 sends z = b⊕d.

Opening phase:

1. Prover P2 sends to the verifier the committed bit b along with w.
2. The verifier V accepts if and only if x = ((b⊕ z) · r)⊕w.

Analysis. In what follows we argue that this commitment scheme is information the-
oretic hiding and is also information theoretical binding (assuming the two provers
do not interact).

Hiding. Note that (x,z)≡Un+1 where Un+1 denotes the uniform distribution over
n+1 bits:

(x,z) = ((d · r)⊕w,b⊕d)≡ (Un,b⊕d)≡Un+1.

Binding. We show that any pair of cheating provers can break the binding prop-
erty with probability at most 2−n. To this end, consider any pair of cheating

12 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

provers P∗1 and P∗2 that send (x,z) to V , and that later P2 can open successfully to
both 0 using w0 and to 1 using w1. This means that

(z · r)⊕w0 = (1⊕ z) · r⊕w1

which in turn implies that
w0⊕w1 = r,

and thus P∗2 can predict r, which should happen with probability 2−n.

Information theoretic 2-prover zero-knowledge proof. Equipped with this infor-
mation theoretic commitment scheme, the 2-prover zero-knowledge construction is
essentially the same as that presented in Section 2.1.1 while replacing the computa-
tional commitment scheme with the information theoretic one presented above.

2.3 The Importance of the Multi-Prover Interactive Proof Model

As mention above, the original motivation of [38] for considering the model of
multi-prover interactive proofs was for constructing statistical zero-knowledge proofs,
a goal that they achieved with utter success. However, already in their original paper,
[38] realized the potential power of such a proof model, and they posed the follow-
ing open problem: “It is interesting to consider what is the power of this new model
solely with respect to language recognition.” Their intuition for why this model is
powerful stems from the fact that “the verifier can check the provers against each
other.” In particular, the example they give is that of suspects that try to cover up a
crime. It seems hard to cheat in a consistent manner.

Indeed, Babai et. al. [24] showed that this proof model is extremely power-
ful. In particular, they showed that the correctness of any (deterministic or non-
deterministic) time-T computation can be verified in a 2-prover interactive proof
model, where the communication complexity is only polylog(T) and where the run-
ning time of the verifier is only polylog(T) plus quasi-linear in the input length.
In particular, a polynomial time verifier can verify the correctness of exponentially
long (deterministic or non-deterministic) computations.

The power of this proof model had groundbreaking consequences, leading to the
notable PCP theorem [94, 23, 20, 19]. In particular, Fortnow et. al. [95] realized that
if in the proof for a time-T computation the messages from the verifier to the provers
are of size O(logT) (which they indeed in the construction of [24]) then each prover
can generate a list consisting of its answers to all possible verifier messages, and this
list will be of size poly(T). The lists of the two provers can be thought of as a list of
size poly(T) that can be verified by reading only two blocks of size polylog(T).

This simple observation is spectacular. In the context of non-deterministic com-
putations, it means that one can take any proof, and convert it into a new proof which
is polynomially longer, but which can be verified by randomly reading only poly-
logarithmically many bits of the proof. Indeed this observation created an immense

On the works of Avi Wigderson 13

splash in the theory community, leading to the notable PCP theorem which says that
for any NP language L, with a corresponding NP relation R, it holds that there is
an efficient transformation that given any (x,w) ∈ R generates a probabilistically
checkable proof (PCP) π of size polynomial in the size of (x,w), such that if x /∈ L
then after (randomly) reading only 3 bits of π the verifier will reject the proof with
probability 7/8, and if (x,w) ∈ L and the proof π was honestly generated then it is
accepted by the probabilistic verifier with probability 1.

The 2-prover interactive proof model and the PCP theorem had numerous ap-
plications to theory of computation and beyond. They form the foundation for all
known hardness of approximation results, and are at the heart of all known succinct
computationally sound proof system (also known as argument systems). Succinct
arguments have played an important role in cryptography over the last 15 years.
This significance is underscored by the hundreds of papers that have been pub-
lished, the dozens of systems that have been built, and their deployment by numer-
ous blockchain corporations, including prominent ones like Ethereum.

2.3.1 Information Theoretic Secure Multi-Party Computation

Recall that in 2.1.2 we elaborated on the work of [113], which showed how a set of
n parties can compute any function of their (secret) inputs securely, where the secu-
rity guarantees computational, i.e., security holds against computationally bounded
adversaries. The focus of this section is on obtaining information theoretic security
(also known as perfect security), where security holds even against all powerful ad-
versaries. Indeed, Wigderson, together with Ben-Or and Goldwasser [39], showed
that any function can be computed with perfect security assuming each pair of par-
ties is connected with a private channel, as long as the malicious adversary controls
less than 1/3 of the parties. If the adversary is restricted to be semi-honest then
security is guaranteed as long as the adversary controls a minority of the parties.
Moreover, they showed that such a corruption rate is tight, both in the malicious
setting and the semi-honest setting.

This result is truly remarkable. Indeed, it is a cornerstone in the field of secure
multi-party computation, and has paved the way for a lot of subsequent work, mak-
ing it a highly influential and a groundbreaking contribution. As is often the case in
the literature, we refer to this protocol as the BGW protocol.

High-level overview of the BGW protocol. Suppose a set of n parties wish to se-
curely compute a function f from n inputs to n outputs. Let C be an arithmetic
circuit computing f . On a high level, the BGW protocol securely emulates the com-
putation of C in a gate-by-gate manner, starting from the input gates all the way up
to the output gates. More specifically, it proceeds with the following steps:

1. Secret sharing of the inputs. The protocol begins with the parties sharing their
inputs with each other using a secure secret sharing scheme [249]. If the adver-
sary is assumed to be semi-honest, and thus is assumed to corrupt less than n/2
parties, then the parties share each bit of their secret input using the Shamir t-

14 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

out-of-n secret sharing scheme [249] with t = ⌈n/2⌉−1. Such a scheme ensures
that if at most t shares are revealed then no information about the secret is re-
vealed, whereas t +1 shares can be efficiently combined to reveal the secret. We
elaborate on Shamir’s secret sharing scheme below.
If the adversary is malicious then one needs to use a verifiable secret sharing
(VSS) scheme. The first information theoretically secure VSS scheme was con-
structed in the work of [39], and we elaborate on it towards the end of this section.

2. Gate-by-gate emulation. The parties then emulate the computation of each gate
of the circuit, computing secret shares of the gate’s output from the secret shares
of the gate’s inputs. As we shall see, the Shamir secret sharing scheme, as well as
the VSS scheme of [39], have the property that computing shares corresponding
to addition gates can be done locally, without any interaction. Thus, the parties
only interact in order to emulate the computation of multiplication gates. This
step is the most involved part of the protocol, and we elaborate on it below.

3. Output reconstruction. Finally, the parties reconstruct the value of each output
wire from the shares of the that wire. Namely, if an output wire belongs to party
Pi then all the parties send party Pi their shares corresponding to the wire and Pi
uses all these shares to reconstruct the output.

We next describe the BGW protocol in more detail. We first focus on the semi-
honest setting, and only towards the end of the section we discuss the malicious
setting. We start by recalling Shamir’s secret sharing scheme.

Shamir Secret Sharing Scheme. Suppose a party (often referred to as the dealer)
wishes to share a secret input among n parties, with the guarantee that any t + 1
of the parties can use their shares to efficiently reconstruct the secret and yet any t
shares do not reveal any information about the secret. In what follows we assume
for simplicity, and without loss of generality, that the secret is a single bit (and thus
can be embedded in any finite field).

Let F be a finite field of size greater than n, let α1, . . . ,αn arbitrary distinct non-
zero elements in F. In order to share a secret s ∈ F a random degree t polynomial
p(x) ∈ F[x] is chosen such that p(0) = s. The share of party Pi is set to be p(αi). By
interpolation, given any t+1 points it is possible to reconstruct the polynomial p and
compute the secret s = p(0). Furthermore, since p is random subject to p(0) = s,
and thus has t random coefficients, its values at any t or less of the αi’s give no
information about the secret s.

Gate-by-Gate Emulation. We next show how to use the structure of Shamir’s secret
sharing scheme to do the gate-by-gate emulation. The first observation is that addi-
tion gates can be computed locally. That is, given shares p(αi) and q(αi) of the two
input wires corresponding to an addition gate, it holds that r(αi) = p(αi)+q(αi) is
a valid sharing of the output wire. This is due to the fact that the polynomial r(x) =
p(x)+q(x) has the same degree as both p(x) and q(x), and r(0) = p(0)+q(0).

Remark 2.6 Note that if the function f is linear, and thus can be computed using
a circuit that has only addition gates, then the gate-by-gate emulation step is com-
pletely non-interactive.

On the works of Avi Wigderson 15

Regarding multiplication gates, a natural attempt is to compute the product of the
shares, namely, party Pi computes r(αi) = p(αi) ·q(αi). Indeed, the constant term is
r(0) = p(0) ·q(0), as desired. However, the degree of r(x) becomes 2t, as opposed
to t. This is a problem since the reconstruction algorithm works as long as the poly-
nomial used for the sharing is of degree at most t. We therefore need to reduce the
degree of r down to t. To solve this, Wigderson and his coauthors devised a beautiful
and elegant degree reduction protocol. This protocol also ensures that the new de-
gree t polynomial is a random degree t polynomial with free coefficient p(0) ·q(0).
This is crucial for security, since if the polynomial is not random then t shares may
reveal undesired information.

Specifically, the degree reduction protocol first randomizes the degree-2t poly-
nomial r = p ·q so that it is uniformly distributed, and then it reduces its degree to t
while maintaining its uniformity. Specifically, a multiplication gate is computed via
the following protocol:

1. Local multiplication. Each party locally multiplies its input shares. Namely,
party Pi computes r(αi) = p(αi) ·q(αi).

2. Randomizing the polynomial r. Each party Pi generates a random degree 2t
polynomial zi such that zi(0) = 0, and sends to each party Pj the share zi(α j).
Then, each party Pi adds all the shares it received and the original share it com-
puted to obtain

n

∑
j=1

z j(αi)+ r(αi).

The resulting shares define a random degree 2t polynomial R such that R(0) =
p(0) ·q(0).

3. Degree reduction. The parties run a private protocol where each party Pi converts
its share R(αi) into the share Rtrunc(αi), where Rtrunc is simply a truncation of
the polynomial R to a degree t polynomial. Namely, if R(x) = ∑

2t
j=0 aixi then

Rtrunc(x) = ∑
t
j=0 aixi.

A priori it is not clear how a party Pi can compute Rtrunc(αi) from R(αi). Indeed,
Pi cannot do this on its own, and needs the help of all other parties Pj, who have
shares R(α j). Note that this computation needs to be done in a private manner,
which is the problem we are trying to solve in the first place, and thus it seems
that we are back to square one! However, the magical observation of [39] is that
this truncation function, which converts shares of R to shares of Rtrunc, is linear.
As mentioned in Remark 2.6, linear functions we already know how to compute
securely since they do not require any multiplication gates! Thus, it remains to
argue the linearly of this function, which is argued in the claim below.

Claim There exists a fixed (public) matrix A ∈ Fn×n such that for every degree
2t polynomial R : F→ F and for every distinct non-zero elements α1, . . . ,αn ∈ F,

A · (R(α1), . . . ,R(αn))
T = (Rtrunc(α1), . . . ,Rtrunc(αn))

T ,

where Rtrunc is defined as above.

16 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Proof Let R = (R0,R1, . . . ,R2t ,0, . . . ,0) ∈ Fn denote the vector of coefficients
of the polynomial R. Let Vα be the Vondermonde matrix corresponding to α =

(α1, . . . ,αn). Namely, for every i, j ∈ [n], Vα(i, j) = α
j−1

i . Note that

Vα ·RT = (R(α1), . . . ,R(αn))
T

It is well known that the Vondermonde matrix Vα is invertible if α1, . . . ,αn ∈ F
are all distinct and non-zero. Therefore,

RT =V−1
α · (R(α1), . . . ,R(αn))

T . (2)

Let P be the linear projection function that takes as input a vector (a1, . . . ,an) ∈
Fn and outputs (a1, . . . ,at+1,0 . . . ,0) ∈ Fn. Namely, in matrix representation,
P(i, j) = 1 if i = j and both are in {1, . . . , t +1}, and P(i, j) = 0 otherwise. Thus,
denoting by Rtrunc the t + 1 coefficients of the degree t polynomial Rtrunc fol-
lowed by zeros, i.e., Rtrunc = (R0,R1 . . . ,Rt ,0, . . . ,0), by the definition of Pt and
by Equation (2)

RT
trunc = P ·V−1

α · (R(α1), . . . ,R(αn))
T .

This, together with the definition of Vα , implies that

(Rtrunc(α1), . . . ,Rtrunc(αn))
T =Vα ·P ·V−1

α · (R(α1), . . . ,R(αn))
T .

We thus conclude the proof of this claim by setting A =Vα ·P ·V−1
α . □

This concludes the description of the BGW protocol in the honest-but-curious
setting, where the adversary is assumed to follow the protocol. We next show how
Wigderson and his co-authors modify this protocol to obtain security against a mali-
cious adversary who controls less than 1/3 of the parties and may deviate arbitrarily
from the protocol. The main new tool is a verifiable secret sharing scheme.

2.3.2 Verifiable Secret Sharing

A verifiable secret sharing (VSS) scheme, originally defined by Chor et al. [68], is
a secret sharing scheme that is secure even in the presence of malicious adversaries.
Recall that a secret sharing scheme (with threshold t) is made up of two stages: A
sharing stage and a reconstruction stage. In the sharing stage, the dealer shares a
secret among the n parties so that any t + 1 parties can efficiently reconstruct the
secret from their shares, while any subset of t or fewer shares reveal no information
about the secret. In the reconstruction stage, a set of t+1 or more parties reconstruct
the secret. If we consider Shamir’s secret-sharing scheme, much can go wrong if
the dealer or some of the parties are malicious. Recall, that to share a secret s, the
dealer is supposed to choose a random polynomial q of degree t with q(0) = s and
then hand each party Pi its share q(αi). However, a malicious dealer can choose a
polynomial of higher degree, and as a result different subsets of t + 1 parties may
reconstruct different values. Thus, the shared value is not well defined. In addition,

On the works of Avi Wigderson 17

in the reconstruction phase a corrupted party can provide an arbitrary malicious
value instead of the prescribed value q(αi), thus effectively changing the value of
the reconstructed secret.

A verifiable secret sharing scheme is aimed at solving precisely these issues.
Chor et al. [68] constructed a VSS scheme with computational security, i.e., assum-
ing the malicious parties are computationally bounded (and assuming the hardness
of some computational problem). Wigerson with his coauthors [39] constructed an
information theoretically secure VSS scheme, which ensures security against all
powerful adversaries, assuming that at most t < n/3 of the parties are corrupted.
More specifically, the security guarantee is that the shares received by the honest
parties are guaranteed to be q(αi) for a well-defined degree-t polynomial q, even
if the dealer is corrupted. To achieve this guarantee, the secret sharing stage is fol-
lowed by a verification stage which is an interactive stage where the parties “cor-
rect” their shares if needed. This correction protocol, which we elaborate on below,
is extremely beautiful!

Given this security guarantee it is possible to use techniques from the field of
error-correcting codes in order to reconstruct q (and thus q(0) = s) as long as n− t
correct shares are provided and t < n/3. This is due to the fact that Shamir’s secret-
sharing scheme when looked at in this context is exactly a Reed-Solomon code.

VSS via bivariate polynomials.
The VSS protocol of [39] consists of three stages.

1. Secret sharing stage. Loosely speaking, in this stage the dealer embeds the
Shamir’s secret sharing polynomial in a bivariate polynomial S(x,y). Specifi-
cally, to share a secret s ∈ {0,1} the dealer chooses a random bivariate poly-
nomial S(x,y) of degree t in each variable, such that S(0,0) = s. Note that
q(z) = S(0,z) is a polynomial corresponding to the Shamir secret sharing scheme
and the values q(α1), ...,q(αn) are the Shamir shares embedded into S(x,y). Sim-
ilarly, p(z) = S(z,0) is a polynomial corresponding to the Shamir secret sharing
scheme and the values p(α1), ..., p(αn) are the Shamir shares embedded into
S(x,y). The dealer sends each party Pi two univariate polynomials as shares; these
polynomials are fi(x) = S(x,αi) and gi(y) = S(αi,y). The Shamir-share of party
Pi is fi(0) = S(0,αi), and the polynomials fi and gi are given only for the sake of
verification.

2. Verification stage. At this point the parties engage in an interactive verification
protocol. First, each party Pi sends each party Pj the value si, j = fi(α j). Note that
if the dealer is honest, then the elements s1, j, . . . ,sn, j sent to party Pj should be
the value of the polynomial g j on α1, . . . ,αn, respectively. Each party Pj checks
that indeed for every i ∈ [n], si, j = g j(αi). If this is not the case, it broadcasts a
request for the dealer to reveal si, j. If Pj has more than t requests then the dealer is
clearly malicious, in which case Pj broadcasts a “complaint” thereby asking the
dealer to reveal his private shares fi and gi. Finally, after the dealer broadcasts
all the information requested, each party Pi checks that all the public and private
information he received from the dealer are consistent. If Pi finds any inconsis-
tencies he broadcasts a complaint thereby asking the dealer to reveal his private

18 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

shares. If at this point more than t parties have asked to make their shares public,
the dealer is clearly malicious and all the parties pick the default zero polynomial
as the dealer’s polynomial. Likewise, if the dealer did not answer all the broad-
casted requests he is declared malicious. On the other hand, if t or less parties
have complained then there are at least t+1 honest parties who are satisfied (this
follows from the fact that t < n/3). The shares of these parties uniquely define
a polynomial S(x,y) and this polynomial conforms with all the information that
was made public (otherwise one of these honest parties would have complained).
In this case the complaining parties take the public information as their share.

3. Reconstruction stage. At this point each party sends its updated share fi(0), and
the secret s is reconstructed by running the Reed-Solomon decoding algorithm.

Note that if the dealer is honest then no information about the shares of any
honest party is revealed during the verification process. If however the dealer is
malicious, we do not need to protect the privacy of his information, and the verifi-
cation procedure ensures that all the honest parties values lie on some polynomial
of degree t.

Gate-by-Gate Emulation in the Malicious Setting
As was done in the honest-but-curious setting, addition gates are computed lo-

cally by adding the corresponding shares, whereas computing multiplication gates
is significantly more involved. Recall that in the honest-but-curious setting the mul-
tiplication step was done by multiplying the shares locally, thus obtaining shares
of a degree-2t polynomial. Then the parties rerandomized this polynomial and then
truncated it. In the malicious setting, the rerandomization step needs to be made se-
cure against malicious adversaries. In addition, to apply the degree reduction step,
we need to argue that the truncation is a linear function, but for this we must make
sure that the all the parties use as input to this function their correct point on the
product polynomial h(x) = f (x)g(x). To guarantee that this is indeed the case, error
correcting codes are used yet again.

3 Pseudorandomness

A major theme in Wigderson’s work is to understand the power of randomness in
efficient computation, addressing questions such as:

• Can randomized algorithms solve problems much more efficiently than deter-
ministic algorithms, or can every randomized algorithm be converted into a de-
terministic algorithm with only a small loss in efficiency?

• Can we give explicit, deterministic constructions of combinatorial objects whose
existence is proven via the Probabilistic Method?

• Can we convert weak random sources, which may have biases and correlations,
into high-quality random bits that can be used for running randomized algorithms
or protocols?

On the works of Avi Wigderson 19

In this section, we will survey the answers that Wigderson’s work has given to these
fundamental questions, and the close connections between the questions that he has
helped uncover and exploit. For more details, we recommend the broader surveys
of pseudorandomness [110, 275, 131].6

3.1 Hardness vs. Randomness

3.1.1 Motivation

In the 1970’s and 1980’s, randomization was discovered to be an extremely pow-
erful tool in theoretical computer science. By allowing algorithms to “toss coins,”
we could potentially solve problems much more efficiently than before. In partic-
ular, polynomial-time randomized algorithms were found for a number of prob-
lems that were only known to have exponential-time deterministic algorithms, such
as POLYNOMIAL FACTORIZATION (over finite fields) [42], PRIMALITY TEST-
ING [257, 199, 219], POLYNOMIAL IDENTITY TESTING [76, 245, 291], and AP-
PROXIMATELY COUNTING MATCHINGS in graphs [147]. However, it was unclear
whether this apparent exponential savings provided by randomization was real, or
just a reflection of our ignorance: could there be polynomial-time deterministic al-
gorithms for these problems that we just hadn’t discovered or proven correct yet?
For example, already Miller [199] gave a deterministic polynomial-time algorithm
for PRIMALITY TESTING based on the Extended Riemann Hypothesis, and three
decades later, Agrawal, Kayal, and Saxena [2] gave an unconditional deterministic
polynomial-time algorithm. Thus, the following problem remained open:

Open Problem 3.1 Are there problems that can be solved by randomized algo-
rithms in polynomial time that cannot be solved by deterministic algorithms in poly-
nomial time?

We now formalize this question using complexity classes that capture the power
of efficient deterministic and randomized algorithms. As is common in complexity
theory, these classes are defined in terms of decision problems, where instances are
given by binary strings x ∈ {0,1}∗ def

=
⋃

∞
n=0 {0,1}

n and the set of instances where
the answer should be “yes” is specified by a language L⊆ {0,1}∗, or equivalently a
boolean function f : {0,1}∗→{0,1}. However, the definitions generalize in natural
ways to other types of computational problems, such as computing functions or
solving search problems.

Recall that we say a deterministic algorithm A runs in time t : N→ N if A takes
at most t(|x|) steps on every input x (where |x| is the length of x in bits), and it runs
in polynomial time if it runs time t(n) = O(nc) for a constant c. Polynomial time
is a theoretical approximation to feasible computation, with the advantage that it is
robust to reasonable changes in the model of computation and representation of the
inputs.

6 Some of our text is taken verbatim from [275], with permission.

20 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Definition 3.2 P is the class of languages L for which there exists a deterministic
polynomial-time algorithm A such that for all instances x,

• x ∈ L⇒ A(x) accepts, and
• x /∈ L⇒ A(x) rejects.

Definition 3.3 BPP is the class of languages L for which there exists a probabilistic
polynomial-time algorithm A such that for all instances x,

• x ∈ L⇒ Pr[A(x) accepts]≥ 2/3, and
• x ̸∈ L⇒ Pr[A(x) accepts]≤ 1/3,

where the probabilities are taken over the random coin tosses of the algorithm A.

The choice of the thresholds ℓ= 1/3 and u= 2/3 is arbitrary, and any two distinct
constants ℓ < u yields an equivalent definition, since the error probability of a ran-
domized algorithm can be made arbitrarily small by running the algorithm several
times and accepting if at least an (ℓ+u)/2 fraction of the executions accept.

The cumbersome notation BPP stands for “bounded-error probabilistic polynomial-
time,” due to the unfortunate fact that PP (“probabilistic polynomial-time”) refers to
the definition where the inputs in L are accepted with probability greater than 1/2 and
inputs not in L are accepted with probability at most 1/2. Despite its name, PP is not
a reasonable model for randomized algorithms, as it takes exponentially many rep-
etitions to reduce the error probability. BPP is considered the standard complexity
class associated with probabilistic polynomial-time algorithms, and thus a driving
question of Wigderson’s work surveyed in this section is the following formalization
of Open Problem 3.1 (negated).

Open Problem 3.4 Does BPP= P?

More generally, we are interested in quantifying how much savings randomiza-
tion provides. One way of doing this is to find the smallest possible upper bound on
the deterministic time complexity of languages in BPP. For example, we would like
to know which of the following complexity classes contain BPP:

Definition 3.5 (Deterministic Time Classes)
DTIME(t(n)) = {L : L can be decided deterministically in time O(t(n))}

P = ∪cDTIME(nc) (“polynomial time”)
P̃ = ∪cDTIME(2(logn)c

) (“quasipolynomial time”)
SUBEXP = ∩εDTIME(2nε

) (“subexponential time”)
EXP = ∪cDTIME(2nc

) (“exponential time”),

where the unions and intersections are taken over all c,ε ∈ (0,∞)

As a baseline, we can always remove randomization with at most an exponential
slowdown:

Proposition 3.6 BPP⊆ EXP.

On the works of Avi Wigderson 21

Proof If L is in BPP, then there is a probabilistic polynomial-time algorithm A for
L running in time t(n) for some polynomial t. Let m(n) ≤ t(n) be an upper bound
on the number of random bits used by A on inputs of length n. Thus we can view
A as a deterministic algorithm on two inputs — its regular input x ∈ {0,1}n and its
coin tosses r ∈ {0,1}m(n). Writing A(x;r) for A’s output on input x ∈ {0,1}n and
coin tosses r ∈ {0,1}m(n), we have

Pr
r
[A(x;r) accepts] =

1
2m(n) ∑

r∈{0,1}m(n)

A(x;r)

We can compute the right-hand side of the above expression in deterministic time
2m(n) · t(n). □

We see that the enumeration method is general in that it applies to all BPP algo-
rithms, but it is infeasible (taking exponential time). However, if the algorithm uses
only a small number of random bits, it becomes feasible:

Proposition 3.7 If L has a probabilistic polynomial-time algorithm that runs in time
t(n) and uses m(n) random bits, then L ∈ DTIME(t(n) · 2m(n)). In particular, if
t(n) = poly(n) and m(n) = O(logn), then L ∈ P.

Thus an approach to proving BPP = P is to show that the number of random
bits used by any BPP algorithm can be reduced to O(logn). This is the angle of
attack pursued in Wigderson’s work, as surveyed in the next section. However, to
date, Proposition 3.6 remains the best unconditional upper-bound we have on the
deterministic time-complexity of BPP.

Open Problem 3.8 Is BPP “closer” to P or EXP? Is BPP⊆ P̃? Is BPP⊆SUBEXP?

3.1.2 Wigderson’s Contributions

Derandomization from Circuit Lower Bounds

In the early 1980’s, the answer to Open Problem 3.4 seemed very likely to be no,
that BPP ̸= P, since there were many examples of problems where randomization
provided an exponential speedup over the best deterministic algorithms known at
the time. The first evidence that randomization might not be so powerful came from
Yao [288], who showed that if there exist “cryptographically secure” pseudorandom
generators, as defined by Blum and Micali [45], then BPP ⊆ SUBEXP. In a series
of works, Wigderson and his collaborators obtained much stronger derandomization
results, convincing the theoretical computer science community that indeed BPP=
P.

Theorem 3.9 ([211, 25, 141])

1. If EXP has a function of circuit complexity nω(1), then BPP⊆ SUBEXP.

22 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

2. If E def
= DTIME(2O(n)) has a function of circuit complexity 2Ω(n), then BPP= P.

To define the “circuit complexity” referred to in the theorem, we associate a lan-
guage L⊆ {0,1}∗ in EXP or E with its characteristic function f : {0,1}∗→ {0,1}.
For each n, we consider the restriction fn : {0,1}n → {0,1} of f to instances of
length n, and ask how many boolean operations (AND, OR, NOT) are needed to
compute fn, i.e. what is the size of the smallest boolean circuit computing fn,
as a function of n. (See Section 4.1 for a more formal definition.) An algorithm
running in time t(n) can be simulated by boolean circuits of size Õ(t(n)) def

= t(n) ·
polylog(t(n)), but the converse is not true, since circuits are a nonuniform model of
computation, essentially allowing a different program for each input length (rather
than a single set of instructions that can solve problems of arbitrary size). Thus
Theorem 3.9 can be interpreted as saying “if nonuniformity cannot speed up all
(exponential-time) algorithms too much, then randomization never provides too
much of a speed up.” Or, in more of a “win-win” formulation, “either we can speed
up all (exponential-time) algorithms with nonuniformity, or we can efficiently de-
randomize all probabilistic algorithms.”

The two items in Theorem 3.9 are special cases of a more general quantitative
result that relates circuit complexity to derandomization. At the “low end,” Item 1
says that if there are problems solvable in exponential time that have superpoly-
nomial circuit complexity, then we get a subexponential-time derandomization of
BPP. This is the same as Yao’s aforementioned result [288] but with a much weaker
hypothesis than the existence of cryptographically secure pseudorandom generators.
At the “high end,” Item 2 says that if instead we have problems with exponential
circuit complexity, then in fact we get polynomial-time derandomization. (We also
need to make the relatively minor switch from EXP to E. If we used EXP instead,
the conclusion would be BPP⊆ P̃.)

These circuit complexity hypotheses are very plausible. The NP-complete prob-
lems are promising candidates; they can be solved in exponential time and are con-
jectured to require superpolynomial and even exponential circuit complexity, though
we are very far from proving it. (Such a result would resolve the famous P vs. NP
question.) See Chapter 4 for a survey of Wigderson’s fundamental contributions to
circuit lower bounds.

Sections 3.1.3–3.1.5 give an overview of the proof of Theorem 3.9.

Circuit Lower Bounds from Derandomization

Theorem 3.9 of Wigderson et al. establishes a unidirectional implication between
two major projects in theoretical computer science: if we can prove circuit lower
bounds, then we can provably derandomize BPP. Since proving circuit lower
bounds is so difficult, it is natural to wonder whether derandomization could be
easier. With Impagliazzo and Kabanets [138], Wigderson proved that if we “add
nondeterminism” to the complexity classes, then in fact circuit lower bounds are
equivalent to derandomization.

On the works of Avi Wigderson 23

Theorem 3.10 ([138])
MA (a randomized analogue of NP) has a nontrivial derandomization (namely,

MA ̸= NEXP, where NEXP is an exponential-time analogue of NP) if and only if
NEXP does not have polynomial-sized circuits.

It follows from Theorem 3.10 that derandomization of ordinary randomized polynomial-
time algorithms (without nondeterminism) also implies circuit lower bounds. Specif-
ically, it turns out that if we can derandomize the generalization of BPP to “promise
problems” (i.e. partial boolean functions, where we don’t define or care about the
output on certain inputs), then we can also derandomize MA and hence deduce
from Theorem 3.10 that NEXP does not have polynomial-sized circuits. (This im-
plication of Theorem 3.10 also follows from the earlier work of [57].) Building
on Theorem 3.10, Kabanets and Impagliazzo [150] proved that even if the specific
problem of POLYNOMIAL IDENTITY TESTING (which is in BPP) has a nontriv-
ial derandomization, then NEXP does not have polynomial-sized boolean circuits
or the PERMANENT does not have polynomial-sized arithmetic circuits, either of
which would be breakthroughs in complexity theory. (See Section 4.9 for Wigder-
son’s work on arithmetic circuit lower bounds and Section 5.2.3 for Wigderson’s
work on variants of POLYNOMIAL IDENTITY TESTING.)

A more positive interpretation of Theorem 3.10 is that we might be able to prove
new circuit lower bounds by coming up with new methods for derandomizing algo-
rithms. This possibility was realized in Williams’ program of proving circuit lower
bounds by designing faster SAT algorithms [285] and his breakthrough result that
NEXP does not have polynomial-sized ACC circuits [286], both of which built on
the results and techniques of [138].

Optimizing the Hardness vs. Randomness Tradeoff

As mentioned above, there is a full spectrum of “hardness vs. randomness” impli-
cations between the “low end” and “high end” derandomizations stated in Theo-
rem 3.9. With Impagliazzo and Shaltiel [140], Wigderson pointed out that in the
intermediate regime, the proof of Theorem 3.9 yielded results that were suboptimal
in a sense that can be made formal, and initiated a line of work that culminated in op-
timal hardness vs. randomness tradeoffs achieved by Shaltiel and Umans [247, 273].
More recently, researchers have turned to more finely quantifying how much slow-
down is needed to derandomize algorithms. Under suitably strong complexity as-
sumptions, recent works [81, 64] give evidence that every randomized algorithm
running in time T (n) can be converted to a deterministic algorithm running in time
n1+ε ·T (n) for an arbitrarily small constant ε > 0. Thus, it seems that randomization
saves at most an almost-linear factor in runtime!

24 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Derandomization from Uniform Assumptions

Theorem 3.10 and the results discussed after it show that some derandomizations of
BPP require novel circuit lower bounds, at least for NEXP. Nevertheless, in a re-
markable paper with Impagliazzo [142], Wigderson showed that a nontrivial deran-
domization of BPP is possible under the uniform assumption EXP ̸= BPP. Specifi-
cally, for every language L in BPP, they obtain a deterministic subexponential-time
algorithm that correctly decides L on all but a 1/poly(n) fraction of inputs of length
n, for infinitely many values of n. Moreover, this holds not just for the uniform dis-
tribution on instances of length n, but simultaneously for every efficiently samplable
distribution on instances.

An intriguing feature of the Impagliazzo–Wigderson uniform derandomization
is that it is (necessarily [270]) a “non-black-box” construction. That is, the con-
struction and proof actually make use of the code of the programs that compute
the assumed hard function f ∈ E and that decide the language L ∈ BPP that is be-
ing derandomized. In contrast, Theorem 3.9, like most results in complexity theory,
treats these algorithms as “black boxes,” only using the fact that they can be solved
by efficient programs to deduce that other programs using them as subroutines are
efficient.

The Impagliazzo–Wigderson uniform derandomization of BPP is a “low-end”
result; assuming only a superpolynomial lower bound for EXP, we get (only) a
subexponential-time derandomization of BPP. It remains an open problem to have
a high-end (or nearly high-end) analogue of their result, for example to get a
polynomial-time (or quasipolynomial-time) average-case derandomization of BPP
under the assumption that E⊈BPTIME(2o(n)) (or EXP⊈BPSUBEXP). In [270], a
uniform analogue of the high-end worst-case-to-average-case hardness for E (The-
orem 3.22) was given.

Subsequent works have given uniform average-case derandomizations of ran-
domized algorithms with one-sided error (RP) [149] and constant-round interac-
tive proofs (a.k.a. Arthur–Merlin games, AM) [189, 138, 126, 248].Recent work
has identified “almost-everywhere” uniform hardness assumptions (e.g. computa-
tional problems where every uniform probabilistic polynomial-time algorithm fails
to solve the problem on all but finitely many inputs) that are equivalent to worst-case
derandomization of BPP (generalized to “promise problems”) [111, 65, 186].

3.1.3 Pseudorandom Generators

The approach to derandomizing algorithms suggested by Yao [288] and pursued by
Wigderson is by constructing pseudorandom generators. These are defined in terms
of computational indistinguishability, which was introduced in Section 2 and will
be convenient to reformulate here in a non-asymptotic form:

Definition 3.11 (computational indistinguishability [115])

On the works of Avi Wigderson 25

Random variables X and Y taking values in {0,1}m are (s,ε) indistinguishable if
for every boolean circuit T : {0,1}m→{0,1} of size at most s, we have

|Pr[T (X) = 1]−Pr[T (Y) = 1]| ≤ ε

The left-hand side above is called also the advantage of T in distinguishing X and
Y .

If we set s = ∞ (or even s = 2m), then we allow all 22m
boolean functions T as statis-

tical tests, and (s,ε)-indistinguishability is equivalent to requiring that X and Y have
total variation distance at most ε . (See Definition 3.33.) However, by restricting to
computationally efficient tests, e.g., with s = poly(m), then we obtain a significantly
relaxed definition, where even random variables X and Y with disjoint supports can
be indistinguishable. At the same time, for all efficient purposes (i.e. tasks that can
be done by a boolean circuit of size s), X and Y are interchangeable.

A pseudorandom generator is a procedure that stretches a short seed if truly ran-
dom bits into a long string that is computationally indistinguishable from uniform.

Definition 3.12 (pseudorandom generator [45, 288])
A deterministic function G : {0,1}d →{0,1}m is an (s,ε) pseudorandom gener-

ator (PRG) if

1. d < m, and
2. G(Ud) and Um are (s,ε) indistinguishable, where Uk denotes a random variable

uniformly distributed over {0,1}k.

If a test T : {0,1}m→{0,1} has advantage at most ε in distinguishing G(Ud) from
Um, we say that G ε-fools T .

People attempted to construct pseudorandom generators long before this defi-
nition was formulated. Their generators were tested against a battery of statistical
tests (e.g. the number of 1’s and 0’s are approximately the same, the longest run is
of length O(logm), etc.), but these fixed set of tests provided no guarantee that the
generators would perform well in an arbitrary application. Indeed, most classical
constructions (e.g. linear congruential generators, as implemented in the standard C
library) are known to fail in some applications.

Intuitively, the above definition guarantees that the pseudorandom bits produced
by the generator are as good as truly random bits for all efficient purposes (where
efficient means computable by a circuit of size at most s). In particular, we can use
such a generator to reduce the number of random bits used by any algorithm from m
to d(m) provided that the algorithm runs in time at most t = s/polylog(s), because
the behavior of any such algorithm on any input x can be simulated by a boolean
circuit of size s. For the resulting algorithm to be efficient, we will also need the
generator to be efficiently computable.

Definition 3.13 We say a sequence of generators {Gm : {0,1}d(m) → {0,1}m} is
computable in time t(m) if there is a uniform and deterministic algorithm M such
that for every m∈N and x ∈ {0,1}d(m), we have M(m,x) = Gm(x) and M(m,x) runs
in time at most t(m).

26 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Note that even when we define the pseudorandomness property of the gener-
ator with respect to nonuniform boolean circuit, the efficiency requirement refers
to uniform algorithms. For readability, we will usually refer to a single generator
G : {0,1}d(m)→ {0,1}m, with it being implicit that we are really discussing a fam-
ily {Gm}.

Theorem 3.14 Suppose that for all m there exists an (m,1/8) pseudorandom gener-
ator G : {0,1}d(m)→{0,1}m computable in time t(m). Then BPP⊆

⋃
cDTIME(2d(nc) ·

(nc + t(nc))).

Proof Let L be any language in BPP. Then there is a constant c such that L is
decided by a bounded-error randomized algorithm in time t(n) = O(nc−1) on inputs
of length n.

The idea is to replace the random bits used by A with pseudorandom bits gener-
ated by G, use the pseudorandomness property to show that the algorithm will still
be correct with high probability, and finally enumerate over all possible seeds to
obtain a deterministic algorithm.

Claim For all sufficiently large n and every x ∈ {0,1}n, A(x;G(Ud(nc))) errs with
probability smaller than 1/2. □

Proof of claim: Suppose that there exists some x ∈ {0,1}n on which A(x;G(Ud(nc))) errs
with probability at least 1/2. Then, T (·) = A(x, ·) distinguishes G(Ud(nc)) from Unc with
advantage at least 1/2−1/3 > 1/8. Since algorithms running in time t(n) can be simulated
by boolean circuits of size at most Õ(t(n)), T (·) can be computed by a boolean circuit of
size at most nc, for sufficiently large n. This contradicts the pseudorandomness property of
G. □

Now, enumerate over all seeds of length d(nc) and take a majority vote. There
are 2d(nc) of them, and for each we have to run both G and A. □

In the definition of a cryptographic pseudorandom generator used by Yao [288],
the requirement was that G is computable in time polynomial in its input length, i.e.
t(m) ≤ poly(d(m)). This implies that d(m) ≥ t(m)δ ≥ mδ for a constant δ > 0, so
the running time of the derandomization in Theorem 3.14 is at least 2d(nc) ≥ 2nδc

,
and we can at best conclude BPP⊆ SUBEXP.

Thus a key to Theorem 3.9 was the realization by Nisan and Wigderson [211]
that, for derandomization, we can relax the efficiency requirements of a crypto-
graphic generator in two ways. First, we can afford for the generator to be com-
putable in time exponential in its seed length, since anyway we enumerate over all
seeds when derandomizing. Second (and relatedly), we can afford for the genera-
tor to run in more time than the algorithms it fools. Indeed, in Theorem 3.14, we
only need to fool circuits of size m, but we are happy for a generator computable
in time poly(m). In contrast, a cryptographic generator actually requires fooling cir-
cuits of size mω(1), ones that are superpolynomially larger than the output length
and the running time of the generator. Thus, they proposed the following efficiency
requirement:

On the works of Avi Wigderson 27

Definition 3.15 ([211]) A generator G : {0,1}d(m)→ {0,1}m is quick (a.k.a. mildly
explicit) if it is computable in time poly(m,2d(m)).

They demonstrated the benefits of these relaxed requirements with the beautiful
pseudorandom generator construction described in the next section (which is a key
component of the proof of Theorem 3.9).

3.1.4 The Nisan–Wigderson Generator

The Nisan–Wigderson generator constructs a quick pseudorandom generator from
any function in E that is sufficiently hard on average:

Definition 3.16 For s ∈ N and α > 0, a function f : {0,1}ℓ → {0,1} is (s,α)
average-case hard if for every boolean circuit A of size at most s, we have

Pr[A(Uℓ) ̸= f (Uℓ)]> α.

Note that, in contrast to the definition of BPP, here the probabilities are taken over
the input to the algorithm A, rather than its random coin tosses. When α = 0, Def-
inition 3.16 simply says that f has circuit complexity greater than s, but when α is
nonzero it is a significantly stronger hardness requirement on f . Note that α = 1/2 is
impossible, since a constant function (of size s = 1) can always compute f correctly
on at least half of the inputs.

We now state the Nisan–Wigderson theorem, restricted to the “high-end” regime,
where hardness is against circuits of exponential size.

Theorem 3.17 ([211])
Suppose that there is a constant δ > 0 and a function f ∈ E such that for every

input length ℓ∈N, fℓ is (2δℓ,1/2−1/2δℓ) average-case hard. Then for every m∈N,
there is a quick (m,1/m) pseudorandom generator G : {0,1}d(m) → {0,1}m with
seed length d(m) = O(logm). In particular, BPP= P.

Similar to Theorem 3.9, this is a specific instance of a quantitative tradeoff between
hardness and derandomization. In particular, if we replace both occurrences of the
exponential bound 2δℓ with a superpolynomial bound ℓω(1), we obtain the “low-
end” conclusion that BPP ⊆ SUBEXP. However, the hypothesis in Theorem 3.17
is significantly stronger in that it assumes average-case hardness rather than worst-
case hardness, and very strong average-case hardness at that: no small circuit can
compute f with probability much better than random guessing. In the next section,
we will discuss how Wigderson and collaborators relaxed the average-case hardness
assumption to a worst-case one in order to obtain Theorem 3.9.

The starting point for Theorem 3.17 is the realization, implicit in Yao [288],
that if f is (s,1/2− ε) average-case hard, then G(x) = (x, f (x)) is an (s−O(1),ε)
pseudorandom generator. That is, by applying f once on a uniformly random input,
we obtain one pseudorandom bit (beyond the d = ℓ truly random bits in the seed).
So, to obtain may pseudorandom bits, we can try applying f many times. For this

28 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

to provide a generator with large stretch (i.e. with output length superlinear in the
input length), we cannot evaluate f on independent random inputs, but rather need
to generate many correlated inputs, but ensure that the correlations don’t destroy the
pseudorandomness.

The idea, building on Nisan [207], is to use inputs to f that share very few bits.
Specifically, the sets of seed bits used for each input to f will be given by a design:

Definition 3.18 S1, · · · ,Sm ⊆ [d] is an (ℓ,a)-design if

1. ∀i, |Si|= ℓ
2. ∀i ̸= j, |Si∩S j| ≤ a

It turns out that there exist designs with lots of sets having small intersections over
a small universe:

Lemma 3.19 For every every ℓ,m ∈N, there exists an (ℓ,a)-design S1, · · · ,Sm ⊆ [d]

with d = O
(
ℓ2

a

)
and a = log2 m. Such a design can be constructed deterministically

in time poly(m,d).

The important points are that intersection sizes are only logarithmic in the number
of sets, and the universe size d is linear in ℓ in case we take m = 2Ω(ℓ).

Construction 3.20 (Nisan–Wigderson Generator)
Given a function f : {0,1}ℓ→{0,1} and an (ℓ,a)-design S1, · · · ,Sm ⊆ [d], define

the Nisan–Wigderson generator G : {0,1}d →{0,1}m as

G(x) = f (x|S1) f (x|S2) · · · f (x|Sm)

where if x is a string in {0,1}d and S ⊆ [d], then x|S is the string of length |S|
obtained from x by selecting the bits indexed by S.

This elegant construction is analyzed as follows.

Theorem 3.21 Let G : {0,1}d → {0,1}m be the Nisan–Wigderson generator based
on a function f : {0,1}ℓ → {0,1} and some (ℓ,a) design. If f is (s,1/2− ε/m)
average-case hard, then G is a (s′,ε) pseudorandom generator, for s′ = s−m ·2a.

Theorem 3.17 follows from Theorem 3.21 by setting ε = 1/m, a = log2 m, and
s = 2δℓ, and observing that for ℓ= (1/δ) · log2(2m2) = O(logm), we have

s′ = s−m ·2a = 2m2−m2 ≥ m,

and ε/m≤ 1/2δℓ, so we have an (m,1/m) pseudorandom generator. The seed length
is d = O(ℓ2/ logm) = O(logm).

Proof Suppose for contradiction that G is not an (s′,ε) pseudorandom generator.
By the equivalence of pseudorandomness and next-bit unpredictability [288], there
is a size s′ circuit P such that

On the works of Avi Wigderson 29

Pr[P(f (X |S1) f (X |S2) · · · f (X |Si−1)) = f (X |Si)]>
1
2
+

ε

m
, (3)

for some i ∈ [m] and a uniformly random X ← {0,1}d . From P, we will construct
a small circuit A that computes f on a uniformly random input with probability
greater than 1/2+ ε/m.

Let Y =X |Si . By averaging, we can fix all bits of X |Si
= z (where Si is the comple-

ment of S) such that the prediction probability remains greater than 1/2+ ε/m over
Y . Define f j(y) = f (x|S j) for j ∈ {1, · · · , i−1}. (That is, f j(y) forms x by placing y
in the positions in Si and z in the others, and then applies f to x|S j). Then

Pr
Y
[P(f1(Y) · · · fi−1(Y)) = f (Y)]>

1
2
+

ε

m
.

Note that f j(y) depends on only |Si ∩ S j| ≤ a bits of y. Thus, we can compute
each f j with a look-up table hardwired into our circuit. Indeed, every function on a
bits can be computed by a boolean circuit of size at most 2a. (In fact, size at most
O(2a/a) suffices.)

Then, by considering A(y) = P(f1(y) · · · fi−1(y)), we deduce that f can be com-
puted with error probability smaller than 1/2− ε/m by a boolean circuit of size at
most s′+(i−1) ·2a < s′+m ·2a = s. This contradicts the hardness of f . Thus, we
conclude G is an (m,ε) pseudorandom generator. □

3.1.5 Pseudorandom Generators from Worst-Case Lower Bounds

As we saw in the previous section, the Nisan–Wigderson construction gives us pseu-
dorandom generators from boolean functions that are very hard on average, where
every boolean circuit of size 2δℓ must err with probability greater than 1/2−1/2δℓ

on a random input. In works with Babai, Fortnow, and Nisan [25] and Impagli-
azzo [141], Wigderson showed how to relax the assumption to worst-case hardness,
yielding Theorem 3.9. This was done by showing how to convert worst-case hard
functions into average-case hard functions, which again we state only in the high-
end regime of parameters:

Theorem 3.22 (worst-case to average-case hardness for E [141])
Suppose that for a constant δ > 0, there is a function in E that has circuit com-

plexity at least 2δℓ on inputs of length ℓ. Then there is a constant δ ′ > 0 and a
function in E that is (2δ ′ℓ,1/2−1/2δ ′ℓ) average-case hard.

Combining Theorem 3.22 and Theorem 3.17 yields the high-end part of Theo-
rem 3.9.

Beyond the application to pseudorandomness and derandomization, the relation-
ship between worst-case complexity and average-case complexity is a central ques-
tion in complexity theory. (See the survey [47].) In particular, whether a similar
result is true for NP (rather than E) remains a major open problem.

30 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

3.2 Expanders, Extractors, and Ramsey Graphs

Another area in which randomness has proved very useful is in the Probabilistic
Method [13], whereby mathematical objects with interesting properties are proven
to exist by showing that a randomly chosen object has the desired property with
high (or at least nonzero) probability. A famous example is Erdős’ existence proof
for Ramsey graphs — graphs with no large clique or independent set [91].

In such cases, the problem of derandomization becomes one of finding explicit
constructions of objects with the desired properties. The search for explicit con-
structions is of pure mathematical interest, as a way of developing and testing our
understanding of the mathematical properties at hand. They are also important for
many computer science applications, where we need efficient algorithms to describe
and work with the objects.

In this section, we survey Wigderson’s contributions to explicit constructions,
in particular to the constructions of expander graphs, randomness extractors, and
Ramsey graphs, as well as identifying and exploiting the connections between these.

3.2.1 Expander Graphs

Expander graphs are graphs that are “sparse” yet very “well-connected.” They
are ubiquitous in theoretical computer science, with applications including com-
munication and routing networks [216, 215], derandomizing algorithms [4, 235],
error-correcting codes [121], lower bounds on circuit complexity [276] and proof
complexity [40], integrality gaps for optimization problems [184, 22], data struc-
tures [58], fault-tolerant storage [274] and more. A rich mathematical theory has
developed around constructing expanders and understanding their properties; we
refer to Wigderson’s survey with Hoory and Linial [135] as well as [275, 269, 172]
for many aspects that we will not be able to cover here.

We will typically interpret the properties of expander graphs in an asymptotic
sense. That is, there will be an infinite family of graphs Gi, with a growing number
of vertices Ni. By “sparse,” we mean that the (maximum or average) degree Di of Gi
should be very slowly growing as a function of Ni. The “well-connectedness” prop-
erty has a variety of different interpretations, which we will discuss below. Typically,
we will drop the subscripts of i and the fact that we are talking about an infinite fam-
ily of graphs will be implicit in our theorems. We will state many of our definitions
for directed multigraphs (which we’ll call digraphs for short), though in the end we
will mostly study undirected multigraphs.

The most intuitive definition of expansion is the following.

Definition 3.23 A digraph G is a (K,A) vertex expander if for all sets S of at most K

vertices, the (out-)neighborhood N(S) def
= {u|∃v ∈ S s.t. (u,v) ∈ E} is of size at least

A · |S|.

Ideally, we would like graphs with degree D = O(1), and (K,A) vertex expansion
with K = Ω(N) where N is the number of vertices, and A as close to D as possible.

On the works of Avi Wigderson 31

It is often useful to work instead with a linear-algebraic measure of expansion.
For simplicity, we restrict attention to regular graphs in presenting the definition.

Definition 3.24 Let G be an N-vertex D-regular digraph with random-walk matrix
M (so Mi j equals the number of edges from i to j divided by D). Let σ2(G) ∈
[0,1] denote the second-largest singular value of M. The spectral expansion of G is
γ(G) = 1−σ2(G).7

Ideally, we would like an infinite family of graphs with degree D = O(1) and
γ(G) = Ω(1). Alon [9] proved that this linear-algebraic measure of expansion is
equivalent to the combinatorial measure of vertex expansion for common parame-
ters of interest.

Theorem 3.25 ([9])
Let G be an infinite family of D-regular multigraphs, for a constant D ∈N. Then

the following two conditions are equivalent:

• There is a constant δ > 0 such that every G ∈ G is an (N/2,1+ δ) vertex ex-
pander.

• There is a constant γ > 0 such that every G ∈ G has spectral expansion at least
γ .

When people informally use the term “expander,” they often mean a family of reg-
ular graphs of constant degree D satisfying one of the two equivalent conditions
above. However, we note that the quantitative relationship between vertex expansion
and spectral expansion is lossy, so optimizing one of these measures of expansion
need not yield optimality with respect to the other.

We can get more intuition for spectral expansion by considering some equiva-
lent formulations of it. Since G is regular, the uniform distribution, written as a row
vector u= (1/N, . . . ,1/N), is an eigenvector of the random-walk matrix M of eigen-
value 1, i.e. uM = u. By the Perron-Frobenius Theorem, the largest singular value of
M equals 1, and thus we have the following variational characterization of spectral
expansion.

Lemma 3.26 1− γ(G) = σ2(G) = maxx⊥u
∥xM∥
∥x∥ = maxπ

∥πM−u∥
∥π−u∥ , where the first

maximum is over all nonzero row vectors x ∈ RN that are orthogonal to u, and
the second maximum is over all probability distributions π ∈ [0,1]N (also written as
row vectors).

That is, if we start at any probability distribution π on the vertices of G and take one
step of the random walk to end up at probability distribution πM, the ℓ2 distance
to uniform will shrink by at least a factor of 1− γ(G). So if γ(G) is bounded away
from 0, then random walks on G will converge quickly to the uniform distribution.

Another useful characterization of γ(G) is as follows.

7 In some other sources, the term spectral expansion refers to σ2(G) rather than γ(G). Here we use
γ(G), because it has the more natural feature that larger values of γ correspond to the graph being
“more expanding”.

32 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Lemma 3.27 γ(G) ≥ γ iff we can write M = γJ +(1− γ)E, where J is the matrix
with every entry 1/N and ∥E∥ ≤ 1, where ∥E∥ is the spectral norm of E.

Notice that J is the random-walk matrix for the complete graph on N vertices with
self-loops, which is intuitively the most expanding possible graph (albeit not sparse).
Thus, Lemma 3.27 says that an expander can be viewed as a sparse approximation
of the complete graph.

It can be shown that a random D-regular undirected graph on N vertices is an
excellent expander with high probability, for D = O(1) and N→ ∞. For example, it
achieves spectral expansion γ(G) = 1− 2

√
D−1/D+ o(1) [99], which is optimal

up to the o(1) [205], and achieves (αA,D− 1− ε) vertex expansion for any ε > 0
and α = α(D,ε) [216, 34]. For some applications of expanders, however, we can-
not afford to choose the graph at random, because it may be too costly in memory,
communication, or randomness. Indeed, some applications even require exponen-
tially large expander graphs, in which case a random graph would be completely
infeasible to manipulate. Thus, we seek explicit constructions of expanders.

Definition 3.28 Let G = {Gi} be an infinite family of digraphs where Gi has Ni
vertices and is Di-regular. We say that G is (fully) explicit if given Ni, u ∈ [Ni], and
j ∈ [Di], the j’th neighbor of u in Gi can be computed deterministically in time
poly(logNi).

That is, we require a very efficient local description of the graph, where computing
neighbors can be done in time polynomial in the bitlength of vertices, rather than in
time polynomial in the number of vertices.

Thus, starting with Margulis [195], there is a long and beautiful line of work
on explicit constructions of constant-degree expanders, with one highlight being
the optimal spectral expanders of Lubotzky, Phillips, and Sarnak [191] and Mar-
gulis [196], known as Ramanujan graphs. Many of these constructions were based
on deep results from algebra and number theory, and it was of interest to have more
combinatorial approaches to constructing expanders.

With Reingold and Vadhan [238], Wigderson gave a combinatorial construction
of expanders based on a new graph operation, called the zig-zag product. Although
these expanders did not match the spectral expansion of Ramanujan graphs, the ad-
ditional flexibility offered by the construction found numerous applications, which
we will survey below.

Specifically, their approach to constructing expanders is to start with a constant-
sized expander of appropriate parameters and repeatedly apply graph operations to
build larger and larger graphs while preserving the degree and spectral expansion.

Two standard operations on an N-vertex D-regular graph G with random-walk
matrix M are the following:

Squaring: G2 is the graph on N vertices whose random-walk matrix is M2. That
is, edges in G2 are walks of length 2 in G. If G has spectral expansion at least
γ = 1−σ , then G2 has spectral expansion at least 1−σ2 = 2γ− γ2

Tensoring: G⊗G is the graph on N2 vertices whose random-walk matrix is M⊗
M (the Kronecker product). That is, random walks in G⊗G correspond to two

On the works of Avi Wigderson 33

independent random walks in G. If G has spectral expansion at least γ , then G⊗G
also has spectral expansion at least γ .

Squaring has the benefit of improving expansion and tensoring has the benefit of
creating larger graphs, but both have the downside of increasing the degree D to D2.
Thus, we need an operation that decreases the degree, without hurting the expansion
too much. This is what the zig-zag product achieves.

The Zig-Zag Product

Let G be a D1-regular digraph on N1 vertices and H be a regular digraph on D1
vertices. The zig-zag product of G and H, denoted G⃝z H, is defined as follows.
The nodes of G⃝z H are the pairs (u, i) where u ∈ V (G) and i ∈ V (H). We think
of this each vertex u of G with a copy of V (H), which we refer to as a cloud, and
associate each vertex of H with one of the edges incident to u. The edges in G⃝z H
then correspond to taking an H-step within a cloud, using a G-step to move between
clouds, and an H-step in the resulting cloud. See Figure 1 for an illustration.

(a) Initial D1-regular graph G1 and graph G2
on D1 vertices. (b) First we construct a cloud with the same

shape as G2 for each vertex u ∈ G1.

(c) Three steps connecting (u, i) and (v, j)
following Definition 3.29

(d) We construct an edge between (u, i) and
(v, j) and similarly for other edges.

Fig. 1: Illustration of the edge construction in the Zig-Zag product G1⃝z G2.

Definition 3.29 (Zig-zag Product)
Let G be an D1-regular digraph on N1 vertices, and H a D2-regular digraph on

D1 vertices. Then G⃝z H is the following D2
2-regular graph on N1D1 vertices. The

vertices are pairs (u, i) ∈ [N1]× [D1], and for a,b ∈ [D2], the (a,b)’th neighbor of a
vertex (u, i) is the vertex (v, j) computed as follows:

34 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

1. Let i′ be the a’th neighbor of i in H. (That is, take an H-step to move from (u, i)
to (u, i′).)

2. Let v be the i′’th neighbor of u in G, so e = (u,v) is the i′’th edge leaving u. Let
j′ be such that e is the j′’th edge entering v in G. (That is, take a G-step to move
from (u, i′) to (v, j′).)

3. Let j be the b’th neighbor of j′ in H. (That is, take an H-step to move from (v, j′)
to (v, j).)

Note that the graph G⃝z H depends on how the edges leaving and entering each
vertex of G are numbered. Thus it is best thought of as an operation on labelled
graphs. Nevertheless, the following lower bound on its expansion holds regardless
of the labelling:

Theorem 3.30 ([238])
If G has spectral expansion at least γ1 and H has spectral expansion at least γ2,

then G⃝z H has spectral expansion at least γ1γ2
2

G should be thought of as a big graph and H as a small graph, where D1 is a large
constant and D2 is a small constant. Observe that when D1 > D2

2 the degree is re-
duced by the zig-zag product.

Before giving intuition for Theorem 3.30, let’s see how it can be used to construct
an infinite family of constant-degree expanders.

Construction 3.31 (Zig-Zag Based Expanders)
Let H be a fixed D-regular graph on D4 vertices with spectral expanion at least

7/8.8 Define

G1 = H2

Gt = G2
t−1⃝z H for t > 1

A straightforward induction, using Theorem 3.30 and the properties of squaring,
shows that this is an infinite family of expanders:

Proposition 3.32 For all t, Gt is a D2-regular graph on D4t vertices with spectral
expansion at least 1/2.

Although simple to describe, Construction 3.31 does not quite meet our defini-
tion of explicitness (Definition 3.28), since the natural recursive way to compute
neighbors in Gt (by doing two neighbor computations in Gt−1) appears to take time
exponential in t, which is polynomial in Nt = D4t , rather than polylogarithmic. This
can be remedied by tensoring in addition to squaring, so that the number of vertices
grows much more quickly than the depth of the recursion.

There are two different intuitions underlying the expansion of the zig-zag prod-
uct:
8 Since the number of vertices is polynomially related to the degree, such graphs are much eas-
ier to construct than constant-degree expanders, and there are a number of simple constructions.
Alternatively, since we think of D as a constant, H can be found by exhaustive search.

On the works of Avi Wigderson 35

1. Given an initial distribution (U, I) on the vertices of G1⃝z G2 that is far from uni-
form, there are two extreme cases. (Here we use capital letters to denote random
variables corresponding to the lower-case values in Definition 3.29.) Either

a. All the (conditional) distributions I|U=u within the clouds are far from uni-
form, or

b. All the (conditional) distributions I|U=u within the clouds of size D1 are uni-
form (in which case the marginal distribution U on the clouds must be far
from uniform).

In Case 1a, the first H-step (U, I) 7→ (U, I′) already brings us closer to the uniform
distribution, and the other two steps cannot hurt (as they are steps on regular
graphs). In Case 1b, the first H-step has no effect, but the G-step (U, I′) 7→ (V,J′)
has the effect of making the marginal distribution on clouds closer to uniform,
i.e. V is closer to uniform than U . But note that the joint distribution (V,J′) isn’t
actually any closer to the uniform distribution on the vertices of G1⃝z G2 because
the G-step is a permutation. Still, if the marginal distribution V on clouds is closer
to uniform, then the conditional distributions within the clouds J′|V=v must have
become further from uniform, and thus the second H-step (V,J′) 7→ (V,J) brings
us closer to uniform.
This intuition can be turned into a formal proof, and with a careful analysis
(which can be found in [238]) yields slightly better expansion bounds than stated
in Theorem 3.30.

2. A second intuition, which follows [240, 236], leads to a very short of Theo-
rem 3.30. Here we think of the expander H as behaving similarly to the complete
graph on D1 vertices, via Lemma 3.27. In the case that H equals the complete
graph, then it is easy to see that G⃝z H = G⊗H, whose spectral expansion is
equal to γ(G) (since the complete graph has spectral expansion 1). For general
H, we use Lemma 3.27 to decompose the random-walk matrix for H into a con-
vex combination of the random-walk matrix for the complete graph and an error
matrix of spectral norm at most 1, with the coefficient on the complete graph be-
ing γ(H). Doing this for both steps on H in the zig-zag product leads to a spectral
expansion lower bound of γ(H)2 · γ(G).

As mentioned earlier, Construction 3.31 does not achieve an optimal relationship
between spectral expansion and degree (which is γ(G) = 1−Θ(1/

√
D), achieved

by random graphs [99] or explicit Ramanujan graphs [191, 196]). However, in
subsequent work with Capalbo, Reingold, and Vadhan [62], Wigderson used a vari-
ant of the zig-zag product to construct near-optimal directed or bipartite vertex ex-
panders, namely constant-degree graphs where sets of size up to K = Ω(N) expand
by a factor of A = (1− ε) ·D. (Viewed as bipartite graphs, the expansion is from
the left side of the graph to the right side of the graph, corresponding the use of
out-neighborhoods in Definition 3.23.) This variant of the zig-zag product comes
from viewing expanders as forms of randomness extractors (as discussed in the next
section), and builds on the first intuition for the zig-zag product given above. This
was the first explicit construction of constant-degree graphs with expansion factor

36 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

A > D/2, which has a qualitative implication that is important in a number of appli-
cations: they are also unique-neighbor expanders, where every left-set S of size at
most K has at least one neighbor (in fact, at least (1−2ε)D neighbors) on the right
that is incident to exactly one vertex in S.

A different variant of the zig-zag product was introduced by Ben-Aroya and Ta-
Shma [36] and used to give a combinatorial construction of “almost-Ramanujan”
expanders (namely with γ(G) = 1− 1/D1/2−o(1), where the o(1)→ 0 as D→ ∞).
This same variant was then used by Ta-Shma [265] in his breakthrough construction
of linear error-correcting codes (aka small-biased sets) that nearly meet the Gilbert–
Varshamov bound.

With Alon and Lubotzky [12], Wigderson gave an intriguing algebraic interpreta-
tion of the zig-zag product: Under certain conditions, if G and H are Cayley graphs,
then G⃝z H is a Cayley graph for the semi-direct product of the underlying groups.
Using this connection, they answered a question of Lubotzky and Weiss [192]
and proved that expansion of Cayley graphs is not a group property: a group can
have two constant-sized sets of generators, such that the Cayley graph defined by
one is expanding and the other is not. With Meshulam [198] and Rozenman and
Shalev [239], Wigderson further used this group-theoretic zig-zag to obtain iterative
constructions of expanding Cayley graphs.

Perhaps the most striking application of the zig-zag product is Reingold’s al-
gorithm for UNDIRECTED S-T CONNECTIVITY [234], which we will see in Sec-
tion 3.3, which in turn inspired Dinur’s celebrated combinatorial proof of the PCP
Theorem [79]. (See Section 2.3 for discussion of the PCP Theorem.)

Wigderson has also formulated and initiated the study of many other variants
of expansion, such as expanding hypergraphs [100], monotone expanders [85], and
notions of expansion for collections of linear maps [180].

3.2.2 Randomness Extractors

Randomness extractors are functions that extract almost-uniform bits from sources
of biased and correlated bits. The original motivation for extractors was to simulate
randomized algorithms with weak random sources as might arise in nature. This
motivation is still compelling, but extractors have taken on a much wider signifi-
cance in the years since they were introduced. They have found numerous appli-
cations in theoretical computer science beyond this initial motivating one, in areas
from cryptography to distributed algorithms to hardness of approximation. (See the
surveys [210, 275, 246].) In this section, we will survey Wigderson’s numerous
contributions to the theory of extractors, their constructions, and their applications.
Many of these contributions involve developing and exploiting the close connection
between randomness extractors and expander graphs.

We begin with some probability definitions that are needed to introduce random-
ness extractors.

On the works of Avi Wigderson 37

Definition 3.33 For random variables X and Y taking values in U , their statistical
difference (also known as total variation distance) is ∆(X ,Y) = maxT⊆U |Pr[X ∈
T]−Pr[Y ∈ T]|. We say that X and Y are ε-close if ∆(X ,Y)≤ ε .

Recall that random variables being ε-close is equivalent to them being (∞,ε)-
indistinguishable (Definition 3.11).

Definition 3.34 (entropy measures) Let X be a discrete random variable. Then

• the Shannon entropy of X is:

HSh(X) = E
x R←X

[
log

1
Pr [X = x]

]
.

• the Rényi entropy of X is:

H2(X) = log

(
1

E
x R←X

[Pr [X = x]]

)
and

• the min-entropy of X is:

H∞(X) = min
x

{
log

1
Pr [X = x]

}
,

where all logs are base 2.

Fact 3.35 1. For every random variable X,

H∞(X)≤ H2(X)≤ HSh(X),

with equality iff X is uniform on its support.
2. For every random variable X, H2(X)≤ 2H∞(X), and for every ε > 0, there is a

random variable X ′, such that H2(X ′)≤ H∞(X)+ log(1/ε).

To illustrate the differences between the three notions, consider a source X such
that X = 0n with probability 0.99 and X =Un with probability 0.01. Then HSh(X)≥
0.01n (contribution from the uniform distribution), H2(X) ≤ log(1/.992) < 1 and
H∞(X)≤ log(1/.99)< 1 (contribution from 0n). Note that even though X has Shan-
non entropy linear in n, we cannot expect to extract bits that are close to uniform
or carry out any useful randomized computations with one sample from X , because
it gives us nothing useful 99% of the time. Thus, we should use the stronger mea-
sures of entropy given by H2 or H∞. These entropy measures were introduced into
the randomness extraction literature by Cohen and Wigderson [70] and Chor and
Goldreich [67], respectively.

We will consider the task of extracting randomness from sources where all we
know is a lower bound on the min-entropy (which is equivalent to a lower bound on
Rényi entropy by Fact 3.35):

38 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Definition 3.36 A random variable X is a k-source if H∞(X)≥ k, i.e., if Pr [X = x]≤
2−k for all x.

A typical setting of parameters is k = δn for some fixed δ , e.g., δ = 1/10. We
call δ the min-entropy rate. Some different ranges that are commonly studied (and
are useful for different applications): k = polylog(n), k = nγ for a constant γ ∈ (0,1),
k = δn for a constant δ ∈ (0,1), and k = n−O(1). The middle two (k = nγ and k =
δn) are the most natural for simulating randomized algorithms with weak random
sources.

An ideal goal for a randomness extractor is to take one sample from an unknown
k-source as input and output almost-uniformly distributed bits. Unfortunately, this
is impossible to achieve:

Proposition 3.37 For any Ext : {0,1}n→{0,1} there exists an (n−1)-source X so
that Ext(X) is constant.

Proof There exists b ∈ {0,1} so that |Ext−1(b)| ≥ 2n/2 = 2n−1. Then let X be the
uniform distribution on Ext−1(b). □

Thus, instead researchers turned to the problem of simulating randomized algo-
rithms with a weak random source. That is, suppose we have a language L ∈ BPP.
The BPP algorithm for L assumes a source of truly uniform and independent bits.
Can we decide membership in L in polynomial time if we are instead given one
sample from a k-source X with large enough min-entropy k? Of course, the answer
is yes if BPP = P, but here we want unconditional results, not assuming circuit
lower bounds like Theorem 3.9. With Cohen [70], Wigderson gave the first positive
answer to this question for sources of constant entropy rate, namely δ = k/n > 3/4.
This was then improved to any constant entropy rate δ > 0 by Zuckerman [292],
and then these approaches were abstracted by Nisan and Zuckerman [213] into the
following elegant definition of a randomness extractor:

Definition 3.38 (seeded extractors [213])
A function Ext : {0,1}n×{0,1}d → {0,1}m is a (k,ε)-extractor if for every k-

source X on {0,1}n, Ext(X ,Ud) is ε-close to Um.

That is, an extractor extracts almost-uniform bits given one sample from a k-
source and a seed consisting of d truly random bits. The point is that if d is small
enough, such as d = O(logn), we can eliminate the seed entirely by trying all 2d

possibilities rather than choosing it at random, similarly to Proposition 3.7.9

Indeed, using the Probabilistic Method, it can be shown that seed length d =
O(logn) is possible:

9 The similarity of this approach to derandomization via pseudorandom generators is not a coin-
cidence. Trevisan [268] showed that Wigderson et al.’s conditional construction of pseudorandom
generators from circuit lower bounds (Theorem 3.9) can also be interpreted as an unconditional
construction of randomness extractors! Indeed, the same holds for any construction of pseudoran-
dom generators from a “black-box” hard function f , and thus Wigderson’s two lines of work on
pseudorandom generators and extractors were unified.

On the works of Avi Wigderson 39

Theorem 3.39 ([255, 293])
For every n ∈ N, k ∈ [0,n] and ε > 0, there exists a (k,ε)-extractor Ext :

{0,1}n×{0,1}d → {0,1}m with m = k+ d− 2log(1/ε)−O(1) and d = log(n−
k)+2log(1/ε)+O(1). Indeed, a randomly chosen function Ext with these param-
eters is a (k,ε)-extractor with high probability.

Both the lower bound on the output length m and upper bound on the seed length
d can be shown to be optimal up to additive constants for almost all settings of
parameters [220]. A small constant ε , say ε = 1/8, can be shown to be sufficient
for simulating randomized algorithms with a weak random source. In this case, the
seed length is d = log(n− k)+O(1) and we extract all but O(1) of the k+d bits of
entropy that is fed is into the extractor as input.

However, like with expanders, for applications of extractors, we typically need
explicit constructions, ones where Ext is computable in polynomial time. There
was a long line of work giving increasingly improved constructions of extractors,
and a milestone was achieved by Wigderson, together with Lu, Reingold, and Vad-
han [190], who gave explicit extractors that are optimal up to constant factors.

Theorem 3.40 ([190])
For all constants ε,α > 0, and all n,k ∈ N, there is an explicit (k,ε)-extractor

Ext : {0,1}n×{0,1}d →{0,1}m with d = O(logn) and m = (1−α) · k.

In fact, the error parameter ε in Theorem 3.40 can be made subconstant, even al-
most polynomially small. Constructions with no constraint on ε were later given by
Guruswami, Umans, and Vadhan [122] and by Dvir and Wigderson [86], the latter
being based on Dvir’s resolution of the Kakeya problem in finite fields [82]. For tak-
ing the entropy loss rate α parameter to be subconstant, the first construction was
given earlier than Theorem 3.40 by Wigderson and Zuckerman [284], but had seed
length d = polylog(n) rather than d = O(logn). Subsequent to Theorem 3.40, Dvir,
Kopparty, Saraf, and Sudan [83] achieved d = O(logn) with α = 1/polylog(n).

Extractors vs. Expanders

The works of Wigderson with Cohen [70] and with Friedman [100] showed that
explicit constructions of certain kinds of imbalanced bipartite expanders suffice for
simulating randomized algorithms with weak sources of randomness. Building on
this connection, the Nisan–Zuckerman definition of seeded extractors [213] can
be interpreted graph-theoretically as follows. Given any function Ext : {0,1}n ×
{0,1}d −→ {0,1}m, we can view Ext as a bipartite graph G with N = 2n vertices
on the left, M = 2m vertices on the right, and left-degree D = 2d , where the y’th
neighbor of x ∈ {0,1}n is Ext(x,y).

Suppose Ext is a (k,ε)-extractor. Then given any set S ⊆ {0,1}n of size K = 2k,
the uniform distribution on S, which we’ll denote US, is a k-source. The extractor
property tells us that Ext(US,U[D]) is ε-close to uniform on [M]. That is, a random
neighbor of a random element of S is ε-close to uniform on the right-hand vertices

40 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

of G. In particular, |N(S)| ≥ (1− ε)M. This property is just like vertex expansion,
except that it ensures a large neighborhood for sets of size exactly K (rather than all
sets of size at most K). Indeed, this variant of vertex expansion was introduced in
graph-theoretic form in [217, 242, 255], and is equivalent to the following relaxation
of extractors.

Definition 3.41 (dispersers)
A function Disp : {0,1}n×{0,1}d → {0,1}m is a (k,ε)-disperser if for every

k-source X on {0,1}n, Disp(X ,Ud) has a support of size at least (1− ε) ·2m.

Despite this connection, the parameters most commonly studied for extrac-
tors/dispersers and expanders are quite different. Extractors and dispersers typically
have polylogarithmic degree (e.g. D = polylog(N), corresponding to seed length
d = O(logn)), are very imbalanced (e.g. M = Nδ for a constant δ ∈ (0,1)), and of-
ten do not actually ‘expand’ (i.e. |N(S)|< |S|, since we are generally satisfied with
retaining entropy, not necessarily increasing it). Nevertheless, in the “high min-
entropy regime” k = (1− o(1))n, extractors and expanders become more closely
related, and indeed Goldreich and Wigderson [114] showed that by taking a power
of a constant-degree spectral expander, we obtain the following “high min-entropy
extractors”:

Theorem 3.42 ([114])
For every n,k ∈ N and ε > 0, there is an explicit (k,ε)-extractor Ext : {0,1}n×

{0,1}d −→ {0,1}n with d = O(n− k+ log(1/ε)).

Note that the seed length of this extractor is linear rather than logarithmic, but
importantly it is linear in n− k rather than just n. So when k = n− o(logn), the
seed length is shorter than that of Theorem 3.40. The origin of Wigderson’s zig-
zag product described in Section 3.2.1 was in the context of extractors, to compose
extractors such as given in Theorem 3.40 and in Theorem 3.42 to obtain a “best of
both” seed length of O(log(n− k)) [237].

Wigderson’s constant-degree expanders with expansion (1−ε)D [62] came from
considering a common generalization of expanders and extractors. In applying an
extractor, any distribution X that has large enough (min-)entropy gets transformed
into one that is close to uniform. In contrast, a random step on expander transforms
any distribution X that does not have too much entropy into one with higher en-
tropy. Formally, a spectral expander can be interpreted as one that increases Rényi
entropy (noting that the expression E

x R←X
[Pr [X = x]] that appears in the definition

of Rényi entropy equals the squared ℓ2 norm of the probability mass function of X).
To bridge the two, we can ask for a function Con : {0,1}n×{0,1}d →{0,1}m such
that for every random variable X of min-entropy k ≤ kmax, it holds that Con(X ,Ud)
is ε-close to having min-entropy at least k + a. Such a function is a necessarily
a (Kmax,(1− ε)A) vertex expander (where Kmax = 2kmax and A = 2a), and in fact
if a = d, the converse holds as well [266]. A general abstraction of randomness
conductors that encompasses all of these notions was given in [62], and a zig-zag

On the works of Avi Wigderson 41

product for conductors was developed and used to obtain constant-degree bipartite
expanders with expansion (1− ε) ·D.

The ℓ2-to-ℓ1 switch from requiring that Rényi entropy increases to only requir-
ing that the output distribution is ε-close in total variation distance to having higher
entropy is crucial for enabling these results. Indeed, it is impossible to derive expan-
sion greater than D/2 from spectral expansion alone [152]. Already in Wigderson’s
earlier work with Zuckerman [284], randomness extractors were used to construct
balanced bipartite vertex expanders of non-constant degree that are impossible to
derive from spectral expansion.

3.2.3 Multi-source Extractors and Ramsey Graphs

In the previous section, we argued that seeded extractors (Definition 3.38) suffice for
simulating randomized algorithms with a single sample from a weak random source
because we can enumerate over all possible seeds in polynomial time. However,
this trick does not work for a number of other applications of randomness, such
as in cryptography, distributed computing, and Monte Carlo simulation, where it is
not clear how to combine the results from enumeration. Thus, it is natural to ask
whether we can extract almost-uniform bits given only access to weak sources of
randomness, i.e. with no uniformly random seed.

For example, we could consider extracting randomness from a small number of
independent k-sources, a problem first studied by Chor and Goldreich [67]. That is
we want a function Ext : ({0,1}n)c→{0,1}m such that for all independent random
variables X1,X2, . . . ,Xc where each Xi is a k-source, Ext(X1,X2, . . . ,Xc) is ε-close
to Um. Or we could weaken the requirement to that of a disperser, where we only
require that the output has support size at least (1− ε) ·2m.

In addition to their motivation for obtaining high-quality randomness, extractors
for c = 2 independent sources are of interest because of connections to communica-
tion complexity and to Ramsey theory. In particular, a disperser for 2 independent
k-sources of length n with output length m = 1 is equivalent to a bipartite Ram-
sey graph — a bipartite graph with N vertices on each side that contains no K×K
bipartite clique or K×K bipartite independent set (for N = 2n and K = 2k): con-
nect left vertex x and right vertex y iff Disp(x,y) = 1. Giving explicit constructions
of Ramsey graphs that approach K = O(logN) bound given by the Probabilistic
Method [91] is a long-standing open problem posed by Erdős [92].

Chor and Goldreich [67] gave extractors for 2 independent sources of min-
entropy rate δ (i.e. k-sources on {0,1}n with k = δn) when δ > 1/2, and there
was no improvement in this bound for nearly 2 decades. Substantial progress be-
gan again in Wigderson’s work with Barak and Impagliazzo [30], who used new
results in arithmetic combinatorics to construct extractors for a constant number of
independent sources of min-entropy rate δ for an arbitrarily small constant δ > 0.
Specifically, they used the Sum–Product Theorem over finite fields of Bourgain,
Katz, and Tao [50]; this theorem says that for p prime and every subset A ⊆ Fp
whose size is not too close to p, either the set A+A of pairwise sums or the set A ·A

42 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

of pairwise products is of size significantly larger than |A|. Using this theorem and
other results in additive number theory, Barak, Impagliazzo, and Wigderson show
that if A, B, C are random variables distributed in Fp with min-entropy rate δ < .9,
then A ·B+C is ε-close to having min-entropy rate (1+α) ·δ for a universal con-
stant α > 0. Recursively applying this result reduces the task of extracting from
poly(1/δ) sources of min-entropy δn to extracting from 2 sources of min-entropy
rate larger than 1/2, which allows for applying the Chor–Goldreich extractor [67].

In subsequent works, Wigderson obtained even better multi-source extractors and
dispersers. With Barak, Kindler, Shaltiel, and Sudakov [31], Wigderson constructed
explicit extractors for 3 sources of min-entropy k = δn [31]. With Barak, Rao,
and Shaltiel [32], Wigderson constructed dispersers for 2 sources of min-entropy
k = no(1) [32], or equivalently bipartite Ramsey graphs that avoid K×K cliques and
independent sets of size K = 2(logN)o(1)

. This latter result was a major improvement
over the previous best explicit construction of Ramsey graphs by Frankl and Wil-
son [97], which had K = 2

√
n and only applied to the nonbipartite case. A long line

of subsequent work has continued to improve the parameters of 2-source extrac-
tors and dispersers, and very recently Li [179] has achieved 2-source extractors for
min-entropy k = O(logn), which is optimal up to a constant factor, and thus bipar-
tite Ramsey graphs for K = polylog(N), which is optimal up to the constant in the
exponent.

3.3 Unconditional derandomization

Theorem 3.9 of Wigderson and collaborators gives strong evidence that random-
ness does not provide a substantial gain in the efficiency of algorithms, but it as-
sumes circuit lower bounds that we are very far from proving. Thus, together with
Ajtai [5], Wigderson asked whether there are large classes of algorithms that we
can unconditionally derandomize, namely without making any unproven complex-
ity assumptions.10 They showed that this is indeed possible, giving an unconditional
subexponential-time derandomization of probabilistic constant-depth circuits. After
that, unconditional derandomization became a huge area of research, which is still
flourishing. We refer the reader to the survey by Hatami and Hoza [131] for recent
developments in the area.

3.3.1 Undirected S-T Connectivity

One subclass of BPP that has proved amenable to unconditional derandomization is
BPL, where we restrict the algorithms to use a logarithmic amount of space. (When
we measure the space complexity of an algorithm, we only count the read-write

10 The work of Ajtai and Wigderson [5] actually preceded Theorem 3.9, but was instead motivated
by Yao’s proof [288] that BPP⊆ SUBEXP under the assumption that cryptographic pseudorandom
generators exist.

On the works of Avi Wigderson 43

working memory, and do not count the space needed for the read-only input and
write-only output.)

Definition 3.43 A language L is in BPL if there exists a randomized algorithm A
that always halts, uses space at most O(logn) on inputs of length n, and satisfies the
following for all inputs x:

• x ∈ L⇒ Pr[A(x) accepts]≥ 2/3.
• x ̸∈ L⇒ Pr[A(x) accepts]≤ 1/3.

The standard model of a randomized space-bounded machine is one that has
access to a coin-tossing box (rather than an infinite tape of random bits), and thus
must explicitly store in its workspace any random bits it needs to remember. The
requirement that A always halts ensures that its running time is at most 2O(logn) =
poly(n), because otherwise there would be a loop in its configuration space. Thus
BPL⊆ BPP.

Similarly to the time case (Definition 3.5), we can ask what is the smallest deter-
ministic space bound needed to simulate BPL:

Definition 3.44 (Deterministic Space Classes)
DSPACE(s(n)) = {L : L can be decided deterministically in space O(s(n))}

L = DSPACE(logn)
Lc = DSPACE(logc n)

Classic results in complexity theory [48, 148] tell us that BPL ⊆ L2; however, this
is not really a result about randomized algorithms, since it applies even for the
unbounded-error version of BPL (where inputs in L are accepted with probability
greater than 1/2 and inputs not in L with probability at most 1/2). Thus the inter-
esting question is whether we can show BPL = L (randomization provides only a
constant-factor savings in memory), or at least BPL⊆ Lc for a constant c < 2.

The potential power of randomization for logspace algorithms was first demon-
strated in the late 1970’s for the following basic problem:

Computational Problem 3.45 UNDIRECTED S-T CONNECTIVITY: Given an undi-
rected graph G and two vertices s and t, is there a path from s to t in G?

Basic algorithms like breadth-first or depth-first search solve UNDIRECTED S-T
CONNECTIVITY in linear time, but also take linear space. With randomization we
can solve the problem in only logarithmic space:

Theorem 3.46 ([6])
UNDIRECTED S-T CONNECTIVITY is in BPL.

Proof (sketch) The algorithm simply does a polynomial-length random walk start-
ing at s:

Algorithm 3.47 (UNDIRECTED S-T CONNECTIVITY via Random Walks)

Input: (G,s, t), where G = (V,E) has n vertices.

44 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

1. Let v = s.
2. Repeat poly(n) times:

a. If v = t, halt and accept.
b. Else randomly select v R←{w : (v,w) ∈ E}.

3. Reject (if we haven’t visited t yet). □

Notice that this algorithm only requires space O(logn), in order to maintain the
current vertex v as well as a counter for the number of steps taken. Clearly, it never
accepts when there isn’t a path from s to t. It can be shown that in any connected
undirected graph, a random walk of length poly(n) from one vertex will hit any
other vertex with high probability. Applying this to the connected component con-
taining s, it follows that the algorithm accepts with high probability when s and t
are connected. □

Using Nisan’s pseudorandom generator for space-bounded computation [208],
Wigderson, together with Nisan and Szemerédi [209], proved that UNDIRECTED
S-T CONNECTIVITY is in L3/2. Inspired by that result, Saks and Zhou [241] then
proved that BPL⊆ L3/2, which remains essentially the best derandomization of BPL
to date.11 Then Wigderson, together with Armoni, Ta-Shma, and Zhou [18], proved
that UNDIRECTED S-T CONNECTIVITY is in L4/3. In 2005, Reingold [234] finally
resolved the space complexity of UNDIRECTED S-T CONNECTIVITY:

Theorem 3.48 ([234])
UNDIRECTED S-T CONNECTIVITYis in L.

Reingold’s Theorem is based on the following two ideas:

• UNDIRECTED S-T CONNECTIVITY can be solved in logspace on constant-
degree expander graphs. More precisely, it is easy on constant-degree graphs
where every connected component is promised to be an expander (i.e. has spec-
tral expansion bounded away from 0): we can try all paths of length O(logN)
from s in logarithmic space; this works because expanders have logarithmic di-
ameter.

• The same operations that Reingold, Vadhan, and Wigderson [238] used to con-
struct an infinite expander family (described Section 3.2.1) can also be used to
turn any graph into an expander (in logarithmic space). There, we started with
a constant-sized expander and used various operations to build larger and larger
expanders. The goal was to increase the size of the graph (which was accom-
plished by zig-zag and/or tensoring), while preserving the degree and the expan-
sion (which was accomplished by zig-zag and squaring). Here, we want to im-
prove the expansion (which is accomplished by squaring), while preserving the
degree (as is handled by zig-zag) and ensuring the graph remains of polynomial
size (so tensoring is counterproductive and not used).

11 Recently, Hoza [136] gave a slight improvement, showing that BPL ⊆
DSPACE(log3/2 n/

√
log logn).

On the works of Avi Wigderson 45

3.3.2 General Space-Bounded Computation

Like in the time-bounded case, one of the main approaches to derandomizing BPL
is to construct pseudorandom generators G : {0,1}d→{0,1}n such that no random-
ized (logn)-space algorithm can distinguish G(Ud) from Un. In order to get deran-
domizations that are correct on every input x, we require pseudorandom generators
that fool nonuniform space-bounded algorithms. Since randomized space-bounded
algorithms get their random bits as a stream of coin tosses, we only need to fool
space-bounded distinguishers that read each of their input bits once, in order. Thus,
instead of boolean circuits, we want pseudorandom generators for the following
class of distinguishers:

Definition 3.49 An ordered branching program B of width w and length n is given
by a start state s0 ∈ [w], m transition functions B1, . . . ,Bn : [w]×{0,1} → [w], and
a set A ⊆ [w] of accept states. On an input x ∈ {0,1}n, B computes by updating its
state via the rule si = Bi(si−1,xi) for i = 1, . . . ,n and accepting iff sn ∈ A.

The width w of a branching program corresponds to a space bound of logw bits.
Similarly to Theorem 3.14, a family of generators Gn : {0,1}d(n)→ {0,1}n that is
computable in space O(d(n)) and such that Gn(Ud(n)) cannot be distinguished from
Un by ordered branching of width w = n implies that BPL⊆

⋃
cDSPACE(c logn+

d(nc)). (Enumerating all seeds of length d(m) only requires an additive space in-
crease of d(m).) In particular, a pseudorandom generator with seed length d(n) =
O(logc n) immediately implies BPL⊆ Lc.

Unfortunately, the best known pseudorandom generator for general space-bounded
computation is Nisan’s generator [208], whose seed length of O(log2 n) does not im-
prove on the bound BPL ⊆ L2. Nevertheless, Saks and Zhou [241] used Nisan’s
generator as part of a more sophisticated algorithm to obtain their result that
BPL⊆ L3/2.

Together with Impagliazzo and Nisan [139], Wigderson gave an appealing alter-
native to Nisan’s generator that has been the subject of much subsequent research
and improved analyses for restricted models of ordered branching programs:

Definition 3.50 Given a sequence of regular digraphs H = (H1, . . . ,Hℓ) where
deg(Hi) = di and |V (Hi)| = 2∏

i−1
j=1 d j, the INW generator constructed with H ,

denoted INWH or INWℓ when the family is clear, is the function defined recur-
sively where for x ∈ {0,1} we have INW0(x) = x and for x ∈V (Hi) and y ∈ [di], we
have

INWi(x,y) = (INWi−1(x), INWi−1(Hi[x,y])), (4)

where Hi[x,y] denotes the y’th neighbor of vertex x in the graph Hi. INWi thus
generates an output of length 2i using a seed of length

⌈
log
(
2∏

ℓ
i=1 di

)⌉
.

That is, INWi correlates the seeds of INWi−1 used to generate the first 2i−1 bits
and the second 2i−1 bits as neighbors in the graph Hi. Impagliazzo, Nisan, and
Wigderson [139] proved that an instantiation of this generator fools logspace algo-
rithms with a seed length of O(log2 m). They did this by analyzing the construction
when the graphs Hi are good spectral expanders:

46 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Theorem 3.51 ([139])
If every graph Hi has spectral expansion at least 1−σ , then INWℓ ε-fools or-

dered branching programs of with w and length n= 2ℓ with error at most ε = σ ·nw.

To achieve spectral expansion 1−σ , we can use explicit expanders Hi with degree
di = poly(1/σ), and hence get seed length⌈

log

(
2

ℓ

∏
i=1

di

)⌉
= O

(
logn · log

(
1
σ

))
.

To achieve error ε by Theorem 3.51, we should set σ = ε/nw, and thus we get seed
length O(logn · log(nw/ε)), exactly matching Nisan [206] and giving seed length
O(log2 n) when w = n and ε = 1/8 as needed for derandomizing BPL.

To get intuition for Theorem 3.51, notice that if took the graph Hi to be complete
graphs with self-loops, then in Expression (4) for INWi we would be using inde-
pendent seeds for the left half and right half, so the error (distinguishing advantage)
of INWi should be at most twice the error of INWi−1 (since we are using it twice).
Furthermore, since an expander with spectral expansion at least 1−σ approximates
the complete graph to within spectral norm at most σ , we incur an additional error
of at most σw in the i’th level of recursion, where we pay a factor of w by summing
the error over the w possible states of the branching program at the halfway point.
Thus the error εi for INWi can be bounded by the recurrence εi ≤ 2εi−1+σw, which
solves to εℓ ≤ (2ℓ−1) ·σw < σ ·nw.

Impagliazzo, Nisan, and Wigderson [139] actually proved that the INW gen-
erator fools a wider class of algorithms than ordered branching programs, called
network algorithms. Subsequent developments, however, have focused on obtain-
ing improved analyses for more restricted classes of ordered branching programs,
namely regular and permutation branching programs. An ordered branching pro-
gram B is a permutation program if for every i and bit xi ∈ {0,1}, the transition
function Bi(·,xi) : [w]→ [w] is a permutation on the state set. That is, the transi-
tions are reversible (for any fixed input x). A regular branching program is more
general and just requires that for every state si ∈ [w], there are exactly two pairs
(si−1,xi) ∈ [w]×{0,1} such that Bi(si−1,xi) = si. A more intuitive formulation of
regularity comes from thinking of each transition function Bi of the branching pro-
gram as a bipartite graph with w vertices on each side, where left-vertex si−1 is
connected to right-vertices Bi(si−1,0) and Bi(si−1,1); in this viewpoint, a branch-
ing program is regular iff all of its associated bipartite graphs are regular. (They
are always 2-leftregular; the additional requirement here is that they are also 2-
rightregular.) One motivation for studying pseudorandomness for regular branching
programs is that a general ordered branching program of width w and length n can
be simulated by an ordered regular branching program of width wn [236, 46, 176].

The UNDIRECTED S-T CONNECTIVITY problem can be reduced to estimating
the acceptance probability of an ordered permutation branching program, and it
was shown by [240] that an instantiation of the INW generator with seed length
O(logn) can be used to derandomize Algorithm 3.47 on the corresponding graphs

On the works of Avi Wigderson 47

and thus give a simpler proof of Reingold’s Theorem (Theorem 3.48). Next, it
was shown in [55] showed that the INW generator fools ordered regular branch-
ing programs with seed length O(logn · log logn + logn · log(w/ε)). Note that
this seed length is nearly linear rather than quadratic in logn. In [166, 75, 260]
it was shown that the INW generator fools ordered permutation branching pro-
grams with seed length O(poly(w) · logn · log(1/ε)), which is O(logn) for con-
stant w and ε . Finally, in [137], it was shown that the INW generator fools or-
dered permutation branching programs that have a single accept state with seed
length O(logn · log logn+ logn · log(1/ε)), with no dependence on the width w.
In [218, 46, 63], the INW generator, with these improved analyses, was also used
to construct relaxations of pseudorandom generators (hitting-set generators and
weighted pseudorandom generators) for ordered regular and/or permutation branch-
ing programs that have an even better dependence on the error parameter ε .

The key to these improved analyses is to show that the error of the INW gener-
ator accumulates more slowly for these models of branching programs than given
by Theorem 3.51, for example achieving ε = O(σ · logn) yields the result of [137].
The error analysis of [137] builds on [240] in viewing the composition of the INW
generator with an ordered branching program as the result of an iterated graph op-
eration. Note that if B is an ordered permutation branching program of length n and
G : {0,1}d → {0,1}n is any generator, then composing B and G can be viewed as
defining a 2d-regular bipartite multigraph B◦G with w vertices on each side, where
we connect left-vertex s ∈ [w] to the final state reached when we run B on each of
the outputs of G from start state s. The recursive operation (4) defining the INW
generator amounts to taking a “product” of the two bipartite graphs BL ◦ INWi−1
and BR ◦ INWi−1, where BL and BR are the first and second halves of a program
B of length 2i. If the graph Hi is the complete graph with self-loops, then this is a
standard graph product operation, where the edges are obtained by first following
an edge in BL ◦ INWi−1 and then following an independent edge in BR ◦ INWi−1. (If
the left half and right half are identical, this is simply graph squaring.) When Hi is a
sparse expander, then this is a “derandomized product” operation that has a similar
spirit to the zig-zag product of Wigderson and collaborators [238]. Analyzing this
repeated derandomized product using notions of approximation from spectral graph
theory [3] yields an improved analysis of the INW generator.

3.3.3 Constant-depth Circuits and Iterated Restrictions

The first computational model that was studied for unconditional derandomization,
in the seminal paper of Ajtai and Wigderson [5], was constant-depth polynomial-
size boolean circuits with unbounded fan-in AND and OR gates, also known as AC0.
They gave an unconditional construction of a pseudorandom generator with seed
length O(nε) fooling AC0, for any constant ε > 0. This was improved by Nisan [207]
to seed length polylog(n), using a construction that inspired the Nisan–Wigderson
generator described in Section 3.1.4. (Indeed, Nisan’s generator is the special case of
the Nisan–Wigderson generator where the hard function f is the parity function.) Aj-

48 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

tai and Wigderson [5] pointed out a compelling algorithmic application of pseudo-
random generators for AC0, namely to derandomize the Karp–Luby BPP algorithm
for approximately counting the number of satisfying assignments to a DNF formula
(i.e. a depth 2 AC0 circuit that is an OR of ANDs of literals) [159]. There are now
nearly polynomial-time deterministic algorithms for this problem, all of which use
pseudorandom generators along with other algorithmic techniques [211, 194, 193].

Although Nisan [207] dramatically improved upon the seed length of the Ajtai–
Wigderson generator, the approach taken by Ajtai and Wigderson—iterated pseu-
dorandom restrictions—has undergone a revival over the past decade. The idea of
iterated pseudorandom restrictions is to not try to generate all n pseudorandom bits
at once, but to use a short seed to select and assign values to a smaller fraction of the
bits. If we use a seed of length d0 to assign a p fraction of the bits, then by iterating,
we can use a seed of length O(d0 · (logn)/p) to assign all the bits. The benefit of
this approach is that when analyzing the pseudorandomness of the pn bits gener-
ated in each iteration, we can think of the remaining (1− p)n bits as being chosen
uniformly at random. Thus, fooling a test T : {0,1}n → {0,1} reduces to fooling
a random restriction ρ of T where we select (1− p)n coordinates to restrict pseu-
dorandomly but assign their values uniformly at random. For many computational
models (in particular constant-depth circuits), random restrictions cause substantial
simplification, making the restricted function T |ρ easier to fool.

Over the past decade, iterated pseudorandom restrictions and variants have been
used to obtain improved pseudorandom generators for a variety of computational
models. One example is the model of combinatorial rectangles, which test member-
ship in a set of the form R1×R2×·· ·×Rn ⊆ [m]n, which can be viewed as a special
case of both ordered branching programs and AC0 formulas. For this model, Wigder-
son and collaborators gave the first pseudorandom generator whose seed length is
logarithmic in m and n for a subconstant error parameter ε [17]. The iterated restric-
tion approach of Ajtai and Wigderson was used in [118] to achieve a seed length that
is nearly logarithmic in all the parameters, i.e. Õ(log(mn/ε)). Since then, variants of
the iterated restrictions approach have been used to obtain improved generators for
constant-depth circuits, arbitrary-order read-once branching programs, De Morgan
formulas, and various restricted versions of these models. The number of works is
too large to list here, so we refer the reader to the excellent survey of Hatami and
Hoza [131].

4 Computational Complexity Lower Bounds

Proving lower bounds for the resources needed to perform computational tasks, in
different computational models, is among the most challenging and most important
topics in theoretical computer science. Let us start by quoting the starting paragraph
of Wigderson’s recently-published monumental book, Mathematics and Computa-
tion: A Theory Revolutionizing Technology and Science [283]:

On the works of Avi Wigderson 49

Here is just one tip of the iceberg we’ll explore in this book: How much time does it take to
find the prime factors of a 1,000-digit integer? The facts are that (1) we can’t even roughly
estimate the answer: it could be less than a second or more than a million years, and (2)
practically all electronic commerce and Internet security systems in existence today rest on
the belief that it takes more than a million years!

This paragraph says it all. While computers have revolutionized our world, the
resources required to perform computational tasks are poorly understood. Develop-
ing a mathematical theory of computation is crucial in our information age, where
computers are involved in essentially every part of our life.

Computational complexity, the study of the amount of resources needed to per-
form computational tasks, is essential for understanding the power of computation
and for developing a theory of computation. It is also essential in designing efficient
communication protocols, secure cryptographic protocols and in understanding hu-
man and machine learning.

We present here some of Wigderson’s works on computational complexity the-
ory, focusing on computational complexity lower bounds. We will see that often
these works introduced powerful techniques that had substantial impact and many
followup works.

4.1 Boolean Circuit Complexity

Boolean circuits are the standard computational model for computing Boolean func-
tions f : {0,1}n → {0,1}. Given a Boolean function f : {0,1}n → {0,1}, we ask
how many Boolean operations are needed to compute f . As the set of allowed
Boolean operations, we consider here the set of Boolean logical gates {∧,∨,¬}
(also known as De Morgan basis).

Given n input variables x1, . . . ,xn ∈ {0,1}, a Boolean circuit is a directed acyclic
graph as follows: All nodes are of in-degree 0 or 2. A node of in-degree 0 (that is,
a leaf) is labelled with either an input variable xi or its negation ¬xi. A node of in-
degree 2 is labelled with either ∧ or ∨ (in the first case the node is an AND gate and
in the second case an OR gate). A node of out-degree 0 is called an output node.
The circuit is called a formula if the underlying graph is a (directed) tree.

Each node in the circuit (and in particular each output node) computes a Boolean
function from {0,1}n to {0,1} as follows. A leaf just computes the value of the
input variable or negation of input variable that labels it. For every non-leaf node v,
if v is an AND gate it computes the AND of the functions computed by its two
children, and if v is an OR gate it computes the OR of the functions computed by its
two children. If the circuit has only one output node, the function computed by the
circuit is the function computed by the output node.

A Boolean circuit is monotone if it doesn’t use negation gates. Each node in a
monotone Boolean circuit (and in particular each output node) computes a mono-
tone Boolean function from {0,1}n to {0,1}.

50 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

The size of a circuit is defined to be the number of nodes in it and the depth of a
circuit is defined to be the length of the longest directed path from a leaf to an output
node in the circuit. For a circuit C, we denote its size by S(C) and its depth by D(C).
For a Boolean function f , we denote by S(f) the size of the smallest Boolean circuit
for f , usually referred to as the circuit size of f , and by D(f) the smallest depth of
a Boolean circuit for f , usually referred to as the circuit depth of f . For a monotone
Boolean function f , we refer to the size of the smallest monotone Boolean circuit
for f , as the monotone circuit size of f , and to the smallest depth of a monotone
Boolean circuit for f , as the monotone circuit depth of f .

We note that often the unbounded-fanin case is also considered, where the in-
degree of a node is not limited to be 0 or 2. For example, this is convenient when
studying constant-depth circuits. In these cases, the size of the circuit is usually
defined as the number of edges in it, rather than the number of nodes.

Proving lower bounds for the size and depth of Boolean circuits has been a major
challenge for many years. In particular, the biggest challenge is to prove super-
polynomial lower bounds for the size of Boolean circuits and formulas, for some
explicit function. Such bounds would imply lower bounds for essentially all other
models of computation. For example, super-polynomial (in n) lower bounds on the
size of (a family of) circuits that compute a family of functions { fn : {0,1}n →
{0,1}}n∈N would imply that that family of functions is not in the complexity class P
(polynomial time). If in addition the family of functions is in NP (non-deterministic
polynomial time), such a result would imply that P ̸= NP.

However, progress on this type of questions has been very limited. The best
known lower bounds for the size of Boolean circuits, for an explicit function, are
only linear in n [171, 145], and the best known lower bounds for the depth of
Boolean circuits, for an explicit function, are only logarithmic in n.

4.2 Communication Complexity

Communication complexity, first introduced by Yao [287], is a central model in
complexity theory that studies the amount of communication needed to solve a prob-
lem, when the input to the problem is distributed between two (or more) parties.

In the two-player deterministic model, each of two players gets an input, where
the two inputs x,y are chosen from some set of possibilities (known to both players).
The players’ goal is to solve a communication task that depends on both inputs, such
as computing a function f (x,y), where f : {0,1}n×{0,1}n → {0,1} is known to
both players and x,y are inputs of length n bits.

The players communicate in rounds, where in each round one of the players
sends a message to the other player. At the end of the protocol, in the example given
above, both players need to know the value of f (x,y).

The communication complexity of a protocol is the maximal number of bits com-
municated by the players in the protocol, where the maximum is taken over all pos-
sibilities for the inputs. The communication complexity of a communication task

On the works of Avi Wigderson 51

is the minimal communication complexity of a protocol that solves that task. For a
communication protocol P, we denote its communication complexity by CC(P). For
a communication task G, we denote by CC(G) the smallest communication com-
plexity of a (deterministic) protocol that solves G. The probabilistic case, where the
players are allowed to use a public random string and are allowed to err with some
fixed small probability smaller than 1

2 is often studied as well. For a communication
task G, we denote by CCε(G) the smallest communication complexity of a (prob-
abilistic) protocol that solves G correctly with probability at least 1− ε on every
input.

As an example, we give the problem of Set-Intersection, or Set-Disjointness, a
central problem in communication complexity. In this problem, each of two players
gets a vector in {0,1}n and their goal is to determine whether there exists a coordi-
nate i∈ [n] where they both have 1. This simple problem inspired a lot of progress in
communication complexity. It has been known for a long time that the probabilistic
communication complexity of Set-Intersection is Ω(n) [155, 231, 29, 54, 53]. The
lower bound is trivially tight, up to the multiplicative constant.

4.3 Karchmer-Wigderson Games

Karchmer and Wigderson gave a striking connection between the depth of Boolean
circuits and communication complexity. They showed that for every Boolean func-
tion f : {0,1}n→ {0,1}, there is a simple and intuitive communication complexity
game G f , such that, the smallest depth of a Boolean circuit for f is exactly equal
to the deterministic communication complexity of G f . Moreover, if f is monotone,
there is also a communication complexity game M f , such that, the smallest depth of
a monotone Boolean circuit for f (that is, a Boolean circuit for f that doesn’t use
negations) is exactly equal to the deterministic communication complexity of M f .
In particular, this reduces the problem of proving lower bounds for the depth of
Boolean circuits, a problem that seems hard to understand or analyze, to a problem
in communication complexity that seems much more intuitive and easier to work
with [157].

Definition 4.1 [157] (KW Games, G fG fG f): For every function f : {0,1}n → {0,1},
define the communication game G f as follows: Player 1 gets x ∈ {0,1}n, such that,
f (x) = 1. Player 2 gets y ∈ {0,1}n, such that, f (y) = 0. The goal of the two players
is to find a coordinate i ∈ [n], such that, xi ̸= yi (note that there is at least one such i
since f (x) ̸= f (y)).

Definition 4.2 [157] (KW Games, M fM fM f): For every monotone function f : {0,1}n→
{0,1}, define the communication game M f as follows: Player 1 gets x ∈ {0,1}n,
such that, f (x) = 1. Player 2 gets y ∈ {0,1}n, such that, f (y) = 0. The goal of the
two players is to find a coordinate i∈ [n], such that, xi = 1 and yi = 0 (note that there
is at least one such i since f (x)> f (y), and hence since f is monotone, x ̸≤ y).

52 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Recall that we denote deterministic communication complexity by CC and circuit
depth by D. In particular, for a function f : {0,1}n→{0,1}, we denote by D(f) the
smallest depth of a Boolean circuit for f . We denote by CC(G f) the deterministic
communication complexity of the game G f , and if f is monotone, we denote by
CC(M f) the deterministic communication complexity of the game M f .

Theorem 4.3 [157] For every f : {0,1}n→{0,1}, CC(G f) = D(f).

Proof Let z1, . . . ,zn ∈ {0,1} be the n input variables for f and recall that we denote
by x,y the inputs for the game G f .

Proving CC(G f)≤ D(f)CC(G f)≤ D(f)CC(G f)≤ D(f): Let C be any Boolean circuit for f . We will construct
a communication protocol for the game G f , with communication complexity D(C).
The construction is by induction on D(C).

Base case: D(C) = 0. In this case, f (z1, . . . ,zn) is simply the function zi or ¬zi,
for some i. Therefore, there is no need for communication, since i is a coordinate in
which x and y always differ. That is, the two players can give the answer i, for any
input pair (x,y). This is a protocol for G f , with communication complexity 0.

Induction step: Consider the top gate of C. Assume first that the top gate is an
AND gate and hence C =C1∧C2, where C1,C2 are the two sub-circuits representing
the two children of the top gate of C. Thus, D(C1),D(C2)≤D(C)−1. Denote by f1
and f2 the functions computed by C1 and C2 respectively. Thus f = f1∧ f2. By the
inductive hypothesis, CC(G f1),CC(G f2) ≤ D(C)− 1. We know that f (x) = 1 and
f (y) = 0. Therefore, we know that f1(x), f2(x) are both equal to 1 and at least one
of f1(y) or f2(y) is equal to 0. Let us present the protocol for G f . In the first step of
the protocol, Player 2 sends a value in {1,2}, indicating which of the functions f1 or
f2 is equal to 0 on y (or an arbitrary value in {1,2} if both are equal to 0). Assume
that Player 2 sends 1. In this case, we have f1(x) = 1 and f1(y) = 0. Hence, to solve
the game G f , the players can apply a protocol for G f1 . By the inductive hypothesis,
there is such a protocol with communication complexity CC(G f1)≤D(C)−1. In the
same way, if Player 2 sends 2 the players can use the protocol for G f2 . The players
used only one additional bit of communication. Hence, we can conclude that

CC(G f)≤ 1+max{CC(G f1),CC(G f2)} ≤ 1+(D(C)−1) = D(C).

We assumed that C = C1 ∧C2. The other case, C = C1 ∨C2, is proved in the same
way, except that Player 1 is the one who sends the first bit, indicating whether
f1(x) = 1 or f2(x) = 1.

Since the construction is valid for every circuit C for f , and in particular for the
one with smallest depth, we can conclude that CC(G f)≤ D(f).

Proving CC(G f)≥ D(f)CC(G f)≥ D(f)CC(G f)≥ D(f): For this proof, we define a more general communica-
tion game. For any two disjoint sets: A,B ⊆ {0,1}n, denote by GA,B the following
game: Player 1 gets x ∈ A. Player 2 gets y ∈ B. The goal of the two players is to find
a coordinate i, such that, xi ̸= yi. Note that G f is the same as G f−1(1), f−1(0).

We will prove the following claim: If CC(GA,B) = d then there is a function
g : {0,1}n→{0,1}, such that: g(x) = 1, for every x ∈ A; g(y) = 0, for every y ∈ B;
and D(g) ≤ d. That is, the function g separates A from B, and D(g) ≤ d. Note that

On the works of Avi Wigderson 53

for the game G f =G f−1(1), f−1(0), the function g must be the function f itself. Hence,
we obtain that D(f)≤ CC(G f), as required. The proof of the claim is by induction
on d = CC(GA,B).

Base case: d = 0. That is, the two players know the answer without any commu-
nication. Hence, there is a coordinate i, such that, for every x ∈ A and every y ∈ B,
we have xi ̸= yi. Thus, either the function g(z) = zi or the function g(z) = ¬zi satis-
fies the requirements of the claim (depending on whether for every x ∈ A we have
xi = 1, or, for every x ∈ A we have xi = 0).

Induction step: We have a protocol of communication complexity d for the
game GA,B. Assume first that Player 1 sends the first bit in the protocol. That bit
partitions the set A into two disjoint sets A = A0 ∪A1 (where A0 is the set of all
inputs x where Player 1 sends 0 and A1 is the set of all inputs x where Player 1
sends 1). If the first bit sent by Player 1 is 0, the rest of the protocol is a protocol for
the game GA0,B. If the first bit sent by Player 1 is 1, the rest of the protocol is a proto-
col for the game GA1,B. Hence, for both games, GA0,B and GA1,B, we have protocols
with communication complexity at most d−1. By the inductive hypothesis, we have
two functions g0 and g1 that satisfy: g0(x) = 1, for every x ∈ A0; g1(x) = 1, for ev-
ery x ∈ A1; g0(y) = g1(y) = 0, for every y ∈ B; and D(g0),D(g1)≤ d−1. We define
g = g0 ∨ g1. Thus: For every x ∈ A, we have g(x) = g0(x)∨ g1(x) = 1; For every
y ∈ B, we have g(y) = g0(y)∨g1(y) = 0; and D(g)≤ 1+max{D(g0),D(g1)} ≤ d.
That is, g satisfies the requirements.

If Player 2 sends the first bit, B is partitioned into two disjoint sets, B = B0 ∪
B1, and as before, the rest of the protocol is a protocol for the games GA,B0 and
GA,B1 (depending on the bit that was sent). By the inductive hypothesis, we have
two functions, g0,g1, corresponding to the two games, GA,B0 and GA,B1 , such that:
g0(x) = g1(x) = 1, for every x ∈ A; g0(y) = 0, for every y ∈ B0; g1(y) = 0, for
every y ∈ B1. We define g = g0∧g1. Thus: For every x ∈ A, we have g(x) = g0(x)∧
g1(x) = 1; For every y ∈ B, we have g(y) = g0(y)∧ g1(y) = 0; and D(g) ≤ 1+
max{D(g0),D(g1)} ≤ d. □

For a monotone Boolean function f : {0,1}n → {0,1}, denote by MD(f) the
smallest depth of a monotone Boolean circuit for f .

Theorem 4.4 [157] For every monotone f : {0,1}n→{0,1}, CC(M f) =MD(f).

Proof Similar to the proof of Theorem 4.3. □

Example (kkk-Clique): Take the Boolean function f to be the (n/2)-Clique function
in simple graphs with n vertices. That is, the input for f is a simple graph with
n vertices and the output is 1 if and only if the graph contains a clique of size
at least n/2. The games G f and M f are defined as follows: In both games, Player 1
gets a graph x (with n vertices) that contains a clique of size at least n/2 and Player 2
gets a graph y (with n vertices) that doesn’t contain a clique of size at least n/2. The
goal of the two players in the game M f is to find an edge in the graph x that is not
an edge in the graph y. The goal of the two players in the game G f is to find an edge
in the graph x that is not an edge in the graph y or an edge in the graph y that is not
an edge in the graph x.

54 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Theorem 4.3 shows that the communication complexity of the game G f is exactly
equal to the circuit depth of the (n/2)-Clique function. In particular, one can try to
prove a lower bound for the circuit depth of the (n/2)-Clique function, by proving a
lower bound for the communication complexity of the game G f . Note that no lower
bound better than Ω(logn) has ever been proved for the circuit depth of an explicit
Boolean function and such a bound would be a major breakthrough.
Theorem 4.4 shows that the communication complexity of the game M f is ex-
actly equal to the monotone circuit depth of the (n/2)-Clique function. Moreover,
it turned out that one can use this connection to prove a lower bound for the mono-
tone circuit depth of the (n/2)-Clique function, by proving a lower bound for the
communication complexity of the game M f [227].

We will now present an alternative equivalent way to define the game M f , in
terms of the minterms and maxterms of the monotone Boolean function f . Every
monotone Boolean function can be characterized by the set of its minterms and the
set of its maxterms.

Definition 4.5 (Minterm, Maxterm): Let f : {0,1}n → {0,1} be a monotone
Boolean function. A minterm of f is an input x ∈ {0,1}n, such that, f (x) = 1 and
for every input x′ < x, we have f (x′) = 0. A maxterm of f is an input y ∈ {0,1}n,
such that, f (y) = 0 and for every input y′ > y, we have f (y′) = 1.

Definition 4.6 [157] (KW Games, M fM fM f): For every monotone function f : {0,1}n→
{0,1}, define the communication game M f as follows: Player 1 gets x ∈ {0,1}n,
such that, x is a minterm of f . Player 2 gets y ∈ {0,1}n, such that, y is a maxterm
of f . The goal of the two players is to find a coordinate i ∈ [n], such that, xi = 1 and
yi = 0 (note that there is at least one such i since f (x)> f (y), and hence since f is
monotone, x ̸≤ y).

We have defined the game M f in two different ways, once in Definition 4.2 and
once in Definition 4.6. While the two definitions do not give the exact same game,
the two games are equivalent, so we denote both of them by M f . To see the equiv-
alence, let M

′
f be the game from Definition 4.2 and let M

′′
f be the game from Defi-

nition 4.6. First, note that M
′′
f is a restriction of the game M

′
f to a subset of inputs,

so any protocol for M
′
f is also a protocol for M

′′
f . On the other hand, the players can

use a protocol for M
′′
f to solve M

′
f as follows: Given an input x such that f (x) = 1,

Player 1 can find a minterm x′ of f such that x′ ≤ x. In the same way, given an input
y such that f (y) = 0, Player 2 can find a maxterm y′ of f such that y′ ≥ y. The play-
ers can now apply the protocol for M

′′
f on inputs x′,y′ to find a coordinate i such that

x′i = 1 and y′i = 0. Since xi ≥ x′i and yi ≤ y′i, we also have xi = 1 and yi = 0.

Example (sss-ttt-Connectivity): Take the Boolean function f to be the s-t-Connectivity
function in simple graphs with n vertices. That is, the input for f is a simple graph
with n vertices, two of which are labeled as s and t, and the output is 1 if and only if
the graph contains a path connecting s and t. Obviously, f is a monotone function,
since adding edges cannot disconnect an existing path from s to t.

On the works of Avi Wigderson 55

A minterm of f is a graph that contains a path from s to t, and no additional edges.
That is, a minterm is just a path from s to t (that does not intersect itself). A maxterm
of f is a graph G, such that, the set of vertices of G can be partitioned into two
disjoint sets S and T , with s ∈ S and t ∈ T and such that G contains all edges inside
S and inside T , but no edge between S and T . We think of a maxterm as a partition
of the set of vertices into two sets (S and T), or as a two-coloring of the vertices by
the colors 0 and 1 (where S is colored 0 and T is colored 1).
The game M f is defined as follows: Given n vertices, two of which are labeled by s
and t, Player 1 gets a path from s to t and Player 2 gets a coloring of the n vertices
by the colors {0,1}, such that, s is colored 0 and t is colored 1. The goal of the
two players is to find an edge (u,v) on the path, such that, u is colored 0 and v is
colored 1 (or vice versa).
Theorem 4.4 shows that the communication complexity of the game M f is exactly
equal to the monotone circuit depth of the s-t-Connectivity function. Moreover, it
turned out that one can use this connection to prove a lower bound for the monotone
circuit depth of the s-t-Connectivity function, by proving a lower bound for the
communication complexity of the game M f [157].

Unlike the case of general Boolean circuits, where progress in proving lower
bounds for explicit Boolean functions has been very limited, there has been a long
and very successful line of works that establish strong lower bounds for the mono-
tone circuit size and for the monotone circuit depth of many explicit functions,
starting from Razborov’s celebrated super-polynomial lower bounds for the size of
monotone Boolean circuits [229, 230].

Since their introduction, KW games have had a huge impact on the study of
monotone circuit depth and beyond, and have been further studied in numerous
works. Already in their original paper, Karchmer and Wigderson used KW games
to prove a tight lower bound of Ω(log2 n) for the monotone circuit depth of the sss-ttt-
Connectivity function in graphs with n vertices [157]. In particular, this result gave
the first super-polynomial separation between monotone circuit size and monotone
formula size and separated the monotone versions of the complexity classes NC1

and NC2. We present this result in Section 4.4.
Raz and Wigderson used KW games to prove tight lower bounds of Ω(n) for

the monotone circuit depth of the clique and matching functions in graphs with n
vertices [227]. We present this result in Section 4.5.

Karchmer, Raz and Wigderson used KW games to outline an approach for prov-
ing super-logarithmic lower bounds for the depth of general Boolean circuits [156].
We present this result in Section 4.6.

Raz and McKenzie used KW games to separate the monotone versions of the
complexity classes NC and P, as well as NCi and NCi+1 for every i [224]. That
paper also introduced a general technique for proving lower bounds for communi-
cation complexity, a technique that was later on named by Göös, Pitassi and Watson,
the lifting method. Göös, Pitassi and Watson initiated the study of the lifting method
as a general technique for proving separation results in communication complex-
ity [117], followed by a long line of recent works.

56 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

For a long time, KW games have been used mainly to study circuit depth, rather
than circuit size. Nevertheless, a recent paper by Garg, Göös, Kamath and Sokolov
shows how to use (an extension of) KW games to prove lower bounds for monotone
circuit size [101], using Razborov’s DAG-like communication protocols [232].

4.4 Lower Bounds for the Monotone Depth of ST-Connectivity

We will now present Karchmer and Wigderson’s proof that any monotone circuit for
the s-t-Connectivity function in graphs with n vertices is of depth Ω(log2 n) [157].
We deviate from Karchmer and Wigderson’s original presentation in various places.

Recall that the game M f for the s-t-Connectivity function is defined as follows:
Given n vertices, two of which are labeled by s and t, Player 1 gets a path from s
to t and Player 2 gets a coloring of the n vertices by the colors {0,1}, such that, s is
colored 0 and t is colored 1. The goal of the two players is to find an edge (u,v) on
the path, such that, u is colored 0 and v is colored 1 (or vice versa). By Theorem 4.4,
the communication complexity of this game is exactly equal to the monotone circuit
depth of the s-t-Connectivity function.

It is helpful to first see an upper bound for the communication complexity of the
game. A simple protocol for this game is as follows: In the first round, Player 1
sends the name (number) of the middle vertex in the path and Player 2 replies with
its color. If the color of the middle vertex is 0 then the players continue with the
second half of the path, and if the color is 1 then the players continue with the
first half of the path. The players continue to perform a binary search, until they
are left with a path of length 1. This path will be an edge (u,v), such that, u is
colored 0 and v is colored 1. In each round of the protocol, the players communicate
O(logn) bits (the number of the vertex and its color). Since in each step the path is
shortened by a factor of 2, the number of rounds will be O(logn). Altogether, the
communication complexity of the protocol is O(log2 n). Hence, by Theorem 4.4, the
monotone circuit depth of s-t-Connectivity is O(log2 n). Next, we present the lower
bound.

Theorem 4.7 [157] The monotone circuit depth of s-t-Connectivity is Ω(log2 n).

Proof For the proof of the lower bound, we will modify the communication game
M f for the s-t-Connectivity function, and present a variant of the game that we
refer to as STCON(ℓ,n). In this game, there are two parameters, n and ℓ ≤ n0.1.
We assume without loss of generality that ℓ is a power of 2. We have ℓ · n vertices
arranged in ℓ layers with n vertices in each layer, and two additional vertices s and t.
We assume that the layers are numbered (1, . . . , ℓ) and the vertices in each layer
are numbered (1, . . . ,n). Player 1 gets a path of length ℓ+1 from s to t that passes
through each of the ℓ layers exactly once, in their order. That is, the path starts
at s, goes to a vertex in the first layer then a vertex in the second layer and so on,
and finally goes from the last layer to the vertex t. Such a path can be presented
as x ∈ [n]ℓ, specifying the number of the vertex that the path reaches in each layer.

On the works of Avi Wigderson 57

Player 2 gets a coloring of the ℓ · n+ 2 vertices by the colors {0,1}, such that, s
is colored 0 and t is colored 1. Such a coloring can be presented as y ∈ {0,1}ℓ·n,
specifying the color of each vertex in each layer. The goal of the two players is to
find an edge (u,v) on the path, such that, u is colored 0 and v is colored 1 (or vice
versa).

We will show a lower bound of Ω(logℓ · logn) for the communication complexity
of STCON(ℓ,n). Since STCON(ℓ,n) is a restriction to a subset of inputs of the game
M f (for the s-t-Connectivity function with ℓ · n+ 2 vertices), such a bound implies
a lower bound of Ω(log2 n) for the monotone circuit depth of the s-t-Connectivity
function in graphs with n vertices. Next, we give the proof for

CC(STCON(ℓ,n)) = Ω(logℓ · logn).

Let X = [n]ℓ and Y = {0,1}ℓ·n. For a subset A ⊆ X , we define its density as
α = |A|

|X | and for a subset B ⊆ Y , we define its density as β = |B|
|Y | . Recall that in

the game STCON(ℓ,n), the input for Player 1 is viewed as x ∈ X and the input for
Player 2 is viewed as y ∈ Y .

We will consider restrictions of the game STCON(ℓ,n) to subsets of inputs A⊆X
and B ⊆ Y and define the game STCON(ℓ,n,A,B) to be the same as STCON(ℓ,n),
except that the input for Player 1 is x ∈ A and the input for Player 2 is y ∈ B.
We denote by C(ℓ,n,α,β) the minimal communication complexity of a game
STCON(ℓ,n,A,B) with a set A⊆ X of density α and a set B⊆ Y of density β .

Fixing n to be a (sufficiently large) integer, and fixing t def
= 1

2n0.1 , we will show
that for every ℓ≤ n0.1, every α ≥ t and β ≥ 0,

C(ℓ,n,α,β)≥ c · logℓ · logn+ log(α)+ log(β),

where c > 0 is a (sufficiently small universal) constant and the logarithm is base 2.
Hence, CC(STCON(ℓ,n)) = C(ℓ,n,1,1) = Ω(logℓ · logn).

The proof for C(ℓ,n,α,β) ≥ c · logℓ · logn+ log(α) + log(β) is by induction
over ℓ,α,β , in this order (and note that since n is fixed there is a finite number
of possibilities for ℓ,α,β , so the induction is sound). We will consider two cases:
α ≥ 2t and 2t > α ≥ t.

Case I: α ≥ 2tα ≥ 2tα ≥ 2t: Let A ⊆ X be a subset of density α and B ⊆ Y be a subset of
density β . Consider any protocol P for the game STCON(ℓ,n,A,B) and let d be the
communication complexity of the protocol. Since α ≥ 2t, none of the edges of the
path x is fixed and hence d > 0. We will prove that

d ≥ c · logℓ · logn+ log(α)+ log(β).

Assume first that Player 1 sends the first bit in the protocol P. That bit parti-
tions the set A into two disjoint sets A = A0 ∪ A1 (where A0 is the set of all in-
puts x where Player 1 sends 0 and A1 is the set of all inputs x where Player 1
sends 1). If the first bit sent by Player 1 is 0, the rest of the protocol is a pro-
tocol for the game STCON(ℓ,n,A0,B). If the first bit sent by Player 1 is 1, the

58 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

rest of the protocol is a protocol for the game STCON(ℓ,n,A1,B). Hence, for both
games, STCON(ℓ,n,A0,B) and STCON(ℓ,n,A1,B), we have protocols with com-
munication complexity at most d− 1. Let α0 be the density of A0 and α1 be the
density of A1. Note that α0 + α1 = α and hence at least one of α0,α1 is larger
than or equal to α/2. Hence C(ℓ,n,α/2,β) ≤ d− 1. By the inductive hypothesis,
d−1≥ c · logℓ · logn+ log(α/2)+ log(β), that is

d ≥ c · logℓ · logn+ log(α)+ log(β).

The case where Player 2 sends the first bit in the protocol P is similar.
Case II: 2t > α ≥ t2t > α ≥ t2t > α ≥ t: Let A⊆ X be a subset of density α and B⊆ Y be a subset

of density β . Consider any protocol P for the game STCON(ℓ,n,A,B) and let d be
the communication complexity of the protocol. We will prove that

d ≥ c · logℓ · logn+ log(α)+ log(β).

Note that we can assume without loss of generality that log(β)≥− log2 n, as other-
wise the right hand side of the inequality is smaller than 0 (if c < 1).

Every path x ∈ A can be written as x = (xL,xR), where xL ∈ [n]ℓ/2 is the left-hand
half of the path x (the first ℓ/2 coordinates of x) and xR ∈ [n]ℓ/2 is the right-hand
half of the path x (the last ℓ/2 coordinates of x). We say that xL ∈ [n]ℓ/2 is significant
if there exist at least α

4 · n
ℓ/2 extensions xR ∈ [n]ℓ/2, such that, (xL,xR) ∈ A. Let

AL ⊆ [n]ℓ/2 be the set of significant paths xL. We say that xR ∈ [n]ℓ/2 is significant
if there exist at least α

4 · n
ℓ/2 extensions xL ∈ [n]ℓ/2, such that, (xL,xR) ∈ A. Let

AR ⊆ [n]ℓ/2 be the set of significant paths xR. Let αL be the density of AL in [n]ℓ/2,
that is, αL = |AL|

nℓ/2 . Let αR be the density of AR in [n]ℓ/2, that is, αR = |AR|
nℓ/2 . Since

for every (xL,xR) ∈ A, either xL is not significant or xR is not significant or both are
significant, we have

α ·nℓ = |A| ≤ nℓ/2 · α

4 ·n
ℓ/2 + α

4 ·n
ℓ/2 ·nℓ/2 +αL ·nℓ/2 ·αR ·nℓ/2,

that is
α

2 ≤ αL ·αR.

Thus, αL ≥
√

α

2 or αR ≥
√

α

2 . Without loss of generality

αL ≥
√

α

2 .

Every coloring y ∈ B can be written as y = (yL,yR), where yL ∈ {0,1}(ℓ/2)·n is
the left-hand half of the coloring y (the first (ℓ/2) · n coordinates of y) and yR ∈
{0,1}(ℓ/2)·n is the right-hand half of the coloring y (the last (ℓ/2) · n coordinates
of y). We say that yL ∈ {0,1}(ℓ/2)·n is significant if there exist at least β

2 · 2
ℓ·n/2

extensions yR ∈ {0,1}(ℓ/2)·n, such that, (yL,yR) ∈ B. Let BL ⊆ {0,1}(ℓ/2)·n be the
set of significant colorings yL. Let βL be the density of BL in {0,1}(ℓ/2)·n, that is,
βL =

|BL|
2ℓ·n/2 . Since for every (yL,yR)∈ B, either yL is not significant or significant, we

On the works of Avi Wigderson 59

have
β ·2ℓ·n = |B| ≤ 2ℓ·n/2 · β

2 ·2
ℓ·n/2 +βL ·2ℓ·n/2 ·2ℓ·n/2,

that is,
βL ≥ β

2 .

Let T be a subset of vertices (to be determined later) in the last ℓ/2 layers, that
is, layers ℓ

2 +1, . . . , ℓ. Given T , we define the set A′L ⊆ AL to be the set of all xL ∈ AL

such that there exists an extension xR ∈ [n]ℓ/2, such that, (xL,xR)∈ A and all vertices
of the path xR are in T . Given T , we define the set B′L ⊆BL to be the set of all yL ∈BL
such that there exists an extension yR ∈ {0,1}(ℓ/2)·n, such that, (yL,yR) ∈ B and all
vertices of T are colored 1 by the coloring yR.

We claim that the protocol P can be used to solve the communication game
STCON(ℓ/2,n,A′L,B

′
L) and hence CC(STCON(ℓ/2,n,A′L,B

′
L)) ≤ d. This can be

done as follows. Given T and an input xL ∈ A′L, Player 1 finds an extension
xR ∈ [n]ℓ/2, such that, (xL,xR) ∈ A and all vertices of the path xR are in T . Given
T and an input yL ∈ B′L, Player 2 finds an extension yR ∈ {0,1}(ℓ/2)·n, such that,
(yL,yR) ∈ B and all vertices of T are colored 1 by the coloring yR. The players run
the protocol P on inputs x = (xL,xR), y = (yL,yR). Since all vertices of the path xR
are in T , they are all colored 1 by the coloring yR. Hence, the edge (u,v) returned by
the communication protocol P must satisfy u = s or u is in the first ℓ/2 layers, that
is, layers 1, . . . , ℓ2 . Thus, it is a valid answer for the game STCON(ℓ/2,n) on inputs
xL,yL.

It remains to show that there exists a subset of vertices T , as above, such that
A′L,B

′
L are large, say |A′L| ≥ |AL|/2 and |B′L| ≥ |BL|/2. Assume first that there exists

such a set T . Then, since αL ≥
√

α

2 and βL ≥ β

2 , we get

C
(
ℓ
2 ,n,

√
α

4 , β

4

)
≤ CC

(
STCON(ℓ/2,n,A′L,B

′
L)
)
≤ d.

Hence, by the inductive hypothesis,

d ≥ c · log
(
ℓ
2

)
· logn+ log

(√
α

4

)
+ log

(
β

4

)
= c · logℓ · logn− c · logn+ 1

2 · log(α)+ log(β)−4

= c · logℓ · logn+ log(α)+ log(β)− c · logn− 1
2 · log(α)−4

≥ c · logℓ · logn+ log(α)+ log(β) ,

where the last inequality is because −c · logn− 1
2 · log(α)−4≥ 0, which is true for

a sufficiently small constant c, since α < 2t = 1
n0.1 (by the premise of Case II) and

since n is sufficiently large.
Thus, it remains to argue that there exists a subset of vertices T , as above, such

that |A′L| ≥ |AL|/2 and |B′L| ≥ |BL|/2. Recall that T is a subset of vertices in the last
ℓ/2 layers, that is, layers ℓ

2 +1, . . . , ℓ. We will choose T randomly as follows. Take
n0.2 random paths xR ∈ [n]ℓ/2 (viewed as paths on the last ℓ/2 layers) and let T be
the union of the sets of vertices on all these paths. Equivalently, the restriction of T

60 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

to each layer (from the last ℓ/2 layers), is generated by taking n0.2 random vertices
(with repetitions). Note also that T can be extended to a set T ′ ⊃ T of size, say,
2n0.2 ·(ℓ/2), such that the distribution of T ′ is exponentially close to the distribution
of a random set of size 2n0.2 · (ℓ/2) of vertices in the last ℓ/2 layers.

Recall that the set A′L ⊆ AL is the set of all xL ∈ AL such that there exists an
extension xR ∈ [n]ℓ/2, such that, (xL,xR) ∈ A and all vertices of the path xR are in T .
Recall that for every xL ∈ AL there exist at least α

4 ·n
ℓ/2 extensions xR ∈ [n]ℓ/2, such

that, (xL,xR) ∈ A. Therefore, since α

4 ≥
1

8n0.1 , for each xL ∈ AL with probability
exponentially close to 1, one of these extensions was chosen among the n0.2 random
paths that were chosen to generate T . Thus, with probability very close to 1 almost
every xL ∈ AL is also in A′L and in particular |A′L| ≥ |AL|/2.

Recall that the set B′L ⊆ BL is the set of all yL ∈ BL such that there exists an ex-
tension yR ∈ {0,1}(ℓ/2)·n, such that, (yL,yR) ∈ B and all vertices of T are colored 1
by the coloring yR. Recall that for every yL ∈ BL there exist at least β

2 ·2
ℓ·n/2 exten-

sions yR ∈ {0,1}(ℓ/2)·n, such that, (yL,yR) ∈ B, and recall that we assumed (without
loss of generality) that β ≥ 2− log2 n. For each extension yR, we consider the set TyR

of all vertices (in the last ℓ/2 layers) that yR colors 1. For every yL ∈ BL, we con-
sider the family of sets FyL = {TyR}yR:(yL,yR)∈B. Thus, for every yL ∈ BL, we have that

|FyL | ≥ 2− log2 n−1 · 2ℓ·n/2. By Kruskal–Katona theorem [167, 160, 188] (or alterna-
tively by information theoretic arguments), such a large family of sets is guaranteed
to contain, with probability close to 1, a set TyR that contains the random set T ′

(where the probability is over the choice of T ′). Note that if TyR contains T ′, the col-
oring yR colors all vertices in T ′ (and hence all vertices in T) by 1. Thus, with proba-
bility close to 1 almost every yL ∈ BL is also in B′L and in particular |B′L| ≥ |BL|/2.□

4.5 Lower Bounds for the Monotone Depth of Clique and Matching

Next, we present Raz and Wigderson’s lower bound of Ω(n) for the monotone cir-
cuit depth of the clique and matching functions in graphs with n vertices [227].
The proof establishes a lower bound of Ω(n) for the communication complexity
of the corresponding KW games, by a direct reduction to known lower bounds in
communication complexity, namely the lower bound of Ω(n) for the probabilistic
communication complexity of Set-Disjointness [155, 231, 29, 54, 53]. This, in turn,
further demonstrates the power of KW games, as well as the power of reductions
from Set-Disjointness as a major tool for proving lower bounds in communication
complexity and other computational models.

Recall that in the problem of Set-Intersection, or Set-Disjointness, each of two
players gets a vector in {0,1}n and their goal is to determine whether there exists
a coordinate i ∈ [n] where they both have 1. Recall that for a communication task
G, we denote by CCε(G) the smallest communication complexity of a probabilistic
protocol that solves G correctly with probability at least 1− ε on every input.

Theorem 4.8 [155] For any constant ε > 0, CCε(Dis jointness)≥Ω(n).

On the works of Avi Wigderson 61

We will consider the following communication game, denoted M1:

Definition 4.9 (Communication game M1): Let n = 3k and let V be a set of n
vertices. Player 1 gets a k-matching x on (a subset of) the set of vertices V , that is, k
edges (with vertices in V) that don’t touch each other. Player 2 gets a set y of k−1
vertices in V . The goal of the two players is to find an edge in x that does not touch
any of the vertices in y. (By the pigeonhole principle there must be at least one such
edge).

We will prove that the deterministic communication complexity of M1 is Ω(n),

CC(M1)≥Ω(n).

This bound implies lower bounds for the monotone circuit depth of several func-
tions. We give a few examples:

Theorem 4.10 [227] Let n = 3k. Let Match be the (monotone) Boolean function
that gets as an input a graph with n vertices and outputs 1 if and only if the graph
contains a k-matching (and outputs 0 otherwise). The monotone circuit depth of
Match is Ω(n).

Proof Consider an input (x,y) for the game M1. The k-matching x is a minterm
of the function Match. The set y of k− 1 vertices can be viewed as a maxterm of
the function Match, by considering a graph that contains all possible edges with at
least one vertex in y. Any protocol P for the monotone KW game of the function
Match can be applied on (x,y) to get an edge in x that doesn’t touch y. That is, any
protocol P for the monotone KW game of the function Match can be applied also
as a protocol for M1. Since CC(M1) ≥ Ω(n), the communication complexity of P
is Ω(n). Hence, by Theorem 4.4, the monotone circuit depth of Match is Ω(n). □

Theorem 4.11 [227] Let PM be the (monotone) Boolean function that gets as an
input a graph with n vertices and outputs 1 if and only if the graph contains a perfect
matching (and outputs 0 otherwise). The monotone circuit depth of PM is Ω(n).

Proof Follows by a standard reduction from Match to PM: Given an input graph
Z for the function Match, where the number of vertices in Z is n = 3k, construct a
graph Z′ by adding k vertices to Z and connecting them to all other vertices. Then,
there exists a perfect matching in Z′ if and only if there exists a matching of size k
in Z. □

Theorem 4.12 [227] Let n = 3k. Let Clique be the (monotone) Boolean function
that gets as an input a graph with n vertices and outputs 1 if and only if the graph
contains a clique of size 2k + 1 (and outputs 0 otherwise). The monotone circuit
depth of Clique is Ω(n).

Proof Consider an input (x,y) for the game M1. Given the set y of k− 1 vertices,
consider the graph y′ that contains all edges that do not touch y (that is, a clique in
the complement of y). Since y′ is a clique of size 2k+1, the function Clique outputs

62 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

1 on y′. Given the k-matching x, let the graph x′ be the complement of x, that is,
the graph that contains all edges except the matching x. The function Clique outputs
0 on x′. Any protocol P for the monotone KW game of the function Clique can
be applied on (y′,x′) to get an edge in y′ that is not an edge in x′, that is an edge
of x that doesn’t touch y. Thus, any protocol P for the monotone KW game of the
function Clique can be applied also as a protocol for M1. Since CC(M1) ≥ Ω(n),
the communication complexity of P is Ω(n). Hence, by Theorem 4.4, the monotone
circuit depth of Clique is Ω(n). □

Using similar arguments, one can establish lower bounds for the monotone depth
of several other functions, such as, matching and perfect matching in bipartite graphs
and clique functions with different sizes of cliques.

It remains to prove the lower bound for the deterministic communication com-
plexity of M1.

Theorem 4.13 [227] CC(M1)≥Ω(n).

Proof Let n = 3k and let V be a set of n vertices. Consider the following commu-
nication game, denoted M2: Player 1 gets a k-matching x on (a subset of) the set of
vertices V . Player 2 gets a set y of k vertices in V . The goal of the two players is
to output 1 if there is an edge in x that does not touch any of the vertices in y, and
output 0 otherwise, that is, if every edge in x touches a vertex in y.

We will first prove that for any constant ε > 0,

CC(M1)≥Ω(CCε(M2)). (5)

Assume that we have a deterministic communication protocol P1 for the com-
munication game M1. We will use P1 to construct a probabilistic communication
protocol P2 for the communication game M2, with the same communication com-
plexity as P1 (up to an additive constant).

First note that, using a common random string, we can assume that the protocol
P1 is a zero-error probabilistic protocol, such that, for every input (x,y) for the game
M1, the protocol P1 outputs each correct answer with the exact same probability (that
is, if for the input (x,y) there are several correct answers the protocol outputs each
of them with the same probability). This can be assumed, since, using the common
random string, the players can randomly permute the vertices in V before applying
the protocol P1.

Let (x,y) be an input for the game M2. Player 2 gets the set y of k vertices, and
will randomly choose a vertex v ∈ y and remove it. Now, Player 2 is left with a
set y′ of k−1 vertices. The two players can now apply the protocol P1 (for M1) on
the input (x,y′) and obtain as an output an edge e ∈ x that doesn’t touch any of the
vertices in y′. The players now check if the removed vertex v is on the edge e. If the
vertex v is not on the edge e, the protocol P2 (for M2) will outputs 1 (as e is an edge
that doesn’t touch any vertex in y). If the vertex v is on the edge e, the protocol P2
will output 0 (that is, P2 assumes that there is no edge in x that doesn’t touch y, as
such an edge was not found by P1).

On the works of Avi Wigderson 63

Note that if P2 outputs 1 there can be no error (as e does not touch v or any
other vertex in y, since the protocol P1 is always correct). On the other hand, if P2
outputs 0, an error is possible, as there might be a different edge e′ in x that doesn’t
touch any of the vertices in y, and yet the protocol P1 outputs the edge e that does
touch v. However, since the edges do not touch each other, there is at most one edge
e ∈ x that touches v. Since we assume that the protocol P1 outputs each possible
correct answer with the exact same probability, and since an error occurs only if e
was the output of P1 (and not any of the possible edges e′), the probability for an
error is at most 1/2 (for any input (x,y)). (The probability of error may be smaller
if there are several edges e′ that do not touch any vertex in y).

To further reduce the probability of error to any constant ε , one can repeat the
protocol P2 a constant number of times. This concludes the proof for Equation 5.

Next, we consider the following communication complexity game, denoted 3Dist
(3-Distinctness): Let n= 3k. Player 1 and Player 2 get inputs x,y∈{a,b,c}k, respec-
tively. That is, each player gets a string of k = n/3 letters from {a,b,c}. The goal is
to decide whether there is a coordinate i, such that xi = yi.

We will prove that for any constant ε > 0,

CCε(M2)≥ CCε(3Dist). (6)

Assume that we have a probabilistic communication protocol P2 for the com-
munication game M2. We will use P2 to construct a probabilistic communication
protocol P3 for the communication game 3Dist, with the same communication com-
plexity and the same error as P2.

Let (x,y) be an input for the game 3Dist. Thus x,y ∈ {a,b,c}k. For each coordi-
nate in {1, . . . ,k}, we construct a triangle (with different vertices for each triangle)
and label its 3 vertices by a,b,c. We label each edge of each triangle by the letter
that labels the vertex that it does not touch (that is, the vertex opposite to it).

The players convert their inputs to inputs for the game M2 in the following way:
Player 1 interprets her k coordinates as the corresponding k edges in the k triangles
(one edge for each coordinate). That is, each xi is interpreted as the corresponding
edge in the ith triangle. Denote the set of these edges by x′. Player 2 interprets her
k coordinates as the corresponding k vertices in the k triangles. That is, each yi is
interpreted as the corresponding vertex in the ith triangle. Denote the set of these
vertices by y′. Obviously, there is an edge in x′ that doesn’t touch y′ if and only if
there is a coordinate i, such that, xi = yi. Thus, the players can use the protocol P2
on input (x′,y′) and declare the answer. This gives a probabilistic communication
protocol P3 for 3Dist with the same communication complexity and the same error
as P2. This concludes the proof for Equation 6.

Finally, we will prove that for any constant ε > 0,

CCε(3Dist)≥Ω(n). (7)

This will follow by a reduction from the Set-Disjointness problem and by the lower
bound for the probabilistic communication complexity of Set-Disjointness (Theo-
rem 4.8).

64 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Assume that we have a probabilistic communication protocol P3 for 3Dist. We
will show how to use this protocol to solve the Set-Disjointness problem. Given an
input pair (x,y) for the Set Disjointness problem, such that x,y ∈ {0,1}k, the two
players will generate inputs x′,y′ for 3Dist as follows. To generate x′, Player 1 starts
from x and translates 0 to b and 1 to a. That is, for every i, if xi = 0 then x′i = b and
if xi = 1 then x′i = a. To generate y′, Player 2 starts from y and translates 0 to c and
1 to a. That is, for every i, if yi = 0 then y′i = c and if yi = 1 then y′i = a. Obviously,
xi = yi = 1 if and only if x′i = y′i. Hence, the two players can apply the protocol P3 on
(x′,y′) and declare the answer. This gives a probabilistic communication protocol
for Set-Disjointness, with the same communication complexity and the same error
as P3. By Theorem 4.8, the communication complexity of the protocol is Ω(n). This
concludes the proof for Equation 7.

By Equation 5, Equation 6 and Equation 7, we get CC(M1)≥Ω(n). □

4.6 KRW Conjecture

Karchmer, Raz and Wigderson suggested an approach for proving super-logarithmic
lower bounds for general Boolean circuit depth [156]. We will briefly outline this
approach here.

Let n be an integer and assume for simplicity that log logn is also an integer
(where the logarithm is base 2). Let k = logn. Let f : {0,1}k→{0,1} be a random
Boolean function. Since it’s not hard to prove (by a standard counting argument)
that a random Boolean function has large circuit depth (with high probability), we
can assume that, say, D(f)≥ k

2 (where D denotes circuit depth).
For two Boolean functions, h : {0,1}r → {0,1} and g : {0,1}m→ {0,1}, define

their composition h◦g : {0,1}rm→{0,1} by

h◦g(x1, . . . ,xr) = h(g(x1), . . . ,g(xr)),

where x1, . . . ,xr ∈{0,1}m. Define f (d) to be the composition of f with itself d times.
KRW conjectured that for a random function f : {0,1}k → {0,1} and any func-

tion g : {0,1}m→{0,1},

D(f ◦g)≥ ε ·D(f)+D(g)

(with high probability over the choice of f), for some constant ε > 0. There are also
various variants of this conjecture.

Assuming that the conjecture holds, we get

D(f (d))≥ ε ·D(f)≥ ε

2 ·d · k,

(with high probability over the choice of f). Taking d = k/ logk, we get a function
f (d) : {0,1}n→{0,1} of super-logarithmic depth. The function f (d) is not explicit,
as f is a random function, but since f depends on only k = logn input variables,

On the works of Avi Wigderson 65

its truth table of size n can be given as n additional input variables, so that f (d) is
explicitly given.

To prove the conjecture, KRW suggested to use Karchmer-Wigderson games.
Given f : {0,1}k→{0,1} and g : {0,1}m→{0,1}, the KW game corresponding to
f ◦g is as follows:
Player 1 gets x1, . . . ,xk ∈ {0,1}m, such that,

f (g(x1), . . . ,g(xk)) = 1.

Player 2 gets y1, . . . ,yk ∈ {0,1}m, such that,

f (g(y1), . . . ,g(yk)) = 0.

The goal of the two players is to find (i, j) such that xij ̸= yij.
To see the intuition behind the conjecture, assume that the inputs (x1, . . . ,xk)

for Player 1 and (y1, . . . ,yk) for Player 2 satisfy that for every i ∈ {1, . . . ,k}, if
g(xi) = g(yi) then xi = yi. Then, an answer (i, j) for the KW game correspond-
ing to f ◦ g gives an answer i for the KW game corresponding to f (with input
((g(x1), . . . ,g(xk)),(g(y1), . . . ,g(yk)))) and an answer j for an instance of the KW
game corresponding to g (namely, the KW game corresponding to the ith coordinate,
that is, the game played with input (xi,yi)).

Finally, we note that while the conjecture is still wide open and seems hard to
prove, some steps towards proving the conjecture have been done in several pa-
pers, including the works by Edmonds, Impagliazzo, Rudich and Sgall [89], Håstad
and Wigderson [129], Gavinsky, Meir, Weinstein and Wigderson [106], Dinur and
Meir [80], Meir [197] (to name a few).

4.7 Communication Complexity of Set-Disjointness

The Set-Disjointness problem that was already mentioned before is a central prob-
lem in communication complexity, with numerous applications. We have already
seen how strong lower bounds for the monotone depth of Boolean functions (The-
orem 4.10, Theorem 4.11 and Theorem 4.12) follow from known lower bounds for
the probabilistic communication complexity of Set-Disjointness (Theorem 4.8). The
Set-Disjointness problem can be described as follows (equivalently to our previous
description). Each of two players gets a subset of [n] and their goal is to determine
whether the two subsets intersect.

Since the Set-Disjointness problem is so central, and because of the many ap-
plications, it’s very interesting to also study variants of this problem. Håstad and
Wigderson [130] studied the perhaps most natural variant of the problem, the Set-
Disjointness problem with sets of a fixed size k. That is, given n and k ≤ n/2,
Player 1 gets a subset x ⊂ [n] of size k, Player 2 gets a subset y ⊂ [n] of size k,
and their goal is to determine whether the two subsets x,y intersect. We denote this

66 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

communication game by Dn
k . In the deterministic case, it is not hard to prove that

for every k ≤ n/2, CC(Dn
k) =Θ(log

(n
k

)
) [130].

Håstad and Wigderson proved that in the probabilistic case, the communication
complexity of Dn

k is in fact O(k). (This bound is tight when k < cn for any constant
c < 1/2).

Theorem 4.14 [130] For any n and k≤ n/2 and constant ε > 0, CCε(Dn
k) = O(k).

Proof (Sketch) Player 1 gets a subset x ⊂ [n] of size k and Player 2 gets a subset
y⊂ [n] of size k. The players run a communication protocol that, assuming that x,y
are disjoint, has communication complexity O(k) and at the end of the protocol both
players know (with high probability) two disjoint subsets S,T ⊂ [n], such that, x⊆ S
and y⊆ T . The sets S,T can be viewed as a proof for the disjointness of x,y. If after
ck bits of communication (when c is a sufficiently large constant), the protocol fails,
it follows that (with high probability) x,y are not disjoint.

The protocol works in O(logk) steps. First define,

N0 = [n], S0 = /0, T0 = /0, x0 = x, y0 = y.

After each Step i, the players will have subsets Ni,Si,Ti,xi,yi⊆ [n], where Ni∪Si∪Ti
is a partition of [n] and

x∩Ti = /0, y∩Si = /0, xi = x∩Ni, yi = y∩Ni.

Moreover,
Si−1 ⊆ Si, Ti−1 ⊆ Ti.

Intuitively, after each Step i, the players have already restricted the possible inter-
section of x and y to the set Ni and it remains to check if xi and yi intersect.

Each Step i is done as follows. Assume without loss of generality that |xi−1| ≤
|yi−1|. (Otherwise we switch the rolls of the players in Step i). Let ki−1 = |xi−1|.
The players interpret the public random string as a sequence of random subsets
Z1,Z2, . . . ⊆ Ni−1. Player 1 examines the first 2cki−1 sets in this sequence (where c
is a sufficiently large constant) and sends the index j of the first set Z j, such that,
xi−1 ⊆ Z j (if such a set exists). Since c is sufficiently large, such a set Z j exists with
high probability, as the probability that a random set Z j satisfies xi−1 ⊆ Z j is 2−ki−1 .
Since the random string is public, both players now know Z j and update

Ni = Z j, Si = Si−1, Ti = Ti−1∪Ni−1 \Z j, xi = xi−1, yi = yi−1∩Z j.

Note that all the required properties from the sets Ni,Si,Ti,xi,yi are satisfied. That
is, Ni∪Si∪Ti is a partition of [n] and

x∩Ti = /0, y∩Si = /0, xi = x∩Ni, yi = y∩Ni, Si−1 ⊆ Si, Ti−1 ⊆ Ti.

Note also that if x,y are disjoint then |yi| is equal to |yi−1|/2 in expectation and
as long as |yi−1| is sufficiently large (say, larger than a sufficiently large constant),
|yi| ≤ 0.6 · |yi−1| with high probability and hence |yi|+ |xi| ≤ 0.8 · (|yi−1|+ |xi−1|)

On the works of Avi Wigderson 67

with high probability (where high probability here means 1 minus probability expo-
nentially small in |yi−1|+ |xi−1|).

If x,y are disjoint then, after repeating this protocol for O(logk) steps, we get
that with high probability the final xi,yi are both empty. This is because the sum of
their sizes keeps decreasing by a constant factor until it’s smaller than a (sufficiently
large) constant and then it keeps decreasing by at least 1, with a constant probability
in each step. When xi,yi are both empty, the protocol stops, and we have two dis-
joint subsets S,T ⊂ [n], such that, x ⊆ S and y ⊆ T (where S,T are the final Si,Ti).
The communication complexity is O(k), since in each step the communication com-
plexity is O(|yi−1|+ |xi−1|) and thus converges to O(k), as O(|yi−1|+ |xi−1|) keeps
decreasing by a constant factor until it’s constant. □

The protocol in the proof of Theorem 4.14 uses an exponential amount of
randomness. Nevertheless, the amount of randomness can always be reduced to
O(logn) by a general theorem of Newman [204].

4.8 Quantum versus Classical Communication Complexity

Buhrman, Cleve and Wigderson were the first to study communication complex-
ity advantages of quantum communication protocols over classical ones [56]. A
quantum communication protocol is a protocol where the players can send quantum
states, rather than just classical bits, and the communication complexity of the pro-
tocol is defined to be the total number of qubits sent by the protocol, that is, the sum
of the lengths (in qubits) of all the quantum states that are sent by the protocol [290].

Buhrman, Cleve and Wigderson proved a general theorem that shows that any
quantum algorithm with small query complexity implies quantum communication
protocols for related problems, with small communication complexity. Given a (total
or partial) function f : {0,1}n→{0,1}, one can define the following two communi-
cation complexity problems: Given two inputs, x,y ∈ {0,1}n, where Player 1 gets x
and Player 2 gets y, the goal of the two players is to compute f (x∧ y), or f (x⊕ y)
(where x∧ y and x⊕ y denote a coordinate by coordinate application of ∧ and ⊕).
Buhrman, Cleve and Wigderson proved that if there is a quantum algorithm for com-
puting the function f (z), with k quantum queries to the input z = (z1, . . . ,zn), then
there are quantum communication complexity protocols for computing f (x∧y) and
f (x⊕ y), with communication complexity O(k · logn) [56].

This general theorem gives a method for translating quantum query complexity
upper bounds into quantum communication complexity upper bounds, as well as
translating quantum communication complexity lower bounds into quantum query
complexity lower bounds. Using this general theorem, Buhrman, Cleve and Wigder-
son obtained interesting consequences in both directions. They used known lower
bounds for quantum communication complexity to obtain new lower bounds for
quantum query complexity. They also used the general theorem to establish an ex-
ponential separation between zero-error quantum communication complexity, and
classical deterministic communication complexity, that is, they gave a communi-

68 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

cation task that can be solved by a zero-error quantum communication complexity
protocol with small communication complexity, and such that any classical deter-
ministic communication complexity protocol for that task, requires exponentially
larger communication complexity.

Perhaps the most striking consequence of Buhrman, Cleve and Wigderson’s gen-
eral theorem is that it proves that the Set-Disjointness problem can be solved by a
quantum protocol with communication complexity O(

√
n · logn) [56].

Theorem 4.15 [56] The quantum communication complexity of Set-Disjointness is
O(
√

n · logn).

The proof of Theorem 4.15 follows from the general theorem by using Grover’s
algorithm for computing the OR of n input variables, using only O(

√
n) quantum

queries to the input [119].
Theorem 4.15 stands in contrast to Theorem 4.8 that states that the classical prob-

abilistic communication complexity of Set-Disjointness is Ω(n). Theorem 4.15 es-
tablished a quadratic gap between quantum and classical probabilistic communi-
cation complexity and was followed by a long line of works that further studied
the relative power of quantum and classical communication protocols. We note that
this quadratic separation remained essentially the largest known gap between quan-
tum and classical probabilistic communication complexity of total functions, for
almost two decades. A line of recent works improved that gap to an almost cu-
bic gap [1, 16, 267, 26, 251]. Proving a super-polynomial gap between quantum
and classical probabilistic communication complexity of total functions remains
a fascinating and long-standing open problem in communication complexity. For
partial functions (promise problems), exponential gaps between quantum and clas-
sical probabilistic communication complexity were established by a long line of
works [221, 28, 105, 164, 104, 107]. Finally, we note that Theorem 4.15 was proved
to be essentially tight by Razborov [233].

4.9 Partial Derivatives in Arithmetic Circuit Complexity

Arithmetic circuits are the standard computational model for arithmetic computa-
tions, such as computing the determinant or the permanent of a matrix or the product
of two matrices. Given a field F and an n-variate polynomial P(x1, . . . ,xn) over F,
we ask how many +,× operations over F are needed to compute P.

An arithmetic circuit over F, with input variables x1, . . . ,xn ∈ F, is a directed
acyclic graph as follows: Every node of in-degree 0 (that is, a leaf) is labelled with
either an input variable or a field element or a product of an input variable and a
field element. Every node of in-degree larger than 0 is labelled with either + or ×
(in the first case the node is a sum gate and in the second case a product gate). A
node of out-degree 0 is called an output node. The circuit is called a formula if the
underlying graph is a (directed) tree.

On the works of Avi Wigderson 69

Each node in the circuit (and in particular each output node) computes a poly-
nomial in the ring of polynomials F[x1, . . . ,xn] as follows. A leaf just computes the
value of the input variable, or field element, or product of input variable and field
element, that labels it. For every non-leaf node v, if v is a sum gate it computes
the sum of the polynomials computed by its children, and if v is a product gate it
computes the product of the polynomials computed by its children. If the circuit
has only one output node, the polynomial computed by the circuit is the polynomial
computed by the output node.

The size of a circuit is defined to be the number of wires (edges) in it and the
depth of a circuit is defined to be the length of the longest directed path from a leaf
to an output node in the circuit.

Proving lower bounds for the size of arithmetic circuits has been a major chal-
lenge for many years. Super-linear lower bounds for the size of general arith-
metic circuits were proven in the seminal works of Strassen [261] and Baur and
Strassen [35]. Their method, however, only gives lower bounds of up to Ω(n logd),
where n is the number of input variables and d is the degree of the computed polyno-
mial. In particular, if the degree d = d(n) is polynomial in n this gives lower bounds
of at most Ω(n logn). Lower bounds for various restricted classes of arithmetic cir-
cuits have also been studied in many works.

In 1997, Nisan and Wigderson suggested a general approach for obtaining lower
bounds for restricted classes of arithmetic circuits [212]. The approache is based on
measuring the dimension of the vector space spanned by all partial derivatives of
the polynomials computed at the nodes of the circuit. (Partial derivatives were pre-
viously used to obtain lower bounds for arithmetic circuits in the works of Smolen-
sky [256] and Nisan [206]).

For an n-variate polynomial f (x1, . . . ,xn), let D(f) denote the set of all partial
derivatives, of all orders, of f (including f itself as the partial derivative of order 0),
and let Dim(f) denote the dimension of the vector space spanned by D(f). The
main idea is to bound the growth of Dim(f) from the leaves to the outputs of the
circuit and hence show that for an output of the circuit, Dim(f) is bounded. Thus,
the circuit cannot compute a polynomial P(x1, . . . ,xn) with a larger Dim(P). The
following simple formulas are easily proved and are useful for bounding the growth
of Dim(f),

Dim(h+g)≤ Dim(h)+Dim(g),

Dim(h×g)≤ Dim(h) ·Dim(g).

Nisan and Wigderson used this approach to prove several lower bounds, includ-
ing exponential lower bounds for the size of depth-3 homogeneous circuits (where
an homogeneous circuit is a circuit where all nodes in the circuit compute homo-
geneous polynomials), and exponential lower bounds for the size of constant-depth
set-multilinear circuits (where a set-multilinear circuit is a circuit where the set of
variables {x1, . . . ,xn} is partitioned into d subsets X1, . . . ,Xd , such that, for every
node v in the circuit, each monomial in the polynomial computed by the node v
contains at most one variable from each subset Xi) [212].

70 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

The partial-derivatives method of Nisan and Wigderson has been very influential
on later works. Many subsequent works used this approach as a starting point and
further built on these ideas to obtain lower bounds for additional classes of arith-
metic circuits. In particular, these ideas have been very important in the study of
multilinear circuits (for example, [225, 223, 222, 228, 226, 84, 66, 11]), constant-
depth homogeneous circuits (for example, [169, 162, 170]) and bounded-depth
arithmetic circuits (for example, [252, 161, 120, 96, 182, 14]).

4.10 Resolution Made Simple

Resolution is a proof system (technically, refutation system) for refuting unsatisfi-
able CNF formulas, that is, unsatisfiable Boolean formulas in conjunctive normal
forms.

Given Boolean variables x1, . . . ,xn ∈ {0,1}, a literal is either a variable, xi, or a
negation of a variable, ¬xi. A clause in these variables is an OR of literals, that is,∨k

i=1 zi, for some k, where each zi is a literal. The Resolution rule says that if C and
D are two clauses and xi is a variable then any assignment that satisfies both clauses,
C∨ xi and D∨¬xi, also satisfies the clause C∨D. Thus, from C∨ xi and D∨¬xi,
one can deduce C∨D.

A Resolution refutation for a set of clauses F (equivalently, for a CNF formula F)
proves that the clauses in F are not simultaneously satisfiable. For a set of clauses F ,
a Resolution refutation is a sequence of clauses C1,C2, . . . ,Cs, such that: (1) Each
clause C j is either a clause in F or obtained by the Resolution rule from two previous
clauses in the sequence, and (2) The last clause, Cs, is the empty clause (and is hence
unsatisfiable). The size, or length, of a Resolution refutation is the number of clauses
in it.

It is well known that Resolution is a sound and complete propositional proof
system, that is, a CNF formula F is unsatisfiable if and only if there exists a Resolu-
tion refutation for F . We think of a refutation for an unsatisfiable formula F also as a
proof for the tautology ¬F . Hence, Resolution refutations are also called Resolution
proofs.

Resolution is one of the most widely studied propositional proof systems. Lower
bounds for the size of Resolution proofs for many propositional tautologies have
been proved, starting from Haken’s celebrated exponential lower bounds for the
propositional pigeonhole principle [127].

Ben-Sasson and Wigderson suggested a general approach for proving lower
bounds for the size of Resolution proofs, an approach that generalized, unified and
simplified essentially all previously known lower bounds for Resolution, was used
to obtain many additional lower bounds, and ultimately gave a deeper understanding
of Resolution as a proof system [40].

The approach focuses on the width of a resolution proof. The width of a resolu-
tion proof is defined to be the number of literals in the largest clause of the proof.
Ben-Sasson and Wigderson argued that Resolution is best studied when the focus

On the works of Avi Wigderson 71

is on the width. Their key theorem relates the smallest length of a Resolution proof
to the smallest width of a Resolution proof. Informally, the theorem states that if
a set of clauses F has a short Resolution refutation then it also has a Resolution
refutation with small width. The proof is based on a proof by Clegg, Edmonds and
Imagliazzo, who gave similar relations (between size of a proof and degree of a
proof) for algebraic proof systems [69].

Theorem 4.16 [40] Let F be a an unsatisfiable CNF formula. Let w0 be the size of
the largest clause in F. Let w be the minimal width of a Resolution refutation for F.
Let s be the minimal size of a Resolution refutation for F. Then,

w≤ w0 +O
(√

n logs
)
.

In particular, Theorem 4.16 shows that one can obtain lower bounds for the size
of Resolution proofs by proving lower bounds for the width of Resolution proofs
(which, in many cases, is easier to analyze).

The size of the clauses of a Resolution proof was implicit in previous works and
played a major roll in previous lower bounds. Previous lower bounds for the size
of Resolution proofs were usually proved in two steps as follows. In the first step,
the entire proof was hit by a random restriction of the variables (that is, some of
the variables were randomly set to 0, some were randomly set to 1 and some were
left untouched), in order to hit and eliminate all large clauses of the proof (assum-
ing for a contradiction that the proof is short). The second step proved that large
clauses must exist in any Resolution refutation for the restriction of the unsatisfi-
able formula under the random restriction from the first step (and hence the proof
must be long). The approach of Ben-Sasson and Wigderson simplified essentially all
previous proofs, as the random restriction was no longer needed and one could fo-
cus on proving lower bounds on the width of Resolution refutations for the original
unsatisfiable formula, rather than for a random restriction of it.

5 Complexity, Optimization, and, Symmetries

This section presents an overview of work by Wigderson and his co-authors on
optimization methods to come up with efficient algorithms for various algorithmic
problems in computational complexity theory, mathematics, and physics [185, 102,
103, 8, 7, 61, 59, 60]. A common theme in all these works is the realization that
the relevant algorithmic tasks can be formulated as optimization problems over al-
gebraic groups that also have an analytic structure. A representative optimization
problem is to find a minimum norm vector in the orbit of a given GLn(C) action
on a vector space. This viewpoint led Wigderson and his co-authors to deploy tools
from invariant theory, representation theory, and optimization to develop a quanti-
tative theory of optimization over Riemannian manifolds that arise from continuous
symmetries of noncommutative groups.

72 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

The starting point is the work [185] that analyzes the convergence of a matrix
scaling algorithm to compute an approximation to the permanent (Section 5.1). This
corresponds to the commutative setting where the symmetries corresponded to di-
agonal subgroups (tori) of a matrix group. The role of symmetries in the analysis of
the algorithm, however, was not quite explicit.

In [123], Gurvits extended the results of [185] to the noncommutative setting of
“operators”. In particular, he studied Edmonds’ singularity problem [88] and, mo-
tivated by [185], he presented a (deterministic) “operator scaling” algorithm for it.
However, he fell short of presenting convergence bounds for this algorithm. Section
5.2 presents the work [102] that gives convergence bounds for Gurvits’ operator
scaling algorithm. This paper makes the first contact of scaling algorithms to invari-
ant theory. It also demonstrates the applicability of computational problems over
group orbits and scaling techniques far beyond complexity theory: to mathemat-
ics and physics. Section 5.2.3 presents a result from [102] that gives a deterministic
polynomial time algorithm for the noncommutative version of Edmonds’ singularity
problem. Section 5.2.4 gives an outline of a result from [103] that shows how oper-
ator scaling can be used to efficiently compute Brascamp-Lieb constants important
in mathematics.

Section 5.3 visits the paper [7] which starts with the realization that the problem
of finding a minimum-norm vector over an orbit is a geodesically convex optimiza-
tion problem over a Riemannian manifold. Subsequently, [7] extend the theory of
second-order methods in convex optimization to the setting of geodesically convex
optimization and give an algorithm whose running time depends logarithmically on
the error in the approximation. The focus here is on introducing geodesic convex-
ity and showing how the capacity of an operator can be captured by a geodesically
convex optimization problem.

Finally, Section 5.4, presents results from [60]. Here, the general norm minimiza-
tion problem is introduced and various variants of it studied by [60] are presented.
These problems unify and generalize prior works in this line. Of particular impor-
tance is the connection to noncommutative duality in invariant theory which extends
linear programming duality and allows one to give conditions on when an optimiza-
tion problem is feasible. This gives rise to other connections such as moment maps
(analog of Euclidean gradients) and a precise notion of geodesic convexity. This
paper culminates with the definition and convergence bounds for first-order and
second-order algorithms for various optimization problems over noncommutative
matrix groups. The convergence bounds are based on novel parameters related to
the group action via a synthesis of algebra and analysis. This paper also gives a host
of new analytic algorithms for various problems important in invariant theory and
complexity theory.

On the works of Avi Wigderson 73

5.1 Permanent and matrix scaling

Let A ∈Rn×n be a square matrix with entries Ai, j for 1≤ i, j ≤ n. The permanent of
A is defined as:

Per(A) := ∑
σ∈Sn

n

∏
i=1

Ai,σ(i),

where Sn is the set of all permutations over n symbols, i.e., the set of bijections
σ : {1,2, . . . ,n} → {1,2, . . . ,n}. The permanent makes its appearance in various
branches of science and mathematics and algorithms to compute it are sought after.
For instance, permanents of 0,1-valued matrices are intimately connected to perfect
matchings in bipartite graphs. Consider a bipartite graph G = (L,R,E) where L,R
is the bipartition of the vertex set of G and E is the set of edges of G. Assume |L|=
|R|= n and define an n×n matrix A (adjacency matrix of G) whose (i, j)th entry is
1 is an edge between the ith vertex of L and the jth vertex of R. It follows from the
definition that the permanent of A is equal to the number of perfect matchings in G.

The computational complexity of the permanent has been extensively studied in
theoretical computer science. Valiant [277] proved that it is unlikely that there is
an efficient algorithm that computes the permanent of a nonnegative matrix – even
when the matrix has only 0,1 entries (the problem is #P−complete). This result,
under standard assumptions in complexity theory, rules out an efficient algorithm to
compute the permanent of a nonnegative matrix and raises the question of finding
approximations to it. Checking if Per(A) of a nonnegative matrix is zero or not,
however, is in P since it reduces to checking if the associated bipartite graph has a
perfect matching or not.

5.1.1 Doubly stochastic matrices and their permanents

A special class of nonnegative matrices is doubly-stochastic matrices whose row
sums and column sums are all equal to one.

Definition 5.1 (Doubly stochastic matrix) An n× n matrix A is said to be doubly
stochastic if it is nonnegative and its rows and columns sum up to one: For each i,
∑

n
j=1 Ai, j = 1 and for each j, ∑

n
i=1 Ai, j = 1.

If a nonnegative matrix A is an adjacency matrix of a graph G each of whose vertices
has degree d ≥ 1, then the matrix 1

d A is doubly stochastic. The set of all doubly
stochastic matrices is convex and, in fact, a polytope – the Birkhoff polytope [44].
The well-known Birkhoff-von Neumann theorem states that the Birkhoff polytope
is a convex hull of n×n permutation matrices.

The matrix with all entries 1
n is doubly stochastic. Its permanent is n!

nn . van der
Waerden conjectured that the permanent of any n×n doubly-stochastic matrix must
be at least n!

nn . Interestingly, this lower bound does not depend on the entries of A
as long as it is doubly stochastic. Egorychev [90] and Falikman [93] proved the van
der Waerden conjecture.

74 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Theorem 5.2 (Permanent of doubly-stochastic matrices [90, 93]) For any n× n
doubly-stochastic matrix A, Per(A)≥ n!

nn .

On the other hand, just for a row-stochastic matrix A, it trivially holds that

Per(A)≤
n

∏
i=1

n

∑
j=1

Ai, j = 1.

Since n!
nn ≥ e−n, for a doubly-stochastic matrix, the permanent is between e−n and 1.

Hence, if A is doubly stochastic, then we can output 1 and this is an en approximation
to its permanent.

5.1.2 Matrix scaling

The starting point of the work Linial, Samorodnitsky, and Wigderson [185] (see
also the journal version of this paper [185]) is the observation that the permanent
(of any matrix) has certain symmetries: For positive vectors x,y ∈ R>0, if we define
B := XAY where X and Y are diagonal matrices corresponding to vectors x and y
respectively, then we can write down the permanent of B exactly:

Per(B) =

(
n

∏
i=1

xi

)
Per(A)

(
n

∏
j=1

y j

)
. (8)

This operation of left and right multiplying A with diagonal matrices is referred to
as (matrix) scaling. Thus, in the case A is not doubly stochastic (something that can
be efficiently checked), one can try to find a scaling (x,y) of A such that B is doubly
stochastic. If so, one can output

1

(∏n
i=1 xi)

(
∏

n
j=1 y j

)
as an approximation for Per(A). From the discussion in the previous section, such
an algorithm would be an en approximation to the permanent.

An approach to finding such a scaling is to do the following iteratively: Find
a vector x that ensures that all the rows of the scaled A sum up to one, and then
pick a y that ensures the same for the columns. This matrix scaling algorithm was
suggested by Sinkhorn [254]. Franklin and Lorenz [98] analyzed the convergence
rate of Sinkhorn’s scaling algorithm. They showed that, when a doubly-stochastic
scaling of A exists, Sinkhorn’s algorithm outputs a matrix B that is ε away (in ℓ∞-
distance) from being doubly stochastic and, to do so, it takes a polynomial number of
iterations in the number of bits needed to represent the input matrix A and 1

ε
. Kalan-

tari and Khachiyan [153] gave a convex-optimization-based algorithm to check if A
can be scaled to a doubly-stochastic matrix and, if it can be, then to find an ε ap-
proximation to it. The running time of their algorithm is polynomial in the number

On the works of Avi Wigderson 75

of bits needed to represent the input matrix A and log 1
ε

; thus, giving a deterministic
polynomial time algorithm that approximates the permanent of a nonnegative A to
within a multiplicative factor of en.

The question that [185] studied is if the number of iterations can be made in-
dependent of the number of bits needed to represent A. Such an algorithm, whose
number of iterations does not depend on the entries of A, is referred to as a strongly
polynomial time algorithm. At its core, this turns out to be related to the following
mathematical question: If Per(A)> 0, then how small can it get as a function of the
entries of A? Theorem 5.2 [90, 93] implies that, if A is doubly stochastic, then this
cannot get below e−n.

Preprocessing step. The idea in [185] is to augment Sinkhorn’s scaling algorithm
with a preprocessing step that, in the beginning, scales the columns of A to ensure
that the permanent of the new matrix is lower bounded by n−n. They do so by first
efficiently finding a permutation σ ∈ Sn that maximizes ∏

n
i=1 Ai,σ(i). They then show

that there is a positive diagonal matrix Y such that B = AY and, for all 1≤ i, j ≤ n,
Bi,σ(i) ≥ Bi, j. This ensures that if we normalize the rows of B such that each of them
sums up to one, the permanent of the resulting matrix is at least 1

nn .

Potential function and measuring progress. To analyze the progress in Sinkhorn’s
scaling algorithm, [185] consider the permanent itself as the potential function. If
At is the matrix at the beginning of the tth iteration of Sinkhorn’s scaling algorithm,
they show that, as long as At is far from being doubly stochastic,

Per(At+1)≳

(
1+

1
n

)
Per(At). (9)

They use the following potential function that measures the distance of a matrix B
from being doubly stochastic:

ds(B) := ∥R(B)− I∥2
F +∥C(B)− I∥2

F . (10)

Here R(B),C(B) are diagonal matrices whose (i, i)th entries are the sum of the ith
row and ith column respectively.

To gain some intuition why (9) is true, first note that if we have positive numbers
c1, . . . ,cn that sum up to 1 and are more than δ distance from all one vector (∥1−
c∥2

2 ≈ δ) then ∏
n
i=1 ci ≲ 1− δ

2 . Hence, if we have a matrix B that is row stochastic
and we scale its columns to 1, i.e., consider BC−1, where C is the diagonal matrix
corresponding to the column sums of B, then

Per(BC−1) =
Per(B)
∏

n
i=1 ci

≳ Per(B) · (1+δ).

Thus, as long as δ ≥ 1
n , the permanent increases by a multiplicative factor of 1+ 1

n .

Termination condition. If after t iterations, ds(At)≥ 1
n , then

76 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Per(At+1)≳

(
1+

1
n

)t

Per(A1).

Since the permanent of a row-stochastic matrix is upper bounded by 1, and Per(A1)≥
1
nn due to the preprocessing step, the above cannot continue for more than about
n2 iterations. Thus, after roughly n2 iterations, ds(At) <

1
n , and At is close to a

doubly stochastic matrix. Finally, [185] prove an approximate version of Theo-
rem 5.2 and lower bound the permanent of approximately doubly-stochastic ma-
trices. Roughly speaking, they show that if B is row stochastic and ds(B)< 1

n , then
Per(B) > 1

en(1+o(1)) . Thus, we can output the matrix produced after about n2 itera-
tions. This completes the sketch of the proof of the following theorem.

Theorem 5.3 (Approximating permanent via matrix scaling [185]) There is an
algorithm that, given an n×n nonnegative matrix A, computes a number Z such that
Per(A)≤ Z ≤ en(1+o(1)) ·Per(A) using Õ(n5) elementary operations.

Subsequent to the work of [185], Jerrum, Sinclair, and Vigoda [146], building upon
a long line of work, showed that the Markov Chain Monte Carlo framework can
be deployed to obtain a randomized algorithm to estimate the permanent of any
nonnegative matrix to within a factor of 1+ ε in time that is polynomial in the bit-
lengths of A and 1

ε
. As for deterministic algorithms, in a follow-up work, Gurvits

and Samorodnitsky [125] show how scalings can be viewed as solutions to certain
convex programs – leading to convex programming relaxations for the permanent
and better deterministic approximations; see Section 5.2.5 and [262] for a discus-
sion. This line of work on deterministic approximation algorithms has recently been
generalized to a class of general counting and optimization problems; see [263, 15].

5.2 Noncommutative singularity testing and operator scaling

Edmonds [88] considered the following generalization of checking whether the per-
manent of a nonnegative matrix is zero or not: Given an m-tuple of n× n complex
matrices A1, . . . ,Am, is there a singular matrix in their linear space (over C) or not?
This singularity problem is equivalent to deciding if the polynomial

pA1,...,Am(x1, . . . ,xm) := det(x1A1 + · · ·+ xmAm)

is identically zero or not. pA1,...,Am is a homogeneous polynomial of degree n and
can be efficiently evaluated at any given point. To see how deciding if a bipartite
graph has a perfect matching is a special case of Edmonds’ singularity problem, we
let Ai be the matrix which has a 1 only at the entry corresponding to the ith edge in
the associated graph and 0 elsewhere; see [187].

There is a simple and efficient randomized algorithm to test this: Pick in-
dependent and random values for each of the variables x1, . . . ,xm from the set
{1,2, . . . ,2n} and output the value of pA1,...,Am for this input. It can be shown that

On the works of Avi Wigderson 77

if pA1,...,Am is not identically zero then, with probability at least 1
2 , this algorithm

outputs a nonzero value. By repeating an appropriate number of times, this proba-
bility can be amplified to any number less than 1. This problem is an instance of the
Polynomial Identity Testing (PIT) problem where one is given a polynomial and the
goal is to check if it is identically zero or not. The randomized algorithm mentioned
above works for PIT as well. While for some special cases of PIT deterministic al-
gorithms are known (e.g., the deterministic primality testing algorithm of Agrawal,
Kayal, and Saxena [2]), the problem of coming up with an efficient deterministic
algorithm for PIT remains open. We mention that Edmonds’ singularity problem is
almost the same as the fully general PIT problem due to a result of Valiant [277] that
establishes the “universality” of the determinant. [151] proved that derandomizing
PIT implies arithmetic circuit lower bounds for the complexity class NEXP; tying
the goal of derandomizing PIT to one of the central goals of theoretical computer
science: that of proving circuit lower bounds.

Gurvits [123] considered a version of Edmonds’ singularity problem and refor-
mulated it in terms of completely positive operators that take positive definite ma-
trices to positive definite matrices. Subsequently, he generalized the matrix scaling
algorithm of Linial, Samorodnitsky, and Wigderson [185] to operator scaling for
this problem. He introduced a potential function – capacity – that can track the
progress of the operator scaling algorithm and used it to give deterministic poly-
nomial time algorithms for Edmonds’ singularity problem for various special cases
(Section 5.2.1). However, he could not prove a bound on the number of iterations
of his operator scaling in general. The main result of the paper by Garg, Gurvits,
Oliviera, and Wigderson [102] is a bound on the number of iterations of Gurvits’
operator scaling algorithm. The key ingredient in their analysis is a lower bound
on the capacity of a completely positive operator (Section 5.2.2). This implies that
Gurvits’ operator scaling algorithm can also approximate the capacity of a com-
pletely positive operator to any accuracy in polynomial time. Moreover, [102] show
that this algorithm implies a deterministic polynomial time algorithm for testing a
noncommutative version of Edmonds’ problem (Section 5.2.3). Here, prior to the
work of [102], the best algorithms (whether randomized or deterministic) required
an exponential time algorithm [143]. In a companion paper Garg, Gurvits, Oliviera,
and Wigderson [103] show the application of this operator scaling machinery to the
various computational problems involving the Brascamp-Lieb inequalities (Section
5.2.4).

5.2.1 Completely positive operator and its capacity

Let Mn(C) denote the set of n×n matrices with complex entries. Let GLn(C) denote
the degree n general linear group of n× n invertible matrices over C. Let SLn(C)
denote the degree n special linear group of n× n matrices over C with determi-
nant 1. Both of the above are groups with respect to ordinary matrix multiplication.
Let Hn(C) denote the set n× n Hermitian matrices. Let Sn

+ denote the set of n× n
complex positive semi-definite (PSD) matrices and let Sn

++ denote the set of n× n

78 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

complex positive definite (PD) matrices. For two matrices X ,Y their tensor product
is denoted by X⊗Y .

Definition 5.4 (Completely positive operator) For positive integers n1 ≥ n2, an
operator T : Mn1(C)→Mn2(C) is said to be completely positive if there are n2×n1

complex matrices A1, . . . ,Am such that, for X ∈ Sn1
++, T (X) = ∑

m
i=1 AiXA†

i . The dual
of T is denoted by T ∗ and is such that T ∗(Y) = ∑

m
i=1 A†

i YAi for Y ∈ Sn2
++.

If n1 = n2 = n, we say that T is a square operator.

Definition 5.5 (Doubly-stochastic completely positive operator) A completely
positive operator T : Mn1(C)→Mn2(C) is said to be doubly stochastic if T

(
n2
n1

In1

)
=

In2 and T ∗ (In2) = In1 .

[123] introduced the following notion of capacity for completely positive operators.

Definition 5.6 (Capacity of a completely positive operator [123]) For a com-
pletely positive operator T : Mn1(C)→Mn2(C), its capacity is defined as

Cap(T) := inf

det
(

n2
n1

T (X)
)

det(X)
n2
n1

: X ≻ 0

 .

We focus on the square case and return to the rectangular (nonsquare) case in Sec-
tion 5.2.4. In the square case (n1 = n2 = n),

Cap(T) := inf{det(T (X)) : X ≻ 0, det(X) = 1}.

A square operator is said to be rank decreasing if there is an X ⪰ 0 such that
rank(T (X)) < rank(X). Operators that are not rank decreasing are referred to as
rank nondecreasing. The analog of this property in the matrix case (for a nonneg-
ative matrix A) is as follows: For every nonnegative vector x, the number of coor-
dinates of the vector Ax that are positive is at least the number of coordinates of x
that are positive. This is just Hall’s condition and implies that the permanent of A
is positive. [123] proved that, for a completely positive operator, Cap(T)> 0 if and
only if T is rank nondecreasing. [102] give other conditions that are equivalent for
a completely positive operator to be rank nondecreasing. One such condition that is
relevant to proving a lower bound on the capacity is that there exist d×d matrices
F1, . . . ,Fm for some d such that the polynomial

det(F1⊗A1 + · · ·+Fm⊗Am) ̸= 0. (11)

Similar to the notion of distance to a matrix to being doubly stochastic in Definition
5.1, consider the following distance of a completely positive operator from being
doubly stochastic:

dsO(T) := Tr((T (I)− I)2)+Tr((T ∗(I)− I)2). (12)

On the works of Avi Wigderson 79

An analog of Equation (8) that captures the symmetries of the operator setting is as
follows: Let T be a completely positive square operator defined by A1, . . . ,Am and
B,C∈GLn(C). Then, if we define TB,C to be the operator defined by BA1C, . . . ,BAmC,
then

Cap(TB,C) = |det(B)|2 ·Cap(T) · |det(C)|2. (13)

If B,C ∈ SLn(C), then Cap(TB,C) = Cap(T). This is true because the capacity is de-
fined in terms of determinants and, hence, the symmetries of the determinant arise.
It is worth noting that the polynomials in (the l.h.s. of) Equation (11) are invariant
when B,C have determinant 1. In fact, these polynomials linearly span the space of
all such invariant polynomials.

Moreover, suppose T is a completely positive operator specified by A1, . . . ,Am
and either ∑

m
i=1 AiA

†
i = I (row-stochastic) or ∑

m
i=1 A†

i Ai = I (column-stochastic) then
it follows from the AM-GM inequality that

Cap(T)≤ det(T (I))≤
(

Tr(T (I))
n

)n

= 1. (14)

5.2.2 Operator scaling

We present a sketch of the operator scaling algorithm and its analysis. Suppose T is
a completely positive operator specified by m n×n matrices A1, . . . ,Am, where each
entry of each matrix is an integer bounded in absolute value by M. Our goal is to
decide if Cap(T)> 0 or not. Or equivalently, to decide if T is rank nondecreasing.

An operator scaling of T is given by positive matrices B,C such that the operator
TB,C defined by B

1
2 A1C

1
2 , . . . ,B

1
2 AmC

1
2 is doubly stochastic. The left normalization

(or scaling) of T , denoted by TL, is defined as

TL(X) := T (I)−
1
2 T (X)T (I)−

1
2

and the right normalization (or scaling) of T is defined as

TR(X) := T (T ∗(I)−
1
2 XT ∗(I)−

1
2).

It follows that TL(I) = I and T ∗R (I) = I.
Gurvits’ operator scaling algorithm [123] follows the same outline as the ma-

trix scaling algorithm analyzed in [185]. It first checks if both T (I) and T ∗(I) are
nonsingular. If not, then T is rank decreasing and the algorithm stops. Else, it keeps
performing left and right normalizations on T until the distance to double stochastic-
ity is below 1

n . If the operator T is rank decreasing, then one can argue that the left
and right normalizations cannot make it rank nondecreasing. Thus, the algorithm
will always output rank decreasing in this case.

[102] prove that if T is rank nondecreasing, then after a small-enough number of
iterations t, the operator Tt is such that dsO(Tt)<

1
n . This is analogous to the matrix

case: They show that every iteration such where dsO(Tt)>
1
n ,

80 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Cap(Tt+1)≳

(
1+

1
n

)
Cap(Tt).

Since there is an upper bound of 1 on the capacity of a row-stochastic operator, it
remains to lower bound Cap(T1) when Cap(T)> 0. We note that for the matrix case,
we used permanent as a measure, but could have also used an appropriate notion of
capacity as defined in Section 5.2.5.

The main technical contribution of [102] is a lower bound on the capacity of
a right-normalized completely positive operator. Let TA be a completely positive
operator an operator specified by integer-valued matrices A1, . . . ,Am each of whose
entry is bounded in absolute value by M. Let T be the right normalization of TA.
Then, it follows that

Cap(T) =
Cap(TA)

det(T ∗(I))
.

Thus, to lower bound Cap(T), it is sufficient to lower bound Cap(TA) and upper
bound det(T ∗A (I)). The latter follows from an upper bound on

Tr(T ∗A (I)) =
m

∑
i=1

Tr
(

A†
i Ai

)
≤M2mn2.

Thus, by the AM-GM inequality

det(T ∗(I))≤
(

Tr(T ∗A (I))
n

)n

≤ (Mmn)n. (15)

The original proof of a lower bound on the capacity of a nondecreasing completely
positive operator TA relied on degree bounds in invariant theory; we return to it in
the next section. Here we mention their proof based on Alon’s Combinatorial Null-
stellensatz [10]; see also [278]. Alon’s result states that if p(z1, . . . ,zℓ) is a nonzero
polynomial (over C) with the degree of zi is di, then there are nonnegative integers
(a1, . . . ,aℓ) such that ∑

ℓ
i=1 ai ≤ d and ai ≤ di such that p(a1, . . . ,aℓ) ̸= 0.

From Equation (11), we know that if T is rank nondecreasing, then there ex-
ist d × d matrices F1, . . . ,Fm for some d such that the polynomial det(F1 ⊗ A1 +
· · ·Fm⊗Am) ̸= 0. Thus, the (ordinary) polynomial det(X1⊗A1 + · · ·Xm⊗Am) (in
the variables corresponding to entries of matrices X1, . . . ,Xm) is nonzero. Thus,
Alon’s result implies that there exist integer-valued matrices D1, . . . ,Dm such that
det(D1⊗A1 + · · ·Dm⊗Am) ̸= 0 and, importantly, the sum of the square of all the
entries of all the matrices is bounded by n2d.

Let X ≻ 0 and define Ci := TA(X)−
1
2 AiX

1
2 . Thus, ∑

m
i=1 CiC

†
i = I and, hence

Tr
(

∑
m
i=1 CiC

†
i

)
= n. Now, let Y := D1⊗C1+ · · ·+Dm⊗Cm. Then, on the one hand,

by the AM-GM inequality,

det(YY †)≤
(

Tr(YY †)

nd

)nd

≤
(

n3d
nd

)nd

= n2dn,

On the works of Avi Wigderson 81

where one uses the bound on the sum of the square of entries of Dis. On the other
hand,

det(YY †) = |det(Y)|2 ≥ |det(D1⊗A1 + · · ·+Dm⊗Am)|2 det(X)d ·det(TA(X))−d .

Since all entries of D1 ⊗ A1 + · · ·+ Dm ⊗ Am are integers and its determinant is
nonzero, |det(D1⊗A1 + · · ·+Dm⊗Am)| ≥ 1, implying

det(TA(X))≥ (det(YY †))−
1
d ≥ n−

2dn
d =

1
n2n . (16)

Thus, combining Equations (15) and (16), we obtain the following theorem.

Theorem 5.7 (Lower bound on the capacity of a rank nondecreasing operator
[102]) Let T be the right-normalized version of a rank nondecreasing and com-
pletely positive operator given by A1, . . . ,Am, where each Ai is an n × n integer
matrix with each entry bounded in absolute value by M. Then, Cap(T)≥ 1

(Mmn3)n .

As discussed above, this implies the following theorem to check if a completely
positive operator is rank nondecreasing or, equivalently, if its capacity is positive.

Theorem 5.8 (Checking if a completely positive operator is rank nondecreasing
[102]) There is an algorithm that, given a completely positive operator T given by
A1, . . . ,Am, where each Ai is an n × n integer matrix with each entry bounded in
absolute value by M, decides if T is rank nondecreasing or not in time polynomial
in n,m, and logM.

While we did bound the number of iterations needed by Gurvits’ operator scaling
algorithm for the above theorem, we omitted a discussion on ensuring that the bit
complexity of the numbers that arise in the execution of the algorithm remain poly-
nomially bounded in the input bit length; see [102] for details.

[102] also show how an adaptation of Gurvits’ operator scaling algorithm can be
used to obtain an approximation of the operator capacity. We omit the algorithm and
the proof.

Theorem 5.9 (Approximating the capacity of an operator [102]) There is an al-
gorithm that, given a completely positive operator T on dimension n, and described
by b bits, outputs a 1+ε multiplicative approximation to Cap(T) in time polynomial
in n,b, 1

ε
.

In a subsequent work, Bürgisser, Garg, Oliveira, Walter, and Wigderson [61] present
a generalization of operator scaling to tensor scaling; we omit the details. We note
that, unlike the matrix and operator scaling case, to test scalability, it is not sufficient
to take ε which is polynomially small. Currently, there is no known polynomial time
algorithm for testing the scalability of tensors.

In another follow-up work, Bürgisser, Franks, Garg, Oliveira, Walter, and Wigder-
son [59] study the nonuniform version of scaling where one is given prescribed
marginals and an input matrix/operator/tensor, and the goal is to decide if we can
scale the input to have the prescribed marginals? For instance, instead of scaling a

82 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

nonnegative matrix so that the row sums and column sums are all one, one may ask
to find a scaling to a specified row sum vector r and a column sum vector c. In the
matrix scaling case, the theory of nonuniform scaling is not much different from the
theory of uniform scaling. However in the operator and tensor scaling settings, the
nonuniformity presents additional challenges; see [59].

5.2.3 Noncommutative singularity and identity testing

Let A1, . . . ,Am ∈ Mn(C) and consider x1, . . . ,xm to be noncommutative variables.
The algorithmic problem, which is a noncommutative version of Edmonds’ sin-
gularity problem, is to check if L := ∑

m
i=1 xiAi is invertible (nonsingular) over the

skew-field (also known as division ring or field of fractions) of x1, . . . ,xn. This no-
tion of nonsingularity is nontrivial to define and there are several equivalent ways to
define it. Perhaps the simplest is if there is a way of “plugging in” matrix for each
xi to get an invertible matrix, i.e., do there exist d×d matrices B1, . . . ,Bm (for some
d) s.t. ∑

m
i=1 Bi⊗Ai is invertible.

The connection between the noncommutative singularity problem and the capac-
ity of a completely positive operator is as follows: Consider the completely positive
operator L(X) := ∑

m
i=1 AiXA†

i defined by the matrices A1, . . . ,Am input to the non-
commutative singularity problem. Then, ∑

m
i=1 xiAi is singular over the skew-field if

and only if there is an X ≻ 0 such that rank(L(X)) < rank(X), i.e., the completely
positive operator L is rank decreasing. Thus, from Theorem 5.8, it immediately fol-
lows that the problem of checking noncommutative singularity is in P.

Theorem 5.10 (Noncommutative singularity testing [102]) There is a determin-
istic algorithm, that given m n×n matrices A1, . . . ,Am whose entries need at most b
bits to represent, decides in time poly(n,m,b) if the matrix L=∑

m
i=1 xiAi is invertible

over the free skew field.

Polynomial identity testing, in the commutative setting, captures the polynomial and
rational function identity test for formulas [277]. The same is not true in the non-
commutative setting. However, Cohn [72] proved that there is an efficient algorithm
that converts every arithmetic formula φ(x) in noncommuting variables of size s to
a symbolic matrix Lφ of size poly(s), such that the rational expression computed by
φ is identically zero if and only if Lφ is singular. Theorem 5.10 implies that there
is a deterministic algorithm, that, for any noncommutative formula over Q of size
s and bit complexity b, determines in poly(s,b) steps if it is identically zero. Thus,
the noncommutative rational identity testing problem is in P; see also the works of
[144, 128] for different proofs of this result. Note that Theorem 5.10 requires access
to the matrices A1, . . . ,Am. The problem of proving an analogous result when we
have only black-box access to ∑

m
i=1 xiAi remains open. We note that, in the noncom-

mutative setting, inversions are nontrivial to handle than in the commutative setting
where we can push them out and eliminate them. Indeed, an efficient deterministic
algorithm to check if a noncommutative formula without inversions is identically
zero was known; see Raz and Shpilka [225].

On the works of Avi Wigderson 83

5.2.4 Brascamp-Lieb constants

Let n, m, and (n j) j∈[m] be positive integers and p := (p j) j∈[m] be nonnegative real
numbers. Let B := (B j) j∈[m] be an m-tuple of linear transformations where B j is
a surjective linear transformation from Rn to Rn j . The corresponding Brascamp-
Lieb datum is denoted by (B, p). The Brascamp-Lieb inequality states that for each
Brascamp-Lieb datum (B, p) there exists a constant C(B, p) (not necessarily finite)
such that for any selection of real-valued, nonnegative, Lebesgue measurable func-
tions f j where f j : Rn j → R,

∫
x∈Rn

(
∏
j∈[m]

f j(B jx)p j

)
dx≤C(B, p) ∏

j∈[m]

(∫
x∈Rn j

f j(x)dx
)p j

. (17)

The smallest constant that satisfies (17) for any choice of f := (f j) j∈[m] satisfying
the properties mentioned above is called the Brascamp-Lieb constant and we denote
it by BL(B, p). Brascamp-Lieb inequalities generalize many inequalities used in
analysis and all of mathematics, such as the Hölder inequality and Loomis-Whitney;
see the paper by Brascamp and Lieb [52].

A Brascamp-Lieb datum (B, p) is called feasible if BL(B, p) is finite, otherwise,
it is called infeasible. Bennett, Carbery, Christ, and Tao [41] proved that the constant
BL(B, p) is nonzero whenever p belongs to the set PB ⊆ Rm defined as follows:

PB :=
{

p ∈ Rm
≥0 : ∑

m
j=1 p j dim(B jU)≥ dim(U), for every lin. subspace U ⊆ Rn

}
.

Note that the above definition has infinitely many linear constraints on p as V varies
over different subspaces of Rn. However, there are only finitely many different linear
restrictions as dim(B jV) can only take integer values from [n j]. Consequently, PB is
a convex set and, in particular, a polytope. Examples of Brascamp-Lieb polytopes
include matroid basis polytopes and linear matroid intersection polytopes; see [103].

A Brascamp-Lieb inequality is nontrivial only when (B, p) is a feasible Brascamp-
Lieb datum. Therefore, it is of interest to characterize feasible Brascamp-Lieb data
and compute the corresponding Brascamp-Lieb constant. Towards this, Lieb [181]
showed that one needs to consider only Gaussian functions as inputs for (17). This
result suggests the following characterization of the Brascamp-Lieb constant as an
optimization problem.

Theorem 5.11 (Gaussian maximizers [181]) Let (B, p) be a Brascamp-Lieb datum
with B j ∈ Rn j×n for each j ∈ [m]. Then,

1
BL(B, p)2 = inf

det
(

∑
m
j=1 p jB⊤j YjB j

)
∏

m
j=1 det(Yj)

p j
: Yj ∈ Rn j×n j ,Yj ≻ 0, j = 1,2, . . . ,m

 .

(18)

84 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

One of the computational questions concerning the Brascamp-Lieb inequality is:
Given a Brascamp-Lieb datum (B, p), can we compute BL(B, p) in time that is
polynomial in the number of bits required to represent the datum? Since comput-
ing BL(B, p) exactly may not be possible due to the fact that this number may not
be rational even if the datum (B, p) is, one seeks an arbitrarily good approximation.
Formally, given the entries of B and p in binary, and an ε > 0, compute a number Z
such that

BL(B, p)≤ Z ≤ (1+ ε) BL(B, p)

in time that is polynomial in the combined bit lengths of B and p and log 1
ε
.

There are a few obstacles to this problem: (a) Checking if a given Brascamp-Lieb
datum is feasible is not known to be in P. (b) The formulation of the Brascamp-Lieb
constant by Lieb [181] as in (18) is neither concave nor logconcave in the usual
sense. Thus, techniques developed in the context of linear and convex optimization
do not seem to be directly applicable.

Garg, Gurvits, Oliviera, and Wigderson [103] gave an algorithm to compute the
Brascamp-Lieb constant in polynomial time when the vector p is rational and given
in unary. More precisely, the running time of their algorithm to compute BL(B, p) up
to multiplicative error 1+ε has a polynomial dependency to ε−1 and the magnitude
of the denominators in the components of p rather than the number of bits required
to represent them. They also presented algorithms with similar running times for
checking if a Brascamp-Lieb datum is feasible, or if a given point is approximately
in the Brascamp-Lieb polytope. The key idea in [103] is to use Lieb’s characteriza-
tion (Theorem 5.11) to reduce the problem of computing BL(B, p) to the problem of
computing the capacity of a completely positive operator. We note that the special
case when the matrices are of rank 1; i.e., B j ∈ R1×n for every j = 1,2, . . . ,m was
studied in [264]. By interpreting Brascamp-Lieb constants in the rank-1 regime as
solutions to certain entropy-maximization problems, [253, 264] showed that they
can be computed, up to a multiplicative precision ε > 0, in time polynomial in m
and log 1

ε
.

The reduction. Let p j =
c j
c for integers (c j) j∈[m] and c. [103] construct a completely

positive operator TB,p such that Cap(TB,p)=
1

BL(B,p)2 . Let m′ :=∑
m
j=1 c j and consider

a mapping σ : [m′]→ [m] which maps all those i to j that satisfy

∑
k< j

ck < i≤ ∑
k≤ j

ck.

Let Mi j be an nσ(i)× n matrix that is zero if σ(i) ̸= j and Bγ(i) if γ(i) = j. Now,
for ℓ ∈ [m′] define Aℓ to be the block matrix whose rows are Miℓ for i ∈ [m′]. TB,p is
now a rectangular completely positive operator from Mnc(C)→Mn(C) that maps a
positive definite X to ∑i∈[m′] A

†
i XAi.

Recall the capacity of a nonsquare completely positive operator (Definition 5.6):

Cap(TB,p) := inf
{(

det(TB,p(X))

c

)
: X ≻ 0, det(X)

1
c = 1

}
.

On the works of Avi Wigderson 85

Given the block form of each Ai, it follows that

TB,p(X) =
m′

∑
i=1

B†
σ(i)XiBσ(i),

where Xi is an appropriate submatrix of X . Thus, it follows from the basic properties
of the determinant that we can write

Cap(TB,p) = inf

det

∑
m′
i=1 B†

σ(i)XiBσ(i)

c

 : Xi ≻ 0,
m′

∏
i=1

det(Xi) = 1

 .

Replace ∑i:σ(i)= j Xi by c jYj to obtain

Cap(TB,p) = inf

{
det

(
∑

m
j=1 c jB

†
jYjB j

c

)
: Yj ≻ 0,

m

∏
j=1

det(Yj)
c j = 1

}
=

1
BL(B, p)2

via Theorem 5.11. To ensure we can use the algorithm developed for capacity, we
also need to also prove that TB,p is rank nondecreasing. Towards this, first, we need
to extend the notion of rank nondecreasing to nonsquare operators and then show
that it satisfies this property; see [103] for the details.

Note that this construction does not lead to an optimization problem whose di-
mension is polynomial in the input bit length as the size of the constructed operator
in the operator scaling problem depends exponentially on the bit lengths of the en-
tries of p. From the geodesic convexity of capacity (discussed in Section 5.3), it
follows that the Brascamp-Lieb constant is also a solution to a geodesically convex
optimization problem. A succinct geodesically convex formulation was provided in
[259].

5.2.5 Polynomial capacity

A basic version of the capacity of polynomials was considered in a paper by Gurvits
and Samorodnitsky [125] and then generalized to operators (Definition 5.6) by
[124]. Subsequently, Gurvits defined a notion of capacity for hyperbolic polyno-
mials in [124] and used it to prove a generalization of van der Waerden conjecture
by Bapat [27] for mixed discriminants. In this section, we present this notion of
polynomial capacity just for the setting of the permanent. For an n×n nonnegative
matrix A, consider the polynomial

fA(x1, . . . ,xn) :=
n

∏
i=1

n

∑
j=1

Ai, jx j.

[124] considered the following notion of capacity:

86 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Cap(fA) := inf

{
fA(x1, . . . ,xn) : xi > 0,

n

∏
i=1

xi = 1

}
. (19)

It is easily checked that if A is stochastic then 0≤ Cap(fA)≤ 1, and Cap(fA) = 1 if
and only if A is doubly stochastic. The main result of [124] when specialized for the
above polynomial implied that

Per(A)≥
(

n!
nn

)
Cap(fA),

giving an alternate proof of the van der Waerden conjecture (Theorem 5.2). Thus,
Cap(fA) is an e−n approximation to Per(A). One can also replace the permanent
potential function with the capacity in the proof of [185] presented in Section 5.1.
Moreover, after introducing new variables yi = logxi and replacing the objective
with log fA(x1, . . . ,xn), one obtains a convex program that can be solved efficiently;
see [124, 253, 262, 264]. This gives an alternate proof of Theorem 5.3. As discussed
in previous sections, [124] arrived at this notion of capacity while trying to extend
the work of Linial, Samorodnitsky, and Wigderson [185] to Edmonds’ singularity
problem. The proof technique in [124] relied on the location of the roots of the poly-
nomial under consideration (fA in the case of permanent). This viewpoint itself has
had far-reaching consequences in theoretical computer science and mathematics;
see [279].

5.3 Capacity and geodesic convex optimization

In the most general setting, an optimization problem takes the form

inf
x∈K

f (x),

for some set K and some function f : K → R.12 When K ⊆ Rd , we can talk about
the convexity of K and f . K is said to be convex if any “straight line” joining two
points in K is entirely contained in K, and f is said to be convex if, on any such
straight line, the average value of f at the endpoints is at least the value of f at the
mid-point of the line. When f is “smooth” enough, there are equivalent definitions
of convexity in terms of the standard differential structure in Rd : the gradient or
the Hessian of f . Thus, convexity can also be viewed as a property arising from
the interaction of the function and how we differentiate in Rn; e.g., the Hessian
of f at every point in K should be positive semi-definite. When both K and f are
convex, the optimization problem is called a convex optimization problem. The fact
that the convexity of f implies that any local minimum of f in K is also a global
minimum, along with the fact that computing gradients and Hessians is typically
easy in Euclidean spaces, makes it well-suited for developing first-order algorithms

12 Part of this section draws from [280]

On the works of Avi Wigderson 87

such as gradient descent and second-order algorithms such as interior point methods.
Analyzing the convergence of these methods boils down to understanding how well-
behaved derivatives of the function are, and there is a well-developed theory of
algorithms for convex optimization see [51, 203, 281].

Several optimization problems, however, are nonconvex. An important example
is that of the capacity of a completely positive operator (Definition 5.6)

Cap(T) := inf{det(T (X)) : X ≻ 0, det(X) = 1}= inf
{

det(T (X))

det(X)
: X ≻ 0

}
, (20)

which is nonconvex as the objective function is nonconvex. However, [102] ob-
served a curious property of the capacity: Consider the following Lagrangian of this
optimization problem:

f (X ,λ) := logdet(T (X))+λ · logdetX ,

where λ is the multiplier for the constraint. Then, any X for which ∇X f (X ,λ) =
0 is an optimal solution to Equation (20). Bürgisser, Garg, Oliveira, Walter, and
Wigderson [61] mention that the capacity optimization problem, while nonconvex,
is geodesically convex. While the domain of positive definite matrices is convex
in the ordinary sense, the key to showing that capacity optimization is geodesically
convex is to view this space as a manifold and redefine what it means to be a straight
line by introducing a metric.

This redefinition of a straight line entails the introduction of a different differen-
tial structure. Roughly speaking, a manifold is a topological space that locally looks
like Euclidean space. ”Differentiable manifolds” are a special class of manifolds
that come with a differential structure that allows one to do calculus over them.
Straight lines on differential manifolds are called “geodesics”, and a set that has
the property that a geodesic joining any two points in it is entirely contained in the
set is called geodesically convex (with respect to the given differential structure). A
function that has this property that its average value at the end points of a geodesic
is at least the value of f at the mid-point of the geodesic is called geodesically con-
vex (with respect to the given differential structure). And, when K and f are both
geodesically convex, the optimization problem is called a geodesically convex op-
timization problem. Geodesically convex functions also have key properties similar
to convex functions such as the fact that a local minimum is also a global minimum.

Allen-Zhu, Garg, Li, Oliveira, and Wigderson [7] develop first-order and second-
order methods for a class of geodesically convex optimization problems that include
capacity. In this section, we first introduce the basics of geodesic convexity (Section
5.3.1), show that the capacity optimization problem in Equation (20) is geodesically
convex (Section 5.3.2), and give a high-level view of the algorithms in [7] (Section
5.3.3). We do not develop a theory of geodesic convexity here but give the minimal
details to ensure that we can argue that the capacity function in (20) is geodesically
convex; see [272, 280] for a thorough treatment on geodesic convexity.

88 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

5.3.1 The Riemannian geometry of positive definite matrices and geodesic
convexity

For simplicity, here we consider the case of real symmetric matrices and symmet-
ric positive definite matrices. Let Sn denote the space of all n× n real symmetric
matrices and let Sn

++ denote the space of all n× n symmetric positive definite ma-

trices. Sn
++ is a smooth manifold and the tangent space at P ∈ Sn

++ is R
n(n+1)

2 which
is homeomorphic to Sn for each P ∈ Sn

++. We consider the metric induced by the
Hessian of the function: − logdet(P) for a positive definite matrix P. This function
is convex and the metric is

gP(U,W) := Tr[P−1UP−1W]

for P ∈ Sn
++ and U,W ∈ Sn. gP is clearly symmetric, bilinear, and positive definite.

It is also nondegenerate as Tr[P−1UP−1W] = 0 for every W implies

Tr[P−1UP−1U] = Tr[P−
1
2 UP−

1
2 P−

1
2 UP−

1
2] = 0

or equivalently P−
1
2 UP−

1
2 = 0. Since P is a nonsingular matrix, P−

1
2 UP−

1
2 = 0 is

equivalent to U = 0. Next, we observe that Sn
++ with g is a Riemannian manifold.

This follows from the observation that gP varies smoothly with P.
Since the metric tensor allows us to measure distances on a Riemannian mani-

fold, there is an alternative, and sometimes useful, way of defining geodesics on it:
as length-minimizing curves. Before we can define a geodesic in this manner, we
need to define the length of a curve on a Riemannian manifold. This gives rise to a
notion of distance between two points as the minimum length of a curve that joins
these points. Using the metric tensor we can measure the instantaneous length of a
given curve. Integrating along the vector field induced by its derivative, we can mea-
sure the length of the curve. And, we can then define the shortest curve – geodesic
– that connects two points.

It is well-known that the geodesic with respect to the Hessian of the log-
determinant metric that joins P to Q on Sn

++ can be parameterized as follows (see
[43]):

ρ(t) := P
1
2 (P−

1
2 QP−

1
2)tP

1
2 . (21)

Thus, ρ(0) = P and ρ(1) = Q.
In general, let (M,g) be a Riemannian manifold. A set K ⊆ M is said to be

geodesically convex with respect to g, if for any p,q ∈ K, any geodesic ρpq that
joins p to q lies entirely in K. It follows from Equation (21) that Sn

++ is a geodesi-
cally convex set with respect to the metric defined above.

Definition 5.12 (Geodesically convex function) Let (M,g) be a Riemannian mani-
fold and K ⊆M be a geodesically convex set with respect to g. A function f : K→R
is said to be a geodesically convex function with respect to g if for any p,q ∈ K, and
for any geodesic ρ pq : [0,1]→ K that joins p to q,

On the works of Avi Wigderson 89

∀t ∈ [0,1] f (γpq(t))≤ (1− t) f (p)+ t f (q).

logdet(X) is geodesically both convex and concave on Sn
++ with respect to the met-

ric gX (U,V) := Tr[X−1UX−1V]. To see this, let X ,Y ∈ Sn
++ and t ∈ [0,1]. Then, the

geodesic joining X to Y is

ρ(t) = X
1
2 (X−

1
2 Y X−

1
2)tX

1
2 .

Thus,

logdet(ρ(t)) = logdet(X
1
2 (X−

1
2 Y X−

1
2)tX

1
2) = (1− t) logdet(X)+ t logdet(Y).

Therefore, logdet(X) is a geodesically linear function over the positive definite cone
with respect to the metric g.

5.3.2 Geodesic convexity of capacity

We now show that the capacity of a completely positive operator T is a geodesically
convex optimization problem. First, we show that T (X) is “geodesically convex”.
In other words, for any geodesic, ρ : [0,1]→ Sn

++,

∀t ∈ [0,1], T (ρ(t))⪯ (1− t)T (ρ(0))+ tT (ρ(1)). (22)

Write T (X) := ∑
m
i=1 AiXA⊤i for some n× n matrices Ai. Consider the geodesic

ρ(t) := P
1
2 exp(tQ)P

1
2 for P ∈ Sn

++ and Q ∈ Sn. The second derivative of T along ρ

is
d2T (ρ(t))

dt2 =
m

∑
i=1

AiP
1
2 Qexp(tQ)QP

1
2 A⊤i = T (P

1
2 Qexp(tQ)QP

1
2).

Since P
1
2 Qexp(tQ)QP

1
2 is positive definite for any t ∈ [0,1], T (P

1
2 Qexp(tQ)QP

1
2)

is also positive definite as T is a strictly positive operator. Consequently, d2

dt2 T (ρ(t))
is positive definite, and (22) holds.

Now, we argue that logdet(T (X)) is also geodesically convex. We need to show
that the Hessian of logdet(T (X)) is positive semi-definite along any geodesic. Let
us consider the geodesic ρ(t) := P

1
2 exp(tQ)P

1
2 for P ∈ Sn

++ and Q ∈ S, and let
h(t) := logdet(T (ρ(t))). The second derivative of logdet(T (X)) along ρ is:

d2h(t)
dt2 =Tr

[
−T (ρ(t))−1 d

dt
T (ρ(t))T (ρ(t))−1 d

dt
T (ρ(t))+T (ρ(t))−1 d2

dt2 T (ρ(t))
]
.

Thus, we need to verify that d2h(t)
dt2

∣∣∣
t=0
≥ 0. In other words, we need to show that

Tr
[
T (P)−1

(
T (P

1
2 Q2P

1
2)−T (P

1
2 QP

1
2)T (P)−1T (P

1
2 QP

1
2)
)]
≥ 0.

90 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

In particular, if we show that

T (P
1
2 Q2P

1
2)⪰ T (P

1
2 QP

1
2)T (P)−1T (P

1
2 QP

1
2),

then we are done. Let us define another strictly positive linear operator

T ′(X) := T (P)−
1
2 T (P

1
2 XP

1
2)T (P)−

1
2 .

If T ′(X2) ⪰ T ′(X)2, then by picking X = Q we arrive at the conclusion. This in-
equality is an instance of Kadison’s inequality, see [43] for more details. There-
fore, logdet(X) is a geodesically convex function. We can now conclude that
logdetT (X)− logdetX is geodesically convex as logdetX is geodesically linear.

Theorem 5.13 (Geodesic convexity of capacity [168, 258]) Let T (X) be a com-
pletely positive linear operator. Then, det(T (X)

det(X) is geodesically convex on Sn
++ with

respect to the metric gX (U,W) := Tr[X−1UX−1W].

5.3.3 Computing the capacity via geodesically convex optimization

As discussed in Section 5.2.5, for polynomial capacity, one can make an appropriate
change of variables and make the polynomial capacity optimization problem convex
with respect to the Euclidean metric. This allows for the deployment of standard
convex optimization techniques to obtain algorithms that run in time polynomial
in n, logM, log 1

ε
); see [154, 71, 8, 264]. The main result of Allen-Zhu, Garg, Li,

Oliviera, and Wigderson [7] is an algorithm which ε-approximates capacity and runs
in time polynomial in n,m, logM and log 1

ε
, where M denotes the largest magnitude

of an entry of Ai. Thus, it improves upon the result of [102] presented in Section
5.2 which runs in time polynomial in n,m, logM, 1

ε
. The algorithm of [7] finds an

Xε ≻ 0 such that

logdet(T (Xε))− logdet(Xε)≤ logCap(T)+ ε.

Their algorithm is a geodesic generalization of the “box-constrained” Newton’s
method introduced in [71, 8]. In each iteration, their algorithm expands the objec-
tive into its second-order Taylor expansion and then solves it via Euclidean convex
optimization; see [51, 203, 281] for Newton’s method in Euclidean space. Their al-
gorithm is a general second-order method and applies to any geodesically convex
problem (over the space of positive definite matrices) that satisfies a particular “ro-
bustness” property. This robustness property asserts that the function behaves like
a quadratic function in every “small” neighborhood with respect to the metric, it
is weaker than self-concordance, and it was introduced in the Euclidean space in
[71, 8].

Roughly speaking, their algorithm starts with an X0 = I and computes Xt+1 from
Xt by solving a constrained Euclidean convex quadratic minimization problem as

On the works of Avi Wigderson 91

follows: For a symmetric matrix H, let f t(H) := F(X
1
2

t eHX
1
2

t). Let qt be the second-
order Taylor approximation of f t around H = 0. Since F is geodesically convex, qt

is convex in the ordinary sense. Thus, one can optimize qt(H) under the constraint
∥H∥2 ≤ 1

2 (this is the box constraint). If Ht is the optimizer to this constrained op-

timization problem, Xt+1 := X
1
2

t eHt X
1
2

t . [7] show that after about R log 1
ε

iterations,
this algorithms produces an ε-approximate minimizer to F . Here R is a bound on
the distance of each iterate to the optimal solution.

For the operator scaling problem, the function F(X) := logdet
(
∑

m
i=1 AiXA⊤i

)
−

logdet(X) which is geodesically convex over the Riemannian manifold of positive
definite matrices. They show how to modify this function slightly and provide a
bound for R (or rather an alternative to it).

As an application, [7] present a polynomial time algorithm for an equivalence
problem for the left-right group action underlying the operator scaling problem. This
yields a deterministic polynomial-time algorithm for (commutative) PIT problems;
we omit the details, see [7].

5.4 The null-cone problem, invariant theory, and noncommutative
optimization

We present a summary of the paper by Bürgisser, Franks, Garg, Oliveira, Walter,
and Wigderson [59, 60] that generalizes and unifies many prior works and initiates
a systematic development of a theory of noncommutative optimization under sym-
metries. We start by presenting some basics in Section 5.4.1. In Section 5.4.2, we
introduce the general definition of capacity and that of the null cone. In section 5.4.3,
we introduce the notion of a moment map that leads to connections with geodesic
convexity and noncommutative duality. Finally, in Section 5.4.4, we mention the
computational problems and the algorithmic results from [60].

5.4.1 Groups, orbits, and invariants

We consider a vector space V ∼= Cm for some m. Given a group G, the action of G
on V is a function φ : G×V → V for which we write φ(g,v) as just g · v. A group
action must further satisfy the properties that g · (h ·v) = (gh) ·v and e ·v = v, where
e is the identity element in G. An orbit of v ∈V under a given action of G is the set

Ov := {w ∈V : w = g · v for some g ∈ G}.

The closure of an orbit Ov is denoted by Ov.
A group representation π is a map from an element g ∈ G to an invertible linear

transformation π(g) of the vector space V (or GL(V)). Enforcing π to be a group
homomorphism (i.e., for any g1,g2 ∈G we have π(g1g2) = π(g1)π(g2)) implies the
action g · v := π(g)v is a group action.

92 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Invariant polynomials are polynomial functions on V that are invariant by the
action of G. The ring of invariant of polynomials is denoted by C[V]G and is finitely
generated due to a theorem of Hilbert [132, 133]. It is known that for two vectors
v1,v2 ∈ V , their orbit-closures intersect if and only if p(v1) = p(v2) for all p ∈
C[V]G; see [201].

As an example, operator scaling can be viewed as a special case of the left-right
action of G = SLn(C)×SLn(C) on V = (Cn×n)m:

π(C,D) · (A1, . . . ,Am) := (CA1D†, . . . ,CAmD†).

Here, the invariants for the left-right action are generated by polynomials of the
form det(∑m

i=1 Ei ⊗ Ai), where Ei are complex d × d matrices for some d. Der-
sken and Makam [77] prove that d ≤ n5 suffices. This implies that, to check if the
orbit-closures for two (A1, . . . ,Am) and (B1, . . . ,Bm) under the left-right action of
SLn(C)×SLn(C), it suffices to check if det(∑m

i=1 Yi⊗Ai) = det(∑m
i=1 Yi⊗Bi) for all

d×d matrices Yis on disjoint set of variables for d ≤ n5. This is an instance of the
ordinary PIT problem and a deterministic algorithm for this problem is provided by
the algorithm in [7] discussed in Section 5.3.3.

5.4.2 Capacity and the null cone

[60] generalize operator scaling and the algorithmic results for it to the case when
π is any representation of G = GLn(C). To do so, one needs to assume that V is
equipped with an inner product ⟨·, ·⟩ which defines a norm ∥v∥ :=

√
⟨v,v⟩. For a

representation π , [60] define capacity of an element v ∈V as

Cap(v) := inf
g∈G
∥π(g)v∥. (23)

In the commutative (torus) case, this is precisely the notion of polynomial capacity
introduced by Gurvits [124] (Section 5.2.5). In the left-right action case, the notion
of operator capacity (Definition 5.6) and the one in Equation (23) can also be seen
to coincide.

A natural question is: For what v is Cap(v) = 0? This brings us to the notion of
the null cone of V which is defined as follows:

N := {v ∈V : Cap(v) = 0}.

Thus, the null cone is the set of all vectors v ∈V whose orbit closure contains 0.

5.4.3 Geodesic convexity, moment map, and noncommutative duality

For a representation π of GLn(C), a vector v ∈ V , and an H ∈ H (n), consider
log∥π(etH)v∥ as a function of t. Here, etH is the matrix exponential and is a geodesic
in GLn(C) starting at the identity element in the direction H. This function can be

On the works of Avi Wigderson 93

proved to be convex in t, making a connection to geodesic convexity; see [60] for
details. The derivative of this function at time t = 0 gives rise to the moment map
µ(v) for v ∈V as follows: For an H ∈H (n),

⟨µ(v),H⟩ :=
∂ log∥π(etH)v∥

∂ t
(0).

Thus, a moment map can be viewed as a noncommutative version of the gradient
in a suitably defined Riemannian manifold that arises from the symmetries of non-
commutative groups [60]. Hence, as ∥π(g)v∥ tends to Cap(v) with g, µ(v) tends to
zero.

For H ∈ H(n), let spec(H) := (λ1, . . . ,λn) where λ1 ≥ ·· · ≥ λn are the eigenval-
ues of H. The moment polytope of v, denoted by ∆(v) is the closure of the set of
eigenvalues of µ(w) as w varies in the orbit of v:

∆(v) := {spec(µ(w) : w ∈ Ov}.

It is a nontrivial result that ∆(v) is a convex polytope [165, 21, 202].
It was proved by Kempf and Ness [163] that v is not in the null-cone N if

and only if µ(w) = 0 for some w in the orbit closure of v, or 0 ∈ ∆(v). This is an
important result and can be viewed as a noncommutative analog of Farkas’ Lemma
in the commutative world. Thus, we can draw an analogy to convex optimization: If
we view the moment map as the gradient of the action of pi at the identity element,
then the ∥w∥ is minimized when the gradient is zero. v is in the null cone if and only
if Cap(v) = 0.

One of the key structural results in [60] is a quantitative version of the Kempf-
Ness theorem.

Theorem 5.14 (Noncommutative duality [60]) For a unit vector v in V ,

1− ∥µ(v)∥
γ(π)

≤ Cap2(v)≤ 1− ∥µ(v)∥
2

4N(π)
.

Here, the weight norm N(π) is defined to be the maximum Euclidean norm of a
weight that occurs in π . A weight vector λ ∈ Zn occurs in π if one of its irreducible
subspaces is of type λ . And, the weight margin γ(π) is the minimum Euclidean
distance between the origin and the convex hull of any subset of the weights of
π that does not contain the origin. The weights arise in the study of irreducible
representations of π and we direct the reader to [60] for a discussion on them.

For matrix scaling (the left-right action by special torus group), it can be shown
that γ(π)≥ 1

poly(n) . For operator scaling too (with the left-right action by SLn(C)×
SLn(C)), it can be shown that γ(π)≥ 1

poly(n) .

94 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

5.4.4 Noncommutative optimization under symmetries

[60] study a variety of general and related problems related to orbits of group ac-
tions.

1. Null cone membership problem: Given (π,v), check if v ∈N .
2. Moment polytope membership problem: Given (π,v, p), check if p ∈ ∆(v).
3. Norm-minimization problem: Given (π,v,ε) such that Cap(v) > 0, output a

g ∈ G such that log∥π(g) · v∥− logCap(v)≤ ε .
4. Scaling problem: Given (π,v, p,ε) such that p ∈ ∆(v), output an element g ∈G

such that ∥spec(µ(π(g)v))− p∥ ≤ ε .

[60] discuss how these problems capture a diverse set of problems in different areas
of computer science, mathematics, and physics. We already discussed the appli-
cation to approximating the permanent (Section 5.1), noncommutative singularity
testing (Section 5.2.3), and computing Brascamp-Lieb constants (Section 5.2.4).
Other applications include the Horn problem: Do there exist three Hermitian matri-
ces A,B,C with prescribed eigenvalues such that A+B =C?, the quantum marginal
problem: Given density matrices describing local quantum states, is there a global
pure state consistent with the local states? Moreover, these problems also connect
to geometric complexity theory (GCT) [200] that formulates a variant of VP vs.
VNP question as checking if the (padded) permanent lies in the orbit-closure of the
determinant (of an appropriate size), under the action of the general linear group on
polynomials induced by its natural linear action on the variables.

[60] also show how, sometimes, these abovementioned problems may reduce
to each other and discuss multiple ways in which the input may be specified. For
instance, in the operator scaling problem π is fixed (and not part of the input) while,
in general, one could be given an oracle to π(g)v for a g ∈ G and an input vector v.
p and ε are assumed to be given in binary and they present algorithms that run in
time both a polynomial in 1

ε
and in log 1

ε
. [60] note that techniques from [253, 264]

can be used to design polynomial time algorithms for commutative null cone and
moment polytope membership in the oracle setting.

Prior works for these problems, including the ones discussed in Section 5.1 and
5.2, the underlying groups need to be products of at least two copies of rather spe-
cific linear groups (SL(n)s or tori), to support the algorithms and analysis. More
importantly, these actions were linear in each of the copies. In [60], arbitrary group
actions of GLn that can be described by a representation, are handled. They de-
velop two general methods, a first-order and a second-order method, which require
information about the gradient and the Hessian of the function to be optimized.
Their algorithms rely on the connection of the moment map to geodesic convexity
and the running time bounds depend on the quantitative parameters – weight norm
and weight margin – arising in their quantitative version of noncommutative duality
(Theorem 5.14). The main technical work goes into showing how these parameters
control convergence to the optimum in each of these methods.

The first-order method of [60] is a natural analog of gradient descent. For the
problem of computing Cap(v), it starts with an element g0 = I (the identity element

On the works of Avi Wigderson 95

in G) and repeats for τ iterations and a suitable “step-size” η > 0 the following:

gt+1 := e−ηµ(π(gt)v)gt .

They show that there is a choice of η such that this method, when Cap(v)> 0, finds

a g such that ∥µ(π(g)v)∥ ≤ ε for τ =
(

N(π)2

ε2 | logCap(v)|
)
. This approximately

solves the scaling problem for p = 0. The generalization to p ̸= 0 is also presented.
Their second-order method, at a high-level, repeatedly optimizes quadratic Tay-

lor expansions of the objective in a small neighborhood (similar to Newton’s method
in convex optimization). It is an extension of their method for computing operator
capacity mentioned in Section 5.3.3. The number of iterations it takes for the above-
mentioned scaling problem is Õ

(
N(π)

√
n

γ(π)

(
| logCap(v)|+ log n

ε

))
.

The work of [60] has also led to a host of new challenges in noncommutative
optimization. An important one is to design analogs of the “cutting plane” or the
“interior point methods” in the noncommutative setting. Such algorithms would
likely yield true polynomial time algorithms for Problems (1)-(4) mentioned above;
see [134] for some progress towards the latter goal. Finally, there are several other
works where the lens of symmetry has been helpful in the design of nonconvex op-
timization and sampling algorithms, see [33, 243, 282, 87, 244, 175, 174, 173] and
the references therein.

References

1. S. Aaronson, S. Ben-David, and R. Kothari. Separations in query complexity using cheat
sheets. In D. Wichs and Y. Mansour, editors, Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 863–876. ACM, 2016.

2. M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathematics. Second
Series, 160(2):781–793, 2004.

3. A. Ahmadinejad, J. Kelner, J. Murtagh, J. Peebles, A. Sidford, and S. Vadhan. High-precision
estimation of random walks in small space. In 2020 IEEE 61st Annual Symposium on Foun-
dations of Computer Science, pages 1295–1306. IEEE Computer Soc., Los Alamitos, CA,
[2020] ©2020.

4. M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c logn parallel steps. Combinatorica,
3(1):1–19, 1983.

5. M. Ajtai and A. Wigderson. Deterministic simulation of probabilistic constant depth cir-
cuits. In F. P. Preparata and S. Micali, editors, Randomness and Computation, volume 5 of
Advances in Computing Research, pages 199–223. JAI Press Inc., 1989.

6. R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff. Random walks, universal
traversal sequences, and the complexity of maze problems. In 20th Annual Symposium on
Foundations of Computer Science (San Juan, Puerto Rico, 1979), pages 218–223. IEEE,
New York, 1979.

7. Z. Allen-Zhu, A. Garg, Y. Li, R. M. de Oliveira, and A. Wigderson. Operator scaling via
geodesically convex optimization, invariant theory and polynomial identity testing. In I. Di-
akonikolas, D. Kempe, and M. Henzinger, editors, Proceedings of the 50th Annual ACM

96 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018, pages 172–181. ACM, 2018.

8. Z. Allen Zhu, Y. Li, R. Oliveira, and A. Wigderson. Much faster algorithms for matrix
scaling. In FOCS’17: Proceedings of the 58th Annual IEEE Symposium on Foundations of
Computer Science, 2017.

9. N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986. Theory of comput-
ing (Singer Island, Fla., 1984).

10. N. Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8(1-
2):7–29, 1999.

11. N. Alon, M. Kumar, and B. L. Volk. Unbalancing sets and an almost quadratic lower bound
for syntactically multilinear arithmetic circuits. Comb., 40(2):149–178, 2020.

12. N. Alon, A. Lubotzky, and A. Wigderson. Semi-direct product in groups and zig-zag product
in graphs: connections and applications (extended abstract). In 42nd IEEE Symposium on
Foundations of Computer Science (Las Vegas, NV, 2001), pages 630–637. IEEE Computer
Soc., Los Alamitos, CA, 2001.

13. N. Alon and J. H. Spencer. The probabilistic method. Wiley Series in Discrete Mathematics
and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, fourth edition, 2016.

14. P. Amireddy, A. Garg, N. Kayal, C. Saha, and B. Thankey. Low-depth arithmetic circuit lower
bounds via shifted partials. Electron. Colloquium Comput. Complex., TR22-151, 2022.

15. N. Anari and S. O. Gharan. A generalization of permanent inequalities and applications in
counting and optimization. In H. Hatami, P. McKenzie, and V. King, editors, Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 384–396. ACM, 2017.

16. A. Anshu, A. Belovs, S. Ben-David, M. Göös, R. Jain, R. Kothari, T. Lee, and M. Santha.
Separations in communication complexity using cheat sheets and information complexity. In
I. Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 555–564.
IEEE Computer Society, 2016.

17. R. Armoni, M. Saks, A. Wigderson, and S. Zhou. Discrepancy sets and pseudorandom gener-
ators for combinatorial rectangles. In 37th Annual Symposium on Foundations of Computer
Science (Burlington, VT, 1996), pages 412–421. IEEE Comput. Soc. Press, Los Alamitos,
CA, 1996.

18. R. Armoni, A. Ta-Shma, A. Wigderson, and S. Zhou. An O(log(n)4/3) space algorithm for
(s, t) connectivity in undirected graphs. Journal of the ACM, 47(2):294–311, 2000.

19. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hard-
ness of approximation problems. In 33rd Annual Symposium on Foundations of Computer
Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 14–23. IEEE Computer
Society, 1992.

20. S. Arora and S. Safra. Probabilistic checking of proofs; A new characterization of NP. In
33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsylvania,
USA, 24-27 October 1992, pages 2–13. IEEE Computer Society, 1992.

21. M. F. Atiyah. Convexity and commuting Hamiltonians. Bulletin of the London Mathematical
Society, 14(1):1–15, 1982.

22. Y. Aumann and Y. Rabani. An O(logk) approximate min-cut max-flow theorem and approx-
imation algorithm. SIAM Journal on Computing, 27(1):291–301, 1998.

23. L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in polylogarith-
mic time. In C. Koutsougeras and J. S. Vitter, editors, Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages
21–31. ACM, 1991.

24. L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. In 31st Annual Symposium on Foundations of Computer Science, St.
Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 16–25. IEEE Computer Society,
1990.

On the works of Avi Wigderson 97

25. L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations
unless EXPTIME has publishable proofs. Computational Complexity, 3(4):307–318, 1993.

26. N. Bansal and M. Sinha. k-forrelation optimally separates quantum and classical query com-
plexity. In S. Khuller and V. V. Williams, editors, STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1303–
1316. ACM, 2021.

27. R. Bapat. Mixed discriminants of positive semidefinite matrices. Linear Algebra and its
Applications, 126:107–124, 1989.

28. Z. Bar-Yossef, T. S. Jayram, and I. Kerenidis. Exponential separation of quantum and clas-
sical one-way communication complexity. SIAM J. Comput., 38(1):366–384, 2008.

29. Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics approach
to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732, 2004.

30. B. Barak, R. Impagliazzo, and A. Wigderson. Extracting randomness using few independent
sources. SIAM Journal on Computing, 36(4):1095–1118 (electronic), 2006.

31. B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating independence:
new constructions of condensers, Ramsey graphs, dispersers, and extractors. Journal of the
ACM, 57(4):Art. 20, 52, 2010.

32. B. Barak, A. Rao, R. Shaltiel, and A. Wigderson. 2-source dispersers for no(1) entropy, and
Ramsey graphs beating the Frankl-Wilson construction. Ann. of Math. (2), 176(3):1483–
1543, 2012.

33. A. Barvinok and G. Blekherman. Convex geometry of orbits. Combinatorial and Computa-
tional Geometry, Math. Sci. Res. Inst. Publ, pages 51–77, 2005.

34. L. A. Bassalygo. Asymptotically optimal switching circuits. Problems of Information Trans-
mission, 17(3):206–211, 1981.

35. W. Baur and V. Strassen. The complexity of partial derivatives. Theor. Comput. Sci., 22:317–
330, 1983.

36. A. Ben-Aroya and A. Ta-Shma. A combinatorial construction of almost-Ramanujan graphs
using the zig-zag product. In 40th Annual ACM Symposium on Theory of Computing (Victo-
ria, British Columbia), pages 325–334. ACM, 2008.

37. M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali, and P. Rogaway.
Everything provable is provable in zero-knowledge. In S. Goldwasser, editor, Advances in
Cryptology - CRYPTO ’88, 8th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 21-25, 1988, Proceedings, volume 403 of Lecture Notes in
Computer Science, pages 37–56. Springer, 1988.

38. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive proofs:
How to remove intractability assumptions. In Proceedings of the 20th Annual ACM Sym-
posium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 113–131,
1988.

39. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In J. Simon, editor,
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 1–10. ACM, 1988.

40. E. Ben-Sasson and A. Wigderson. Short proofs are narrow - resolution made simple. J. ACM,
48(2):149–169, 2001.

41. J. Bennett, A. Carbery, M. Christ, and T. Tao. The Brascamp-Lieb inequalities: Finiteness,
structure and extremals. Geometric and Functional Analysis, 17(5):1343–1415, 2008.

42. E. R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of Computa-
tion, 24:713–735, 1970.

43. R. Bhatia. Positive definite matrices. Princeton University Press, 2009.
44. G. D. Birkhoff. Tres observaciones sobre el algebra lineal. Universidad Nacional de Tu-

cuman Revista, Serie A, 5:147–151, 1946.
45. M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudoran-

dom bits. SIAM Journal on Computing, 13(4):850–864, 1984.

98 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

46. A. Bogdanov, W. M. Hoza, G. Prakriya, and E. Pyne. Hitting sets for regular branching
programs. In 37th Computational Complexity Conference, volume 234 of LIPIcs. Leibniz
Int. Proc. Inform., pages Art. No. 3, 22. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,
2022.

47. A. Bogdanov and L. Trevisan. Average-case complexity. Foundations and Trends® in The-
oretical Computer Science, 2(1):1–106, 2006.

48. A. Borodin, S. Cook, and N. Pippenger. Parallel computation for well-endowed rings and
space-bounded probabilistic machines. Information and Control, 58(1-3):113–136, 1983.

49. F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé, and P. Zimmermann. The state
of the art in integer factoring and breaking public-key cryptography. IEEE Secur. Priv.,
20(2):80–86, 2022.

50. J. Bourgain, N. Katz, and T. Tao. A sum-product estimate in finite fields, and applications.
Geometric and Functional Analysis, 14(1):27–57, 2004.

51. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.
52. H. J. Brascamp and E. H. Lieb. Best constants in Young’s inequality, its converse, and its

generalization to more than three functions. Advances in Mathematics, 20(2):151–173, 1976.
53. M. Braverman, A. Garg, D. Pankratov, and O. Weinstein. From information to exact commu-

nication. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 151–160.
ACM, 2013.

54. M. Braverman and A. Moitra. An information complexity approach to extended formula-
tions. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 161–170.
ACM, 2013.

55. M. Braverman, A. Rao, R. Raz, and A. Yehudayoff. Pseudorandom generators for regular
branching programs. In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 40–47. IEEE Computer
Society, 2010.

56. H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and com-
putation. In J. S. Vitter, editor, Proceedings of the Thirtieth Annual ACM Symposium on the
Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 63–68. ACM, 1998.

57. H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing separations. In Thirteenth An-
nual IEEE Conference on Computational Complexity (Buffalo, NY, 1998), pages 8–12. IEEE
Computer Soc., Los Alamitos, CA, 1998.

58. H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh. Are bitvectors optimal?
SIAM Journal on Computing, 31(6):1723–1744 (electronic), 2002.

59. P. Bürgisser, C. Franks, A. Garg, R. M. de Oliveira, M. Walter, and A. Wigderson. Efficient
algorithms for tensor scaling, quantum marginals, and moment polytopes. In M. Thorup,
editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018, pages 883–897. IEEE Computer Society, 2018.

60. P. Bürgisser, C. Franks, A. Garg, R. M. de Oliveira, M. Walter, and A. Wigderson. Towards
a theory of non-commutative optimization: Geodesic 1st and 2nd order methods for moment
maps and polytopes. In D. Zuckerman, editor, 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages
845–861. IEEE Computer Society, 2019.

61. P. Bürgisser, A. Garg, R. M. de Oliveira, M. Walter, and A. Wigderson. Alternating minimiza-
tion, scaling algorithms, and the null-cone problem from invariant theory. In A. R. Karlin,
editor, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11-
14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 24:1–24:20. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018.

62. M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors and
constant-degree lossless expanders. In 34th Annual ACM Symposium on Theory of Com-
puting (STOC ‘02), pages 659–668, Montréal, CA, May 2002. ACM. Joint session with
CCC ‘02.

On the works of Avi Wigderson 99

63. L. Chen, X. Lyu, A. Tal, and H. Wu. New prgs for unbounded-width/adaptive-order read-
once branching programs. In Proceedings of the 50th EATCS International Colloquium on
Automata, Languages and Programming (ICALP ‘23), 2023. To appear.

64. L. Chen and R. Tell. Simple and fast derandomization from very hard functions: eliminating
randomness at almost no cost. In S. Khuller and V. V. Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, pages 283–291. ACM, 2021.

65. L. Chen and R. Tell. Hardness vs randomness, revised: uniform, non-black-box, and
instance-wise. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science—FOCS 2021, pages 125–136. IEEE Computer Soc., Los Alamitos, CA, [2022]
©2022.

66. S. Chillara, N. Limaye, and S. Srinivasan. Small-depth multilinear formula lower bounds for
iterated matrix multiplication with applications. SIAM J. Comput., 48(1):70–92, 2019.

67. B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity. SIAM Journal on Computing, 17(2):230–261, Apr. 1988.

68. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achiev-
ing simultaneity in the presence of faults. In 26th Annual Symposium on Foundations of
Computer Science (sfcs 1985), pages 383–395, 1985.

69. M. Clegg, J. Edmonds, and R. Impagliazzo. Using the groebner basis algorithm to find
proofs of unsatisfiability. In G. L. Miller, editor, Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24,
1996, pages 174–183. ACM, 1996.

70. A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and weak random
sources (extended abstract). In 30th Annual Symposium on Foundations of Computer Science
(Research Triangle Park, North Carolina), pages 14–19. IEEE, 1989.

71. M. B. Cohen, A. Madry, D. Tsipras, and A. Vladu. Matrix scaling and balancing via box
constrained Newton’s method and interior point methods. In FOCS’17: Proceedings of the
58th Annual IEEE Symposium on Foundations of Computer Science, 2017.

72. P. M. Cohn. The embedding of firs in skew fields. Proceedings of the London Mathematical
Society, s3-23(2):193–213, 1971.

73. S. A. Cook. The complexity of theorem-proving procedures. In M. A. Harrison, R. B.
Banerji, and J. D. Ullman, editors, Proceedings of the 3rd Annual ACM Symposium on Theory
of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, pages 151–158. ACM, 1971.

74. R. Cramer, I. Damgård, and J. B. Nielsen. Secure Multiparty Computation and Secret Shar-
ing. Cambridge University Press, 2015.

75. A. De. Pseudorandomness for permutation and regular branching programs. In Proceedings
of the 26th Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose,
California, June 8-10, 2011, pages 221–231. IEEE Computer Society, 2011.

76. R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing. Infor-
mation Processing Letters, 7(4):193–195, 1978.

77. H. Derksen and V. Makam. Polynomial degree bounds for matrix semi-invariants. Advances
in Mathematics, 310:44–63, 2017.

78. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory,
22(6):644–654, 1976.

79. I. Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):article 12, 44
pages (electronic), 2007.

80. I. Dinur and O. Meir. Toward the KRW composition conjecture: Cubic formula lower bounds
via communication complexity. Comput. Complex., 27(3):375–462, 2018.

81. D. Doron, D. Moshkovitz, J. Oh, and D. Zuckerman. Nearly optimal pseudorandomness
from hardness. J. ACM, 69(6):43:1–43:55, 2022.

82. Z. Dvir. On the size of Kakeya sets in finite fields. Journal of the American Mathematical
Society, 22(4):1093–1097, 2009.

83. Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan. Extensions to the method of multiplicities,
with applications to Kakeya sets and mergers. In 2009 50th Annual IEEE Symposium on

100 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

Foundations of Computer Science (FOCS 2009), pages 181–190. IEEE Computer Soc., Los
Alamitos, CA, 2009.

84. Z. Dvir, G. Malod, S. Perifel, and A. Yehudayoff. Separating multilinear branching programs
and formulas. In H. J. Karloff and T. Pitassi, editors, Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
615–624. ACM, 2012.

85. Z. Dvir and A. Wigderson. Monotone expanders: constructions and applications. Theory of
Computing. An Open Access Journal, 6:291–308, 2010.

86. Z. Dvir and A. Wigderson. Kakeya sets, new mergers, and old extractors. SIAM Journal on
Computing, 40(3):778–792, 2011.

87. A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality
constraints. SIAM J. Matrix Anal. Appl., 20(2):303–353, Apr. 1999.

88. J. Edmonds. Systems of distinct representatives and linear algebra. Journal of Research of
the National Bureau of Standards, 71:241–245, 1967.

89. J. Edmonds, R. Impagliazzo, S. Rudich, and J. Sgall. Communication complexity towards
lower bounds on circuit depth. Comput. Complex., 10(3):210–246, 2001.

90. G. P. Egorychev. The solution of van der Waerden’s problem for permanents. Advances in
Mathematics, 42(3):299–305, 1981.

91. P. Erdős. Some remarks on the theory of graphs. Bulletin of the American Mathematical
Society, 53:292–294, 1947.

92. P. Erdős. Problems and results in chromatic graph theory. In Proof Techniques in Graph
Theory (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968), pages 27–
35. Academic Press, New York, 1969.

93. D. I. Falikman. Proof of the van der Waerden conjecture regarding the permanent of a doubly
stochastic matrix. Mathematical Notes, 29(6):475–479, 1981.

94. U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique is
almost NP-complete (preliminary version). In 32nd Annual Symposium on Foundations of
Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages 2–12. IEEE Computer
Society, 1991.

95. L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-power interactive protocols.
In Proceedings: Third Annual Structure in Complexity Theory Conference, Georgetown Uni-
versity, Washington, D. C., USA, June 14-17, 1988, pages 156–161. IEEE Computer Society,
1988.

96. H. Fournier, N. Limaye, G. Malod, and S. Srinivasan. Lower bounds for depth-4 formulas
computing iterated matrix multiplication. SIAM J. Comput., 44(5):1173–1201, 2015.

97. P. Frankl and R. M. Wilson. Intersection theorems with geometric consequences. Combina-
torica, 1(4):357–368, 1981.

98. J. Franklin and J. Lorenz. On the scaling of multidimensional matrices. Linear Algebra and
its Applications, 114-115:717–735, 1989. Special Issue Dedicated to Alan J. Hoffman.

99. J. Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. Memoirs
of the American Mathematical Society, 195(910):viii+100, 2008.

100. J. Friedman and A. Wigderson. On the second eigenvalue of hypergraphs. Combinatorica,
15(1):43–65, 1995.

101. A. Garg, M. Göös, P. Kamath, and D. Sokolov. Monotone circuit lower bounds from resolu-
tion. Theory Comput., 16:1–30, 2020.

102. A. Garg, L. Gurvits, R. M. de Oliveira, and A. Wigderson. A deterministic polynomial
time algorithm for non-commutative rational identity testing. In I. Dinur, editor, IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 109–117. IEEE Computer Society,
2016.

103. A. Garg, L. Gurvits, R. M. de Oliveira, and A. Wigderson. Algorithmic and optimization
aspects of Brascamp-Lieb inequalities, via operator scaling. In H. Hatami, P. McKenzie, and
V. King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of

On the works of Avi Wigderson 101

Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 397–409. ACM,
2017.

104. D. Gavinsky. Entangled simultaneity versus classical interactivity in communication com-
plexity. IEEE Trans. Inf. Theory, 66(7):4641–4651, 2020.

105. D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz, and R. de Wolf. Exponential separation for
one-way quantum communication complexity, with applications to cryptography. SIAM J.
Comput., 38(5):1695–1708, 2008.

106. D. Gavinsky, O. Meir, O. Weinstein, and A. Wigderson. Toward better formula lower bounds:
The composition of a function and a universal relation. SIAM J. Comput., 46(1):114–131,
2017.

107. U. Girish, R. Raz, and A. Tal. Quantum versus randomized communication complexity, with
efficient players. CoRR, abs/1911.02218, 2019.

108. O. Goldreich. Foundations of Cryptography: Volume I Basic Tools. Cambridge University
Press, 2001.

109. O. Goldreich. The Foundations of Cryptography: Volume II Basic Applications. Cambridge
University Press, 2004.

110. O. Goldreich. A primer on pseudorandom generators, volume 55 of University Lecture
Series. American Mathematical Society, Providence, RI, 2010.

111. O. Goldreich. In a world of P = BPP. In Studies in complexity and cryptography, volume
6650 of Lecture Notes in Comput. Sci., pages 191–232. Springer, Heidelberg, 2011.

112. O. Goldreich, S. Micali, and A. Wigderson. How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In A. M. Odlyzko, editor,
Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings,
volume 263 of Lecture Notes in Computer Science, pages 171–185. Springer, 1986.

113. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM Sym-
posium on Theory of Computing, 1987, New York, New York, USA, pages 218–229. ACM,
1987.

114. O. Goldreich and A. Wigderson. Tiny families of functions with random properties: A
quality-size trade-off for hashing. Random Structures & Algorithms, 11(4):315–343, 1997.

115. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, Apr. 1984.

116. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-
systems (extended abstract). In R. Sedgewick, editor, Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages
291–304. ACM, 1985. Preliminary versions circulated since 1982.

117. M. Göös, T. Pitassi, and T. Watson. Deterministic communication vs. partition number. SIAM
J. Comput., 47(6):2435–2450, 2018.

118. P. Gopalan, R. Meka, O. Reingold, L. Trevisan, and S. P. Vadhan. Better pseudorandom
generators from milder pseudorandom restrictions. In 53rd Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,
2012, pages 120–129. IEEE Computer Society, 2012.

119. L. K. Grover. A fast quantum mechanical algorithm for database search. In G. L. Miller, edi-
tor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 212–219. ACM, 1996.

120. A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi. Approaching the chasm at depth four. J.
ACM, 61(6):33:1–33:16, 2014.

121. V. Guruswami. Iterative decoding of low-density parity-check codes. Bulletin of the EATCS,
90:53–88, October 2006.

122. V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and randomness extractors
from Parvaresh–Vardy codes. Journal of the ACM, 56(4):1–34, 2009.

123. L. Gurvits. Classical complexity and quantum entanglement. J. Comput. Syst. Sci.,
69(3):448–484, 2004.

102 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

124. L. Gurvits. Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like
conjectures: sharper bounds, simpler proofs and algorithmic applications. In Proceedings of
the thirty-eighth annual ACM symposium on Theory of computing, pages 417–426. ACM,
2006.

125. L. Gurvits and A. Samorodnitsky. A deterministic algorithm for approximating the mixed
discriminant and mixed volume, and a combinatorial corollary. Discrete & Computational
Geometry, 27:531–550, 2002.

126. D. Gutfreund, R. Shaltiel, and A. Ta-Shma. Uniform hardness versus randomness tradeoffs
for Arthur-Merlin games. Computational Complexity, 12(3-4):85–130, 2003.

127. A. Haken. The intractability of resolution. Theor. Comput. Sci., 39:297–308, 1985.
128. M. Hamada and H. Hirai. Computing the NC-rank via discrete convex optimization on

CAT(0) spaces. SIAM Journal on Applied Algebra and Geometry, 5(3):455–478, 2021.
129. J. Håstad and A. Wigderson. Composition of the universal relation. In J. Cai, editor, Ad-

vances In Computational Complexity Theory, Proceedings of a DIMACS Workshop, New
Jersey, USA, December 3-7, 1990, volume 13 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 119–134. DIMACS/AMS, 1990.

130. J. Håstad and A. Wigderson. The randomized communication complexity of set disjointness.
Theory Comput., 3(1):211–219, 2007.

131. P. Hatami and W. Hoza. Theory of unconditional pseudorandom generators. Electron. Col-
loquium Comput. Complex., TR23-019, 2023.

132. D. Hilbert. Über die theorie der algebraischen formen. Math. Annalen, 36:473–534, 1890.
133. D. Hilbert. Ueber die vollen invariantensysteme. Mathematische Annalen, 42:313–373,

1893.
134. H. Hirai, H. Nieuwboer, and M. Walter. Interior-point methods on manifolds: theory and

applications. CoRR, abs/2303.04771, 2023.
135. S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bulletin of

the AMS, 43(4):439–561, 2006.
136. W. M. Hoza. Better pseudodistributions and derandomization for space-bounded computa-

tion. In M. Wootters and L. Sanità, editors, Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18,
2021, University of Washington, Seattle, Washington, USA (Virtual Conference), volume 207
of LIPIcs, pages 28:1–28:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

137. W. M. Hoza, E. Pyne, and S. Vadhan. Pseudorandom Generators for Unbounded-Width
Permutation Branching Programs. In J. R. Lee, editor, 12th Innovations in Theoretical Com-
puter Science Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 7:1–7:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

138. R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: exponen-
tial time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

139. R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algorithms.
In Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing,
pages 356–364, Montréal, Québec, Canada, 23–25 May 1994.

140. R. Impagliazzo, R. Shaltiel, and A. Wigderson. Reducing the seed length in the nisan-
wigderson generator. Combinatorica, 26(6):647–681, 2006.

141. R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomiz-
ing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory
of Computing, pages 220–229, El Paso, Texas, 4–6 May 1997.

142. R. Impagliazzo and A. Wigderson. Randomness vs time: derandomization under a uniform
assumption. Journal of Computer and System Sciences, 63(4):672–688, 2001. Special issue
on FOCS 98 (Palo Alto, CA).

143. G. Ivanyos, Y. Qiao, and K. V. Subrahmanyam. Non-commutative edmonds’ problem and
matrix semi-invariants. Comput. Complex., 26(3):717–763, 2017.

On the works of Avi Wigderson 103

144. G. Ivanyos, Y. Qiao, and K. V. Subrahmanyam. Constructive non-commutative rank compu-
tation is in deterministic polynomial time. Comput. Complex., 27(4):561–593, 2018.

145. K. Iwama and H. Morizumi. An explicit lower bound of 5n - o(n) for boolean circuits. In
MFCS, volume 2420 of Lecture Notes in Computer Science, pages 353–364. Springer, 2002.

146. K. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the
permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, July 2004.

147. M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on Computing,
18(6):1149–1178, 1989.

148. H. Jung. Relationships between probabilistic and deterministic tape complexity. In Math-
ematical foundations of computer science, 1981 (Štrbské Pleso, 1981),, Lecture Notes in
Comput. Sci., 118,, pages 339–346,. ,, 1981.

149. V. Kabanets. Easiness assumptions and hardness tests: trading time for zero error. Journal
of Computer and System Sciences, 63(2):236–252, 2001.

150. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

151. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Comput. Complex., 13(1-2):1–46, 2004.

152. N. Kahale. Eigenvalues and expansion of regular graphs. Journal of the ACM, 42(5):1091–
1106, 1995.

153. B. Kalantari and L. Khachiyan. On the complexity of nonnegative-matrix scaling. Linear
Algebra and its Applications, 240:87–103, 1996.

154. B. Kalantari, I. Lari, F. Ricca, and B. Simeone. On the complexity of general matrix scaling
and entropy minimization via the RAS algorithm. Math. Program., 112(2):371–401, 2008.

155. B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of set
intersection. SIAM J. Discret. Math., 5(4):545–557, 1992.

156. M. Karchmer, R. Raz, and A. Wigderson. Super-logarithmic depth lower bounds via the
direct sum in communication complexity. Comput. Complex., 5(3/4):191–204, 1995.

157. M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. Discret. Math., 3(2):255–265, 1990.

158. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Proceedings of a symposium on the Complexity of Computer Computations, held
March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, USA, The IBM Research Symposia Series, pages 85–103. Plenum Press, New York,
1972.

159. R. M. Karp, M. Luby, and N. Madras. Monte Carlo approximation algorithms for enumera-
tion problems. Journal of Algorithms, 10(3):429–448, 1989.

160. G. Katona. A theorem of finite sets. Classic Papers in Combinatorics, pages 381–401, 1987.
161. N. Kayal. An exponential lower bound for the sum of powers of bounded degree polynomials.

Electron. Colloquium Comput. Complex., TR12-081, 2012.
162. N. Kayal, N. Limaye, C. Saha, and S. Srinivasan. An exponential lower bound for homoge-

neous depth four arithmetic formulas. SIAM J. Comput., 46(1):307–335, 2017.
163. G. Kempf and L. Ness. The length of vectors in representation spaces. In K. Lønsted, editor,

Algebraic Geometry, pages 233–243, Berlin, Heidelberg, 1979. Springer Berlin Heidelberg.
164. B. Klartag and O. Regev. Quantum one-way communication can be exponentially stronger

than classical communication. In L. Fortnow and S. P. Vadhan, editors, Proceedings of the
43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June
2011, pages 31–40. ACM, 2011.

165. B. Kostant. On convexity, the Weyl group and the Iwasawa decomposition. Annales scien-
tifiques de l’École Normale Supérieure, Ser. 4, 6(4):413–455, 1973.

166. M. Koucký, P. Nimbhorkar, and P. Pudlák. Pseudorandom generators for group products:
extended abstract. In L. Fortnow and S. P. Vadhan, editors, STOC, pages 263–272. ACM,
2011.

167. J. B. Kruskal. The number of simplices in a complex. Mathematical optimization techniques,
10:251–278, 1963.

104 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

168. F. Kubo and T. Ando. Means of Positive Linear Operators. Mathematische Annalen,
246:205–224, 1979.

169. M. Kumar and S. Saraf. Superpolynomial lower bounds for general homogeneous depth 4
arithmetic circuits. CoRR, abs/1312.5978, 2013.

170. M. Kumar and S. Saraf. On the power of homogeneous depth 4 arithmetic circuits. SIAM J.
Comput., 46(1):336–387, 2017.

171. O. Lachish and R. Raz. Explicit lower bound of 4.5n - o(n) for boolena circuits. In STOC,
pages 399–408. ACM, 2001.

172. L.-C. Lau. Cs 860: Eigenvalues and polynomials.
https://cs.uwaterloo.ca/ lapchi/cs860/notes/eigenpoly.pdf, 2022.

173. J. Leake, C. S. McSwiggen, and N. K. Vishnoi. Sampling matrices from Harish-Chandra-
Itzykson-Zuber densities with applications to quantum inference and differential privacy. In
S. Khuller and V. V. Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1384–1397. ACM, 2021.

174. J. Leake and N. K. Vishnoi. On the computability of continuous maximum entropy distribu-
tions: Adjoint orbits of Lie groups. In arXiv 2011.01851, 2020.

175. J. Leake and N. K. Vishnoi. On the computability of continuous maximum entropy distribu-
tions with applications. SIAM J. Comput., 51(5):1451–1505, 2022.

176. C. H. Lee, E. Pyne, and S. Vadhan. On the power of regular and permutation branching
programs, 2023. Manuscript.

177. A. K. Lenstra, W. Hendrik Jr, et al. The development of the number field sieve, volume 1554.
Springer Science & Business Media, 1993.

178. L. A. Levin. Universal sequential search problems. Problemy peredachi informatsii,
9(3):115–116, 1973.

179. X. Li. Two source extractors for asymptotically optimal entropy, and (many) more.
arXiv:2303.06802 [cs.CC], 2023.

180. Y. Li, Y. Qiao, A. Wigderson, Y. Wigderson, and C. Zhang. On linear-algebraic notions of
expansion. arXiv:2212.13154 [match.CO], 2023.

181. E. H. Lieb. Gaussian kernels have only Gaussian maximizers. Inventiones Mathematicae,
102(1):179–208, 1990.

182. N. Limaye, S. Srinivasan, and S. Tavenas. Superpolynomial lower bounds against low-depth
algebraic circuits. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 804–814. IEEE, 2021.

183. Y. Lindell. Secure multiparty computation. Commun. ACM, 64(1):86–96, 2021.
184. N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic

applications. Combinatorica, 15(2):215–245, 1995.
185. N. Linial, A. Samorodnitsky, and A. Wigderson. A deterministic strongly polynomial algo-

rithm for matrix scaling and approximate permanents. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages 644–652. ACM, 1998.

186. Y. Liu and R. Pass. Leakage-resilient hardness v.s. randomness. Electron. Colloquium Com-
put. Complex., TR22-113, 2022.

187. L. Lovász. Singular spaces of matrices and their application in combinatorics. Boletim da
Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 20(1):87–99,
1989.

188. L. Lovász. Combinatorial problems and exercises (2. ed.). North-Holland, 1993.
189. C.-J. Lu. Derandomizing Arthur-Merlin games under uniform assumptions. Computational

Complexity, 10(3):247–259, 2001.
190. C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: optimal up to constant

factors. In Proceedings of the 35th ACM Symposium on Theory of Computing (STOC ‘03),
pages 602–611. ACM, 2003.

191. A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277,
1988.

On the works of Avi Wigderson 105

192. A. Lubotzky and B. Weiss. Groups and expanders. In Expanding graphs (Princeton, NJ,
1992), volume 10 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 95–109.
Amer. Math. Soc., Providence, RI, 1993.

193. M. Luby and B. Veličković. On deterministic approximation of DNF. Algorithmica, 16(4-
5):415–433, 1996.

194. M. Luby, B. Veličković, and A. Wigderson. Deterministic approximate counting of depth-2
circuits. In ISTCS, pages 18–24, 1993.

195. G. A. Margulis. Explicit constructions of expanders. Problemy Peredači Informacii, 9(4):71–
80, 1973.

196. G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their
applications in the construction of expanders and concentrators. Problemy Peredači Infor-
macii, 24(1):51–60, 1988.

197. O. Meir. Toward better depth lower bounds: A KRW-like theorem for strong composition.
Electron. Colloquium Comput. Complex., TR23-078, 2023.

198. R. Meshulam and A. Wigderson. Expanders in group algebras. Combinatorica, 24(4):659–
680, 2004.

199. G. L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System
Sciences, 13(3):300–317, Dec. 1976.

200. K. D. Mulmuley and M. Sohoni. Geometric complexity theory I: An approach to the P vs.
NP and related problems. SIAM Journal on Computing, 31(2):496–526, 2001.

201. D. Mumford, J. Fogarty, and F. Kirwan. Geometric Invariant Theory. Ergebnisse der Math-
ematik und Ihrer Grenzgebiete, 3 Folge/A Series of Modern Surveys in Mathematics Series.
Springer Berlin Heidelberg, 1994.

202. L. Ness and D. Mumford. A stratification of the null cone via the moment map. American
journal of mathematics, 106(6):1281–1329, 1984.

203. Y. Nesterov. Introductory lectures on convex optimization, volume 87. Springer Science &
Business Media, 2004.

204. I. Newman. Private vs. common random bits in communication complexity. Inf. Process.
Lett., 39(2):67–71, 1991.

205. A. Nilli. On the second eigenvalue of a graph. Discrete Mathematics, 91(2):207–210, 1991.
206. N. Nisan. Lower bounds for non-commutative computation (extended abstract). In C. Kout-

sougeras and J. S. Vitter, editors, Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 410–418. ACM, 1991.

207. N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70, 1991.
208. N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,

12(4):449–461, 1992.
209. N. Nisan, E. Szemerédi, and A. Wigderson. Undirected connectivity in o(log ˆ1.5 n) space.

In 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsylvania,
USA, 24-27 October 1992, pages 24–29. IEEE Computer Society, 1992.

210. N. Nisan and A. Ta-Shma. Extracting randomness: A survey and new constructions. Journal
of Computer and System Sciences, 58(1):148–173, February 1999.

211. N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, Oct. 1994.

212. N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Comput. Complex., 6(3):217–234, 1997.

213. N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, Feb. 1996.

214. R. Ostrovsky and A. Wigderson. One-way fuctions are essential for non-trivial zero-
knowledge. In Second Israel Symposium on Theory of Computing Systems, ISTCS 1993,
Natanya, Israel, June 7-9, 1993, Proceedings, pages 3–17, 1993.

215. D. Peleg and E. Upfal. Constructing disjoint paths on expander graphs. Combinatorica,
9(3):289–313, 1989.

216. M. Pinsker. On the complexity of a concentrator. In 7th Annual Teletraffic Conference, pages
318/1–318/4, Stockholm, 1973.

106 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

217. N. Pippenger. On networks of noisy gates. In FOCS, pages 30–38. IEEE, 1985.
218. E. Pyne and S. Vadhan. Pseudodistributions that beat all pseudorandom generators (extended

abstract). In V. Kabanets, editor, Proceedings of the 36th Computational Complexity Con-
ference (CCC ‘21), volume 200 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

219. M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory,
12(1):128–138, 1980.

220. J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extractors, and depth-two super-
concentrators. SIAM Journal on Discrete Mathematics, 13(1):2–24 (electronic), 2000.

221. R. Raz. Exponential separation of quantum and classical communication complexity. In J. S.
Vitter, L. L. Larmore, and F. T. Leighton, editors, Proceedings of the Thirty-First Annual
ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA, pages
358–367. ACM, 1999.

222. R. Raz. Separation of multilinear circuit and formula size. Theory Comput., 2(6):121–135,
2006.

223. R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size.
J. ACM, 56(2):8:1–8:17, 2009.

224. R. Raz and P. McKenzie. Separation of the monotone NC hierarchy. Comb., 19(3):403–435,
1999.

225. R. Raz and A. Shpilka. Deterministic polynomial identity testing in non-commutative mod-
els. Comput. Complex., 14(1):1–19, 2005.

226. R. Raz, A. Shpilka, and A. Yehudayoff. A lower bound for the size of syntactically multilin-
ear arithmetic circuits. SIAM J. Comput., 38(4):1624–1647, 2008.

227. R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. J. ACM,
39(3):736–744, 1992.

228. R. Raz and A. Yehudayoff. Lower bounds and separations for constant depth multilinear
circuits. Comput. Complex., 18(2):171–207, 2009.

229. A. Razborov. Lower bounds on the monotone complexity of some boolean function. In
Soviet Math. Dokl., volume 31, pages 354–357, 1985.

230. A. A. Razborov. Lower bounds on monotone complexity of the logical permanent. Mathe-
matical Notes of the Academy of Sciences of the USSR, 37:485–493, 1985.

231. A. A. Razborov. On the distributional complexity of disjointness. Theor. Comput. Sci.,
106(2):385–390, 1992.

232. A. A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of
bounded arithmetic. Izvestiya: mathematics, 59(1):205, 1995.

233. A. A. Razborov. Quantum communication complexity of symmetric predicates. Izvestiya:
Mathematics, 67(1):145, feb 2003.

234. O. Reingold. On black-box separations in cryptography. Tutorial at the Third The-
ory of Cryptography Conference (TCC ‘06), March 2006. Slides available from
http://research.microsoft.com/en-us/people/omreing/.

235. O. Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):Art. 17, 24,
2008.

236. O. Reingold, L. Trevisan, and S. Vadhan. Pseudorandom walks in regular digraphs and
the RL vs. L problem. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC ‘06), pages 457–466, 21–23 May 2006.

237. O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and
new constant-degree expanders and extractors. In Proceedings of the 41st Annual Symposium
on Foundations of Computer Science (FOCS ‘00), pages 3–13, Redondo Beach, CA, 17–19
Oct. 2000. IEEE.

238. O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and
new constant-degree expanders. Annals of Mathematics, 155(1), January 2001.

239. E. Rozenman, A. Shalev, and A. Wigderson. Iterative construction of Cayley expander
graphs. Theory of Computing. An Open Access Journal, 2:91–120, 2006.

On the works of Avi Wigderson 107

240. E. Rozenman and S. Vadhan. Derandomized squaring of graphs. In Proceedings of the
8th International Workshop on Randomization and Computation (RANDOM ‘05), number
3624 in Lecture Notes in Computer Science, pages 436–447, Berkeley, CA, August 2005.
Springer.

241. M. Saks and S. Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer and System
Sciences, 58(2):376–403, 1999.

242. M. Sántha. On using deterministic functions to reduce randomness in probabilistic algo-
rithms. Information and Computation, 74(3):241–249, 1987.

243. R. Sanyal, F. Sottile, and B. Sturmfels. Orbitopes. Mathematika, 57(2):275–314, 2011.
244. J. Saunderson, P. A. Parrilo, and A. S. Willsky. Semidefinite descriptions of the convex hull

of rotation matrices. SIAM Journal on Optimization, 25(3):1314–1343, 2015.
245. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal

of the ACM, 27(4):701–717, 1980.
246. R. Shaltiel. Recent developments in extractors. In G. Paun, G. Rozenberg, and A. Salo-

maa, editors, Current Trends in Theoretical Computer Science, volume 1: Algorithms and
Complexity, pages 189–228. World Scientific, 2004.

247. R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudo-random
generator. Journal of the ACM, 52(2):172–216, 2005.

248. R. Shaltiel and C. Umans. Low-end uniform hardness versus randomness tradeoffs for AM.
SIAM Journal on Computing, 39(3):1006–1037, 2009.

249. A. Shamir. How to share a secret. Communications of the Association for Computing Ma-
chinery, 22(11):612–613, 1979.

250. C. E. Shannon. Communication theory of secrecy systems. The Bell system technical journal,
28(4):656–715, 1949.

251. A. A. Sherstov, A. A. Storozhenko, and P. Wu. An optimal separation of randomized and
quantum query complexity. In S. Khuller and V. V. Williams, editors, STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021,
pages 1289–1302. ACM, 2021.

252. A. Shpilka and A. Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero.
Comput. Complex., 10(1):1–27, 2001.

253. M. Singh and N. K. Vishnoi. Entropy, optimization and counting. In Proceedings of the 46th
Annual ACM Symposium on Theory of Computing, pages 50–59. ACM, 2014.

254. R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matri-
ces. The annals of mathematical statistics, 35(2):876–879, 1964.

255. M. Sipser. Expanders, randomness, or time versus space. Journal of Computer and System
Sciences, 36(3):379–383, 1988. Structure in Complexity Theory Conference (Berkeley, CA,
1986).

256. R. Smolensky. On interpolation by analytic functions with special properties and some weak
lower bounds on the size of circuits with symmetric gates. In 31st Annual Symposium on
Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume
II, pages 628–631. IEEE Computer Society, 1990.

257. R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM Journal on Com-
puting, 6(1):84–85, 1977.

258. S. Sra and R. Hosseini. Conic geometric optimization on the manifold of positive definite
matrices. SIAM Journal on Optimization, 25(1):713–739, 2015.

259. S. Sra, N. K. Vishnoi, and O. Yildiz. On geodesically convex formulations for the Brascamp-
Lieb constant. In E. Blais, K. Jansen, J. D. P. Rolim, and D. Steurer, editors, Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, volume 116 of LIPIcs,
pages 25:1–25:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

260. T. Steinke. Pseudorandomness for permutation branching programs without the group theory.
Technical Report TR12-083, Electronic Colloquium on Computational Complexity (ECCC),
July 2012.

108 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth K. Vishnoi

261. V. Strassen. Die berechnungskomplexität von elementarsymmetrischen funktionen und von
interpolationskoeffizienten. Numerische Mathematik, 20:238–251, 1973.

262. D. Straszak and N. K. Vishnoi. On convex programming relaxations for the permanent.
CoRR, abs/1701.01419, 2017.

263. D. Straszak and N. K. Vishnoi. Real stable polynomials and matroids: Optimization and
counting. In H. Hatami, P. McKenzie, and V. King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, pages 370–383. ACM, 2017.

264. D. Straszak and N. K. Vishnoi. Maximum entropy distributions: Bit complexity and stability.
In A. Beygelzimer and D. Hsu, editors, Conference on Learning Theory, COLT 2019, 25-28
June 2019, Phoenix, AZ, USA, volume 99 of Proceedings of Machine Learning Research,
pages 2861–2891. PMLR, 2019.

265. A. Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In H. Hatami, P. McKenzie,
and V. King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 238–251. ACM,
2017.

266. A. Ta-Shma, C. Umans, and D. Zuckerman. Lossless condensers, unbalanced expanders, and
extractors. Combinatorica, 27(2):213–240, 2007.

267. A. Tal. Towards optimal separations between quantum and randomized query complexities.
In S. Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020, Durham, NC, USA, November 16-19, 2020, pages 228–239. IEEE, 2020.

268. L. Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–879
(electronic), 2001.

269. L. Trevisan. Lecture notes on graph partitioning, expanders and spectral methods.
https://lucatrevisan.github.io/books/expanders-2016.pdf, 2017.

270. L. Trevisan and S. Vadhan. Pseudorandomness and average-case complexity via uniform
reductions. Computational Complexity, 16(4):331–364, December 2007.

271. H. Tyagi and S. Watanabe. Information-Theoretic Cryptography. Cambridge University
Press, 2023.

272. C. Udriste. Convex functions and optimization methods on Riemannian manifolds, volume
297. Springer Science & Business Media, 1994.

273. C. Umans. Pseudo-random generators for all hardnesses. Journal of Computer and System
Sciences, 67(2):419–440, 2003.

274. E. Upfal and A. Wigderson. How to share memory in a distributed system. Journal of the
ACM, 34(1):116–127, 1987.

275. S. P. Vadhan. Pseudorandomness, volume 7 (1–3) of Foundations and Trends in Theoretical
Computer Science. now publishers, December 2012. 336 pages.

276. L. G. Valiant. Graph-theoretic properties in computational complexity. Journal of Computer
and System Sciences, 13(3):278–285, 1976.

277. L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8(2):189–201, 1979.

278. N. K. Vishnoi. An algebraic proof of Alon’s combinatorial nullstellensatz. Congressus
Numerantium, 152:89–91, 2001.

279. N. K. Vishnoi. Zeros of polynomials and their applications to theory: A primer. In FOCS
2013 Workshop on Zeros of Polynomials and their Applications to Theory, pages 1–18, 2013.

280. N. K. Vishnoi. Geodesic convex optimization: Differentiation on manifolds, geodesics, and
convexity. CoRR, abs/1806.06373, 2018.

281. N. K. Vishnoi. Algorithms for Convex Optimization. Cambridge University Press, 2021.
282. W. C. Waterhouse. Do symmetric problems have symmetric solutions. American Mathemat-

ical Monthly, 90(6):378–387, 1983.
283. A. Wigderson. Mathematics and Computation: A Theory Revolutionizing Technology and

Science. Princeton University Press, 2019.
284. A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue bound: explicit con-

struction and applications. Combinatorica, 19(1):125–138, 1999.

On the works of Avi Wigderson 109

285. R. Williams. Improving exhaustive search implies superpolynomial lower bounds. In
STOC’10—Proceedings of the 2010 ACM International Symposium on Theory of Computing,
pages 231–240. ACM, New York, 2010.

286. R. Williams. Non-uniform ACC circuit lower bounds. In Proceedings of the 26th Annual
IEEE Conference on Computational Complexity, CCC 2011, San Jose, California, June 8-10,
2011, pages 115–125. IEEE Computer Society, 2011.

287. A. C. Yao. Some complexity questions related to distributive computing (preliminary report).
In M. J. Fischer, R. A. DeMillo, N. A. Lynch, W. A. Burkhard, and A. V. Aho, editors,
Proceedings of the 11h Annual ACM Symposium on Theory of Computing, April 30 - May 2,
1979, Atlanta, Georgia, USA, pages 209–213. ACM, 1979.

288. A. C. Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science, pages 80–91, Chicago, Illinois, 3–5 Nov.
1982. IEEE.

289. A. C. Yao. How to generate and exchange secrets (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986,
pages 162–167. IEEE Computer Society, 1986. The Garbled circuit protocol was presented
in the oral presentation of this paper.

290. A. C. Yao. Quantum circuit complexity. In 34th Annual Symposium on Foundations of
Computer Science, Palo Alto, California, USA, 3-5 November 1993, pages 352–361. IEEE
Computer Society, 1993.

291. R. Zippel. Probabilistic algorithms for sparse polynomials. In E. W. Ng, editor, EUROSAM,
volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer, 1979.

292. D. Zuckerman. Simulating BPP using a general weak random source. Algorithmica,
16(4/5):367–391, Oct./Nov. 1996.

293. D. Zuckerman. Randomness-optimal oblivious sampling. Random Structures & Algorithms,
11(4):345–367, 1997.

