
Proofs of Retrievability via Hardness Amplification

Yevgeniy Dodis∗ Salil Vadhan† Daniel Wichs‡

January 25, 2009

Abstract

Proofs of Retrievability (PoR), introduced by Juels and Kaliski [JK07], allow the client to
store a file F on an untrusted server, and later run an efficient audit protocol in which the
server proves that it (still) possesses the client’s data. Constructions of PoR schemes attempt to
minimize the client and server storage, the communication complexity of an audit, and even the
number of file-blocks accessed by the server during the audit. In this work, we identify several
different variants of the problem (such as bounded-use vs. unbounded-use, knowledge-soundness
vs. information-soundness), and giving nearly optimal PoR schemes for each of these variants.
Our constructions either improve (and generalize) the prior PoR constructions, or give the first
known PoR schemes with the required properties. In particular, we

• Formally prove the security of an (optimized) variant of the bounded-use scheme of Juels
and Kaliski [JK07], without making any simplifying assumptions on the behavior of the
adversary.

• Build the first unbounded-use PoR scheme where the communication complexity is linear
in the security parameter and which does not rely on Random Oracles, resolving an open
question of Shacham and Waters [SW08].

• Build the first bounded-use scheme with information-theoretic security.

The main insight of our work comes from a simple connection between PoR schemes and the
notion of hardness amplification, extensively studied in complexity theory. In particular, our im-
provements come from first abstracting a purely information-theoretic notion of PoR codes, and
then building nearly optimal PoR codes using state-of-the-art tools from coding and complexity
theory.

∗Computer Science Dept. NYU. Email: dodis@cs.nyu.edu. Supported by NSF grants CNS-0831299, CNS-
0716690, CCF-0515121, CCF-0133806. Work partially completed while visiting the Center for Research on Compu-
tation and Society at Harvard University.
†School of Engineering and Applied Sciences and Center for Research on Computation and Society, Harvard

University. salil@eecs.harvard.edu. Supported by NSF grant CNS-0831289.
‡Computer Science Dept. NYU. Email: wichs@cs.nyu.edu.

1 Introduction

Many organizations and even average computer users generate huge quantities of electronic data.
Although advances in hard-disk capacity have mostly kept up, allowing most users to store their
data locally, there are many reasons not to do so. Users worried about reliability want to have
replicated copies of their files stored remotely in case their local storage fails. Remotely stored
data can be made accessible from many locations making it more convenient for many users.
Some companies provide useful functionality on remotely stored data using the “software as a
service” model. For example, many web-based e-mail services provide tools for searching and
managing remotely stored e-mails, making it beneficial for users to store these remotely. Lastly,
some organizations create large data sets that must be archived for many years, but are rarely
accessed and so there is little reason to store such data locally.

Proofs of Retrievability. One problem with remote storage is that of accountability. If
remotely stored data is rarely accessed, how can users be sure that it is being stored honestly? For
example, if a remote storage provider experiences hardware failure and loses some data, it might
reason that there is no need to notify its clients, since there is a good chance that the data will
never be accessed and, hence, the client would never find out! Alternatively, a malicious storage
provider might even choose to delete rarely accessed files to save money. To assuage such concerns,
we would like a simple auditing procedure for clients to verify that their data is stored correctly.

Such audits, called Proofs of Retrievability (PoR), were first formalized by Juels and Kaliski
in [JK07]. In a PoR protocol a client stores a file F on a server an keeps only a very short
private verification string locally. Later, the client can run an audit protocol in which it acts as a
verifier while the server proves that it possesses the client’s data. The security of a PoR protocol is
formalized by the existence of an extractor that retrieves the original file F from any adversarial
server that can pass an audit with some reasonable probability. One simple PoR protocol would
be for the client to sign the file F and store only the verification key locally. Then, to run an
audit, the server would send the file along with the signature. Of course, for practical use, we are
interested in schemes with significantly better efficiency. In particular, we want to minimize the
communication between the client and the server, and even wish that the amount of data read by
the server to run an audit should be much smaller than (essentially independent of) the size of the
original file.

In the rest of the introduction, we introduce a general “PoR framework” and show how prior
PoR constructions fit into it. We then describe our contributions by showing how to optimize
the components of this framework. We also explain a connection between PoR and “hardness
amplification”, which will allow us to get qualitatively stronger results for some of our schemes.

1.1 The PoR Framework

Our framework consists of two parts: first, we define a purely information-theoretic primitive which
we call a PoR code and, second, we give several options for converting PoR codes into “full” PoR
schemes.

PoR Codes. A PoR code consists of three procedures Init, Read and Resp. The function Init
specifies the initial encoding of the original client file F into the server file F ′ = Init(F) which
is stored on the server. The functions Read,Resp are used to specify a challenge-response audit
protocol. The client sends a random challenge e which consists of two parts e = (e1, e2). The

1

first part of the challenge identifies a set of t indices (i1, . . . , it) = Read(e1), which correspond to t
locations in F ′ that the server should read to compute its response. We refer to t as the locality
parameter and attempt to minimize it. The server reads the sub-string x = F ′[i1]|| . . . ||F ′[it] of the
server file F ′ and computes a response µ = Resp(x, e2), which it sends to the client. The PoR code
specifies a natural but incomplete PoR protocol, as depicted in Figure 1.

1. The client starts out with the client file F and computes a server file F ′ = Init(F), to store on
the server.

2. To run an audit, the client picks a random challenge e = (e1, e2) and sends it to the server.

3. The server reads t locations (i1, . . . , it) = Read(e1) of F ′, resulting in a sub-string x of length t
and sends a response µ = Resp(x, e2) to the client.

Figure 1: An Incomplete PoR Protocol based on a PoR Code (Init,Read,Resp).

Extraction Property. For the security of a PoR code, we want to ensure that any (even com-
putationally unbounded) adversary A, which provides the correct value µ with some “reasonable”
probability ε, must indeed “know” the file F .1 Towards that goal we require the existence of a
decoder D which decodes the file F given oracle access to some such adversary A. We distinguish
between two types of “ε-adversaries”: an ε-erasure adversary answers correctly with probability
at least ε and does not answer the rest of the time, while an ε-error adversary answers correctly
with probability at least ε and can answer incorrectly the rest of the time. As the names suggest,
there is a clear relation between our problem and the erasure/error decoding of error-correcting
codes (ECC). In other words, we can think of the list of all correct responses µ as the challenge
e varies as comprising a (possibly exponential) encoding of F and an ε-(erasure/error) adversary
as defining a corrupted codeword. The extraction property requires that we construct PoR codes
which are (erasure/error)-decodable from an ε fraction of correct responses. Since we want to allow
ε � 1

2 , we will need to rely on the notion of list-decoding (i.e. the decoder D outputs a small list
of L candidates, one of which is the actual file F) for the case of errors. Notice that the func-
tions Init,Read,Resp give our PoR codes a special structure, which is not usually present in general
ECCs: for any client file F , the server file F ′ = Init(F) allows the server to compute a response
µ for a challenge e (i.e. any arbitrary position in the full codeword) efficiently by accessing only
t “blocks” of F ′ for some small t. The server file F ′ should not be much larger than the original
file F , while the full codeword, which consists of all responses µ, could be exponentially long and
is never computed or stored in full.

Basic PoR Code Construction. We now describe a basic PoR code construction, which is
the basis of most prior work. The function Init creates a server file F ′ which is an encoding of
the client file F under some appropriate ECC, so that F can be recovered from any δ fraction of
the blocks of the server file F ′. Usually δ is some constant (e.g. δ = 3/4) and the size of F ′ is
not much larger than the size of F (e.g. |F ′| ≈ 4/3|F |). The challenge e is a random t-tuple of
locations in F ′, and the response µ is the value of F ′ at those locations. We can think of this
in our framework as e1 explicitly listing t locations, e2 being empty, and the Read,Resp functions
being identity. On an intuitive level, in order for the server to “forget” any part of F , it must
“forget” at least (1− δ)-fraction of the blocks of F ′, in which case it should not be able to respond

1We wish to allow for even very small ε, and only assume that it is bounded above some negligible threshold ε0.

2

correctly with probability better than ε = δt (which can be made exponentially small by setting t
to be proportional to the security parameter). However, this is only intuition and our actual proof
needs to work the other way — given an adversarial server that responds correctly with probability
ε > δt, we need to decode the original file.

Full PoR Schemes. The protocol shown in Figure 1 is incomplete, since the server can give
any answer in step 3 and we did not specify how the client decides if to accept or reject the audit!
We need to ensure that any adversarial server that passes a single audit with probability ε is an
ε-(erasure/error) adversary. To that end we can have several possible techniques for converting a
PoR code into a full PoR scheme.
1. Information-Theoretic Bounded-Use PoR. The simplest technique is to have the client
precompute several random challenge-response pairs {(e(i), µ(i))} and store them locally before
giving F ′ to the server. Later, in the i-th audit, the client sends the challenge e(i) and directly
verifies the server’s response by comparing it against the correct stored value µ(i). To argue the
security of this construction, we notice that a prover who can pass an audit with probability ε
must be an ε-error adversary. The advantage of this solution comes from the fact that it does not
need to rely on any computational assumptions, and, hence, we get information-theoretic security.
The downside comes from the fact that a fresh challenge-response pair is needed for each audit.
Thus, we will only get a bounded-use information-theoretic PoR, where the client’s storage will be
proportional to the maximum number of audits `.
2. Computational Bounded-Use PoR. It is simple to reduce the client’s storage in the above
protocol, and make it independent of the number of audits that the client runs, by settling for
computational security. Firstly, the client picks the challenges e(i) pseudorandomly so that it only
needs to remember a short key k1 for a pseudorandom function (PRF) f and can efficiently recreate
the challenge e(i) = fk1(i) later on at the time of an audit. Secondly, the client does not store the
responses µ(i) at all, but instead computes a tag σi = fk2((i, µ(i))) for each response, and stores the
tags σi on the server. During the ith audit protocol, the server computes a a response and sends
it along with the ith tag σi, so that the client can verify that the response is correct. Note that
the client only stores two short keys k1, k2 and the rest of the storage is relegated to the server. If
the file F is much larger than the maximum number of audits `, the extra server storage will also
be relatively insignificant, resulting in a very efficient bounded-use computational PoR. The tags
σi hide future challenge values while ensuring that the server’s response is correct, and thus the
security analysis is similar to that of the information-theoretic scheme.
3. Computational Unbounded-Use PoR. To get an unbounded (computational) PoR scheme,
where the client can run an unlimited number of audits, we need a slightly more complicated
technique. The basic idea is for the client to provide the server with some authenticator-tags for
the blocks of F ′ in addition to the actual server file F ′, and keep only some small verification
key locally. The authenticator-tags must be designed specifically to fit the PoR codes in such a
way that the server can use them to authenticate the response µ for an arbitrary challenge e and
convince the client that µ is correct. For example, in the basic PoR code construction, where the
response µ = F ′[i1]|| . . . ||F ′[it] consists of a subset of blocks, the authenticators-tags can simply be
the tags of the individual blocks of F ′ under some message authentication code (MAC) so that the
server sends the response µ together with the tags of each of the blocks F ′[i1], . . . , F ′[it]. For more
complicated PoR codes, we will require smarter authenticator-tag constructions which allow the
server to authenticate a short response µ by aggregating the authenticator-tags of the individual

3

blocks in some clever way.

Bounded or Unbounded? Let us compare this last solution with the bounded-use approaches
from before. On the positive side, unbounded-use schemes do not force us to choose the number of
audits ahead of time. On the negative side, the main problem with the authenticator-based solution
is that, in all known schemes, the authenticators require a significant amount of extra storage on
the server, resulting in a large server storage overhead. Intuitively, each block of the server file
F ′ usually needs to be separately authenticated and, therefore, the solution usually doubles server
storage (or increases communication complexity by settling for large blocks). Bounded-use schemes
can often be significantly more efficient in terms of server storage, especially when the number of
audits to be run is much smaller than the file-size. For example, for a 1 GB file, current unbounded-
use schemes only become more efficient than bounded-use ones if the client wants to run more than
33 million audits (at one audit per hour, this won’t occur for 3,800 years)!2 Therefore, there is
often a good reason to study bounded-use schemes in practice. Moreover, bounded-use schemes
also allow us to get information-theoretic security (at a cost in client storage).

In summary, there are tradeoffs in parameters and security between bounded and unbounded
use schemes, and which one is better depends on the particular application. However, there is also
another fundamental difference between these schemes. The use of authenticators in unbounded
schemes allows us to restrict our attention to ε-erasure adversaries, since the decoder can always
detect if the adversary answers incorrectly for any challenge. As we shall see, this will translate to a
relatively simple form of (unique-)decoding with a straightforward proof. In bounded-use schemes,
the decoder cannot verify if arbitrary responses are correct and, therefore, we need to analyze the
(list-)decoding of PoR codes with respect to an ε-error adversary, which will make our analysis
more difficult. Although we are only guaranteed list-decoding for the PoR code, the extractor for
the full PoR scheme outputs a single candidate which matches the client’s file F with overwhelming
probability. To do so, we will also make the client store a short, private, “almost-universal” hash
h of the file F and the extractor outputs the only possibility in the list which matches the hash.

1.2 Prior Work

Naor and Rothblum [NR05] studied a primitive called sublinear authenticators which is closely
related to PoR. Although the motivation for sublinear authenticators is somewhat different than
PoR, we can also think of sublinear authenticators as PoR schemes that provide security against
an restricted class of adversarial servers. In particular, for sublinear authenticators, we assume
that the adversarial server runs the honest code of an audit protocol, but does so using some
possibly modified server file F̃ ′ 6= F ′. In the PoR setting, the adversarial server may use an
arbitrary strategy to run an audit protocol and its responses may not be consistent with any
particular server file. Hence, security for sublinear-authenticators is strictly weaker and does not
necessarily imply security for PoR. The main result of Naor and Rothblum is a lower bound for
information theoretic unbounded-use sublinear authenticators, which translated to a lower-bound
for information theoretic unbounded-use PoR schemes, essentially showing that schemes of this
type cannot be efficient. In addition, Naor and Rothblum proposed two constructions for sublinear
authenticators: a bounded-use information theoretic scheme (corresponding to construction 1 in
our framework) and an unbounded-use computational scheme (corresponding to construction 3).

2We assume an additional server storage of (at least) 1 GB for the unbounded-use schemes versus 256 bits per
audit for bounded-use schemes, on top of the file F ′.

4

Both schemes use the basic PoR code that we described. In [NR05], these schemes were shown to
be secure as sublinear authenticators, but not as PoR schemes.

Juels and Kaliski [JK07] were the first to define PoR schemes formally and gave two PoR
constructions. First, they show that the unbounded-use computational scheme of [NR05] is also
secure as a PoR scheme. Second, Juels and Kaliski propose a computational bounded-use scheme
as their main construction. This scheme is essentially equivalent to construction 2 within our
framework and also uses the basic PoR code. However, to prove the security of the scheme, [JK07]
resorts to a simplifying assumption on the behavior of the adversary called block-independence, more
or less assuming that the PoR attacker follows the restrictive syntax of the sublinear-authenticator
attacker mentioned above. Put differently, they only show the security of their scheme as a sublinear
authenticator, and make the “simplifying assumption” that this is enough for full PoR security. In
a more recent work, Bowers et al. [BJO08] use a slightly different simplifying assumption, requiring
that the adversary cannot update its state during a multi-round protocol. Neither work gives any
security guarantees against fully Byzantine adversarial servers.

Shacham and Waters [SW08] notice that, in the unbounded-use scheme of [NR05, JK07] (cor-
responding to construction 3, with basic PoR code), the communication between server and client
is unnecessarily large; in particular, it is O(λ2) where λ is the security parameter. This is because
a server response consists of t = O(λ) file blocks, each of which is of size O(λ) (being the tag
for the block under the message authentication code). In our language, the problem is that the
underlying PoR code has a large output alphabet. Shacham and Waters showed that this is not
necessary, by constructing a new scheme which implicitly uses an improved PoR code with a smaller
output alphabet. This scheme improves the server’s response size but, unfortunately, at the cost of
increasing the client’s challenge size to O(λ2) — a problem which was remedied in [SW08] through
the use of Random Oracles. The main contribution of Shacham and Waters is the construction of
homomorphic linear authenticators, following a similar (but informal and less efficient) approach
of Ateniese et al. [ABC+07]. Such authenticators allow the server to aggregate the tags of indi-
vidual file blocks and authenticate a response under the improved PoR code (actually, any linear
functions of the blocks) using a single short tag. Shacham and Waters (again following [ABC+07])
also design a PoR scheme with public verifiability (i.e. the client need not store any private data),
using a clever construction of publicly verifiable homomorphic authenticators.

1.3 Our Results

We make two observations about the prior work. Firstly, although all constructions implicitly use
some form of PoR codes, such codes have not been defined or studied explicitly. In particular,
[NR05, JK07] use the basic PoR code, while the recent work of [SW08] has a clever but ad-hoc
optimization which improves some parameters (the response size) at the cost of others (the challenge
size). Secondly, we notice that none of the prior bounded-use schemes are known to be to secure
against fully Byzantine adversarial server strategies, even though such schemes are often more
efficient and practical than unbounded-use constructions in many scenarios.

In this work, we undertake a thorough study of PoR codes and give a construction of PoR codes
based on hitting samplers and error-correcting codes. Since all prior PoR code constructions (which
implicitly appeared in prior work) employ sub-optimal variants of these primitives, we can improve
the efficiency of all known constructions. In particular, we show how to construct a variant of the
computational unbounded-use scheme of [SW08], where the challenge size and response size are

5

short, without the need of the random-oracle model. We also show that our optimizations improve
the prior bounded-use schemes and allow for a flexible tradeoff between the locality t and the server
storage overhead, without increasing the communication complexity.

As we have already mentioned, proving the security of bounded-use schemes (information the-
oretic and computational) relies on the security of PoR codes with respect to ε-error adversaries,
which was never shown fully in prior work. It turns out that most of the difficulty lies in decoding
the basic PoR code. Interestingly, this problem is intimately connected to hardness amplification
and, more specifically, to direct product theorems [Yao82, Lev87, Imp95, GNW95, IW97, Tre03,
IJK06, IJKW08]. Informally, direct product theorems state that if a given task T is hard to accom-
plish (for a certain class of attackers) with probability more than δ, then t independently sampled
tasks T1, . . . , Tt are hard to simultaneously accomplish (for a slightly weaker class of attackers) with
probability significantly greater than the “expected” ε = δt. To prove such a statement, one starts
with the attacker A who can solve T1, . . . , Tt with probability greater than ε, and builds a more
complicated attacker B who can solve a single task T with probability more than δ. The connec-
tion between hardness amplification and error-decoding for the basic PoR code is as follows: one
simply defines T to be the task of predicting a random location of F ′. Then, the attacker A above
becomes an adversarial server who answers ε-fraction of the t-tuples in F ′, and the constructed at-
tacker B becomes an “extractor” who recovers a δ-fraction of F ′ (which should suffice in recovering
all of F). Using this connection, we will be able construct an efficient extractor for bounded-use
schemes, and, thus, provide the first formal proofs of security for such schemes, including the first
information-theoretic bounded-use scheme.

Scheme Bounded? Security Server Storage Client Storage Challenge Response

[JK07] † `-time Comp/Know γk +O(`λ) O(λ) O
(

λ
γ−1 log k

)
O
(
λ2

γ−1

)
[JK07] No Comp/Know 2γk O(λ) O

(
λ
γ−1 log k

)
O
(
λ2

γ−1

)
[SW08] ‡ No Comp/Know 2γk O(λ) O(λ) O(λ)

Scheme 1 `-time I.T./Know γk O
(
` λ
γ−1 log k

)
O
(

λ
γ−1 log k

)
O(λ)

Scheme 2 `-time I.T./Inf γk O(`λ) O(λ) O(λ)
Scheme 3 `-time Comp/Know γk + `λ O(λ) O

(
λ
γ−1 log k

)
O(λ)

Scheme 4 ‡ `-time Comp/Know γk + `λ O(λ) O(λ) O(λ)
Scheme 5 `-time Comp/Inf γk + `λ O(λ) O(λ) O(λ)
Scheme 6 No Comp/Know 2γk O(λ) O(λ) O(λ)

†= Not proven secure as PoR scheme ‡= Random Oracle Model

Table 1: PoR Schemes: Prior Results and Our Improvements. k is the file size, λ is the security
parameter, and 1 < γ ≤ 2 is a flexible parameter. All schemes have locality O(λ/(γ − 1)).

In Table 1, we compare the efficiency of our schemes (1 – 6) with prior construction. We
assume that the client file size is k, the security parameter is λ, and choose to parameterize the
schemes by a value γ in the range 1 ≤ γ ≤ 2, which allows us to formulate a flexible tradeoff
between parameters. In all of the schemes the locality t = O(λ/(γ − 1)) and, as we will see, all
bounded-use schemes achieve a server storage of roughly γk, while the use of authenticators in the
unbounded-use schemes roughly doubles the server storage.3 We see that γ highlights a (necessary)
tradeoff between server storage overhead and the locality t. For example, setting γ = 2 we double

3In prior unbounded-use schemes, one might reduce the overhead by making the block size larger. However, this

6

the server storage and get locality t = O(λ), while setting γ = 1.01 we can achieve bounded-use
schemes were the server only stores 1% of additional information, at the expense of 100× increase
in locality (but no other parameter degradation). We look at both information-theoretic (I.T.)
and computational (Comp) security. We also consider both efficient and inefficient “extractors”.
Intuitively, an efficient extractor provides “knowledge soundness” (Know), guaranteeing that the
adversary stores the file in some reasonable format and can efficiently recover it. An inefficient
extractor only provides “information soundness” (Inf), guaranteeing that the server still has all of
the “information” in the file, but may store it in some inefficient format. In the table we consider
all possibilities with (I.T. / Know) being the strongest security guarantee.

A Note on the Setting γ = 1. We can also set γ = 1 an thus get no multiplicative server
overhead (and only a small additive overhead in most of the above schemes). In this case, there
is no locality and the server has to read the entire contents of its storage. However, we do get
some additional improvements in our schemes as shown in Table 1 since the client no longer needs
to specify to the server which values the server should read (the server always reads all of them)!
Therefore, in our Scheme 1, the client storage becomes O(`λ) and in Schemes 1,3 the challenge size
becomes O(λ).

2 Preliminaries

We assume the basic familiarity with (linear) error-correcting codes. In particular, the standard
notation [n, k, d]q denotes an error-correcting codes over a q-ary alphabet with minimal (Hamming)
distance d, block length n and message k. We also assume familiarity with Reed-Solomon codes,
which are [n, k, n−k+1]q-codes for a prime power q ≥ n. In Appendix A we review few more basic
facts about (list-)decodability of codes which will be needed for some proofs. For an integer N , we
let [N] denote the set {1, . . . , N}. Given a string F ∈ ΣN we let F [i] ∈ Σ denote the ith symbol of
F for i ∈ [N].

A hitting sampler, or just hitter for short, provides a randomness-efficient way of sampling t
elements. We review the definition and parameters achieved by known efficient constructions (see
the survey [Gol97] for more details).

Definition 1. Let Hit : [M]→ [n]t be a function and interpret the output Hit(e) as a sample of t
elements in [n]. We say that Hit(e) hits W ⊆ [n] if it includes at least one member of W . A function
Hit is a (δ, ρ)-hitter if for every subset W ⊆ [n] of size |W | ≥ (1 − δ)n, Pre←[M][Hit(e) hits W] ≥
(1− ρ).

A simple hitter construction involves choosing t uniformly random and independent elements
of [n]. This results in a (δ, ρ)-hitter with ρ = (1 − δ)t for any 0 < δ < 1. Said differently,
for any 0 < δ < 1, ρ > 0 we get a (δ, ρ)-hitter with sample complexity t = O(log(1/ρ)/(1 − δ))
and randomness complexity log(M) = t log(n). Interestingly, the randomness complexity can be
reduced significantly by using a more clever construction. Indeed, the survey of Goldreich [Gol97]
shows how to achieve the following parameters using a construction based on expander graphs.

increases communication (and most other parameters, too). Thus, to keep our comparison fair, we assume fixed block
size and do not reflect this tradeoff in Table 1.

7

Theorem 2. There exists an efficient hitter family such that, for any integer n and any 0 <
δ < 1, ρ > 0, we get sample complexity t = O(log(1/ρ)/(1 − δ)) and randomness complexity
log(M) = log(n) + 3 log(1/ρ).

3 PoR Codes

A PoR code consists of a triple of functions (Init,Read,Resp) with domains and ranges:

Init : (Σc)k → (Σc)n , Read : [M]→ [n]t , Resp : (Σc)t × [n′]→ Σr

for some alphabets Σc,Σr of sizes qc, qr respectively. The function Init is an initial encoding which
converts a client file F into a server file F ′ = Init(F). We let k̃ = bk log(qc)c denote the initial
file size in bits. The function Read,Resp are used by the server to run an audit. The client picks
a challenge e = (e1, e2) ∈ [N] where N = Mn′ and we identify [N] with [M] × [n′]. The function
Read(e1) determines a tuple of t positions (i1, . . . , it) in F ′ which the server must read to produce
the response µ = Resp(F ′[(i1, . . . , it)], e2). The functions Init,Read,Resp are actually used by the
client/server and hence we require that they are all polynomial time computable.

For our understanding of PoR codes, it makes sense to think of functions Read,Resp as defining
a challenge-response encoding of the server file F ′. Firstly, we can think of the Read function as
defining a simpler direct-product encoding DPE of the server file F ′ into the codeword C ′ ∈

(
(Σc)t

)M
defined by:

C ′ = DPE(F ′) =
(
F ′[Read(1)], F ′[Read(2)], . . . , F ′[Read(M)]

)
(1)

so that each position of C ′ consists of a concatenation of t positions in F ′. The function Read,Resp
together define the function Answer : (Σc)n × [N]→ Σr as Answer(F ′, e) = Resp(F ′[Read(e1)], e2)
where e = (e1, e2). The challenge-response encoding CRE of the server file F ′ results in a codeword
C ∈ (Σr)N defined by:

C = CRE(F ′) =
(
Answer(F ′, 1), . . . ,Answer(F ′, N)

)
. (2)

Note that neither the direct-product encoding C ′ nor the challenge-response encoding C are ever
stored explicitly and hence the functions DPE,CRE need not be efficient. In our construction, the
values N,M,n′ will be exponential. Of course, as is usually the case for error-correcting codes, we
want to have a family of PoR codes which allows for many flexible choices of the parameters. In
particular, we would like to have a family of codes parameterized by the bit size k̃ = k log(qc) of
the initial client file and the security parameter λ.

Definition 3. For any PoR code, an ε-oracle OF is an oracle parameterized by some F ∈ (Σc)k

such that, letting F ′ = Init(F), C = CRE(F ′), we have Pre∈R[N][OF (e) = C[e]] ≥ ε. We say that
OF is an erasure oracle if, Pr[OF (e) 6∈ {C[e],⊥}] = 0. Otherwise we say that OF is an error
oracle.

Definition 4. We say that (Init,Read,Resp) is a (α, β, γ, t)qc-PoR code if the alphabet size is qc,
challenge size is α = log2(N), the response size is β = log2(|Σr|), the storage overheadis γ = n/k
and the locality is t. For a PoR code family, all of these values are functions of the parameters
k̃, λ. We say that a PoR code is

8

• ε0-erasure decodable if there is a oracle-access decoder D(·) such that, for any ε-erasure oracle
OF , with ε ≥ ε0, the decoder DOF (k̃, λ, ε) outputs F with probability at least 1− 2−λ.

• (ε0, L)-error decodable if there is a oracle-access decoder D(·) such that, for any ε-error oracle
OF with ε ≥ ε0, the decoder DOF (k̃, λ, ε) outputs a list of size at most L(ε, λ) containing the
element F , with probability at least 1− 2−λ.

For both erasures and errors, we say that the scheme is efficiently decodable if D runs in time
poly(k̃, λ, 1/ε).

3.1 Constructions of PoR Codes

In all of our constructions, the initial encoding Init is an [n, k, d]qc error-correcting code with a
“good” distance d over the appropriate alphabet Σc. The initial encoding defines the server storage
overhead γ = n/k. For the functions Read,Resp we first present a basic construction followed by
two orthogonal improvements.

Basic Construction. In the basic construction, the challenge is simply a random t-tuple of
positions in F ′, and the response is the value of F ′ at those positions. More concretely, the number
of challenges is N = M = nt and the function Read(e1) simply identifies the value e1 ∈ [N] with the
tuples (i1, . . . , it) ∈ [n]t. The function Resp does not get any portion e2 of the challenge and is the
identity function on the first argument: Resp(x, 1) = x. Thus, the challenge-response encoding CRE
is equivalent here to the direct product encoding DPE. This construction yields an (α, β, γ, t)qc-PoR
code where the challenge size is α = t log(n), the response size is β = log(qr) = t log(qc). This basic
PoR code is implicitly used in the schemes of [NR05, JK07].

Improvement 1: Flexible Response Size. One problem with the basic construction that the
response size β = t log(qc) increases proportionally to the locality t. Indeed, in order to achieve
good (list-)decoding, we will see that there is an advantage to having a large alphabet Σc: i.e.,
log(qc) = Ω(λ). On the other hand, the locality t must also be (at least) proportional to λ, making
β = Ω(λ2). In fact, we already mentioned that there is a necessary tradeoff between the locality
t and the server storage overhead γ, making t even larger if one is concerned with minimizing the
server storage. Thus, we would like to avoid the dependence of the response size β on t.

We improve our basic construction so that, instead of responding with all of the read blocks
x = F ′[i1]|| . . . ||F ′[it], the server responds with a randomly chosen position in an encoding of x
under some ECC, which we call a secondary encoding. More precisely, we instantiate a secondary
encoding Sec which is an [n′, k′, d′]qr ECC over the alphabet Σr of size |Σr| = qr. We assume that
it is easy to compute any one position in the codeword without computing the entire codeword.
In particular, we define Resp : (Σr)k

′ × [n′] → Σr so that Resp(x, e2) = Sec(x)[e2] computes the
value in position e2 of the secondary encoding of x. We require that Resp is efficiently computable
(but allow Sec to be inefficient, and n′ to be exponential). Also, we assume that (qr)k

′ ≥ qc
t so

that we can easily interpret elements in (Σc)t as elements in (Σr)k
′
. The read function remains

unchanged from the basic scheme. This yields a PoR code where β = log(qr) is flexible and does
not need to depend on t. For example, we can set Σr = Σc and k′ = t so that (Σr)k

′
= (Σc)t and

β = log(qc). As we will see, such setting will not degrade the (list-)decoding capabilities too much,
as long as we set the value of n′ and the alphabet size log qc to be (appropriately) exponential
in the security parameter λ. With such a setting, even a negligible fraction of the responses in a

9

secondary encoding allow us to (list-)decode the original t-tuple x, more or less bringing us back
to the basic construction, while reducing the response size β to be O(λ).

We also note that a variant of this improvement was implicitly used by [SW08], which em-
ployed the Hadamard code (over a large alphabet) as the secondary encoding, without making the
connection to coding theory explicit.4

Improvement 2: Reducing the Challenge Size. We would also like to get rid of the depen-
dence between t and the challenge size α (currently, α = t log(n)). We do so by using derandomiza-
tion techniques to choose the indices (i1, . . . , it). Instead of just choosing these indices uniformly at
random, we just use a function Read which is a (δ, ρ)-hitter (see Definition 1). Intuitively, hitters
are useful in our context since, if an adversarial server “forgets” many blocks of F ′, then the indices
chosen by Read(e1) are likely to “hit” at least one such block. We can think of the basic PoR code
construction as simply employing a “naive” hitter which is not randomness-efficient.

The General Construction and Instantiations. To recap, our construction is parameter-
ized by:

• An initial encoding Init : (Σc)k → (Σc)n which is a [n, k, d]qc-ECC.

• A (δ, ρ)-hitter Read : [M]→ [n]t.

• A secondary encoding Sec : (Σr)k
′ → (Σr)n

′
which is a [n′, k′, d′]qr -ECC and qk

′
r ≥ qct.

Most of our analysis will only use generic properties of the above primitives. However, when
discussing parameters, we will rely on the following two concrete instantiations of PoR codes. Both
instantiations are parameterized by the security parameter λ, the file bit-size k̃, and the server
storage overhead γ, and ensure locality t = O(λ/(γ − 1)). In fact, both instantiations use the
identical Reed-Solomon Codes for their initial and secondary encodings with parameters:

Initial Encoding: qc = 2λ, k = dk̃/λe, n = dγke
Secondary Encoding: qr = qc, k′ = t, n′ = 2λ

(3)

(recall, this defines d = n − k + 1 and d′ = n′ − k′ + 1). In fact, the only difference between the
instantiations is the choice of the (δ, ρ)-hitter Read. The first instantiation uses a randomness-
efficient hitter construction from Theorem 2, where we set δ = k

n ≈ γ−1 and ρ = 2−λ. Thus we
get sample complexity t = O(λ/(γ − 1)), and randomness complexity logM = log n+ 3 log(1/ρ) =
log(n) + 3λ. The second instantiation uses the “naive” hitter, where the t = O(λ/(γ − 1)) samples
are chosen uniformly at random and thus requires a randomness complexity of logM = t log n. It
is easy to see that the second construction is a (δ, ρ)-hitter for any δ < 1 and ρ = (1− δ)t.

Below we state the main theorem for our PoR code instantiations. We will show that the the
first instantiation (with challenge size close to optimal) is efficiently erasure-decodable. We will
also show that it is inefficiently error-decodable, but we do not know of any efficient error-decoding
strategy for this instantiation. Instead, for efficient error-decoding, we are forced to rely on the
second instantiation in which the challenge size is somewhat suboptimal.

4 The concurrent and independent work of [BJO08] makes a similar observation about the use of an inefficient ECC
in [SW08] and suggests using different codes. However, they seem to have a very different purpose for this optimization
and the final protocols of that work run in many rounds and are not proven secure against fully Byzantine server
strategies.

10

Parametrization: Our two instantiations are parameterized by security parameter λ, file size k̃ and
a flexibility server storage overhead parameter γ, where 1 ≤ γ ≤ 2. Below we summarize the
efficiency of our two PoR code constructions in terms of the challenge size α, the response size β,
the alphabet size log(qc) and the locality t.

First Instantiation: Our first instantiation is an (α, β, γ, t)qc
-PoR code family with:

t = O
(

λ

γ − 1

)
, log(qc) = λ, α = log(n) + 3λ, β = λ

Second Instantiation: Our second instantiation is a (α, β, γ, t)qc
-PoR code family with:

t = O
(

λ

γ − 1

)
, log(qc) = λ, α = O

(
λ log(k̃)
γ − 1

)
, β = λ

Parameters for γ = 1: We can get optimal server storage overhead by setting γ = 1 at the cost of
sacrificing locality and having the server read the entire file F ′. In this case, there is no point in
sending the first part of the challenge e = (e1, e2) since the values read by the server are always
the same. Therefore, the two instantiation are the same and achieve the following parameters:

t = k = dk̃/λe, log(qc) = λ, α = λ, β = λ

Figure 2: Two PoR Code Constructions

Theorem 5. Our PoR code family instantiations have the following security properties.

1. The first instantiation is efficiently ε0-erasure decodable where ε0 = 8k̃
2λ

.

2. The first instantiation is inefficiently (ε0, L)-error decodable where ε0 = 4k̃
2λ/2

, L ≤ 16λ
ε3

.

3. The second instantiation is efficiently (ε0, L)-error decodable where ε0 = 8k̃
2λ/4

, L ≤ O
(
λ
ε3

)
.

This theorem will essentially follow from a more general analysis of our PoR framework in the
subsequent sections. In particular, the existence of inefficient decoding strategies follows from an
analysis of the distance of our PoR code construction as an ECC. In particular, the existence of
an inefficient list-decoding strategy under errors (statement 2) follows from the Johnson bound.
This analysis appears in Appendix B. Efficient erasure-decodability (statement 1) is analyzed in
Section 3.2 and efficient error-decodability (statement 3) is analyzed in Section 3.3.

3.2 Efficient Erasure Decodability

We now show that our general PoR code construction is efficiently erasure decodable, assuming
that both the primary and secondary encodings are efficiently erasure-decodable up to their full
distances d and d′, respectively. In particular, given the correct values of any n−d+1 (respectively
n′ − d′ + 1) positions in the codeword, there should be an efficient algorithm which recovers the
unique source message whose primary (respectively secondary) encoding yields such values. This
is true of the Reed-Solomon code employed by both of our instantiations. First, we show how to
(efficiently) convert an ε-erasure oracle OF for the full PoR codeword C = CRE(Init(F)) into an ε′-
erasure oracle ÕF for the direct-product codeword C ′ = DPE(Init(F)). Recall that the codeword C

11

consists of a response to each challenge and the codeword C ′ consists of the blocks of F ′ accessed for
each challenge, as defined in equations (1), (2). The proof of the Lemma appears in Appendix C.1.

Lemma 6. Let c0 = n′−d′+1 and let OF be an ε-erasure oracle with ε ≥ 4(c0/n′) for the full PoR
codeword C = CRE(Init(F)). Then there is an (efficient) machine DOF2 (λ, ε) which is an ε′-erasure
oracle for the codeword C ′ = DPE(Init(F)) where ε′ ≥ ε/4. Moreover, on a query e1 ∈ [M], the
machine D2 runs in time poly(λ, 1/ε).

Now we show how to (efficiently) recover n − d + 1 values in the server file F ′ = Init(F) given
access to the ε′-oracle ÕF . Using erasure-decoding of the initial code, we can then efficiently recover
F . (see Appendix C.2 for proof).

Lemma 7. Let ÕF be an ε′-erasure oracle for the codeword C ′ = DPE(Init(F)) and assume that the
function Read is (δ, ρ)-hitter where δ = n−d+1

n and ε′ ≥ 2ρ. Then there is an (efficient) algorithm

DÕF1 (k̃, λ, ε′) such that DOF1 = F with probability 1− 2−λ and D1 runs in time poly(k̃, λ, 1/ε′).

Putting Lemma 6 and Lemma 7 together we easily get the following concrete parameters which
prove part 1 or Theorem 5.

Lemma 8. Our general PoR code family is efficiently erasure decodable for
ε0 = max (4(n′ − d′ + 1)/n′, 8ρ). Our first concrete instantiation is therefore efficiently erasure
decodable for ε0 = 8t

2λ
≤ 8k̃

2λ
.

See Appendix C.3 for proof.

3.3 Efficient Error Decodability

We now show that our PoR code is also efficiently error decodable. Unfortunately, this forces us to
sacrifice some of our generality. We cannot use a general hitter construction and must instead rely
on the “naive” hitter, which samples the t positions uniformly at random. In addition, we need an
efficient list-decodability for the secondary encodings and efficient error-correction for the initial
encoding. Although we can afford some generality, for ease of exposition we just assume that both
the primary and secondary codes are appropriately chosen Reed-Solomon codes (as is the case in
both of our concrete instantiations). Again, we first show how to convert an ε-error oracle that
answers with values in the full encoding C = CRE(F ′) (which includes the secondary encoding)
into an ε′-error oracle that answers with values in the code C ′ = DPE(F ′). See Appendix C.4 for
proof.

Lemma 9. Let OF be an ε-error oracle where ε ≥ 8k′/(n′)1/4 for the full PoR codeword C =
CRE(Init(F)). Then there is an (efficient) machine DOF2 (ε, λ) which accepts queries e1 ∈ [M] and
is an ε′-error oracle for the codeword C ′ = DPE(F ′), where ε′ = ε3/256. Moreover, D2 runs in
time poly(k̃, λ, 1/ε).

Now we need to efficiently list-decode the direct-product code C ′ = DPE(F ′). Furthermore, we
need to do so by reading only a small number of position in C ′, and certainly far fewer than the entire
codeword. This is a highly non-trivial problem which is intimately related to direct product theorems
in hardness amplification. We now identify codewords C ′, F ′ with functions C ′ : [n]t → (Σc)t and
F ′ : [n]→ (Σc) which map a position in the codeword to the value of the codeword at that position.

12

Direct product theorems [Yao82, Lev87, Imp95, GNW95, IW97, Tre03, IJK06, IJKW08] essentially
show that, if there exists an efficient algorithm which ε-computes the direct product function C ′ then
there also exists an efficient algorithm which δ-computes the original function F ′. Unfortunately,
most direct product theorems (in particular, [Yao82, Lev87, Imp95, GNW95, IW97, Tre03]) are in
the context of circuits and the reductions are not fully constructive. Instead, the reductions show
the existence of some advice which, if hardwired into a circuit, would allow it to δ-compute F ′.
They do not provide a way of efficiently finding such advice (except is special restrictive cases) and,
hence, these results are not appropriate for our setting where we need to actually run the reduction
as an extractor. Fortunately, direct-product theorems for uniform adversaries (where all advice is
efficiently self-generated) recently appeared in [IJK06, IJKW08]. Let us restate their main result
of Impagliazzo et al. [IJKW08] in our language.

Theorem 10. (Theorem 1.3 of [IJKW08]) Given an ε′-error oracle ÕF for the direct-product
function C ′, there exists an efficient algorithm DÕF1 which outputs a list of L candidate oracle-

access functions gÕF1 , . . . , gÕFL such that, with probability (1 − 2−λ), there exists an i ∈ {1, . . . , L}
for which the function gi is a δ-error oracle for the function F ′. In particular this means that∣∣∣{ j |gÕFi (j) = F ′[j]}

∣∣∣ ≥ δn. Moreover the functions g1, . . . , gL are efficient, L = O
(
λ
ε′

)
and δ =

1−O(log
(

1
ε′

)
/t).

Combining Lemma 9 and Theorem 10, we can then show that our second instantiation of a
PoR code family is efficiently list decodable, proving Part 3 of Theorem 5. Note that it is an
interesting open problem if we can modify the result of [IJKW08] to work with some hitter having
parameters similar to Theorem 2. This would also lead to some nice derandomization results for
hardness-amplification and seems like a difficult problem. Indeed, the proof of Theorem 10 relies
on certain efficient sampling properties of the naive hitter construction that the construction from
Theorem 2 does not have. Hence, for efficient error decoding, we are forced to use our second
instantiation of a PoR code family which uses the naive hitter construction. The following result
proves part 3 of Theorem 5 and follows by combining Lemma 9 and Theorem 10. The proof appears
in Appendix C.5.

Lemma 11. Our second instantiation is efficiently (ε0, L)-error decodable for ε0 = 8k̃
2λ/4

, L =
O
(
λ
ε3

)
.

4 Defining PoR Schemes

A PoR scheme consists of a generation algorithm Gen and an audit protocol defined by two ITMs
P,V for the prover (server) and verifier (client) respectively. All of the algorithms are parameterized
by a security parameter λ which we will omit from the description in the sequel. The Gen algorithm
is a randomized algorithm which takes as input a file F ∈ {0, 1}∗ and produces (F̃ , ver)← Gen(F).
In the audit protocol, the prover P is given F̃ and verifier V is given ver. At the conclusion of
the protocol, the verifier outputs a verdict v ∈ {0, 1} indicating if the verifier accepts (v = 1) or
rejects (v = 0) the audit. In general we allow the verifier to be stateful and update the value of
ver during the protocol and thus, for example, keep track of how many proofs have been run. For
unbounded-use schemes, we will give constructions where the verifier is stateless. Our definition
roughly follows that of [JK07], but is slightly more general.

13

Completeness. We require that in any interaction
{
P(F̃)
 V(ver)

}
between honest prover and

and honest verifier, the verifier outputs a verdict v = 1.

Soundness. We define the soundness game SoundEA(k, `) between an adversary A and a chal-
lenger. In the soundness game, the adversary gets to create an adversarial prover and the challenger
runs the extractor E on it.

1. The adversary A chooses a file F ∈ {0, 1}k.

2. The challenger produces (F̃ , ver)← Gen(F) and gives F̃ to A. In addition, the challenger initializes a
verifier V(ver).

3. We first have a test stage, where the adversary A gets protocol access to V(ver) and can run at most
` − 1 proofs with it. For each proof, the adversary gets the output v ∈ {accept, reject} of the verifier
V.

4. At the end of the test stage, the adversary produces code for an (probabilistic) ITM prover P̃ and
gives this code to the challenger.

5. The challenger runs
{
P̃
 V(ver)

}
and we let v ∈ {0, 1} be the verdict output by V. Let F̄ =

E P̃ (ver, k, λ) be the output of the extractor and define w to be 1 if F̄ = F and 0 otherwise. Lastly, if
v = 1, set T to be the running time of the extractor and otherwise set T = 0. Define the output of
the soundness game to be the tuple (v, w, T).

For complexity classes C1, C2, we say that an unbounded-use PoR scheme is sound if, for any
adversary A ∈ C2 and any polynomials p1(·), p2(·), there exists an extractor E ∈ C1 and a negligible
function ν(·) such that

Pr
[
v = 1 ∧ w = 0 | (v, w, T)← SoundEA(p1(λ), p2(λ))

]
≤ ν(λ) (4)

We say that an `-time PoR scheme sound if the above holds when the polynomial p2(λ) replaced
by the constant `.

The definition guarantees that the adversary cannot “lose” the file and still succeed in an audit.
We give four interesting variants of this definition based on the the complexity classes C1, C2 of the
extractor and adversary.

• If the definition holds for the class C1 of all ITM adversaries, we say that the scheme has
information-theoretic security. Otherwise, if the definition holds for the class C1 of all ITMs
running in time poly(λ), we say the scheme has computational security.

• We say that the scheme has knowledge soundness if the definition holds for the class C2 of
efficient extractors, where an extractor E is said to be efficient if there is some constant c > 0
such that, the expected value E [T c] ≤ poly(k, λ), where T is a random variable which is
defined as the outcome of the exeriment (v, w, T) ← SoundEA(p1(λ), p2(λ)). We also define
information soundness, which is a weaker notion of soundness that does not restrict the
run-time of E .

Remark 1. As in Proofs of Knowledge, the extractor is not part of the protocol but rather serves
as a thought-experiment that helps us define security. The adversary, after running some arbitrary
audits with the verifier, should not be able to cleverly “lose” parts of the file F (represented by
construction of the prover P̃ on which E fails) and yet still succeed in the subsequent audit with

14

reasonable probability ε ≥ ε0. Of course, the adversarial server might correctly run all audits, but
still refuse to give the full file back to the client. This attack, unfortunately, cannot be prevented if
the audits are significantly shorter than the size of the file. Instead, we are satisfied if the server
is guaranteed to have the file at the conclusion of an audit; whether or not the server will actually
give that file back to the client is an orthogonal concern.

Remark 2. The four variants of soundness are all meaningful. For example, information sound-
ness is already a strong notion which ensures that the adversarial server cannot save on space
(by deleting a portion of the file F) and still pass an audit. Knowledge soundness is a stronger
notion, which also guarantees that the server stores the file F in some efficiently recoverable rep-
resentation. The strongest notion — information-theoretic security with knowledge soundness —
means that any adversary (regardless of computational power) must store the file in some efficiently
recoverable representation.

Remark 3. In our definition of soundness (as in prior definitions of PoR), the extractor also gets
access to the client’s private storage ver. Therefore we should interpret soundness as saying that
the server possesses the necessary data for the client to (efficiently) retrieve the file. However, we
do not necessarily require that the server can uniquely retrieve the client’s file on its own (without
the client’s verification string ver). For example, the server may have some small number of L
possibilities for the client’s file but may be uncertain which of them is the right one. During an
audit protocol the server can use the strategy of randomly guessing which of the L options is the
client’s file and using this choice to compute a response. Therefore the server has a strategy in
which it passes an audit with probability 1/L but does not uniquely “know” what the client’s file
is! However, we will make sure that the client’s (short) private storage ver must resolve any such
ambiguity and hence the server must possess enough data for the client to uniquely recover the
original file F with overwhelming probability.

Remark 4. In our definition of knowledge soundness, we measure the efficiency of the extractor
by only counting its running time when the prover succeeds in providing a correct proof (and oth-
erwise counting a run-time of 0). This ensures that either the adversary is unlikely to succeed in
giving a valid audit, or the expected run-time of the extractor is efficient when the audit succeeds.
Our definition of efficiency, requiring that E[T c] = poly(k, λ), is based on Levin’s definition of aver-
age polynomial time (see [Lev84]) which has advantage of being more robust (e.g. to reductions and
changes in model of computation) than standard expected polynomial time. Using Markov’s inequal-
ity, our definition implies that there is a polynomial p such that, for every ε > 0, the probability
that T ≥ p(k, λ, 1/ε) is at most ε.

5 Constructions of PoR Schemes from PoR Codes

In the following subsections, we will briefly sketch how to build a secure PoR scheme (for any
of the four variants) from an appropriate (α, β, γ, t)qc-PoR code (Init,Read,Resp). Intuitively, the
key step of the extractor E will be to simply run the corresponding decoder D, giving D ora-
cle access to the adversarial prover P̃ . Then, if D is efficient, we will get knowledge-soundness;
if not, we will only settle for information-soundness. As for the attacker’s efficiency, recall that
PoR codes are information-theoretically secure. Thus, as long as we do not introduce any addi-
tional computationally-secure primitives into the final PoR scheme, the resulting security will be

15

information-theoretic. Also, for bounded-use schemes we will be using error-decodable PoR codes,
while for the unbounded-use schemes we can use erasure-decodable schemes. In our presentation
below, we will be only concentrating on the main ideas, primarily focusing on justifying the pa-
rameters claimed in Section 1.3.

5.1 Bounded-Use Information-Theoretic Schemes (Schemes 1,2)

First, we present a very simple and efficient construction of an `-time, information-theoretically
secure PoR scheme from an error-decodable PoR code. We also use a family of almost-universal
hash functions H = {h}. Recall, a function family H is ψ-universal, if for any inputs x 6= y,
Prh←H(h(x) = h(y)) ≤ ψ. It is well known that one can construct such families on k-bit messages
(say, based on polynomial evaluation at a random point) having the description of h and the output
length of h be at most log(k/ψ) bits each. We will set the value ψ later. Bellow we give a detailed
description, which corresponds to construction 1 from the introduction.

Gen: • Let F ′ = Init(F).
• Choose ` uniformly random challenges e(1), . . . , e(`) with e(i) ∈ [N] and compute the responses
µ(1), . . . , µ(`) where µ(i) = Answer(F ′, e(i)) = Resp(F ′[Read(e(i)1)], e(i)2).

• Chooses a uniformly random hash function h← H and compute ω := h(F).

• Set F̃ = F ′, counter i = 1 and ver :=
(
〈(e(1), µ(1)), . . . , (e(`), µ(`))〉, h, ω, i

)
P,V: To run an audit i ∈ {1, . . . , `}, the verifier V sends e(i) to P. Upon the receipt of a challenge e, the

prover P computes µ = Answer(F ′, e) and sends µ to V. When the verifier V receives a value µ′, it
checks if µ′ = µ(i) and outputs accept if yes and reject otherwise (updating i := i+ 1 in both cases).

Notice that the function h and the value ω = h(F) are not even used in the audit! Of course, they
are used by the extractor E instead, to check which of the L possibilities returned by the decoder
D is the actual file F . See Appendix D.1 for a proof of the following theorem.

Theorem 12. Let (Init,Read,Resp) be an (α, β, γ, t)qc-PoR code family which is efficiently (resp.
inefficiently) (ε0, L)-error decodable where L(λ, ε) ≤ a(λ/ε)b for some constants a, b ≥ 1. Let H
be a ψ-universal hash family. Then the above scheme is a information-theoretically secure `-time
PoR protocol with knowledge (resp. information) soundness where the precise soundness error is
bounded by ν(λ) ≤ max(ε0, 2a(λ2λ)bψ+ 2−λ). In addition, the scheme has locality t, server storage
γk, communication complexity (α+ β) and client storage overhead `(α+ β) +O(log(k/ψ)).

Parameters for Schemes 1,2 We now show now use this general construction to instantiate our
concrete PoR schemes 1,2 (see Table 1). In both schemes we use ψ = 2−cλ for some sufficiently large
constant c. For scheme 1, which provides information-theoretic security and knowledge soundness
(the strongest security notion), we use an efficiently error-decodable PoR code construction (our
second instantiation). By part 3 of Theorem 5, this PoR code family is efficiently (ε0, L)-error
decodable where ε0 = 8k

2λ/4
, L(λ, ε) = O(λ

ε3
). Therefore, using Theorem 12 we get an information-

theoretically secure PoR scheme with knowledge-soundness having a soundness error of ν(λ) ≤
8k

2λ/4
. The locality, communication complexity, client storage and server storage of this scheme (see

Table 1) all follow from the setting of α, β, qc in our PoR code (see Figure 2). For scheme 2, which
provides information-theoretic security, but only information soundness, we can use the first PoR
code construction. Since this construction has an improved challenge size α, we get an improved
client storage and challenge size in the full PoR scheme as is shown in Table 1.

16

5.2 Bounded-Use Computational Schemes (Schemes 3,4,5)

Using computational assumptions, we now show that it is possible to “transfer” the client’s storage
of the ` challenge/response pairs to the server. Overall, the client’s storage becomes O(λ), and the
server storage becomes O(`λ). Below we give a detailed description of construction 2 as outlined
in the introduction. Let F1,F2 be two PRF families, where the output size of F1 is equal to the
client’s challenge size α, the output size of F2 is O(λ), and the key size for F1,F2 is O(λ).

Gen: • Let F ′ = Init(F).

• Choose a random function fk1 ∈ F1 and compute ` challenges e(1) = fk1(1), . . . , e(`) = fk1(`).
Compute the responses µ(1), . . . , µ(`), where µ(i) = Answer(F ′, e(i)).

• Choose a random function fk2 ∈ F2 and compute
σ1 := fk2

(
1, µ(1)

)
, . . . , σ` := fk2

(
`, µ`

)
. Set F̃ := (F ′, σ1, . . . , σ`).

• Choose a uniformly random hash function h← H and set ω = h(F ′).

• Initialize count i = 1 and set ver := (k1, k2, h, ω, i).

P,V: To run an audit i ∈ {1, . . . , `}, the verifier V computes e(i) = fk1(i) and sends (e(i), i) to P. Upon
the receipt of a challenge e = (e1, e2) and an index i, the prover P computes µ = Answer(F ′, e(i)) and
sends (µ, σi) to V. When the verifier V receives a value µ′, σ′, it verifier σ′ = fk2(i, µ′) and rejects if
this check fails. Otherwise, it accepts (updating i := i+ 1 in either case).

See Appendix D.2 for a proof of the following theorem.

Theorem 13. Let (Init,Read,Resp) be an (α, β, γ, t)qc-PoR code family which is efficiently (resp.
inefficiently) (ε0, L)-error decodable where ε0(λ) is negligible and L(λ, ε) is polynomial in λ, 1/ε.
Let H be a ψ-universal hash family where ψ = 2−sλ for some sufficiently large constant s. Then the
above scheme is a computationally-secure `-time PoR protocol with knowledge (resp. information)
soundness. In addition, the scheme has locality t, server storage γk+`λ, communication complexity
(α+ β + λ) and client storage overhead O(λ) +O(log(k/ψ)).

Parameters for Schemes 3,4,5. For Scheme 3, we instantiate the above construction with
the efficient error-decodable PoR code instantiation (the second instantiation) resulting in the
parameters given in Table 1. As we see this reduces the client storage compared to the information-
theoretic schemes, essentially relegating this storage to the server. Unfortunately, the size of the
communicated challenge must still be large since the client must send the full challenge to the server.
One way to get around this (while preserving knowledge soundness) is to rely on the random oracle
model. The client, instead of sending the challenge in full, can send a random λ-bit nonce which
is expanded to the full challenge (by both, client and server) using a hash function modeled as a
random oracle. The analysis is preserved since the extractor can just program the random oracle to
correspond to actual random challenges.5 Therefore, in the random oracle model, we can reduce the
challenge to a size of λ bits, resulting in Scheme 4 with parameters given in Table 1.6 Alternatively,

5This technique was essentially also used in [SW08] to optimize their unbounded-use computational scheme, though
we show that it is not needed for that purpose!

6One may also ask if there is some way to use standard computational assumptions to reduce the challenge size.
On first thought, it may appear to be sufficient to send a short seed for a PRG and use the PRG to expand this
seed into a full challenge. Unfortunately, we see no way to prove such scheme secure since the decoder for a PoR
code does not choose its challenges randomly, but needs to be able to sample a random challenge with certain special
properties. It does not seem that the decoder could easily sample PRG seeds which, when expanded, result in such
challenges.

17

we can settle for information-soundness and thus use the first instantiation of PoR codes where
the challenge size is essentially optimal, but we only have inefficient decodability. This results in
Scheme 5, with the parameters shown in Table 1.

5.3 An Unbounded-Use Computational Scheme (Scheme 6)

We now show how to construct an unbounded use scheme in our framework using the techniques of
[SW08]. The construction is based on the concept of a homomorphic linear authenticator scheme
— a notion we abstract away from the works of [ABC+07, SW08]. On a high level, this is a scheme
in which a verifier computes a vector-tag σ = (σ1, . . . , σn) for a vector-message x = (x1, . . . , xn)
consisting of n field values, using some secret key K. A prover, who is given the vector-message x,
the corresponding vector-tag σ, and a vector-challenge a = (a1, . . . , an), but not the secret key K,
can then efficiently compute an authenticator σ for the field element µ =

∑n
i=1 aixi. The verifier,

when given µ′, σ′ from the prover, can then run a verification procedure (using K) and, if it accepts,
be convinced that µ′ = µ. This essentially allows the prover in a PoR scheme to show that the a
response µ is the correct response to an arbitrary challenge e by sending only a short tag σ.

Definition of Homomorphic Authenticators. More precisely, a homomorphic authenticator
scheme consists of three algorithms (LinTag, LinAuth, LinVer), a key domain K and a field F. For
a key K ∈ K, and a vector-message x = (x1, . . . , xn) ∈ Fn the algorithm LinTagK(x) produces a
vector-tag σ = (σ1, . . . , σn). For a vector-challenge of n coefficients a = (a1, . . . , an), the un-keyed
function LinAuth computes an authenticator σ = LinAuth(x, a, σ). Moreover, the LinAuth algorithm
is “local”; i.e., it only reads values xi, σi for which ai 6= 0. Lastly, the verification algorithm
computes b = LinVerK(a, µ′, σ′), where b ∈ {0, 1}, decides if the algorithm accepts or rejects.

For completeness, we require that for any K ∈ K, x ∈ Fn, a ∈ Fn letting σ ← LinTagK(x) ,
σ ← LinAuth(x, a, σ) and µ =

∑n
i=1 xiai then LinVerK(a, µ, σ) = 1. For security, given an adversary

A, we define the unforgeability game as follows:

1. The adversary A chooses a vector-message x ∈ Fn.

2. The challenger chooses a uniformly random key K ← K and computes σ ← LinTagK(x). The adversary
is given σ.

3. The adversary A produces a vector-challenge a ∈ Fn and a tuple (µ′, σ′).

4. If LinVerK(a, µ′, σ′) = 1 and µ′ 6=
∑n
i=1 aixi then the adversary wins.

We require that for every efficient adversary A, the probability that A succeeds in the unforgeability
game is negligible in the security parameter λ.

In Appendix E, we briefly describe the symmetric key homomorphic linear authenticator from
[SW08]. We note that [SW08] also includes a homomorphic linear authenticator scheme in the
public key setting which yields a PoR scheme with public verifiability.

PoR Scheme Construction. We can employ linear-homomorphic authenticators along with
any PoR code in which the response function Respe2(x) : (Σc)t → (Σc) defined by Respe2(x) =
Resp(x, e2), is linear (as is the case in our constructions). For simplicity, we just say that the PoR
code is linear if the above holds. We construct the full PoR scheme out of such PoR codes as
follows:

Gen: Let F ′ = Init(F). Choose a key K for the linear authenticator scheme and compute
σ = LinTagK(F ′[1], . . . , F ′[n]). Set F̃ := (F ′, σ1, . . . , σn) and ver := K.

18

P,V: • The verifier V chooses a uniformly random value e ∈ [N] and sends e to P.
• The prover P, upon receiving e = (e1, e2), computes (i1, . . . , it) = Read(e1) and x = (x1, . . . , xt) =
F ′[(i1, . . . , it)] ∈ (Σc)t. Since the function Resp(x, e2) linear, we can write µ = Resp(x, e2) =∑t
i=1 aixi for some coefficients a = (a1, . . . , at). Let σ = (σi1 , . . . , σit).

The prover computes σ = LinAuth(x, a, σ) and sends (µ, σ) to V.
• Upon receipt of a value (µ′, σ′) the client accepts iff LinVerK(µ′, σ′) = 1.

Theorem 14. Assume that (Init,Read,Resp) is an linear (α, β, γ, t)qc-PoR code family which
is efficiently ε0-erasure decodable and ε0(λ) is some negligible function. Further assume that
(LinTag, LinAuth, LinVer) is a homomorphic linear authenticator. Then the above construction is
a computationally-secure, unbounded-use PoR scheme with knowledge soundness. Moreover the lo-
cality is t, the server storage is γk + (γk/qc)|σi| where |σi| is the size of the individual tags output
by LinTag, the challenge size if α and the response size is β + |σ| where |σ| is the size of the tags
output by LinAuth.

The proof essentially follows that of [SW08] (see section 4.1) where it is shown how to extract
assuming that the underlying PoR code is erasure-decodable and thus we skip it.

Parameters for Scheme 6 In terms of parameters, the main price one pays is in the server’s
storage, to store the tag-vector σ = (σ1, . . . , σn). For the scheme of [SW08], the length of σ
is equal to the length of F , meaning that the server storage is doubled (see also Footnote 3).
Finally, to obtain our actual parameters for Scheme 6, as claimed in Table 1 we use the same
linear-authenticator construction as [SW08], but plug in our first PoR code instantiation which is
efficiently erasure-decodable. 7 Therefore, our construction is an unbounded-use PoR scheme with
communication complexity O(λ) in the standard model, and without the use of Random Oracles,
resolving the main open question of [SW08].

References

[ABC+07] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary N. J.
Peterson, and Dawn Xiaodong Song. Provable data possession at untrusted stores. In Ning et al.
[NdVS07], pages 598–609.

[BJO08] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory and implementa-
tion. Cryptology ePrint Archive, Report 2008/175, 2008. http://eprint.iacr.org/.

[GNW95] Oded Goldreich, Noam Nisan, and Avi Wigderson. On yao’s xor-lemma. Electronic Colloquium
on Computational Complexity (ECCC), 2(50), 1995.

[Gol97] Oded Goldreich. A sample of samplers - a computational perspective on sampling (survey).
Electronic Colloquium on Computational Complexity (ECCC), 4(20), 1997.

[Gur04] Venkatesan Guruswami. List Decoding of Error-Correcting Codes (Winning Thesis of the 2002
ACM Doctoral Dissertation Competition), volume 3282 of Lecture Notes in Computer Science.
Springer, 2004.

[IJK06] Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. Approximately list-decoding direct
product codes and uniform hardness amplification. In FOCS, pages 187–196. IEEE Computer
Society, 2006.

7In particular, our scheme is essentially equivalent to that of [SW08], but the underlying PoR code is more
efficient since it uses the (linear) Reed-Solomon code in place of the Hadamard code for the secondary encoding, and
a randomness-efficient hitter as our Read function

19

http://eprint.iacr.org/

[IJKW08] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform direct
product theorems: simplified, optimized, and derandomized. In Richard E. Ladner and Cynthia
Dwork, editors, STOC, pages 579–588. ACM, 2008.

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In FOCS, pages
538–545, 1995.

[IW97] Russell Impagliazzo and Avi Wigderson. = BPP if requires exponential circuits: Derandomizing
the xor lemma. In STOC, pages 220–229, 1997.

[JK07] Ari Juels and Burton S. Kaliski. Pors: proofs of retrievability for large files. In Ning et al.
[NdVS07], pages 584–597.

[Lev84] Leonid A. Levin. Problems, complete in “average” instance. In STOC, page 465. ACM, 1984.

[Lev87] Leonid A. Levin. One-way functions and pseudorandom generators. Combinatorica, 7(4):357–363,
1987.

[NdVS07] Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors. Proceedings of
the 2007 ACM Conference on Computer and Communications Security, CCS 2007, Alexandria,
Virginia, USA, October 28-31, 2007. ACM, 2007.

[NR05] Moni Naor and Guy N. Rothblum. The complexity of online memory checking. In FOCS, pages
573–584. IEEE Computer Society, 2005.

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability. Cryptology ePrint Archive,
Report 2008/073, 2008. http://eprint.iacr.org/.

[Tre03] Luca Trevisan. List decoding using the xor lemma. Electronic Colloquium on Computational
Complexity (ECCC), (042), 2003.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In
FOCS, pages 80–91. IEEE, 1982.

A Some Facts from Coding

Let us restate a version of the Johnson bound found in [Gur04].

Theorem 15. (Johnson Bound) For any [n, k, d]q code over an alphabet Σ, any word r ∈ (Σ)n,
the number of codewords within a distance e ≤ min(d, n−

√
n(n− d+ d/L)) of r, is bounded by L.

We now rephrase this bound in a form that will be easier for us to use.

Theorem 16. For any [n, k, d]q code over an alphabet Σ, any r ∈ Σn the number of codewords

that agree with r in at least an ε ≥
√

2n−dn fraction of positions is bounded by L = 2
ε2

.

Proof. Set e = (1− ε)n in Theorem 15. It is easy to see that the theorem is vacuous if 2n−dn ≥ 1

and otherwise e ≤ (1 −
√

2n−dn)n ≤ (1 − 2n−dn)n ≤ 2d − n ≤ d. We are left to show that

e = (1−ε)n ≤ n−
√
n(n− d+ d/L) where L = 2

ε2
and our theorem follows from Theorem 15. The

above is equivalent to showing ε2 ≥ (n − d + d/L)/n which follows if ε2 ≥ (n − d)/n + 1/L. It is
easy to see that the last requirement holds since n−d

n ≤ ε
2/2 and 1/L = ε2/2. 2

20

http://eprint.iacr.org/

Theorem 17. (Reed Solomon List Decoding [Gur04]) Let C be a codeword in a [n, k, n− k + 1]q
Reed-Solomon code. Then, given a value r ∈ qn such that an ε ≥

√
k/n fraction of positions in r

agree with C, there is a poly(n, log(q)) algorithm which produces a list of size L = O(n) containing
C.

Combining the above with Theorem 16, if ε ≥
√

2k/n, then we can (efficiently) get a list of size
L ≤ 2

ε2
.

Theorem 18. (Reed Solomon Unique Decoding) Let C be a codeword in a [n, k, n− k+ 1]q Reed-
Solomon code. Then, given a value r ∈ qn such that an ε ≥ 1

2(1+ k
n) fraction of positions in r agree

with C, there is a poly(n, log(q)) algorithm which uniquely recovers C.

B The distance of PoR Codes and Inefficient Decoding

In this section, we study our PoR codes as error-correcting codes and analyze their distance. Then,
using bounds from coding theory, we show that our PoR codes are (inefficiently) erasure and error
decodable.

Lemma 19. Consider our general PoR code construction based on an initial encoding Init, a
hitter Read and a secondary encoding Sec, such that Init is an [n, k, d]qc-ECC, Read [M] → [n]t

is a (δ, ρ)-hitter for δ = n−d+1
n and Sec is an [n′, k′, d′]qr -ECC. Then the full challenge response

encoding CRE ◦ Init : (Σc)k → (Σr)N has distance D = (1− ρ)Md′.

Proof. Let F1, F2 ∈ (Σc)k with F1 6= F2. Let F ′1 = Init(F1), F ′2 = Init(F2). Then, by the distance
of initial encoding, ∆(F ′1, F

′
2) ≥ d. Now let C ′1, C

′
2 ∈ ((Σc)t)M be the codewords

C ′b = DPE(F ′b) = F ′b[Read(1)], F ′b[Read(2)], . . . , F ′b[Read(M)]

for b ∈ 1, 2. Let A ⊆ [n] be the set of positions i in which F ′1[i] 6= F ′2[i] so that |A| ≥ d ≥
(1− (n−d+1)/n)n ≥ (1− δ)n. Then, for any j ∈ [M] such that Read(j) hits into A, C ′1[j] 6= C ′2[j].
Moreover, by the hitter property of Read, Prj←RM [Read(j) hits A] ≥ (1− ρ) or, equivalently, there
are at least (1− ρ)M values j for which Read(j) hits A. Therefore, ∆(C ′1, C

′
2) ≥ (1− ρ)M . Lastly,

let C1, C2 ∈ (Σr)N be the challenge-response encodings C1 = CRE(F ′1), C2 = CRE(F ′2). We can
think of these as the result of applying the secondary encoding to each position in C ′1, C

′
2 so that

each block in C ′b is mapped to a set of n′ blocks in Cb. By the distance of the secondary encoding,
each position i ∈ [M] such that C ′1[i] 6= C ′2[i] results in d′ positions j ∈ [N] for which C1[j] 6= C2[j].
Therefore ∆(C1, C2) ≥ (1− ρ)Md′ as claimed. 2

Lemma 20. Our general PoR code construction is inefficiently erasure-decodable for

ε0 = 2
N −D + 1

N
≤ 2

(
n′ − d′ + 1

n′
+ ρ

)
.

Proof. The decoder DOF (ε, λ) proceeds in c = log1−ε/2(2−λ) = λ
− log(1−ε/2) ≤

2λ
ε iterations on

each of which it queries OF on challenges e = 1, 2, . . . , N . If, in any iteration, it receives more than
N −D + 1 answers, it finds the unique source file F whose encoding agrees with all such answers.
Otherwise, it gives up. Assume that OF is an ε-erasure oracle with ε ≥ ε0. The expected number

21

of answers received in each iteration is then εN ≥ ε0N ≥ 2(N −D+ 1). By the Markov inequality,
the probability that D receives at least N −D+ 1 answers in a given iteration is then at least ε/2.
Lastly, since the iterations are independent from each other, the probability that there exists at
least one iteration in which D receives that many answers is then at least 1− (1− ε/2)c ≥ 1− 2−λ.
Hence, if D succeeds with probability at least 1− 2−λ for ε0 ≥ N−D+1

N as we wanted to show. For
the last part of our claim, we use the distance calculation from Lemma 19 to plug in for D. 2

Corollary 1. Our first instantiation is inefficiently erasure decodable for ε0 = 2(t+1)
2λ
≤ 2(k̃+1)

2λ
.

Proof. This follows since the first construction achieves ρ = 2−λ and n′−d′+1
n′ ≤ k′

n′ ≤
t

2λ
. 2

Lemma 21. Our general PoR code construction is inefficiently (ε0, L)-error decodable for ε0 =

2
√

2N−DN ≤ 2
√

2
(
n′−d′+1

n′ + ρ
)

and L ≤ 16λ
ε3

.

Proof. As before, the decoder DOF (ε, λ) proceeds in c = log1−ε/2(2−λ) ≤ 2λ
ε iterations on each of

which it queries OF on all challenges e = 1, 2, . . . , N to construct some candidate codeword r. It
then finds a list of size at most L′ ≤ 2

(ε/2)2
≤ 8

ε2
of source messages whose encodings agree with r

in at least ε/2 ≥
√

2N−DN positions (see Theorem 16). The algorithm D merges the lists from all
of the iterations together to output a list of size at most L = cL′ ≤ 16λ/ε3.

Now we need to analyze the probability that F appears in the final list. Firstly, (as in the
erasure case) the probability that, on any specific iteration, OF answers more than ε/2 fraction of
the challenges correctly is at least ε/2. If this event occurs, then F will be in the final list. As for
the erasure case, the probability that this occurs in at least one iteration is at least 1− (1−ε/2)c ≥
1 − 2−λ. Hence the decoder D succeeds with probability 1 − 2−λ for any ε-error oracle OF with
ε ≥ ε0. The last inequality is derived as in the proof of Lemma 20. 2

By plugging in the bound n′−d′+1
n′ + ρ ≤ t+1

n′ four our first PoR code instantiation, we get the
following corollary.

Corollary 2. Our first instantiation is inefficiently (ε0, L)-error decodable where ε0 = 2
√

2(t+1)

2λ/2
≤

3(k̃+1)

2λ/2
and L ≤ 16λ

ε3
.

C Proofs for Efficient Erasure and Error Decoding

C.1 Proof of Lemma 6

Proof. Set c = max ((4/ε)c0, (32/ε)). On a query e1 ∈ [M], the machine DOF2 works as follows:

1. Set Q := ∅.

2. For i = 1, . . . , c:
Choose e(i)2 ←R [n′]. Let e = (e1, e

(i)
2) and µ = OF (e).

If µ 6= ⊥, and |Q| < c0, set Q := Q ∪ {(e(i)2 , µ)}.

3. If |Q| ≥ c0 then decode F [Read(e1)]. Otherwise return ⊥.

22

By the correctness of the decoding algorithm for the secondary code and the fact that OF is
an erasure oracle, we can easily see that Pr

[
DOF2 (e1) 6∈ {C ′[e1],⊥}

]
= 0. Let us now analyze

Pre1∈[M]

[
DOF2 (e1) = C ′[e1]

]
. We call a value e1 ∈ [M] good if

Pr
e2∈[n′]

[OF (e1, e2) = C[(e1, e2)]] ≥ ε/2

and bad if the above does not hold. Let us define several events and random variables to aid us
with the analysis:

• Let EG be the event that the value e1 is good.

• Let E(i)
A be an indicator R.V. which is 1 if µ 6= ⊥ in iteration i and 0 otherwise.

• Let E(i)
B be the event that a collision occurs in iteration i: i.e. some value (e(i)2 , ·) is already in Q.

• Let Xi be an indicator variable which is 1 if the size of the set Q increases or |Q| ≥ c0 in iteration i.

• Let ES be the event that decoding is successful or, alternatively, that in step 3, |Q| ≥ c0.

Then

ε = Pr[OF (e) = C[e] | EG] Pr[EG] + Pr[OF [e] = C[e] | ¬EG](1− Pr[EG]) ≤ Pr[EG] + ε/2

and so Pr[EG] ≥ ε/2. Now, we will analyze several probabilities conditioned on the event EG.
For ease of exposition, we use the notation PrG[·] to denote the conditional probability Pr[· | EG].
Firstly, the events E(1)

A , . . . , E
(c)
A are independent and PrG[E(i)

A] ≥ ε/2 for each i. Also, for each
i ∈ [c],

Pr
G

[Xi = 1] ≥ Pr
G

[E(i)
A ∧ ¬E

(i)
B] ≥ Pr[E(i)

A]− Pr[E(i)
B] ≥ ε/2− c0 − 1

n′
≥ ε/4.

Let p = ε/4. Although the events Xi are not independent (the probability of a collision increases
as Q grows), the probability of Xi = 1 is at least p conditioned on any values of X1, . . . , Xi−1.
Let us define a family of independent random variable Z1, . . . , Zc taking values in {0, 1} such that
Pr[Zi = 1] = p. Then, it is easy to see, that for any value v, PrG[

∑
Xi ≤ v] ≤ Pr[

∑
Zi ≤ v]. Now,

using the Chernoff-Hoeffding bound, we get

Pr
G

[
c∑
i=1

Xi < c0

]
≤ Pr

[
c∑
i=1

Zi < c0

]

≤ Pr

[
c∑
i=1

Zi ≤ (1− 1/2)(pc)

]
≤ e−

1
8
(pc)

≤ e−
ε
32
c ≤ e−1 ≤ 1/2

Lastly, PrG[ES] = PrG[
∑
Xi ≥ c0] ≥ 1 − 1/2 ≥ 1/2 and Pr[ES] ≥ Pr[ES | EG] Pr[EG] ≥ ε/4.

Hence D2 is an ε′ = ε/4-erasure oracle for the codeword C ′. 2

23

C.2 Proof of Lemma 7

Proof. We first use ÕF to recover enough positions in the codeword F ′ and then use an efficient
erasure-decoding algorithm for the primary encoding to recover F . Let c1 = n − d + 1 and c =
max(4c1/ε′, 16λ/ε′). The algorithm D1 works as follows:

1. Let F̃ ′ = (⊥, . . . ,⊥).

2. For i = 1, . . . , c:
Choose e1 ←R [M] and let µ = ÕF (e1). If µ = ⊥, then go to the next iteration.
Else µ ∈ (Σc)t. Let Read(e1) = (j1, . . . , jt) ∈ [n]t. Set F̃ ′[j1] := µ[1], . . . , F̃ ′[jt] := µ[t].

3. If there are at least c1 positions i ∈ [n] such that F̃ ′[i] 6= ⊥, then use the erasure-decoding algorithm
for the initial encoding to recover F from F̃ ′.

Let us define several events and random variables to aid us with the analysis:

• Let E(i)
A be an indicator R.V. which is 1 if µ 6= ⊥ in iteration i and 0 otherwise.

• Let E(i)
B be the event that F̃ ′ is defined (i.e. not ⊥) for all positions Read(e1).

• Let Xi be an indicator variable which is 1 if the number of positions in which F̃ ′ is defined increases
in iteration i, or is already at least c1.

• Let ES be the event that decoding is successful or, alternatively, that in step 3, F̃ ′ is defined in at
least c1 positions.

First, since Read is a (δ = n−d+1
n , ρ ≤ ε′/2)-hitter, the probability that in iteration i, Read(e1)

falls entirely into the set of at most c1 ≤ δn positions of F̃ ′ that are defined is at most ρ. Therefore,
Pr[E(i)

B] ≤ ρ ≤ ε′/2 even conditioned on any possible run of the first i−1 iterations of the algorithm.
The events E(1)

A , . . . , E
(c)
A are independent and Pr[E(i)

A] ≥ ε′ for each i. Also, for each i ∈ [c],

Pr[Xi = 1] ≥ Pr[E(i)
A ∧ ¬E

(i)
B] ≥ Pr[E(i)

A]− Pr[E(i)
B] ≥ ε′ − ρ ≥ ε′/2.

Let p = ε′/2. Although the events Xi are not independent (the probability that of E(i)
B increases

as positions are learned), the probability of Xi = 1 is at least p conditioned on any values of
X1, . . . , Xi−1. Let us define a family of independent random variable Z1, . . . , Zc taking values in
{0, 1} such that Pr[Zi = 1] = p. Then, it is easy to see, that for any value v, Pr[

∑
Xi ≤ v] ≤

Pr[
∑
Zi ≤ v]. Now, using the Chernoff-Hoeffding bound, we get

Pr

[
c∑
i=1

Xi < c1

]
≤ Pr

[
c∑
i=1

Zi < c1

]

≤ Pr

[
c∑
i=1

Zi ≤ (1− 1/2)(pc)

]
≤ e−

1
8
(pc)

≤ e−
ε
16
c ≤ eλ ≤ 2−λ

Lastly Pr[ES] = (1− Pr [
∑c

i=1Xi < c1]) ≥ 1− 2−λ.
2

24

C.3 Proof of Lemma 8

Proof. Lemma 6 requires ε ≥ 4(n′ − d′ + 1)/n′ and yields ε′ = ε/4. Lemma 7, on the other
hand, require ε′ ≥ 2ρ which implies ε ≥ 8ρ. This proves the first part of the lemma. The second
part follows directly from the setting of parameters for instantiation 1: namely ρ = 2−λ and
n′ − d′ + 1 = k′ = t, and n′ = 2λ.
2

C.4 Proof of Lemma 9

Proof. Let ε̃ = ε
4 and ñ = 2 k

′

ε̃2
= 32k′

ε2
so that ε̃ ≥

√
2k′/ñ. On a query e1 ∈ [M], the machine DOF2

works as follows:

1. Set Q := ∅.

2. For i = 1, . . . , ñ:
Choose e(i)2 ←R [n′]. If some value of the form (e(i)2 , ·) is in Q then quit.
Else, let µ = OF ((e1, e

(i)
2)) and set Q := Q ∪ {(e(i)2 , µ)}.

3. Use the list-decoding algorithm on the set Q to recover a list of size L = 2/ε̃2 of candidates for the
source value whose secondary encoding agrees with ε̃ñ of the positions in Q. If list-decoding fails then
quit 8.

4. Choose a uniformly random element from the list and return it.

Let us now analyze Pre1∈[M]

[
DOF2 (e1) = C ′[e1]

]
. As before, we call a value e1 ∈ [M] “good” if

Pre2∈[n′] [OF (e1, e2) = C[(e1, e2)]] ≥ ε/2. Let us define several events and random variables to aid
us with the analysis:

• Let EG be the event that the value e1 is good.

• Let Xi be an indicator variable which is 1 if the answer received in iteration i is correct (matches C[i])
or if the algorithm quit before iteration i.

• Let EQ be the event that the algorithm quits.

• Let EL be the event that the algorithm recovers a list containining the correct value C ′[i].

• Let ES be the event that the algorithm successfully outputs the correct value C ′[i].

As before, Pr[EG] ≥ ε/2. Also, for ease of exposition, we use the notation PrG[·] to denote
the conditional probability Pr[· | EG]. Firstly, although the events Xi are not independent (the
probability of the algorithm quitting increases as Q grows), the probability of Xi = 1 is at least
p = ε/2 conditioned on any values of X1, . . . , Xi−1. Reusing our analysis from the erasure case, the
Chernoff-Hoeffding bound gives us:

Pr
G

[
ñ∑
i=1

Xi < ε̃ñ

]
= Pr

G

[
c∑
i=1

Xi < (1− 1/2)pñ

]
≤ e−

1
8
(pñ) ≤ e−

ε
16
ñ ≤ e−1 ≤ 1/2

8An efficient algorithm for this task exists by Theorem 17. Think of the set Q as a [ñ, k′, ñ−k′+1]qr Reed-Solomon
code.

25

Now the event EQ happens if on some iterations i, the value of e(i)2 is already in Q. On each
iteration i, the size of Q is bounded by ñ− 1 and hence

Pr
G

[EQ] ≤
ñ∑

1=1

ñ− 1
n′
≤ ñ2

n′
≤ (32k′/ε2)2

n′
≤ (32k′)2

n′
1
ε4
≤ 1

8k′
≤ (32k′)2

(8k′)4
≤ 1

4
.

Finally,

Pr
G

[EL] = Pr
G

[
¬(

ñ∑
i=1

Xi < ε̃ñ) ∧ ¬EQ

]
≥ 1− 1/2− 1/4 ≥ 1

4

Pr
G

[ES] ≥ (1/L) Pr[EL] ≥ ε̃2

8

Pr[ES] = Pr
G

[ES] Pr[EG] ≥ Pr
G

[ES]
ε

2
≥ ε̃2ε

16
≥ ε3

256
2

C.5 Proof of Lemma 11

Proof. Starting with an oracle OF which is an ε-error oracle for the final codeword C, we use
Lemma 9 to (efficiently) convert it into an ε′-error oracle ÕF for the codeword C ′, where ε′ = ε3/256.
This requires ε ≥ 8 k′

(n′)1/4
. In our instantiations, n′ = 2λ and k′ = t ≤ k̃. Therefore we can set

ε0 = 8k̃
2λ/4

.
Then, using Theorem 10, we efficiently convert ÕF into L oracle functions g1, . . . , gL such that

at least one of these functions is a δ-error oracle for the codeword F ′, where δ = 1−O(log
(

1
ε′

)
/t) =

1− cλ/t for some constant c. Let us set t ≥ cλ
1
2
(1−1/γ)

= O(λ
γ−1) so that, recalling γ ≥ k/n, we get

δ ≥ 1/2(1 + γ−1) ≥ 1/2(1 + k/n).
Now we can form L candidate codewords F ′1, . . . , F

′
L by setting

F ′i =
(
gÕFi (1), . . . , gÕFi (n)

)
By Theorem 10, at least one of these has a δ ≥ 1/2(1 + k/n)-fraction of positions in common

with F ′. By Theorem 18, for each F ′i we can efficiently find the unique codeword that agrees with a
δ-fraction of the positions in F ′i . Hence, we recover a list of L = O(1/ε′) possibilities, one of which
includes F . 2

D Proofs for Efficient PoR Scheme Constructions

D.1 Proof of Theorem 12

Proof. The efficiency parameters are obvious, so we go straight to the extractor E which is
constructed from the error-decoder D for the underlying PoR code. In the rest of the proof we
assume that ε0 ≥ 2−λ (a lower ε0 does not improve the final soundness error ν).

26

The extractor: The extractor E P̃ (ver, k, λ) works as follows. It runs in iterations i = 1, 2, 3, . . . , λ
and, on each iteration i it sets ε = 2−i and runs DP̃ (k, λ, ε). If D outputs a list of candidates for
F , than E scans through this list, outputs the first element F̄ in the list such that h(F̄) = ω and
halts. Otherwise, if no such element exists or no list is produced, than E goes to the next iteration.
Soundness Error: Assume that the experiment (v, w, T)← SoundEA(p1(λ), p2(λ)) is run and let
G be the event that the prover P̃ chosen by the adversary A in this experiment has the property

Pr
e←R[N]

[P̃ (e) is correct] ≥ ε0.

Then

Pr[v = 1 ∧ w = 0] = Pr[v = 1 ∧ w = 0|G] Pr[G] + Pr[v = 1 ∧ w = 0|¬G](1− Pr[G])

We know that Pr[v = 1 ∧ w = 0|¬G] ≤ Pr[v = 1|¬G] ≤ ε0 since the final challenge which
determines v ∈ {0, 1}, is completely random and independent of the way that P̃ is chosen and so
it will be answered correctly with probability at most ε0. Now we need to upper bound Pr[v =
1 ∧ w = 0|G] ≤ Pr[w = 0|G]. Essentially we know that P̃ is a ε0 adversary so that D should
succeeds in outputting a list containing F in iteration at most i = λ with probability at least
(1−2−λ). So the only way that E does not succeed is if either (1) D never outputs a list containing
F or (2) some other element F̄ 6= F output by D in one of the iterations 1, . . . , λ has the property
that h(F̄) = ω. So

Pr[v = 1 ∧ w = 0|G] ≤ Pr[event (1)] + Pr[event (2)] ≤ 2−λ +
λ∑
i=1

a(λ2i)bψ ≤ 2a(λ2λ)bψ. (5)

Putting this together, we get

Pr[v = 1 ∧ w = 0] ≤ ε0 Pr[G] + (2a(λ2λ)bψ + 2−λ)(1− Pr[G]) ≤ max(ε0, 2a(λ2λ)bψ + 2−λ)

as we wanted to show.
Knowledge Soundness: We are left to show that if the PoR code is efficiently error-decodable
than the extractor is efficient. By assumption, if the PoR code is efficient, than the run-time of the
decoder D(k, λ, ε) is bounded by poly(k, λ, 1/ε) ≤ a′(kλε)b

′
for some constants a′, b′ ≥ 1. Therefore, if

the extractor halts in iteration j, then its run time T is bounded by
∑j

i=1 a
′(kλ2i)b

′ ≤ 2a′(kλ2j)b
′
.

Setting c = 1/b′, we see that, if the extractor halts in iteration j, then T c ≤ a′′kλ2j for some
constant a′′, and overall T c ≤ a′′(kλ2λ).

Now let us consider the random experiment of the soundness game
(v, w, T)← SoundEA(p1(λ), p2(λ)). Firstly, for any i ≥ 1,

Pr[T c ≥ i] ≤ Pr[v = 1, j ≥ log(i/(a′′kλ))] (6)

where j is a random variable which indicates the iteration in which E halts. Let us define the event
G to be the event that the prover P̃ output by the adversary A during the soundness game is an
ε = a′′kλ/i error-oracle. Then

Pr[T c ≥ i] ≤ Pr[v = 1, j ≥ log(i/(a′′kλ)),G] + Pr[v = 1, j ≥ log(i/(a′′kλ),¬G] (7)
≤ 2−λ + a′′kλ/i (8)

27

since the first part of (7) is bounded by the probability that DP̃ (k, λ, ε) fails to output a list
containing F when P̃ is an ε adversary (which is at most 2−λ) and the second part of (7) is
bounded by the probability that P̃ succeeds in a proof and is not an ε-error adversary, which is
bounded by ε. Therefore

E[T c] ≤
∞∑
i=1

Pr[T c ≥ i] ≤
a′′kλ2λ∑
i=1

(2−λ + a′′kλ/i)

≤ a′′kλ(1 +O(log(a′′kλ))) = poly(k, λ)

2

D.2 Proof of Theorem 13.

Proof. The proof proceeds similarly to that of Theorem 12 with only minor modifications.
The extractor: The extractor E is defined the same way as in the proof of Theorem 12, but it
runs for a maximum of − log(χ(λ)) iterations where χ(λ) is a negligible function which bounds the
success probability that the adversary A (which is a PPT adversary) distinguishes the PRFs F1, F2

from random functions. We set ε′0 = max(ε0, χ, 2−λ).
Soundness: We analyze soundness by defining the event G the same way as in the proof of
Theorem 12, but using ε′0 instead of ε0. We get

Pr[v = 1 ∧ w = 0] = Pr[v = 1 ∧ w = 0,G] + Pr[v = 1 ∧ w = 0,¬G] = negl(λ)

The analysis showing Pr[v = 1 ∧ w = 0,G] = negl(λ) is the same as before. In particular, if the
prover P̃ is an ε′0-adversary than the extractor will succeed in outputting F with overwhelming
probability. As the only modification, we will need to set the constant s depending on the specific
polynomial bounds for L(λ, ε) so that (looking at (5) in the proof of Theorem 12) the vale 2a(λ2λ)bψ
is negligible.

However, we now need modified analysis to show that Pr[v = 1 ∧ w = 0,¬G] = negl(λ).
Essentially, we must bound the probability that A produces a prover which answers a negligible
(fewer than ε0) portion of the challenges, but nevertheless succeeds in the “next” audit. We note
that if the function families F1,F2 are random functions then it is easy to see that Pr[v = 1 ∧ w =
0,¬G] = negl(λ), since the challenge sent in audit i is now completely random and independent of
what the adversary sees, and the success probability of P̃ succeeding is at most its probability of
guessing f2(`, µ′) for some new µ′, which is negligible. Therefore, when F1,F2 are PRF families,
then Pr[v = 1 ∧ w = 0,¬G] = negl(λ) since otherwise A could be used as a distinguisher. This
concludes the analysis of soundness.
Knowledge Soundness: Assuming that the decoder D is efficient, we must show that the extrac-
tor E is also efficient. Again the analysis follows the proof of Theorem 12 with small modifications.
Firstly, because we only run for at most i = − log(χ(λ)) iterations, we get the improved upper
bound T c ≤ a′′ kλχ(λ) overall. Secondly, equations (7) and (8) now become

Pr[T c ≥ i] ≤ Pr[v = 1, j ≥ log(i/(a′′kλ)),G] + Pr[v = 1, j ≥ log(i/(a′′kλ),¬G] (9)
≤ 2−λ + a′′kλ/i+ χ(λ) (10)

where the bound Pr[v = 1, j ≥ log(i/(a′′kλ)),G] ≤ 2−λ is the same as before (relying on the fact
that the extractor halts in iteration j when given an ε ≥ 2−j error-adversary with probability 2−λ).

28

However, Pr[v = 1, j ≥ log(i/(a′′kλ),¬G] can only be shown to be equal to a′′kλ/i when F1,F2

are random functions. When they are PRFs we need to add in the probability of A distinguishing
these from random, and thus we incur a factor of χ(λ). Therefore

E[T c] ≤
∞∑
i=1

Pr[T c ≥ i] ≤

a′′kλ
χ(λ)∑
i=1

(2−λ + a′′kλ/i+ χ(λ)) = poly(k, λ)

2

E Homomorphic Linear Authenticators

We briefly review the linear authenticator construction of [SW08] for the symmetric key setting
(see [SW08] for more details and also a public key based construction). Let F = {fk}k∈Kprf

be a
PRF family with outputs in F. Then the linear authenticator construction is given is as follows:

Key Selection: Choose K = (k, α) uniformly at random from Kprf × F.

Tagging LinTagK(x): Let x = (x1, . . . , xn) ∈ Fn. For each i ∈ [1, . . . , n] compute σi = fk(i) + αxi
and output the vector-tag σ = (σ1, . . . , σn).

Authenticating LinAuth(x, a, σ): Compute µ =
∑n

i=1 aixi, σ =
∑n

i=1 aiσi and output (µ, σ).
Note that this can be done by only reading values xi, σi for which ai 6= 0.

Verifying LinVerK(a, µ′, σ′): Verify that σ′ = αµ′ +
∑n

i=1 aifk(i).

On an intuitive level, if an adversary can come up with µ′ 6= µ, σ′ such that LinVerK(a, µ′, σ′)
verifies, then the adversary can also solve for α = (σ − σ′)/(µ − µ′) where µ, σ are the correct
responses for the coefficients a. However, α should be computationally hidden since it is masked
by the values fk(i). See [SW08] for a formal proof.

29

	Introduction
	The PoR Framework
	Prior Work
	Our Results

	Preliminaries
	PoR Codes
	Constructions of PoR Codes
	Efficient Erasure Decodability
	Efficient Error Decodability

	Defining PoR Schemes
	Constructions of PoR Schemes from PoR Codes
	Bounded-Use Information-Theoretic Schemes (Schemes 1,2)
	Bounded-Use Computational Schemes (Schemes 3,4,5)
	An Unbounded-Use Computational Scheme (Scheme 6)

	Some Facts from Coding
	The distance of PoR Codes and Inefficient Decoding
	Proofs for Efficient Erasure and Error Decoding
	Proof of [lemm:erasureSec]Lemma 6
	Proof of [lemm:erasurePrim]Lemma 7
	Proof of [lemm:erasureFin]Lemma 8
	Proof of [lemm:secEncErr]Lemma 9
	Proof of [lemm:errorEffFin]Lemma 11

	Proofs for Efficient PoR Scheme Constructions
	Proof of [thm:universal]Theorem 12
	Proof of [thm:boundedcomp]Theorem 13.

	Homomorphic Linear Authenticators

