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ABSTRACT

In this paper, we study differentially private point and confidence

interval estimators for simple linear regression. Motivated by re-

cent work that highlights the strong empirical performance of an

algorithm based on robust statistics, DPTheilSen, we provide a

theoretical analysis of its privacy and accuracy properties, offer

guidance on setting hyperparameters, and show how to produce

non-parametric, differentially private confidence intervals to ac-

company its point estimates.

1 INTRODUCTION

In the last several years, as differential privacy has made its way

from theory to practice, we are beginning to see where further the-

oretical research is needed to design differentially private methods

for common statistical inference tasks (see, e.g., [11]). One exam-

ple is with simple (ie. one-dimensional) linear regression, which is

one of the most fundamental tasks in data analysis. In 2018, the

economics research group, Opportunity Insights, found that there

was a lack of consensus around the best differentially private algo-

rithms for simple linear regression on regimes commonly used in

practice (e.g. small-area analysis with 40 to 400 datapoints per re-

gression). Therefore, to release linear regression estimates in their

Opportunity Atlas, the group used a heuristic method that did not

satisfy the formal guarantees of differential privacy [7, 8].

Motivated by this gap between theory and practice, Alabi et

al. [1] conducted an empirical evaluation of several differentially

private algorithms for simple linear regression. They found that a

suite of robust, median-based algorithms, DPTheilSen, based on

the non-private Theil-Sen estimator developed by Theil [25] and

Sen [23], performed better than standard OLS-based algorithms

across a range of practical regimes. DPTheilSen has now been im-

plemented in the open-source SmartNoise library [22] as the de-

fault algorithm for simple linear regression. While their empiri-

cal study was a valuable starting point, Alabi et al. [1] stated that

further theoretical understanding of the accuracy guarantees of

DPTheilSen, as well as design of uncertainty estimates, would be

needed to make this set of algorithms fully usable in practice.

In this paper, we address these open questions. We analyze the

privacy and accuracy guarantees of the DPTheilSen algorithms.

(We note that Dwork and Lei [14] analyzed one version of DPTheilSen

in the privacy setting, which they called the “Short-Cut Regression

Method," but they did not analyze the variants that were shown by

Alabi et al. [1] to have stronger performance, nor did they con-

sider uncertainty measures.) Our work provides theoretical expla-

nations for the results of Alabi et al., offers guidance on setting hy-

perparameters, and is the first to design and analyze differentially

private confidence intervals for DPTheilSen.

1.1 Related work

This work draws on the rich connections between robust statistics

and differential privacy. Dwork and Lei [14] stated that “robust

estimators are a useful starting point for constructing highly ac-

curate differentially private estimators." In their paper, they gave

a theoretical, asymptotic analysis of what they called the “Short-

Cut Regression Method," which is similar to one of the variants

of DPTheilSen we consider. However, Dwork and Lei did not con-

sider the more statistically efficient variants of DPTheilSen that

we do in this work, nor did they offer measures of uncertainty for

the estimates. Couch et al. [9] also find that robust estimators per-

form better than parametric estimators under differential privacy,

even when the data come from a parametric model, but they fo-

cus on hypothesis testing and do not provide a theoretical utility

analysis. Alabi et al. [1]’s experimental evaluations demonstrate

that differentially private analogues robust algorithms for simple

linear regression, such as DPTheilSen, perform better than non-

robust methods when the dataset size, variance of the independent

variables, or privacy loss parameter is small. However, Alabi et al.

also do not provide theoretical analysis or construct differentially

private confidence intervals for this estimator.

In general, linear regression is one of the most fundamental

tasks in statistics, and thus, has attracted much attention in the DP

literature. Sheffet [24] considered differentially private ordinary

least squares (OLS) methods and corresponding DP confidence in-

tervals, but unlike our work, these methods assume normality of

errors, require input data bounds, and satisfy approximate, rather

than pure, DP. Wang [26] studied private ridge regression and con-

sidered DP confidence intervals, but these methods require con-

suming additional privacy budget for estimating Hessians. Barrien-

tos et al. [3] and Evans et al. [16] use the subsample-and-aggregate

framework, but their approaches rely on normality assumptions or

normal approximations that only hold for large =. Bernstein and

Sheldon [4] consider a Bayesian approach, but unlike our work,

they require a prior on the distribution of both the regression co-

efficients and the independent variables.

Our approach to confidence intervals builds on the recent work

of Drechsler et al. [12], who design non-parametric DP confidence

intervals for the median. One main difference is that their algo-

rithms provide finite-sample validity for i.i.d. variables, while our

work offers asymptotic validity for i.i.d., as well as some forms of

non-i.i.d, variables (which, in our setting, are slopes computed by

the DPTheilSen algorithm). We do show finite-sample confidence

intervals for the TheilSen1Half variant. Unlike our work, Drech-

sler et al. do not provide theoretical utility analysis. Prior work has

also considered DP confidence intervals for mean estimation [13,

18, 21], but these cannot directly be applied for the median-based

estimator we consider. Recent work focuses on general approaches

to DP confidence intervals using bootstrapping [3, 5, 10, 17], but
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these can be expensive to compute and rely on parametric assump-

tions, such as normally distributed errors or point estimates, that

our work avoids. To the best of our knowledge, our work is the

first to theoretically analyze the different variants of DPTheilSen

as well as to design and analyze non-parametric, differentially pri-

vate confidence intervals to accompany its point estimates.

2 PRELIMINARIES

We will consider datasets that are multisets. The space of datasets

will be denoted by Multisets(D, =), where D is the underlying

set of elements and = is the cardinality of each multiset. We view

datasets d ∈ Multisets(D, =) as specified by histograms<d : D →
N where <d (F) gives the multiplicity of element F (so

∑
F∈D

<d (F) = =). We define the distance function for multisets, distms :

Multisets(D, =) × Multisets(D, =) → N, as follows. For any two

datasets d,d′ ∈ Multisets(D, =), distms (d, d′) = 1
2

∑
F∈D |<d (F)−

<d
′ (F) |, ie. the number of records that need to be changed to trans-

form d into d
′.

2.1 Differential Privacy

The algorithms in this paper satisfy pure differential privacy (DP).

Since they include hyperparameters, we state a definition of DP for

algorithms that take as input not only the dataset, but also the de-

sired privacy parameters and any required hyperparameters. Two

datasets d, d′ ∈ Multisets(D, =) are neighboring, denoted d ∼ d
′,

if distms(d,d′) = 1. LetH be a hyperparameter space andY be an

output space.

Definition 1 (Differential Privacy [15]). For Y ∈ R≥0, a random-

ized algorithm" : Multisets(D, =)×R≥0×H → Y is Y-differentially

private if and only if for all neighboring datasetsd ∼ d
′ ∈Multisets(D, =)

hyperparams ∈ H , and sets � ⊆ Y,

Pr[" (d, Y, hyperparams) ∈ �] ≤ 4Y · Pr[" (d′, Y, hyperparams) ∈ �] .

where the probabilities are taken over the random coins of" .

2.2 Simple linear regression

We consider the standard simple linear regression model, where

we are given = fixed values, G1, . . . , G= , which are not all equal, of

the predictor variable G . For each G8 , we observe the corresponding

value ~8 of the response random variable ~. We assume that the

model is ~8 = U + VG8 + 48 for 8 = 1, . . . , =, where U and V are

unknown parameters, and where each 48 is sampled independently

from the same continuous distribution � . Our goal is to design and

analyze Y-differentially private point and interval estimators for V .

2.3 A note on the convergence bounds

Although the DPTheilSen algorithms only require the assumptions

in Section 2.2, we will use a simplified setup in order to state the

convergence bounds. In particular, we assume that the G1, . . . , G=
are constants that are spaced apart equally, and that each 48 , 8 ∈ [=],
is sampled i.i.d. fromN(0, f24 ). These assumptions are not required

for the validity (ie. coverage) of the confidence intervals nor for the

privacy guarantees of the algorithms.

3 POINT ESTIMATORS

We begin by defining the non-private Theil-Sen estimator and one

of its efficient variants.

Definition 2 (Theil-Sen estimator [23, 25]). Let (G1, ~1), . . . , (G=, ~=)
be an arbitrary ordering of dataset d ∈ Multisets(R × R, =). For
1 ≤ 8 < 9 ≤ = such that G8 ≠ G 9 , compute the slope B8 9 between

the points (G8 , ~8) and (G 9 , ~ 9 ) as:

B8 9 =
~ 9 − ~8
G 9 − G8

= V +
4 9 − 48
G 9 − G8

Let sd denote the multiset of the slopes. The Theil-Sen estimator

V̂TS is

V̂TS = median(sd)
Theil [25] defined a second estimator, which has also been called

the “abbreviated" method in the literature. This variant considers

only up to ⌊=/2⌋ of the
(=
2

)
possible slopes between pairs of points.

Definition 3 (Theil-SenHalf estimator [25]). Let (G1, ~1), . . . , (G=, ~=)
be an ordering of d such that G1 ≤ G2 ≤ · · · ≤ G= . For 9 =

1, . . . , ⌊=/2⌋ such that G 9 ≠ G=/2+9 , compute the slope between

the points (G 9 , ~ 9 ) and (G=/2+9 , ~=/2+9 ).

B 9 =
~=/2+9 − ~ 9
G=/2+9 − G 9

= V +
4=/2+9 − 4 9
G=/2+9 − G 9

Let sd denote the multiset of the slopes. The Theil-Sen Half estima-

tor V̂TSHalf is

V̂TSHalf = median(sd)
The accuracy guarantees of the full Theil-Sen estimator (Defini-

tion 2) are typically analyzed asymptotically. In particular, the esti-

mator can be rewritten in terms of a U-statistic [19], whose asymp-

totic normality yields the following theorem by Sen [23] (stated in

terms of our setting).

Theorem 4. Given datapoints (G1, ~1), . . . , (G=, ~=), where
G1, . . . , G= are equally-spaced constants with variance f2G and ~8 =

U + VG8 + 48 , 48 ∼ N(0, f24 ), for 8 ∈ [=], let V̂TS be the Theil-Sen

estimator from Definition 2. Then,

√
= ·

(
V̂TS − V

)
3→N

(
0,

cf24

3f2G

)

Similar to the Theil-Sen algorithm, “incomplete" versions of Theil-

Sen, which require sampling some subset of the
(=
2

)
pairs of points,

can be analyzed through the asymptotic normality of some forms

of “incomplete U-statistics" (see, e.g., [20]). In the case of Theil-

Sen Half, however, the pairs are chosen such that the ⌊=/2⌋ slopes
are independent, which means that one can obtain a finite-sample

analysis using a Hoeffding bound. In Section 3.2, we show the com-

parison of convergence bounds for the non-private and private ver-

sions of these algorithms.

3.1 DPTheilSen algorithms

In the differentially private analogue of Theil-Sen, called DPTheilSen

(Algorithm 3.1), we compute pairwise estimates of the slope. How-

ever, we replace the computation of the median of the slopes with

a differentially private median algorithm, which can be one of sev-

eral algorithms. We use the widened exponential mechanism (de-

noted by DPWide), which was introduced by Alabi et al. [1] and
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further analyzed by Drechsler et al. [11]. We choose this algorithm

as it displayed strong performance, compared to other DP median

algorithms, in both works’ empirical evaluations. DPWide requires

a widening parameter Θ > 0, and bounds on the range of the out-

put, [−', '].

Algorithm 3.1: DPTheilSen: Y-DP Algorithm

Data: d ∈ Multisets(R × R, =)
Privacy parameters: Y ∈ R≥0
Hyperparameters: ', \ ∈ R≥0
sd = {}
for each of the

(=
2

)
unordered pairs of datapointsF,F ′ ∈ d

do
B = Slope(F,F ′)
Add B to sd

ṼTS = DPWide
(
sd,

Y
=−1 , (1/2, [−', '], \)

)

return ṼTS

Algorithm 3.2: Slope

Data: (G,~), (G ′, ~′) ∈ R × R

B =




0, if ~′ − ~ = 0 and G ′ − G = 0

sign(~′ − ~) · ∞, if G ′ − G = 0

(~′ − ~)/(G ′ − G), otherwise
return B

Lemma 5 ( [1]). Algorithm 3.1 (DPTheilSen) is Y-DP.

Next, we consider a more efficient algorithm, DPTheilSenkHalf

(Algorithm 3.3), which is a differentially private version of Theil-

Sen Half. (When : = 1, we denote the algorithm DPTheilSenHalf.)

Recall that in Theil-Sen Half, the datapoints are ordered such that

G1 ≤ G2 ≤ · · · ≤ G= , and the slopes are computed between the

datapoints (G 9 , ~ 9 ) and (G=/2+9 , ~=/2+9 ), for 9 = 1, . . . , ⌊=/2⌋. In
the DP setting, however, sorting all of the datapoints by ascend-

ing G-values would require scaling the privacy budget down by a

factor of=, which is too costly. A second approach is to instead ran-

domly select : ≥ 1 matchings of the = points that do not depend

on any particular ordering of the datapoints. As every point is used

to compute at most : slopes, the privacy parameter Y only has to

be scaled down by : before being passed to the DPmed algorithm.

A version of this algorithm (with : = 1) was previously considered

in the DP setting by Dwork and Lei [14].

We adopt a blend of these two approaches, which facilitates the

utility analysis. We sort the datapoints into only two bins based on

their x-values (ie. G8 ≤ G 9 for every datapoint (G8 , ~8) in the first

bin and every datapoint (G 9 , ~ 9 ) in the second bin). Sorting into

two bins requires paying an additional factor of 2 in the privacy

parameter, since a change in one datapoint may cause a change in

each of the two bins. Then, we define a partition of the complete

bipartite graph into ⌈=/2⌉ matchings, from which we randomly

select : matchings with replacement.

Lemma 6. Algorithm 3.3 (DPTheilSenkHalf) is Y-DP.

Algorithm 3.3: DPTheilSenkHalf: Y-DP Algorithm

Data: d ∈ Multisets(R × R, =)
Privacy parameters: Y ∈ R≥0
Hyperparameters: ', \ ∈ R≥0
®�1, ®�2 = Partition-and-Permute(d) // Partition the

datapoints into two bins, �1 and �2, such

that for all (G8 , ~8) ∈ �1, (G 9 , ~ 9 ) ∈ �2, G8 ≤ G 9 ,

|�1 | = ⌊=/2⌋, and |�2 | = ⌈=/2⌉. Then, randomly

permute the two bins to obtain ®�1 and ®�2.
" = Match( ®�1, ®�2, :) // For every ? ∈ [:], draw a

random A? ← {1, . . . , ⌈=/2⌉} and match the 8th

point in ®�1 with the (8 + A? ) mod ⌈=/2⌉th point

in ®�2, for 8 = 1, . . . , ⌊=/2⌋. Return ", the set

of matched points.

sd = {}
for (F1,F2) ∈ " do

B = Slope(F1,F2)

Add B to sd

ṼDPTSkHalf = DPWide
(
sd,

Y
2:

, (1/2, [−', '], \)
)

return ṼDPTSHalf

3.2 Convergence Bounds

A (1− ?)-convergence bound for an estimator V̂ of the true slope V

is a value C = C (U, V, (G1, . . . , G=), fG , f4 , =, Y) such that with proba-

bility at least 1 − ? (over the 48 ’s in the data and the coins of the

estimator), we have |V̂ − V | ≤ C .

Our convergence bounds for DPTheilSen and DPTheilSenkHalf

combine asymptotic analysis for the non-private convergence (as

in Theorem 4) and finite-sample analysis to characterize the effects

of privacy. These bounds are therefore not fully rigorous, and we

are working towards finite-sample analyses of these algorithms,

which we believe should be derivable using Berry-Esseen-like the-

orems for complete and incomplete U-statistics (eg. [6]).We do cur-

rently show finite-sample bounds for DPTheilSen1Half, which is

in contrast with Dwork and Lei’s [14] asymptotic analysis of a sim-

ilar version of this algorithm.

In Table 1, we display the (1−?)-convergence bounds for DPTheilSen,
DPTheilSenHalf (ie. : = 1), and DPTheilSenkHalf. For compar-

ison, we also include the non-private bounds of OLS, Theil-Sen,

and Theil-Sen Half, as well as the bounds of an differentially pri-

vate analogue of OLS, called DPSuffStats, which was analyzed by

Alabi and Vadhan [2]. We let 2?/2,= = q−1 (1 − ?/2) /√=.
The first three bounds in the table correspond to the non-private

algorithms. We see that Theil-Sen nearly recovers the accuracy of

OLS, up to a factor of
√
c/3. Theil-Sen Half, on the other hand, is

a factor of
√
2worse than Theil-Sen. The bounds for DPSuffStats,

DPTheilSen, and DPTheilSenHalf have the same constant factors

for the highest order term as OLS, Theil-Sen and Theil-Sen Half,

respectively, but they include lower order terms corresponding to

the noise due to privacy.

These bounds confirm some experimental findings of Alabi et

al. [1] with respect to the differences between DPSuffStats and

DPTheilSen and hyperparameter selection. First, the bounds show
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Estimator Convergence bound

OLS f4
fG
· 2?/4√

=

Theil-Sen∗
√

c
3
· f4fG ·

2∗
?/4√
=
· (1 + > (1))

Theil-Sen

√
2c
3
· f4fG ·

2?/4√
=
· (1 + > (1))

Half = > ln(4/?)

DPSuffStats
f4
fG
· 2?/12√

=
· (1 + g) + g (1 + g + |V |),

g ≈ (1−1/=)A
2

D log(3/?)
Y ·= ·f2

G

DPTheilSen∗
√

c
3 ·

f4
fG
·
(
2∗
?/16√
=
+ g

)
(1 + > (1)) + \ ,

g =
ln('/√c ·? ·\ ·f4)

Y= suff. small

DPTheilSen

√
2c
3
· f4fG ·

(
2?/16√

=
+ g

)
(1 + > (1)) + \ ,

Half g =
ln('/√c ·? ·\ ·f4)

Y= suff. small, = > 16 ln(16/?)

DPTheilSen

√
2c (2:+1)

9:
f4
fG
·
(
2∗
?/16√
=
+ g

)
(1 + > (1)) + \ ,

kHalf∗ g =
ln('/√c ·? ·\ ·f4)

Y= suff. small

Table 1: Comparison of 1−? convergence bounds (some con-

straints omitted). For estimatorsmarkedwith a star, bounds

are asymptotic.

that the DPTheilSen variants have a logarithmic dependence on

the range ' of the output Ṽ , while DPSuffStats has a quadratic

dependence on the range AD for the input data, and a linear depen-

dence on |V |. Second, they confirm that by using : ≈ 10matchings

in DPTheilSenkHalf, we can gain computational efficiency with-

out losing too much utility, although the partitioning step hinders

us from recovering the full utility of DPTheilSen.

In addition, these bounds offer insight guidance on how should

one set the widening parameter \ . For a given =, let g= be the upper

bound on g such that the normal quantile approximation is valid.

(We also allow g= to absorb the term 2?/4,=). For fixed ?, Y, ', f4 , fG ,
and =, if we select \ to minimize the DPTheilSenHalf bound, for

example, while satisfying the constraint that g ≤ g= , we have that

\ ≈ max

(
f4

Y=fG
, ' exp (−Y= · ln(2/?) · g=)

)

The factor f4/(=fG ) in the first term corresponds to the standard

deviation of the slopes computed by DPTheilSenHalf. When the

slopes are highly concentrated, the first term becomes small. The

second term, however, is independent of f4 and fG , which allows \

to remain bounded away from 0 and prevents a blowup in g . (Han-

dling the case of concentrated slopes was Alabi et al. [1]’s origi-

nal motivation for designing thewidened exponential mechanism.)

Note that ', Y, = and ? are known in practice; if the experimental

design suggests that the slopes may be concentrated (eg. if the x-

values are located at one of two endpoints of an interval), it may

be beneficial to set \ to scale with the second term.

4 INTERVAL ESTIMATORS

Finally, we show how to produce differentially private confidence

intervals for DPTheilSen. The algorithm below (Algorithm 4.1) ap-

plies the “naïve" exponential mechanism confidence interval from

Drechsler et al. [12]. The idea is to run the widened exponential

mechanism quantile estimator twice (with different target quan-

tiles) such that with high probability, the two estimates capture

the non-private confidence interval for the median. We use the

naïve version to facilitate the utility analysis, but an open ques-

tion is whether we can theoretically analyze Drechsler et al.’s more

nuanced algorithms (which empirically provide tighter confidence

intervals for the median) within the context of DPTheilSen.

Algorithm 4.1: DPTheilSenCI: Y-DP Algorithm

Data: d ∈ Multisets(R × R, =)
Privacy parameters: Y ∈ R>0
Hyperparameters: ? ∈ (0, 1), ', \ ∈ R>0 , alg ∈

{DPTheilSen, DPTheilSenHalf,

DPTheilSenkHalf}

Compute slopes sd = (B1, . . . , B# ) according to alg.

1 =




√
4/9 · 2∗

?/4,= if alg is DPTheilSen
√
(2: + 1)/(3:) · 2∗

?/4,= if alg is DPTheilSenkHalf
√
2 · 2?/4,= if alg is DPTheilSenHalf

C = ln

(
4('−\ )
\ ·?

)
/(Y# )

ṼTS
!

= DPWide(sd, Y/2, (1/2 − 1 − C, [−', '], \)) − \
ṼTS
*

= DPWide(sd, Y/2, (1/2 + 1 + C, [−', '], \)) + \
return [ṼTS

!
, ṼTS

*
]

Lemma 7. Algorithm 4.1 (DPTheilSenCI) is Y-DP.

As DPTheilSenHalf produces slopes that are independent, the

resulting confidence interval has finite-sample validity. For DPTheilSen

and DPTheilSenkHalf, the slopes are not independent; however,

we are able to use their limiting distributions to show asymptotic

validity of the confidence intervals for these estimators. In both

cases, the validity statements do not depend on any parametric as-

sumptions.

5 CONCLUSION

In this work, we analyze the theoretical privacy and utility guar-

antees of DPTheilSen. We provide convergence bounds, offer in-

sight into hyperparameter selection, and show how to produce dif-

ferentially private confidence intervals. We plan to provide finite-

sample analyses for all the variants of this algorithm. In the future,

we hope to analyze the optimality of these algorithms and extend

them to the setting of multivariate linear regression.
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