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Abstract

We present an explicit pseudorandom generator for oblivious, read-once, width-3 branching
programs, which can read their input bits in any order. The generator has seed length Õ(log3 n).
The previously best known seed length for this model is n1/2+o(1) due to Impagliazzo, Meka, and
Zuckerman (FOCS ’12). Our work generalizes a recent result of Reingold, Steinke, and Vadhan
(RANDOM ’13) for permutation branching programs. The main technical novelty underlying
our generator is a new bound on the Fourier growth of width-3, oblivious, read-once branching
programs. Specifically, we show that for any f : {0, 1}n → {0, 1} computed by such a branching
program, and k ∈ [n], ∑

s⊆[n]:|s|=k

∣∣∣f̂ [s]
∣∣∣ ≤ n2 · (O(log n))k,

where f̂ [s] = E
U

[
f [U ] · (−1)s·U

]
is the standard Fourier transform over Zn

2 . The base O(log n)

of the Fourier growth is tight up to a factor of log logn.
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1 Introduction

1.1 Pseudorandom Generators for Space-Bounded Computation

A major open problem in the theory of pseudorandomness is to construct an “optimal” pseudo-
random generator for space-bounded computation. That is, we want an explicit algorithm that
stretches a uniformly random seed of length O(log n) to n bits that cannot be distinguished from
uniform by any O(log n)-space algorithm (which receives the pseudorandom bits one at a time, in a
streaming fashion, and may be nonuniform). Such a generator would imply that every randomized
algorithm can be derandomized with only a constant-factor increase in space (RL = L), and would
also have a variety of other applications, such as in streaming algorithms [25], deterministic dimen-
sion reduction and SDP rounding [38, 16], hashing [13], hardness amplification [22], almost k-wise
independent permutations [26], and cryptographic pseudorandom generator constructions [21].

To construct a pseudorandom generator for space-bounded algorithms using space s, it suffices
to construct a generator that is pseudorandom against ordered branching programs of width 2s.
A branching program1 B is a non-uniform model of space-bounded computation that reads one
input bit at a time, maintaining a state in [w] = {1, . . . , w}, where w is called the width of B. At
each time step i = 1, . . . , n, B can read a different input bit xπ(i) (for some permutation π) and
uses a different state transition function Ti : [w] × {0, 1} → [w]. It is often useful to think of a
branching program as a directed acyclic graph consisting of n + 1 layers of w vertices each, where
the ith layer corresponds to the state at time i. The transition function defines a bipartite graph
between consecutive layers, where we connect state s in layer i− 1 to states Ti(s, 0) and Ti(s, 1) in
layer i (labeling those edges 0 and 1, respectively). Most previous constructions of pseudorandom
generators for space-bounded computations consider ordered branching programs, where the input
bits are read in order – that is, π(i) = i.

The classic work of Nisan [32] gave a generator with seed length O(log2 n) that is pseudorandom
against ordered branching programs of polynomial width. Despite intensive study, this is the best
known seed length for ordered branching programs even of width 3, but a variety of works have
shown improvements for restricted classes such as branching programs of width 2 [35, 5], and regular
or permutation branching programs (of constant width) [9, 10, 27, 14, 40]. For width 3, hitting
set generators (a relaxation of pseudorandom generators) have been constructed [42, 18]. The vast
majority of these works are based on Nisan’s original generator or its variants by Impagliazzo,
Nisan, and Wigderson [24] and Nisan and Zuckerman [33], and adhere to a paradigm that seems
unlikely to yield generators against general logspace computations with seed length better than
log1.99 n (see [10]).

All known analyses of Nisan’s generator and its variants rely on the order in which the output bits
are fed to the branching program (given by the permutation π). The search for new ideas leads
us to ask: Can we construct a pseudorandom generator whose analysis does not depend on the
order in which the bits are read? A recent line of work [6, 23, 34] has constructed pseudorandom
generators for unordered branching programs (where the bits are fed to the branching program
in an arbitrary, fixed order); however, none match both the seed length and generality of Nisan’s

1In this work and the definition we give here, we consider read-once, oblivious branching programs, and refer to
them simply as branching programs for brevity.
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result. For unordered branching programs of length n and width w, Impagliazzo, Meka, and
Zuckerman [23] give seed length O((nw)1/2+o(1)) improving on the linear seed length (1− Ω(1)) · n
of Bogdanov, Papakonstantinou, and Wan [6].2 Reingold, Steinke, and Vadhan [34] achieve seed
length O(w2 log2 n) for the restricted class of permutation branching programs, in which Ti(·, b) is
a permutation on [w] for all i ∈ [n] and b ∈ {0, 1}.

Recently, a new approach for constructing pseudorandom generators has been suggested in the work
of Gopalan et al. [18]; they constructed pseudorandom generators for read-once CNF formulas and
combinatorial rectangles, and hitting set generators for width-3 branching programs, all having
seed length Õ(log n) (even for polynomially small error). Their basic generator (e.g. for read-once
CNF formulas) works by pseudorandomly partitioning the bits into several groups and assigning
the bits in each group using a small-bias generator [30]. A key insight in their analysis is that
the small-bias generator only needs to fool the function “on average,” where the average is taken
over the possible assignments to subsequent groups, which is a weaker requirement than fooling
the original function or even a random restriction of the original function. (For a more precise
explanation, see Section 4.)

The analysis of Gopalan et al. [18] does not rely on the order in which the output bits are read,
and the previously mentioned work by Reingold, Steinke, and Vadhan [34] uses Fourier analysis
of branching programs to show that the generator of Gopalan et al. fools unordered permutation
branching programs.

In this work we further develop Fourier analysis of branching programs and show that the pseudo-
random generator of Gopalan et al. with seed length Õ(log6 n) fools width-3 branching programs:

Theorem 1.1 (Main Result). There is an explicit pseudorandom generator G : {0, 1}O(log3 n·log logn) →
{0, 1}n fooling oblivious, read-once (but unordered), branching programs of width 3 and length n.

The previous best seed length for this model is the aforementioned length of O(n1/2+o(1)) given
in [23]. The construction of the generator in Theorem 1.1 is essentially the same as the generator
of Gopalan et al. [18] for read-once CNF formulas, which was used by Reingold et al. [34] for
permutation branching programs. In our analysis, we give a new bound on the Fourier mass of
width-3 branching programs.

1.2 Fourier Growth of Branching Programs

For a function f : {0, 1}n → R, let f̂ [s] = E
U

[
f [U ] · (−1)s·U

]
be the standard Fourier transform over

Zn
2 , where U is a random variable distributed uniformly over {0, 1}n and s ⊆ [n] or, equivalently,

s ∈ {0, 1}n. The Fourier mass of f (also called the spectral norm of f), defined as L(f) :=∑
s 6=∅ |f̂ [s]|, is a fundamental measure of complexity for Boolean functions (e.g., see [19]), and its

study has applications to learning theory [28, 29], communication complexity [20, 1, 41, 37], and
circuit complexity [8, 11, 12]. In the study of pseudorandomness, it is well-known that small-bias

2A generator with seed length Õ(
√
n logw) is given in [34]. The generator in [23] also extends to branching

programs that read their inputs more than once and in an adaptively chosen order, which is more general than the
model we consider.
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generators3 with bias ε/L (which can be sampled using a seed of length O(log(n·L/ε)) [30, 2]) will ε-
fool any function whose Fourier mass is at most L. Width-2 branching programs have Fourier mass
at most O(n) [5, 35] and are thus fooled by small-bias generators with bias ε/n. Unfortunately,
such a bound does not hold even for very simple width-3 programs. For example, the ‘mod 3
function,’ which indicates when the hamming weight of its input is a multiple of 3 has Fourier mass
exponential in n.

However, a more refined measure of Fourier mass is possible and often useful: Let Lk(f) =∑
|s|=k |f̂ [s]| be the level-k Fourier mass of f . A bound on the Fourier growth of f , or the rate

at which Lk(f) grows with k, was used by Mansour [29] to obtain an improved query algorithm
for polynomial-size DNF; the junta approximation results of Friedgut [17] and Bourgain [7] are
proven using approximating functions that have slow Fourier growth. This notion turns out to
be useful in the analysis of pseudorandom generators as well: Reingold et al. [34] show that the
generator of Gopalan et al. [18] will work if there is a good bound on the Fourier mass of low-order
coefficients. More precisely, they show that for any class C of functions computed by branching
programs that is closed under restrictions and decompositions and satisfies Lk(f) ≤ poly(n) · ck
for every k and f ∈ C, there is a pseudorandom generator with seed length Õ(c · log2 n) that fools
every f ∈ C. They then bound the Fourier growth of permutation branching programs (and the
even more general model of “regular” branching programs, where each layer is a regular bipartite
graph) to obtain a pseudorandom generator for permutation branching programs:

Theorem 1.2 ([34, Theorem 1.4]). Let f : {0, 1}n → {0, 1} be computed by a length-n, width-w,
read-once, oblivious, regular branching program. Then, for all k ∈ [n], Lk(f) ≤ (2w2)k.

In particular, the mod 3 function over O(k) bits, which is computed by a permutation branching
program of width 3, has Fourier mass 2Θ(k) a level k. However, the Tribes function,4 which is also
computed by a width-3 branching program, has Fourier mass Θk(logk n) at level k, so the bound
in Theorem 1.2 does not hold for non-regular branching programs even of width 3.

The Coin Theorem of Brody and Verbin [10] implies a related result: essentially, a function com-
puted by a width-w, length-n branching program cannot distinguish product distributions on
{0, 1}n any better than a function satisfying Lk(f) ≤ (log n)O(wk) for all k. To be more precise, if
X ∈ {0, 1}n is n independent samples from a coin with bias β (that is, each bit has expectation
(1 + β)/2), then E

X
[f [X]] =

∑
s f̂ [s]β|s|. If Lk(f) ≤ (log n)O(wk) for all k, then

∣∣∣∣EX [f [X]] − E
U

[f [U ]]

∣∣∣∣ =

∣∣∣∣∣∣
∑

s 6=0

f̂ [s]β|s|

∣∣∣∣∣∣
≤
∑

k∈[n]

Lk(f)|β||s| ≤ O(|β|(log n)O(w)),

assuming |β| ≤ 1/(log n)O(w). Brody and Verbin prove that, if f is computed by a length-n,
width-w branching program, then |E

X
[f [X]] − E

U
[f [U ]] | ≤ O(|β|(log n)O(w)). Since distinguishing

3A small-bias generator with bias µ outputs a random variable X ∈ {0, 1}n such that
∣

∣

∣
E
X

[

(−1)s·X
]

∣

∣

∣
≤ µ for every

s ⊂ [n] with s 6= ∅.
4The Tribes function (introduced by Ben-Or and Linial [4]) is DNF formula where all the terms are the same size

and every input appears exactly once. The size of the clauses in this case is chosen to give an asymptotically constant
acceptance probability on uniform input.
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product distributions captures much of the power of a class of functions, this leads to the following
conjecture.

Conjecture 1.3 ([34]). For every constant w, the following holds. Let f : {0, 1}n → {0, 1} be
computed by a width-w, read-once, oblivious branching program. Then

Lk(f) ≤ nO(1) · (log n)O(k),

where the constants in the O(·) may depend on w.

In this work, we prove this conjecture for w = 3:

Theorem 1.4 (Fourier Growth of Width 3). Let f : {0, 1}n → {0, 1} be computed by a width-3,
read-once, oblivious branching program. Then, for all k ∈ [n],

Lk(f) :=
∑

s:|s|=k

|f̂ [s]| ≤ n2 · (O(log n))k.

This bound is the main contribution of our work and, when combined with the techniques of
Reingold et al. [34], implies our main result (Theorem 1.1).

The Tribes function of [4] shows that the base of O(log n) of the Fourier growth in Theorem 1.4 is
tight up to a factor of log log n. (See Appendix C.)

We also prove Conjecture 1.3 with k = 1 for any constant width w:

Theorem 1.5. Let f : {0, 1}n → {0, 1} be computed by a width-w, length-n, read-once, oblivious
branching program. Then

L1(f) =
∑

i∈[n]

|f̂ [{i}]| ≤ O(log n)w−2.

The proof is left to Appendix B.

1.3 Techniques

The intuition behind our approach begins with two extreme cases of width-3 branching programs:
permutation branching programs and branching programs in which every layer is a non-permutation
layer. Permutation branching programs “mix” well: on a uniform random input, the distribution
over states gets closer to uniform (in ℓ2 distance) in each layer. We can use this fact with an
inductive argument to achieve a bound of 2O(k) on the level-k Fourier mass (this is the bound of
Theorem 1.2).

For branching programs in which every layer is a non-permution layer, we can make use of an
argument from the work of Brody and Verbin [10]: when we apply a random restriction (where
each variable is kept free with probability roughly 1/k log n) to such a branching program, the
resulting program is ‘simple’ in that the width has collapsed to 2 in many of the remaining layers.
This allows us to use arguments tailored to width-2 branching programs, which are well-understood.
In particular, we can use the same concept of mixing as used for permutation branching programs.
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To handle general width-3 branching programs, which may contain an arbitrary mix of permuta-
tion and non-permutation layers, we group the layers into “chunks” containing exactly one non-
permutation layer each. Instead of using an ordinary random restriction, we consider a series of
restrictions similar to those in Steinberger’s “interwoven hybrids” technique [39] (in our argument
each chunk will correspond to a single layer in [39]). In Section 3.1, we use such restrictions to
show that the level-k Fourier mass of an arbitrary width-3 program can be bounded in terms of
the level-k Fourier mass of a program D which has the following “pseudomixing” form: D can be
split into r ∈ [n] branching programs D1 ◦D2 ◦ · · · ◦Dr, where each Di has at most 3k non-regular
layers and the layer splitting consecutive Dis has width 2.

We then generalize the arguments used for width-2 branching programs to “pseudomixing” branch-
ing programs. We can show that each chunk Di is either mixing or has small Fourier growth, which
suffices to bound the Fourier growth of D.

1.4 Organization

In Section 2 we introduce the definitions and tools we use in our proof. In Section 2.1 we formally
define branching programs and explain our view of them as matrix-valued functions. In Sections
2.3 and 2.5 we define the matrix-valued Fourier transform and explain how we use it.

We prove the upper bound on Fourier mass of oblivious, read-once, width-3 branching programs
(i.e., Theorem 1.4) in Section 3 (Theorem 3.1). In Sections 4 and Section 5 we construct and
analyse our pseudorandom generator, which proves the main result (Theorem 1.1). The proof of
Theorem 1.5 is left to Appendix B.

2 Preliminaries

2.1 Branching Programs

We define a length-n, width-w program to be a function B : {0, 1}n × [w] → [w], which takes a
start state u ∈ [w] and an input string x ∈ {0, 1}n and outputs a final state B[x](u).

Often we think of B as having a fixed start state u0 and a set S ⊂ [w] of accept states. Then B
accepts x ∈ {0, 1}n if B[x](u0) ∈ S. We say that B computes the function f : {0, 1}n → {0, 1}
if f(x) = 1 if and only if B[x](u0) ∈ S.

In our applications, the input x is randomly (or pseudorandomly) chosen, in which case a program
can be viewed as a Markov chain randomly taking initial states to final states. For each x ∈ {0, 1}n,
we let B[x] ∈ {0, 1}w×w be a matrix defined by

B[x](u, v) = 1 ⇐⇒ B[x](u) = v.

For a random variable X on {0, 1}n, we have E
X

[B[X]] ∈ [0, 1]w×w, where E
R

[f(R)] is the expectation

of a function f with respect to a random variable R. Then the entry in the uth row and vth column
E
X

[B[X]] (u, v) is the probability that B takes the initial state u to the final state v when given a

5



random input from the distribution X—that is,

E
X

[B[X]] (u, v) = P
X

[B[X](u) = v] ,

where P
R

[e(R)] is the probability of an event e with respect to the random variable R.

A branching program reads one bit of the input at a time (rather than reading x all at once) main-
taining only a state in [w] = {1, 2, · · · , w} at each step. We capture this restriction by demanding
that the program be composed of several smaller programs, as follows.

Let B and B′ be width-w programs of length n and n′ respectively. We define the concatenation
B ◦B′ : {0, 1}n+n′ × [w] → [w] of B and B′ by

(B ◦B′)[x ◦ x′](u) := B′[x′](B[x](u)),

which is a width-w, length-(n+n′) program. That is, we run B and B′ on separate inputs, but the
final state of B becomes the start state of B′. Concatenation corresponds to matrix multiplication—
that is, (B ◦B′)[x ◦ x′] = B[x] · B′[x′], where the two programs are concatenated on the left hand
side and the two matrices are multiplied on the right hand side.

A length-n, width-w, ordered branching program (abbreviated OBP) is a program B that can
be written B = B1◦B2◦· · ·◦Bn, where each Bi is a length-1 width-w program. We refer to Bi as the
ith layer of B. We denote the subprogram of B from layer i to layer j by Bi···j := Bi◦Bi+1◦· · ·◦Bj .

A length-n, width-w, ordered branching program can also be viewed as a directed acyclic graph.
The vertices are arranged into n+ 1 layers each of size w. The edges go from one layer to the next.
In particular, there is an edge labelled b from vertex u in layer i− 1 to vertex B[b](u) in layer i.

We use the following notational conventions when referring to layers of a length-n branching pro-
gram. We need to distinguish between layers of vertices and layers of edges (although this is often
clear from context). Layers of edges are the Bis and are numbered from 1 to n. Layers of vertices
are the states between the Bis and are numbered from 0 to n. The edges in layer i (Bi) go from
vertices in layer i− 1 to vertices in layer i.

General read-once, oblivious branching programs (a.k.a. unordered branching programs) can be
reduced to the ordered case by a permutation of the input bits. Formally, a read-once, oblivious
branching program B is an ordered branching program B′ composed with a permutation π.
That is, B[x] = B′[π(x)], where the ith bit of π(x) is the π(i)th bit of x

For a program B and an arbitrary distribution X, the matrix E
X

[B[X]] is stochastic—that is,

∑

v

E
X

[B[X]] (u, v) = 1

6



for all u and E
X

[B[X]] (u, v) ≥ 0 for all u and v. A program B is called a regular program if

the matrix E
U

[B[U ]] is doubly stochastic—that is, both E
U

[B[U ]] and its transpose E
U

[B[U ]]∗ are

stochastic. A program B is called a permutation program if B[x] is a permutation matrix for
every x or, equivalently, B[x] is doubly stochastic. Note that a permutation program is necessarily
a regular program and, if both B and B′ are regular or permutation programs, then so is their
concatenation.

A regular program B has the property that the uniform distribution is a stationary distribution
of the Markov chain E

U
[B[U ]], whereas, if B is a permutation program, the uniform distribution is

stationary for E
X

[B[X]] for any distribution X.

A regular branching program is a branching program where each layer Bi is a regular program
and likewise for a permutation branching program. We will refer to layer i as regular if Bi is
a regular program and we say that layer i is non-regular otherwise.

Equivalently, a regular branching program is one where, in the directed acyclic graph, each vertex
has in-degree 2 (in addition to having out-degree 2) except those in the start layer – that is, each
layer of edges is a regular graph (hence the name). A permutation branching program has the
additional constraint that the incoming edges have distinct labels.

We also consider branching programs of varying width – some layers have more vertices than others.
The overall width of the program is the maximum width of any layer. This means that the edge
layers Bi may give non-square matrices. For i ∈ [n], if Bi[x] ∈ {0, 1}w×w′

, then we refer to w as
the width of layer i− 1 and w′ as the width of layer i.

2.2 Norms

We are interested in constructing a random variable X (the output of the pseudorandom generator)
such that E

X
[B[X]] ≈ E

U
[B[U ]], where U is uniform on {0, 1}n. Throughout we use U to denote the

uniform distribution. The error of the pseudorandom generator will be measured by a norm of
the matrix E

X
[B[X]] − E

U
[B[U ]].

For a matrix A ∈ Rw×w′
, define the ρ operator norm of A by

||A||ρ = max
x

||xA||ρ
||x||ρ

,

where ρ specifies a vector norm (usually 1, 2, or ∞ norm). Define the Frobenius norm of
A ∈ Rw×w′

by

||A||2Fr =
∑

u,v

A(u, v)2 = trace(A∗A) =
∑

λ

|λ|2,

where A∗ is the (conjugate) transpose of A and the last sum is over the singular values λ of A.
Note that ||A||2 ≤ ||A||Fr for all A.

7



2.3 Fourier Analysis

Let B : {0, 1}n → Rw×w′
be a matrix-valued function (such as given by a length-n, width-w

branching program). Then we define the Fourier transform of B as a matrix-valued function
B̂ : {0, 1}n → Rw×w′

given by
B̂[s] := E

U
[B[U ]χs(U)] ,

where s ∈ {0, 1}n (or, equivalently, s ⊂ [n]) and

χs(x) = (−1)
∑

i x(i)·s(i) =
∏

i∈s

(−1)x(i).

We refer to B̂[s] as the sth Fourier coefficient of B. The order of a Fourier coefficient B̂[s] is
|s|—the Hamming weight of s, which is the size of the set s or the number of 1s in the string
s. Note that this is equivalent to taking the real-valued Fourier transform of each of the w · w′
entries of B[x] separately, but we will see below that this matrix-valued Fourier transform is nicely
compatible with matrix algebra.

For a random variable X over {0, 1}n we define its sth Fourier coefficient as

X̂(s) := E
X

[χs(X)] ,

which, up to scaling, is the same as taking the real-valued Fourier transform of the probability mass
function of X. We have the following useful properties.

Lemma 2.1. Let A : {0, 1}n → Rw×w′
and B : {0, 1}n → Rw′×w′′

be matrix valued functions. Let
X, Y , and U be independent random variables over {0, 1}n, where U is uniform. Let s, t ∈ {0, 1}n.
Then we have the following.

• Decomposition: If C[x ◦ y] = A[x] ·B[y] for all x, y ∈ {0, 1}n, then Ĉ[s ◦ t] = Â[s] · B̂[t].

• Expectation: E
X

[B[X]] =
∑

s B̂[s]X̂(s).

• Fourier Inversion for Matrices: B[x] =
∑

s B̂[s]χs(x).

• Fourier Inversion for Distributions: P
X

[X = x] = E
U

[
X̂(U)χU (x)

]
.

• Convolution for Distributions: If Z = X ⊕ Y , then Ẑ(s) = X̂(s) · Ŷ (s).

• Parseval’s Identity:
∑

s∈{0,1}n

∣∣∣
∣∣∣B̂[s]

∣∣∣
∣∣∣
2

Fr

= E
U

[
||B[U ]||2

Fr

]
.

• Convolution for Matrices: If, for all x ∈ {0, 1}n, C[x] = E
U

[A[U ] · B[U ⊕ x]], then Ĉ[s] =

Â[s] · B̂[s].

The Decomposition property is what makes the matrix-valued Fourier transform more convenient
than separately taking the Fourier transform of the matrix entries as done by Bogdanov et al. [6].
If B is a length-n width-w branching program, then, for all s ∈ {0, 1}n,

B̂[s] = B̂1[s1] · B̂2[s2] · · · · · B̂n[sn].
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2.4 Small-Bias Distributions

The bias of a random variable X over {0, 1}n is defined as

bias(X) := max
s 6=0

|X̂(s)|.

A distribution is ε-biased if it has bias at most ε. Note that a distribution has bias 0 if and only if
it is uniform. Thus a distribution with small bias is an approximation to the uniform distribution.
We can sample an ε-biased distribution X on {0, 1}n with seed length O(log(n/ε)) and using space
O(log(n/ε)) [30, 2].

Small-bias distributions are useful pseudorandom generators: A ε-biased random variable X is
indistinguishable from uniform by any linear function (a parity of a subset of the bits of X). That

is, for any s ⊂ [n], we have

∣∣∣∣EX
[⊕

i∈sXi

]
− 1/2

∣∣∣∣ ≤ 2ε. Small bias distributions are known to be

good pseudorandom generators for width-2 branching programs [5], but not width-3. For example,
the uniform distribution over {x ∈ {0, 1}n : |x| mod 3 = 0} has bias 2−Θ(n), but does not fool
width-3, ordered, permutation branching programs.

2.5 Fourier Mass

We analyse small bias distributions as pseudorandom generators for branching programs using
Fourier analysis. Intuitively, the Fourier transform of a branching program expresses that program
as a linear combination of linear functions (parities), which can then be fooled using a small-bias
space.

Define the Fourier mass of a matrix-valued function B to be

L(B) :=
∑

s 6=0

∣∣∣
∣∣∣B̂[s]

∣∣∣
∣∣∣
2
.

Also, define the Fourier mass of B at level k as

Lk(B) :=
∑

s∈{0,1}n:|s|=k

∣∣∣
∣∣∣B̂[s]

∣∣∣
∣∣∣
2
.

Note that L(B) =
∑

k≥1 L
k(B). We define L≥k(B) :=

∑
k′≥k L

k′(B) and L≤k(B), L>k(B), L<k(B)
are defined analogously.

The Fourier mass is unaffected by order:

Lemma 2.2. Let B,B′ : {0, 1}n → Rw×w be matrix-valued functions satisfying B[x] = B′[π(x)],

where π : [n] → [n] is a permutation. Then, for all s ∈ {0, 1}n, B̂[s] = B̂′[π(s)]. In particular,
L(B) = L(B′) and Lk(B) = Lk(B′) for all k and ρ.

Lemma 2.2 implies that the Fourier mass of any read-once, oblivious branching program is equal
to the Fourier mass of the corresponding ordered branching program.

If L(B) is small, then B is fooled by a small-bias distribution:

9



Lemma 2.3. Let B be a length-n, width-w branching program. Let X be a ε-biased random variable
on {0, 1}n. We have

∣∣∣∣
∣∣∣∣EX [B[X]] − E

U
[B[U ]]

∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

s 6=0

B̂[s]X̂(s)

∣∣∣∣∣∣

∣∣∣∣∣∣
2

≤ L(B)ε.

In the worst case L(B) = 2Θ(n), even for a length-n width-3 permutation branching program B.
For example, the program Bmod 3 that computes the Hamming weight of its input modulo 3 has
exponential Fourier mass.

We show that, using ‘restrictions,’ we can ensure that L(B) is small.

3 Fourier Analysis of Width-3 Branching Programs

In this section we prove a bound on the low-order Fourier mass of width-3, read-once, oblivious
branching programs. This is key to the analysis of our pseudorandom generator. Improvements to
this result directly translate to improvements in our final result.

Theorem 3.1. Let f : {0, 1}n → {0, 1} be computed by a width-3, read-once, oblivious branching
program. Then, for all k ∈ [n],

Lk(f) ≤ 8n2 · (C · log2(3n))k = n2 · (O(log n))k ,

where C is a universal constant.5

To prove Theorem 3.1 we will consider the matrix valued function B of the branching program
computing f . Note that |f̂ [s]| ≤ ||B̂[s]||2 for all s so Lk(f) ≤ Lk(B). We may also assume without
loss of generality that the first and last layers of the program have width 2 (there is only one start
state, and there are at most 2 accept states otherwise the program is trivial). The proof proceeds in
two parts. The first part reduces the problem to one about branching programs of a special form,
namely ones where many layers have been reduced to width-2. The second part uses the mixing
properties of width-2 programs to bound the Fourier mass.

3.1 Part 1 – Reduction of Width by Random Restriction

Our reduction can be stated as follows.

Proposition 3.2. Let B be a length-n width-3 ordered branching program (abbreviated 3OBP),
m ≥ k, and k ∈ [n] with the first and last layers having width at most 2. Then

Lk(B) ≤ n ·
(
m

k

)∑

ℓ≥0

2−ℓ(m−k)Lk(D6(ℓ+1)k)

5We have not optimised any constants and only show C ≤ 107.
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where each D6(ℓ+1)k = D
6(ℓ+1)k
1 ◦D6(ℓ+1)k

2 ◦ · · · ◦D6(ℓ+1)k
r , where r ∈ [n], each D

6(ℓ+1)k
i is a 3OBP

with at most 6(ℓ + 1)k non-regular layers, and the first and last layers of each Di have width at
most 2.

In Section 3.2, we will prove Lk(D6(ℓ+1)k) ≤ n · O(ℓ)k. Taking m = 2k, this implies Lk(B) ≤
n2 · O(k)k. Finally, in Section 3.3, we show that we may assume k ≤ O(log n), so we get a Fourier
growth bound of Lk(B) ≤ n2 ·O(log n)k. Here we focus on the proof of Proposition 3.2.

First some definitions:

For g ⊂ [n]– and x ∈ {0, 1}n, define the restriction of B to g using x – denoted B|g←x – to
be the branching program obtained by setting the inputs (layers of edges) of B outside g to values
from x and leaving the inputs in g free. More formally,

B|g←x[y] = B[Select(g, y, x)],

where

Select(g, y, x)i =

{
yi i ∈ g
xi i /∈ g

}
.

We prove Proposition 3.2 by considering a restriction B|g←x for a carefully chosen g and a random
x. We show (Lemma 3.3) that is suffices to bound the Fourier growth of the restricted program
B|g←x and (Lemma 3.4) that the restricted program is of the desired form D6(ℓ+1)k with high
probability.

Define a chunk to be a 3OBP with exactly one non-regular layer. An l-chunk 3OBP is a 3OBP
B such that B = C1 ◦ C2 ◦ · · · ◦ Cl, where each Ci is a chunk. Equivalently, an l-chunk 3OBP
is a 3OBP with exactly l non-regular layers. The partitioning of B into chunks is not necessarily
unique. But we fix one such partitioning for each 3OBP and simply refer to the ith chunk Ci. If B
is an l-chunk length-n 3OBP, let ci ⊂ [n] be the coordinates corresponding to Ci.

We will compute a bound on the level-k Fourier weight of B via a series of “interwoven” restrictions
similar to Steinberger’s technique [39]. Lemma 3.3 below tells us that we may obtain a bound by
bounding, in expectation, the level-k weight of a restricted branching program. We then argue that
with high probability over this restriction, the width of the resulting program will be essentially
reduced. In particular, there is a layer of width 2 after every O(k) non-regular layers.

We now describe some notation that will be used for the interwoven restrictions. For t ⊂ [m], define

gt :=
⋃

(i mod m)+1∈t

ci

and
Gk

t := {s ⊂ gt : |s| = k}.
We refer to gt as the tth group of indices and Gk

t as the tth group of (order k) Fourier
coefficients. The following lemma tells us that we may bound the level-k Fourier weight by
considering a fixed subset t ⊂ [m] of size k and the level-k Fourier weight of the branching program
that results by randomly restricting the variables outside of gt:
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Lemma 3.3. Let B be a length-n 3OBP, k ∈ [n], m ≥ k and gt as above. Then

Lk(B) ≤
(
m

k

)
· max

t⊂[m]:|t|=k
E
U

[
Lk(B|gt←U )

]
.

Proof. Note that some Fourier coefficients appear in multiple Gts, but every coefficient at level k
appears in at least one Gt. Thus

Lk(B) ≤
∑

t:|t|=k

∑

s∈Gk
t

∣∣∣
∣∣∣B̂[s]

∣∣∣
∣∣∣
2

=
∑

t:|t|=k

∑

s∈Gk
t

∣∣∣∣
∣∣∣∣EU
[
B̂gt←U [s]

]∣∣∣∣
∣∣∣∣
2

≤
∑

t:|t|=k

∑

s∈Gk
t

E
U

[∣∣∣
∣∣∣B̂gt←U [s]

∣∣∣
∣∣∣
2

]

=
∑

t:|t|=k

E
U

[
Lk(B|gt←U)

]

≤
(
m

k

)
max

t⊂[m]:|t|=k
E
U

[
Lk(B|gt←U )

]
,

where the second inequality follows from the convexity of the norm.

Given Lemma 3.3, we may now prove Proposition 3.2 by giving an upper bound on E
U

[
Lk(B|gt←U )

]

for any fixed t ⊂ [m] with |t| = k. To do this, we prove that a random restriction to gt will, with
high probability, result in a branching program of the desired form.

Lemma 3.4. Let B be a length-n 3OBP, k, ℓ ∈ [n], m ≥ k and fix t ⊆ [m] with |t| = k. Then with
probability at least 1 − n · 2−ℓ·(m−k) over a random choice of x ∈ {0, 1}n,

B|gt←x = D1 ◦D2 ◦ · · · ◦Dr,

where r ∈ [n] and each Di is a 3OBP with at most 6ℓk non-regular layers and the layer of vertices
between Di−1 and Di have width at most 2.

Proof. Let t = {t1, t2, · · · , tk} where t1 < t2 < · · · < tk. Define ta+k = ta + m for all a. Let a′ be
the largest value of a such that ta ≤ n. We redefine ta′+1 = n + 1. We can write

B|gt←x = C ′t1 ◦ C
′
t2 ◦ · · · ◦ C

′
ta′
,

where each C ′ta corresponds to Cta . However, the chunks Cta+1, Cta+2, · · ·Cta+1−1 have been re-

stricted and C ′ta reflects that. Formally, for all a ∈ [l′]\{1} and y ∈ {0, 1}|cta |, we have

C ′ta [y] = Cta [y] · Cta+1[xcta+1
] · · · · · Cta+1−1[xcta+1−1

],

and, for all y ∈ {0, 1}|ct1 |, we have

C ′t1 [y] = C1[xc1 ] · · · · · Ct1−1[xct1−1
] · Ct1 [y] · Ct1+1[xct1+1

] · · · · · Ct2−1[xct2−1
],
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where xct is the coordinates of x contained in ct. Moreover, we remove any unreachable vertices.
That is, if E

U

[
C ′ta [U ]

]
has a column of zeros, we remove that column (making the matrix non-

square) and remove the corresponding row from C ′ta+1
. This reduces the width of the layer of

vertices between C ′ta and C ′ta+1
.

It should be clear that each C ′ta is a 3OBP with between one and three non-regular layers. (One
non-regular layer comes from Cta and the first and last layers may become non-regular after the
restriction.)

Consider ℓ · k + 1 consecutive C ′tas in the restricted program C ′ta ◦ C ′ta+1
◦ · · · ◦ C ′ta+ℓ·k

and the
corresponding subprogram before restriction Cta ◦ · · · ◦ Cta+ℓ·k

which contains ℓ · m + 1 chunks
(recall that ta+k = ta + m). There are exactly ℓ · k + 1 chunks C ′ta , . . . , C

′
ta+k, . . . , C

′
ta+ℓ·k

which
remain free after the restriction, i.e., ℓ(m−k) chunks have been restricted. Furthermore, each such
chunk contains a non-regular layer.

Each non-regular layer that is restricted has at least a 1/2 probability of reducing the width: Being
non-regular implies that there are two edges with the same label going to the same vertex. There
is a 1/2 probability of the restriction picking that label. If this happens, then one of the vertices
on the right side of the layer becomes unreachable and therefore the width is reduced. This is the
same argument that is used by Brody and Verbin [10] and Steinberger [39].

So, with probability at least 1− 2−ℓ(m−k) over the choice of x, there exists a layer between C ′ta and
C ′ta+ℓ·k

that has width at most 2. Call such a layer of vertices a bottleneck.

By a union bound, with probability at least 1 − n · 2−ℓ(m−k) over the choice of x, every ℓ · k + 1
successive C ′tas have one such bottleneck. We split the C ′tas into groups that are separated by
bottlenecks to write B|gt←x = D1 ◦D2 ◦ · · · ◦Dr (one Di per group). Since each remaining chunk
has at most 3 non-regular layers, and there can be at most 2ℓk chunks in each group, each Di is a
3OBP with at most 6ℓk non-regular layers and the layer between Di and Di+1 has width at most
2 (i.e., is a bottleneck).

We may now complete the proof of Proposition 3.2.

Proof of Proposition 3.2. By Lemma 3.3, it suffices to bound, for every fixed t, the quantity
E
U

[
Lk(B|gt←U)

]
.

We compute the expectation of Lk(B|gt←U ) by conditioning on the how far apart bottlenecks are
in the restricted program and applying Lemma 3.4. Let βx be the largest number of non-regular
layers occuring in B|gt←x that are not separated by a bottleneck (i.e., a width-2 layer).

E
U

[
Lk(B|gt←U)

]
≤
∑

ℓ≥0

P
x

[6ℓk < βx ≤ 6(ℓ + 1)k] · E
x

[
Lk(B|gt←x) | βx ≤ 6(ℓ + 1)k

]

≤
∑

ℓ≥0

n · 2−ℓ·(m−k) · Lk(D6(ℓ+1)k)

where D6(ℓ+1)k is the branching program that maximizes Lk(B|gt←x) over x such that βx ≤ 6(ℓ +
1)k.
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3.2 Part 2 – Mixing in Width-2

Now it remains to bound the Fourier mass of 3OBPs of the form given by Proposition 3.2.

Proposition 3.5. Let Dℓ be a length-n 3OBP such that

Dℓ = Dℓ
1 ◦Dℓ

2 ◦ · · · ◦Dℓ
r,

where each Dℓ
i is a 3OBP with at most ℓ non-regular layers and width 2 in the first and last layers.

Then Lk(Dℓ) ≤ 2n · (6000(ℓ + 1))k = n · O(ℓ)k for all k, ℓ ≥ 1.

Before we prove Proposition 3.5, we show how it implies a bound on Fourier mass of general 3OBPs.

Proposition 3.6. Let B be a length-n, width-3, read-once, oblivious branching program with width
2 in the first and last layers. Then, for all k ∈ [n],

Lk(B) :=
∑

s∈{0,1}n:|s|=k

|B̂[s]| ≤ 8n2 · (200000k)k = n2 ·O(k)k.

Proof. Let B be a 3OBP computing f and assume B has width 2 in the first and last layers. By
Propositions 3.2 and 3.5, we have, setting m = 2k + 1,

Lk(B) ≤n ·
(
m

k

)∑

ℓ≥0

2−ℓ(m−k)Lk(D6(ℓ+1)k)

≤n ·
(
m

k

)∑

ℓ≥0

2−ℓ(m−k)2n · (6000(6(ℓ + 1)k + 1))k

≤2n2

(
2k + 1

k

)∑

ℓ≥0

2−ℓ(k+1)(6000(6(ℓ + 1)k + 1))k

≤4n24k
∑

ℓ≥0

2−ℓ ·
(

6000
6(ℓ + 1)k + 1

2ℓ

)k

≤4n24k


∑

ℓ≥0

2−ℓ


 · (6000 · 7k)k

≤8n2 · (6000 · 4 · 7k)k ,

as required.

A key notion in our proof is a measure of the extent to which a branching program (or subprogram)
mixes, and the way this is reflected in the Fourier spectrum. For an ordered branching program D
of width w, define

λ(D) = max
x∈Rw:

∑
i xi=0

∣∣∣∣
∣∣∣∣xEU [D[U ]]

∣∣∣∣
∣∣∣∣
2

||x||2
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The quantity λ(D) is a measure of the mixing of D. If D is regular, we have λ(D) ∈ [0, 1], where 0
corresponds to perfect mixing and 1 to no mixing. If D is not regular, it is possible that λ(D) > 1.
However, for width-2 – where E

U
[D[U ]] is a 2 × 2 matrix – it turns out that λ(D) ≤ 1 even if D is

non-regular. In particular,

if E
U

[D[U ]] =

(
1 − α α
β 1 − β

)
, then λ(D) =

∣∣∣∣
∣∣∣∣(1,−1)E

U
[D[U ]]

∣∣∣∣
∣∣∣∣
2

||(1,−1)||2
= |1 − α− β|.

The rows of E
U

[D[U ]] must sum to 1 and have non-negative entries (as they are a probability

distribution). So α, β ∈ [0, 1], which implies λ(D) ≤ 1. This fact is crucial to our analysis and is
the main reason our results do not extend to higher widths.

Note that for any s 6= 0, the rows of D̂[s] sum to zero. Thus for any branching program D = D1◦D2

and coefficient D̂[s] with s = (s1, s2) satisfying s2 = 0, we have

∣∣∣
∣∣∣D̂[s]

∣∣∣
∣∣∣
2
≤
∣∣∣
∣∣∣D̂1[s1]

∣∣∣
∣∣∣
2
· λ(D2). (1)

For branching programs B in which every layer is mixing – that is λ(Bi) ≤ C < 1 for all i – this fact
can be used with an inductive argument (simpler than the proof below) to obtain a 1/(1 − C)O(k)

bound on the level-k Fourier mass. We show that any Di in the branching program of the form
given by Proposition 3.2 will either mix well or have small Fourier mass after restriction. More
precisely, define the p-damped Fourier mass of a branching program B as

Lp(B) =
∑

k>0

pkLk(B) =
∑

s 6=0

p|s|
∣∣∣
∣∣∣B̂[s]

∣∣∣
∣∣∣
2
.

Note that Lk(B) ≤ Lp(B)p−k for all k and p. The main lemma we prove in this section is the
following.

Lemma 3.7. If D is a length-d 3OBP with k ≥ 1 non-regular layers that has only two vertices in
the first and last layers, then

λ(D) + Lp(D) ≤ 1

for any p ≤ 1/6000(k + 1).

First, we show that Lemma 3.7 implies Proposition 3.5:

Proof of Proposition 3.5. We inductively show that

Lp(D
ℓ
1 ◦ · · · ◦Dℓ

i ) ≤ 2i,

and hence Lp(D) ≤ 2r ≤ 2n. For i = 0 this is trivial. Now suppose it holds for i. By decomposition
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(Lemma 2.1), we have

Lp(Dℓ
1 · · ·Dℓ

i ◦Dℓ
i+1) =

∑

(s,t)6=0

p|s|+|t|
∣∣∣
∣∣∣ ̂Dℓ

1 · · ·Dℓ
i [s] · D̂ℓ

i+1[t]
∣∣∣
∣∣∣
2

≤
∑

s 6=0

p|s|
∣∣∣
∣∣∣ ̂Dℓ

1 · · ·Dℓ
i [s]
∣∣∣
∣∣∣
2

∑

t6=0

p|t|
∣∣∣
∣∣∣D̂ℓ

i+1[t]
∣∣∣
∣∣∣
2

+
∑

s 6=0

p|s|
∣∣∣
∣∣∣ ̂Dℓ

1 · · ·Dℓ
i [s] · D̂ℓ

i+1[0]
∣∣∣
∣∣∣
2

+
∣∣∣
∣∣∣ ̂Dℓ

1 · · ·Dℓ
i [0]
∣∣∣
∣∣∣
2

∑

t6=0

p|t|
∣∣∣
∣∣∣D̂ℓ

i+1[t]
∣∣∣
∣∣∣
2

≤Lp(D
ℓ
1 · · ·Dℓ

i ) · Lp(Dℓ
i+1) + Lp(Dℓ

1 · · ·Dℓ
i )λ(Dℓ

i+1)

+
∣∣∣
∣∣∣ ̂Dℓ

1 · · ·Dℓ
i [0]
∣∣∣
∣∣∣
2
· Lp(D

ℓ
i+1)

≤Lp(D
ℓ
1 · · ·Dℓ

i ) · 1 +
√

2Lp(Dℓ
i+1)

≤2i + 2.

The second inequality follows from Equation 1 and the third from Lemma 3.7. Thus, we have that
Lk(Dℓ) ≤ p−kLp(D

ℓ) ≤ 2n · (6000(ℓ + 1))k, as required

Now we turn our attention to Lemma 3.7. We split into two cases: If λ(D) is far from 1 i.e.
λ(D) ≤ 0.99, then we need only ensure Lp(D) ≤ 1/100. This is the ‘easy case’ which proceeds much
like the analysis of regular branching programs [34]. If λ(D) = 1, then D is trivial – i.e. Lp(D) = 0
– and we are also done. The ‘hard case’ is when λ(D) is very close to 1. i.e. 0.99 ≤ λ(D) < 1.

Easy Case – Good Mixing

We consider the case where λ(D) < 0.99. We use the following result as a black box.

Lemma 3.8 ([9, Lemma 4], [34, Lemma 3.1]). Let B be a length-n, width-w, ordered, regular
branching program. Then ∑

1≤i≤n

∣∣∣
∣∣∣B̂i···n[1 ◦ 0n−i]

∣∣∣
∣∣∣
2
≤ 2w2.

The quantity
∣∣∣
∣∣∣B̂i···n[1 ◦ 0n−i]

∣∣∣
∣∣∣
2

measures the correlation between the ith input bit and the final

state of the program, which we call the weight of bit i. The entry in the uth row and vth column
of 2B̂i···n[1◦0n−i] is the the probability of reaching vertex v in layer n given that we reached vertex
u in layer i − 1 and the ith input bit is 0 minus the same probability given that the ith input bit
is 1. Braverman et al. [9] proved this result for a different measure of weight. Their result was
translated into the above Fourier-analytic form by Reingold et al. [34].

We can add some non-regular layers to get the following.
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Lemma 3.9. Let B be a length-n, width-w, ordered branching program with at most k non-regular
layers. Then ∑

1≤i≤n

∣∣∣
∣∣∣B̂i···n[1 ◦ 0n−i]

∣∣∣
∣∣∣
2
≤ (2w2 + 1)

√
w(k + 1).

Proof. The proof proceeds by induction on k. If k = 0, the result follows from Lemma 3.8. Suppose
the result holds for some k and let B be a length-n, width-w ordered branching program with k+ 1
non-regular layers. Let i∗ be the index of the first non-regular layer. Then

∑

1≤i≤n

∣∣∣
∣∣∣B̂i···n[1 ◦ 0n−i]

∣∣∣
∣∣∣
2

=
∑

1≤i<i∗

∣∣∣
∣∣∣ ̂Bi···(i∗−1)[1 ◦ 0i

∗−i−1] · B̂i∗···n[0]
∣∣∣
∣∣∣
2

+
∣∣∣
∣∣∣B̂i∗···n[1 ◦ 0n−i

∗

]
∣∣∣
∣∣∣
2

+
∑

i∗<i≤n

∣∣∣
∣∣∣B̂i···n[1 ◦ 0n−i]

∣∣∣
∣∣∣
2

≤


 ∑

1≤i<i∗

∣∣∣
∣∣∣ ̂Bi···(i∗−1)[1 ◦ 0i

∗−i−1]
∣∣∣
∣∣∣
2


 ·

∣∣∣
∣∣∣B̂i∗···n[0]

∣∣∣
∣∣∣
2

+
√
w + (2w2 + 1)

√
w(k + 1)

≤2w2 ·
√
w +

√
w + (2w2 + 1)

√
w(k + 1)

≤(2w2 + 1)
√
w(k + 2),

where we use the fact that
∣∣∣
∣∣∣B̂[s]

∣∣∣
∣∣∣
2
≤ √

w for any s and width-w branching program B.

This gives us the following bound on the Fourier mass.

Theorem 3.10. Let B be a length-n, width-w, orderd branching program with at most k non-regular
layers. Then, for all k′ ∈ [n],

Lk′(B) :=
∑

s∈{0,1}n:|s|=k

∣∣∣
∣∣∣B̂[s]

∣∣∣
∣∣∣
2
≤

√
w · ((2w2 + 1)

√
w(k + 1))k

′ ≤
√
w · (3w2.5(k + 1))k

′

.

This result is proved using Lemma 3.9 analogously to how [34, Theorem 3.2] is proved using Lemma
3.8.

Proof. We perform an induction on k′. If k′ = 0, then there is only one Fourier coefficient to

bound—namely, B̂[0n] = E
U

[B[U ]]. Since E
U

[B[U ]] is stochastic,

∣∣∣∣
∣∣∣∣EU [B[U ]]

∣∣∣∣
∣∣∣∣
2

≤ √
w and the base

case follows. Now suppose the bound holds for k′ and consider k′ + 1. We split the Fourier
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coefficients based on where the last 1 is:

∑

s∈{0,1}n:|s|=k′+1

∣∣∣
∣∣∣B̂[s]

∣∣∣
∣∣∣
2

=
∑

1≤i≤n

∑

s∈{0,1}i−1:|s|=k′

∣∣∣
∣∣∣B̂[s ◦ 1 ◦ 0n−i]

∣∣∣
∣∣∣
2

=
∑

1≤i≤n

∑

s∈{0,1}i−1:|s|=k′

∣∣∣
∣∣∣B̂1···i−1[s] · B̂i···n[1 ◦ 0n−i]

∣∣∣
∣∣∣
2

(by Lemma 2.1 (Decomposition))

≤
∑

1≤i≤n

∑

s∈{0,1}i−1:|s|=k′

∣∣∣
∣∣∣B̂1···i−1[s]

∣∣∣
∣∣∣
2
·
∣∣∣
∣∣∣B̂i···n[1 ◦ 0n−i]

∣∣∣
∣∣∣
2

≤
∑

1≤i≤n

√
w · ((2w2 + 1)

√
w(k + 1))k

′ ·
∣∣∣
∣∣∣B̂i···n[1 ◦ 0n−i]

∣∣∣
∣∣∣
2

(by the induction hypothesis)

≤
√
w · ((2w2 + 1)

√
w(k + 1))k

′ · (2w2 + 1)
√
w(k + 1) (by Lemma 3.9)

=
√
w · ((2w2 + 1)

√
w(k + 1))k

′+1,

as required.

Lemma 3.11. Let D be a 3OBP with at most k non-regular layers. If p ≤ 1/6000(k + 1), then
Lp(D) ≤ 1/100.

Proof. We have

Lp(D) =
∑

k′≥1

pk
′

Lk′(D)

≤
∑

k′≥1

pk
′√

3((2 · 32 + 1)
√

3(k + 1))k
′

≤
√

3
∑

k′≥1

(
19
√

3(k + 1)

6000(k + 1)

)k′

≤1/100.

It immediately follows that λ(D) + Lp(D) ≤ 1 when p ≤ 1/6000(k + 1), assuming λ(D) < 0.99.
This covers the ‘easy’ case of Lemma 3.7.

Hard Case – Poor Mixing

Now we consider the case where λ(D) ∈ [0.99, 1].

18



Lemma 3.12. Let D be a 3OBP with at most k non-regular layers where the first and last layers
of vertices have width 2. Suppose λ(D) ∈ [0.99, 1]. If p ≤ 1/(24k + 12), then Lp(D) + λ(D) ≤ 1.

This covers the ‘hard’ case of Lemma 3.7 and, along with Lemma 3.11 completes the proof of
Lemma 3.7.

Since D has width 2 in the first and last layers, we view D[x] as a 2 × 2 matrix. We can write the
expectation (which is stochastic) as

E
U

[D[U ]] =

(
1 − α α
β 1 − β

)
.

We can assume (by permuting rows and columns) that λ(D) = 1 − α − β and α, β ∈ [0, 1/100].
Now write

D[x] =

(
1 − f(x) f(x)
g(x) 1 − g(x)

)
,

where f, g : {0, 1}d → {0, 1}. Then α = E
U

[f(U)] and β = E
U

[g(U)]. We can view D has having two

corresponding start and end states. The probability that, starting in the first start state, we end in
the first end state is 1−α ≥ 0.99. Likewise, the probability that, starting in the second start state,
we end in the second end state is 1− β ≥ 0.99. The function f is computed by starting in the first
start state and accepting if we end in the second end state – that is, we “cross over”. Likewise, g
computes the function telling us whether we will cross over from the second start state to the first
end state. Intuitively, there is a low (1/100) probability of crossing over, so the program behaves
like two disjoint programs.

We will show that Lp(f) ≤ (12k + 6)pα and Lp(g) ≤ (12k + 6)pβ for p ≤ 1/(6k + 3), from which
the result follows by choosing p such that Lp(f) ≤ α/2 and Lp(g) ≤ β/2.

The plan is as follows.

1. Show that we can partition the vertices of D into two sets with O(k) edges crossing between
the sets such that each layer has at least one vertex in each set. Intuitively, this partitions D
into two width-2 branching programs with a few edges going between them.

2. Using this partition, show that we can write f(x) =
∑

s

∏
j fs,j(xj), where each fs,j is a

{0, 1}-valued function computed by a regular width-2 branching program, the product is over
O(k) terms and the xjs are a partition of x.

3. Let fs(x) =
∏

j fs,j(xj) and αs = E
U

[fs(U)]. Show that Lp(fs) ≤ (12k + 6)pαs for p ≤
1/(6k + 3). Then

Lp(f) ≤
∑

s

Lp(fs) ≤
∑

s

(12k + 6)pαs ≤ (12k + 6)pα,

as required.

The same holds for g, which gives the result.
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Step 1.

Lemma 3.13. Let D be a 3OBP with at most k non-regular layers and width-2 in the first and
last layers of vertices. Suppose λ(D) ∈ [0.99, 1]. Then there is a partition of the vertices of D such
that each layer has at least one vertex in each side of the partition and there are at most 2k + 1
layers with an edge that crosses the partition.

Proof. We assign each vertex of D a charge: The two vertices v+ and v− in the first layer are
assigned charges 1 and −1 respectively. Each edge is assigned a charge that is half the charge of
the vertex it originates from and the charge of each subsequent vertex is the sum of the charges
of the incoming edges. In other words, the charge of a vertex u is the probabililty that a random
walk from v+ reaches u minus the probability that a random walk from v− reaches u.

The partition is given by the sign of the charge: Let Q be the set of vertices with positive or zero
charge and let Q be the set of vertices with negative charge. Now we must prove that there are
O(k) edges crossing between Q and Q.

Define the total charge of a layer to be the sum of the absolute values of the charges in that layer.
Clearly the total charge cannot increase from one layer to the next (by the triangle inequality).
Moreover, the total charge in the final layer equals ((1 − α) − α) + ((1 − β) − β) = 2λ(D).

By assumption (λ(D) ≥ 0.99) the total charge decreases by at most 1/50. The total charge only
decreases when an edge crosses the (Q,Q) partition, as this is when positive and negative charges
cancel. In fact, it decreases by precisely the charge of the crossing edge.

So there is very little charge crossing the partition. However, it is possible that many edges with
little charge cross the partition. To preclude this possibility, we also track the minimum charge
of each layer, which is the minimum absolute value of a charge of a vertex in that layer.

Now we use the fact that there are at most k non-regular layers in D. Call a layer a crossing layer
if it contains an edge that crosses the partition i.e. where the signs of the charges of the endpoints
of the edge are different. Clearly there are at most k non-regular crossing layers. We need only
account for regular crossing layers.

Consider a regular crossing layer. We will argue that the minimum charge must go from ‘small’
to ‘large’. Then we will argue that in order for the minimum charge to go from large back to
small, a non-regular layer is needed. So each such regular crossing layer must have a corresponding
non-regular layer. This ensures that there are at most k + 1 regular crossing layers, as required.

Let Bi be a regular crossing layer. Let a ≤ b ≤ c be the charges on the left vertices of the layer.
Since a + b + c = 0 and |a| + |b| + |c| ≥ 1.98, we have that a ≤ −0.49 and c ≥ 0.49. The vertices
corresponding to a and c cannot have a common neighbour, as otherwise the total charge would
decrease by at least 0.2. Up to permuting vertices, this leaves three possibilities for the layer, which
we depict in Figure 1.

Possibility (iii) does not have a crossing, so can be ignored. Possibilities (i) and (ii) are essentially
the same up to flipping signs. So let’s analyse possibility (i).

For there to be a crossing, we must have b < 0. The total charge then decreases by |b|. So
|b| ≤ 1/50. Now |b| is the minimum charge of the vertices on the left. So the minimum charge

20



Figure 1: The bold arrows indicate double edges.

on the left of a regular crossing layer is at most 1/50. On the right, the minimum charge is
min{|a|, |b+ c|/2} ≥ min{0.49, (0.49− 1/50)/2} > 1/5. So this layer increases the minimum charge
by at least 1/5 − 1/50 > 0.1.

Now we will show that any two regular crossing layers must have a non-regular layer between them.
For the sake of contradiction, let Bi and Bj (i < j) be two regular crossing layers with no non-
regular layers between them. We can assume that there are no crossing layers between Bi and Bj :
If not, replace Bj with the first crossing layer after Bi.

Now consider the vertices in Bi+1, call them v1, v2 and 3. We assume without loss of generality
that one vertex has positive charge (say v1), while v2 and v3 have negative charge. Because there
are no crossing layers, no path from v1 can share a vertex with any path starting from v2 or v3.
Thus, up to permutation on the vertices (determining which vertex is “isolated”), the first column
and first row of the matrix E

U

[
Bi+1,...,j−1[U ]

]
are equal to (1, 0, 0). Because every layer of Bi+1,...,j−1

must be regular, up to permuting vertices, we have that E
U

[Bi+1···j−1[U ]] is of the form




1 0 0
0 1 0
0 0 1


 or




1 0 0
0 1/2 1/2
0 1/2 1/2


 .

The first possibility cannot decrease the minimum charge at all. The second possibility can only
decrease the minimum charge by cancellation: Let a, b, and c be the charges on the left. Then the
charges on the right are a, (b+ c)/2, and (b+ c)/2. The only way the minimum charge can decrease
is if b and c have opposite signs. By symmetry, we can assume that c ≥ −b ≥ 0. Thus the new
minimum charge is either |a| or (c− |b|)/2 = (c + |b|)/2 − |b|. So the minimum charge decreases by
at most |b|. However, the total charge decreases by |b|+ |c|− |b+ c| = c+ |b|− (c−|b|) = 2|b|. Since
the total charge can decrease by at most 1/50, we have |b| ≤ 1/100 and the minimum charge can
decrease by at most 1/100 – a contradiction, as it must decrease from at least 1/5 to at most 1/50.

Thus we have shown that each pair of regular crossing layers has a non-regular layer between then.
Since there are at most k non-regular layers, there are at most 2k+1 crossing layers, as required.
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Step 2.

Lemma 3.14. Let D be a length-d 3OBP with at most k non-regular layers and width-2 in the first
and last layers of vertices. Suppose λ(D) ≥ 0.99. If f : {0, 1}n → {0, 1} is the function computed
by D, then we can write f(x) =

∑
s

∏
j fs,j(xj), where each fs,j is computed by a regular width-2

ordered branching program and the xj ’s are a partition of x into at most 6k + 3 parts.

Proof. Call a layer of edges of D critical if it is either non-regular or it has an edge crossing the
partition given by Lemma 3.13. Let Γ be the set of critical layers. By Lemma 3.13, D has at most
3k + 1 critical layers. Between critical layers, D is partitioned into two width-2 regular branching
programs. (To be more precise, it is partitioned into a width-2 regular branching program and a
width-1 regular branching program.)

Define Γ̃ to be the set of ‘fixings’ of edges in Γ, that is, s ∈ Γ̃ specifies for each i ∈ Γ an edge s(i)
in layer i (specifiing one of three states to the left of layer i and the label, which is 0 or 1, of the
edge taken). We can think of s ∈ Γ̃ as a function s : Γ → [3] × {0, 1}.

For s ∈ Γ̃, define fs : {0, 1}d → {0, 1} to be the following indicator function:

fs(x) = 1 ⇐⇒ f(x) = 1 ∧ the path in D given by x uses all the edges in s.

Clearly f(x) =
∑

s∈Γ̃ fs(x), as each path in D is consistent with exactly one s.

Now we claim that each fs can be written as the conjunction of at most 2|Γ| + 1 regular width-2
branching programs. In particular, there is one term for each critical layer and one term for each
gap between critical layers.

Let i1 < i2 < · · · < i|Γ| be an enumeration of Γ. (Also define i0 = 0 and i|Γ|+1 = d + 1.) We will
write

fs(x) =

2|Γ|+1∏

j=1

fs,j(xj),

where the xjs are a partition of x as follows. For j ∈ [|Γ| + 1], x2j−1 ∈ {0, 1}ij−ij−1−1 contains the
coordinates from ij−1+1 to ij−1 of x. For j ∈ [|Γ|], x2j ∈ {0, 1} is coordinate ij of x. The function
fs,j checks the bits in xj and is 1 if and only if the path is consistent with fs = 1 (assuming the
bits outside of xj are set consistently with fs = 1. Thus fs,2j−1(x2j−1) verifies that if started in
the state s(ij−1)1, the input x2j−1 leads D to state s(ij)1 in layer ij , and fs,2j(x2j) verifies that
x2j = s(i2j)2, i.e., that the setting of x2j is the same as the label specified by s(i2j). Note that for
fs,j to be satisfied, there is only one correct vertex at each end of the path. The functions fs,2j are
determined by a single literal and can be computed by width-2 branching programs, and since the
functions fs,2j−1 are computed over non-critical layers from a single starting vertex, they are also
computed by width-2.

Step 3.

We use the following fact about regular width-2 ordered branching programs – a very simple class
of functions.
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Lemma 3.15. Let f : {0, 1}n → {0, 1} be computed by a width-2 regular ordered branching program.
Then E

U
[f(U)] ∈ {0, 1/2, 1} and Lp(f) ≤ p/2 for all p ∈ [0, 1].

Proof. Every layer of a regular width-2 ordered branching program falls into one of three cases:
trivial layers (the input bit does not affect the state), a (negated) XOR (flips the state depending
on the input bit), or a (negated) dictator (sets the state based on the current input bit regardless
of the previous state). Thus any such branching program is either a constant function, which gives
E
U

[f(U)] ∈ {0, 1} and Lp(f) = 0, or is a (possibly negated) XOR of a subset of the input bits. In

the latter case f has one non-trivial coefficient of magnitude 1/2, which implies E
U

[f(U)] = 1/2 and

Lp(f) ≤ p · L(f) ≤ p/2.

Lemma 3.16. Let f : {0, 1}n → {0, 1} be of the form f(x) =
∏

j∈[k] fj(xj), where the xjs are
a partition of x and each fj is computed by a width-2 ordered regular branching program. Then
Lp(f) ≤ 2kp · E

U
[f(U)] for any p ≤ 1/k.

Proof. Define αj = E
U

[fj(U)]. We have α =
∏

j∈[k]αj . Now

α + Lp(f) =
∑

s

p|s||f̂ [s]|

=
∑

s

p|s|
∏

j∈[k]

|f̂j[sj ]|

=
∏

j∈[k]

∑

sj

p|sj ||f̂j [sj]|

=
∏

j∈[k]

(αj + Lp(fj)) .

Since fj is computed by a width-2 regular branching program, αj ∈ {0, 1/2, 1}. If αj = 0, then
α = 0 and Lp(f) = 0, so we can ignore this case. Moreover, if αj = 1, then fj = 1 is constant and
Lp(fj) = 0, so we can ignore the terms with αj = 1. Let J = {j ∈ [k] : αj = 1/2}. Thus we are
left with

Lp(f) =
∏

j∈J

(
1

2
+ Lp(fj)

)
− 2−|J |

=α ·


∏

j∈J

(1 + 2Lp(fj)) − 1




≤α ·


∏

j∈J

(1 + p) − 1




≤α ·
(

(ep)|J | − 1
)

≤α · 2p|J |
≤α2pk.
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as long as p|J | ≤ 1.

Proof of Lemma 3.12. By Lemma 3.14, we can write f(x) =
∑

s

∏
j fs,j(xj). Let fs(x) =

∏
j fs,j(xj),

where the product is over at most 6k + 3 terms. Then, by Lemma 3.16,

Lp(f) ≤
∑

s

Lp(fs) ≤
∑

s

(12k + 6)p · E
U

[fs(U)] = (12k + 6)pα,

as long as p ≤ 1/(6k + 3). Likewise Lp(g) ≤ (12k + 6)pβ for p ≤ 1/(6k + 3).

Now Lp(D) ≤ 2Lp(f) + 2Lp(g) ≤ (24k + 12) · p · (α+β). If p ≤ 1/(24k + 12), then Lp(D) +λ(D) ≤
α + β + 1 − α− β = 1, as required.

3.3 Bootstrapping

Proposition 3.6 gives a bound on the Fourier growth of width-3 branching programs of the form
Lk(B) ≤ n2 · O(k)k. The kk term is inconvenient, but can be easily removed by “bootstrapping”:

The following proposition shows that if we can bound the Fourier mass up to level O(log n), then
we can bound the Fourier mass at all levels.

Proposition 3.17. Let B be a length-n, ordered branching program such that, for all i, j, k ∈ [n]
with k ≤ 2k∗ and i ≤ j, we have Lk(Bi···j) ≤ a · bk. Suppose a · n ≤ 2k

∗
. Then, for all i, j, k ∈ [n]

with i ≤ j, we have Lk(Bi···j) ≤ a · (2b)k.

The proof is similar to that of Lemma 4.4.

Proof. Suppose the proposition is false and fix the smallest k such that the statement does not
hold. Clearly k > 2k∗. Let k′ = k − k∗. By minimality Lk′(Bi···j) ≤ a · (2b)k

′
for all i ≤ j. Now

Lk(Bi···j) ≤
j+1∑

ℓ=i

Lk′(Bi···ℓ−1) ·Lk∗(Bℓ···j) ≤
j+1∑

ℓ=i

a ·(2b)k′ ·a ·bk∗ ≤ n ·a ·(2b)k′ ·a ·bk∗ = a ·(2b)k ·
( na

2k∗

)
.

Since na ≤ 2k
∗
, we have a contradiction, as we assumed Lk∗(Bℓ···j) > a · (2b)k.

Now we combine Propositions 3.6 with 3.17 to prove Theorem 3.1

Proof of Theorem 3.1. Let B be a length-n 3OBP computing f with width 2 in the first and last
layers. By Proposition 3.6, we have

Lk(B) ≤ 8n2 · (200000k)k

for any length-n 3OBP B and k ∈ [n]. Since a subprogram of a 3OBP is also a 3OBP, this bound
also applies to Lk(Bi···j) for all i, j ∈ [n]. If we set k∗ = ⌈log2(8n3)⌉, a = 8n2, and b = 200000 · 2k∗,
then the hypotheses of Proposition 3.17 are satisfied. Thus, for any k ∈ [n], we have

Lk(B) ≤ 8n2 · (2 · 200000 · 2k∗)k .

Since Lk(f) ≤ Lk(B), this gives the result.
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4 Pseudorandom Restrictions

Our pseudorandom generator repeatedly applys pseudorandom restrictions. For the analysis, we
introduce the concept of an averaging restriction as in Gopalan et al. [18] and Reingold et al. [34],
which is subtly different to the restrictions in Section 3.

Definition 4.1. For t ∈ {0, 1}n and a length-n branching program B, let B|t be the (averaging)
restriction of B to t—that is, B|t : {0, 1}n → Rw×w is a matrix-valued function given by B|t[x] :=
E
U

[B[Select(t, x, U)]], where U is uniform on {0, 1}n.

In this section we show that, for a pseudorandom T (generated using few random bits), L(B|T ) is
small. We will generate T using an almost O(log n)-wise independent distribution:

Definition 4.2. A random variable X on Ωn is δ-almost k-wise independent if, for every
I = {i1, i2, · · · , ik} ⊂ [n] with |I| = k, the coordinates (Xi1 ,Xi2 , · · · ,Xik) ∈ Ωk are δ-close (in
statistical distance) to being independent—that is, for all T ⊂ Ωk,

∣∣∣∣∣∣
∑

x∈T


P

X
[(Xi1 ,Xi2 , · · · ,Xik) = x] −

∏

l∈[k]

P
X

[Xil = xl]



∣∣∣∣∣∣
≤ δ.

We say that X is k-wise independent if it is 0-almost k-wise independent.

We can sample a random variable X on {0, 1}n that is δ-almost k-wise independent such that each
bit has expectation p = 2−d using O(kd + log(1/δ) + d log(nd)) random bits [34, Lemma B.2].

The following lemma, proven in essentially the same way as Lemma 5.3 in [34], tells us that L(B|T )
will be small for T chosen from a δ-almost k-wise distribution with appropriate parameters.

Lemma 4.3. Let B be a length-n, width-w, ordered branching program. Let T be a random variable
over {0, 1}n where each bit has expectation p and the bits are δ-almost 2k-wise independent. Suppose
that, for all i, j, k′ ∈ [n] such that k ≤ k′ < 2k, we have Lk′(Bi···j) ≤ a · bk′. If we set p ≤ 1/2b and
δ ≤ 1/(2b)2k , then

P
T

[
L≥k(B|T ) > 1

]
≤ n4 · 2a

2k
.

(Recall that L≥k(g) =
∑n

j=k L
j(g).)

Proof. Let k ≤ k′ < 2k. We have that for all i and j,

E
T

[
Lk′(Bi···j|T )

]
=

∑

s⊂{i···j}:|s|=k′

P
T

[s ⊂ T ]
∣∣∣
∣∣∣B̂i···j [s]

∣∣∣
∣∣∣
2
≤ Lk′(B)(pk

′

+δ) ≤ abk
′

(
1

(2b)k′
+

1

(2b)2k

)
≤ 2a

2k
.

Applying Markov’s inequality and a union bound, we have that for all β > 0:

P
T

[
∀1 ≤ i ≤ j ≤ n Lk′

2 (Bi···j |T ) ≤ β
]
≥ 1 − n2 2a

2kβ
.
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Applying a union bound over values of k′ and setting β = 1/n, we obtain:

P
T

[
∀k ≤ k′ < 2k ∀1 ≤ i ≤ j ≤ n Lk′(Bi···j |T ) ≤ 1

n

]
≥ 1 − n4 · 2a

2k
.

The result now follows from the following Lemma.

Lemma 4.4 ([34, Lemma 5.4]). Let B be a length-n, ordered branching program and t ∈ {0, 1}n.
Suppose that, for all i, j, and k′ with 1 ≤ i ≤ j ≤ n and k ≤ k′ < 2k, Lk′

2 (Bi···j|t) ≤ 1/n. Then,
for all k′′ ≥ k and all i and j, Lk′′

2 (Bi···j |t) ≤ 1/n.

5 The Pseudorandom Generator

Our main result Theorem 1.1 follows from plugging our Fourier growth bound (Theorem 3.1) into
the analysis of [34]. We include the proof and a general statement here for completeness:

Theorem 5.1. Let C be a set of ordered branching programs of length at most n and width at most
w that is closed under restrictions and subprograms – that is, if B ∈ C, then B|t←x ∈ C for all t
and x and Bi···j ∈ C for all i and j. Suppose that, for all B ∈ C and k ∈ [n], we have Lk(B) ≤ abk,
where b ≥ 2. Let ε > 0.

Then there exists a pseudorandom generator Ga,b,n,ε : {0, 1}sa,b,n,ε → {0, 1}n with seed length
sa,b,n,ε = O

(
b · log(b) · log(n) · log

(
abwn
ε

))
such that, for any length-n, width-w, read-once, oblivious

(but unordered) branching program B that corresponds to an ordered branching program in C,6
∣∣∣∣∣

∣∣∣∣∣ E
Usa,b,n,ε

[
B[Ga,b,n,ε(Usa,b,n,ε

)]
]
− E

U
[B[U ]]

∣∣∣∣∣

∣∣∣∣∣
2

≤ ε.

Moreover, Ga,b,n,ε can be computed in space O(sa,b,n,ε).

To prove Theorem 1.1 we set C to be the class of all 3OBPs of length at most n. Theorem 3.1 gives
a bound corresponding to a = O(n2) and b = O(log n). This gives the required generator. The
statements of Theorems 1.1 and 5.1 differ in that Theorem 5.1 bounds the error of the pseudorandom
generator with respect to a matrix-valued function, while Theorem 1.1 bounds the error with respect
to a {0, 1}-valued function. These statements are equivalent as the {0, 1}-valued function is simply
one entry in the matrix-valued function.

The following lemma gives the basis of our pseudorandom generator.

Lemma 5.2. Let a, b, and C be as in Theorem 5.1 and B ∈ C. Let ε ∈ (0, 1). Let T be a random
variable over {0, 1}n that is δ-almost 2k-wise independent and each bit has expectation p, where we
require

p ≤ 1/(2b), k ≥ log2

(
8an4w/ε

)
, and δ ≤ 1/(2b)2k .

6That is, there exists B′ ∈ C and a permutation of the bits π : {0, 1}n → {0, 1}n such that B[x] = B′[π(x)] for all
x.
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Let U be uniform over {0, 1}n. Let X be a µ-biased random variable over {0, 1}n with µ ≤ ε/2abk.
Then ∣∣∣∣

∣∣∣∣ E
T,X,U

[B[Select(T,X,U)]] − E
U

[B[U ]]

∣∣∣∣
∣∣∣∣
2

≤ ε.

Proof. For a fixed t ∈ {0, 1}n, we have
∣∣∣∣
∣∣∣∣ EX,U

[B[Select(t,X,U)]] − E
U

[B[U ]]

∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣EX [B|t[X]] − E

U
[B[U ]]

∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

s 6=0

B̂|t[s]X̂(s)

∣∣∣∣∣∣

∣∣∣∣∣∣
2

≤
∑

s 6=0

∣∣∣
∣∣∣B̂|t[s]

∣∣∣
∣∣∣
2
|X̂(s)|

≤L(B|t)µ,

Conditioning on whether or not L≥k(B|t) > 1, we have
∣∣∣∣
∣∣∣∣ E
T,X,U

[B[Select(T,X,U)]] − E
U

[B[U ]]

∣∣∣∣
∣∣∣∣
2

≤ P
T

[
L≥k(B|T ) > 1

]
max

t

∣∣∣∣
∣∣∣∣ EX,U

[B[Select(t,X,U)]] − E
U

[B[U ]]

∣∣∣∣
∣∣∣∣
2

+ P
T

[
L≥k(B|T ) ≤ 1

]
µE
T

[
L(B|T ) | L≥k(B|T ) ≤ 1

]
.

We have

 L<k(B) ≤
∑

1≤k′<k

abk
′

= ab
bk−1 − 1

b− 1
≤ abk − 1.

Thus E
T

[
L(B|T ) | L≥k(B|T ) ≤ 1

]
≤ abk. Lemma 4.3 gives

P
T

[
L≥k(B|T ) > 1

]
≤ n4 · 2a

2k
.

For all t, x, y, we have

∣∣∣∣
∣∣∣∣B[Select(t, x, y)] − E

U
[B[U ]]

∣∣∣∣
∣∣∣∣
2

≤ 2w. Thus

∣∣∣∣
∣∣∣∣ E
T,X,U

[B[Select(T,X,U)]] − E
U

[B[U ]]

∣∣∣∣
∣∣∣∣
2

≤n4 · 2a

2k
· 2w + 1 · µ · abk

≤ 4an4w

8an4w/ε
+ abk

ε

2abk

≤ε.

Now we use the above results to construct our pseudorandom generator.

The pseudorandom generator is formally defined as follows.
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Algorithm for Ga,b,n,ε : {0, 1}sa,b,n,ε → {0, 1}n.

Parameters: n ∈ N, ε > 0.

Input: A random seed of length sa,b,n,ε.

1. Compute appropriate values of p ≤ 1/2b, ε′ = εp/14w log2(n), k ≥ log2

(
8an4w/ε′

)
,

δ ≤ ε′(p/2)2k, and µ ≤ ε′/2abk. 7

2. If n ≤ 320 · ⌈log2(1/ε
′)⌉/p, output n truly random bits and stop.

3. Sample T ∈ {0, 1}n where each bit has expectation p and the bits are δ-almost
2k-wise independent.

4. If |T | < pn/2, output 0n and stop.

5. Recursively sample Ũ ∈ {0, 1}⌊n(1−p/2)⌋ . i.e. Ũ = Ga,b,⌊n(1−p/2)⌋,ε(U).

6. Sample X ∈ {0, 1}n from a µ-biased distribution.

7. Output Select(T,X, Ũ ) ∈ {0, 1}n.8

The analysis of the algorithm proceeds roughly as follows.

• We have p = Θ(1/b), ε′ = Θ(ε/wb log n), k = Θ(log(abwn/ε)), δ = 1/bΘ(k), and µ = 1/bΘ(k).

• Every time we recurse, n is decreased to ⌊n(1 − p/2)⌋. After O(log(n)/p) recursions, n is
reduced to O(1). So the maximum recursion depth is r = O(log(n)/p) = O(b log n).

• The probability of failing because |T | < pn/2 is small by a Chernoff bound for limited
independence. (This requires that n is not too small and, hence, step 2.)

• The output is pseudorandom, as

E
U

[B[Ga,b,n,ε(U)]] = E
T,X,Ũ

[
B[Select(T,X, Ũ )]

]
≈ E

T,X,U
[B[Select(T,X,U)]] ≈ E

U
[B[U ]] .

The first approximate equality holds because we inductively assume that Ũ is pseudorandom.
The second approximate equality holds by Lemma 5.2.

• The total seed length is the seed length needed to sample X and T at each level of re-
cursion and O(log(1/ε′)/p) = O(b log(bwn/ε)) truly random bits at the last level. Sam-
pling X requires seed length O(log(n/µ)) = O(k log b) and sampling T requires seed length
O(k log(1/p) + log(1/δ) + log(1/p) · log(n log(1/p))) = O(k log b) so the total seed length is

r ·O(k log b) + O(b log(bwn/ε)) = O

(
b · log(b) · log(n) · log

(
abwn

ε

))
.

Lemma 5.3. The probability that Ga,b,n,ε fails at step 4 is bounded by 3ε′—that is, P
T

[|T | < pn/2] ≤
3ε′.

7For the purposes of the analysis we assume that ε′, k, p, δ, and µ are the same at every level of recursion. So
if Ga,b,n,w,ε is being called recursively, use the same values of ε′, p, k, δ, and µ as at the previous level of recursion.
We pick values within a constant factor of these constraints.

8Technically, we must pad Ũ with zeros in the locations specified by T (i.e. Ũi = 0 for i ∈ T ) to obtain the right
length.
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Proof. By a Chernoff bound for limited independence (Lemma A.1),

P
T

[|T | < pn/2] ≤
(

20k′

(1/2)2pn

)⌊k′/2⌋
+ 2δ ·

(
n

(1/2)pn

)k′

,

where k′ ≤ 2k even is arbitrary. Set k′ = 2⌈log2(1/ε
′)⌉. Step 2 ensures that n > 160k′/p and our

setting of δ gives that δ ≤ ε′(p/2)k
′
. Thus we have

P
T

[|T | < pn/2] ≤ 2− log2(1/ε
′) + 2ε′ ≤ 3ε′.

The following bounds the error of Ga,b,n,ε.

Lemma 5.4. Let B ∈ C. Then
∣∣∣∣
∣∣∣∣ E
Usn,ε

[
B[Gn,ε(Usn,ε)]

]
− E

U
[B[U ]]

∣∣∣∣
∣∣∣∣
2

≤ 7wrε′,

where r = O(log(n)/p) is the maximum recursion depth of Ga,b,n,ε.

Proof. For 0 ≤ i < r, let ni, Ti, Xi, and Ũi be the values of n, T , X, and Ũ at recursion level i.
We have ni+1 = ⌊ni(1 − p/2)⌋ ≤ n(1 − p/2)i+1 and Ũi−1 = Select(Ti,Xi, Ũi). Let ∆i be the error
of the output from the ith level of recursion—that is,

∆i := max
B′∈C

∣∣∣∣∣

∣∣∣∣∣ E
Ti,Xi,Ũi

[
B′[Select(Ti,Xi, Ũi)]

]
− E

U

[
B′[U ]

]
∣∣∣∣∣

∣∣∣∣∣
2

.

Since the last level of recursion outputs uniform randomness, ∆r = 0. For 0 ≤ i < r, we have, for
some B′ ∈ C,

∆i ≤
∣∣∣∣∣

∣∣∣∣∣ E
Ti,Xi,Ũi

[
B′[Select(Ti,Xi, Ũi)]

]
− E

U

[
B′[U ]

]
∣∣∣∣∣

∣∣∣∣∣
2

· P
T

[|T | ≥ pn/2]

+ 2w · P
T

[|T | < pn/2]

≤
∣∣∣∣∣

∣∣∣∣∣ E
Ti,Xi,Ũi

[
B′[Select(Ti,Xi, Ũi)]

]
− E

Ti,Xi,U

[
B′[Select(Ti,Xi, U)]

]
∣∣∣∣∣

∣∣∣∣∣
2

+

∣∣∣∣
∣∣∣∣ E
Ti,Xi,U

[
B′[Select(Ti,Xi, U)]

]
− E

U

[
B′[U ]

]∣∣∣∣
∣∣∣∣
2

+ 2w · P
T

[|T | < pn/2]

By Lemma 5.2, ∣∣∣∣
∣∣∣∣ E
Ti,Xi,U

[
B′[Select(Ti,Xi, U)]

]
− E

U

[
B′[U ]

]∣∣∣∣
∣∣∣∣
2

≤ ε′.
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By Lemma 5.3,
P
T

[|T | < pn/2] ≤ 3ε′.

We claim that
∣∣∣∣∣

∣∣∣∣∣ E
Ti,Xi,Ũi

[
B′[Select(Ti,Xi, Ũi)]

]
− E

Ti,Xi,U

[
B′[Select(Ti,Xi, U)]

]
∣∣∣∣∣

∣∣∣∣∣
2

≤ ∆i+1.

Before we prove the claim, we complete the proof: This gives ∆i ≤ ∆i+1 + ε′ + 2w · 3ε′. It follows
that ∆0 ≤ 7wrε′, as required.

To prove the claim, consider any fixed Ti = t and Xi = x. We have
∣∣∣∣
∣∣∣∣E
Ũi

[
B′[Select(t, x, Ũi)]

]
− E

U

[
B′[Select(t, x, U)]

]∣∣∣∣
∣∣∣∣
2

≤ ∆i+1.

Consider Bx,t[y] := B′[Select(t, x, y)] as a function of y ∈ {0, 1}ni−|t|. Then Bx,t is a width-3
read-once oblivious branching program of length-(ni − |t|).

We inductively know that Ũi is pseudorandom for Bx,t—that is,

∣∣∣∣
∣∣∣∣E
Ũi

[
Bx,t[Ũi]

]
− E

U

[
Bx,t[U ]

]∣∣∣∣
∣∣∣∣
2

≤

∆i+1. Thus
∣∣∣∣
∣∣∣∣E
Ũi

[
B′[Select(t, x, Ũi)]

]
− E

U

[
B′[Select(t, x, U)]

]∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣E
Ũi

[
Bx,t[Ũi]

]
− E

U

[
Bx,t[U ]

]∣∣∣∣
∣∣∣∣
2

≤ ∆i+1,

as required.

Proof of Theorem 5.1. Since ε′ ≤ ε/(7wr), Lemma 5.4 implies that Ga,b,n,ε has error at most ε.
The seed length is

sa,b,n,ε = O

(
b · log(b) · log(n) · log

(
abwn

ε

))

as required.

6 Further Work

Our results hinge on the fact that “mixing” is well-understood for regular branching programs
[9, 34, 27, 14, 40] and for (non-regular) width-2 branching programs [5]. We are able to use
random restrictions to reduce from width 3 to width 2 (Section 3.1), where we can exploit our
understanding of mixing (Section 3.2). Indeed, this understanding underpins most results for these
restricted models of branching programs.

What about width 4 and beyond? Using a random restriction we can reduce analysing width 4 to
“almost” width 3 – that is, Proposition 3.2 generalises. Unfortunately, the reduction does not give
a true width-3 branching program and thus we cannot repeat the reduction to width 2. Moreover,
we have a poor understanding of mixing for non-regular width-3 branching programs, which means
we cannot use the same techniques that have worked for width-2 branching programs.
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Our results provide some understanding of mixing in width-3. We hope this understanding can be
developed further and will lead to proving Conjecture 1.3 and other results.

The biggest obstacle to extending our techniques to w > 3 is Lemma 3.7. The problem is that
the parameter λ(D) is no longer a useful measure of mixing for width-3 and above. In particular,
λ(D) > 1 is possible if E

U
[D[U ]] is a 3×3 matrix. To extend our techniques, we need a better notion

of mixing. Using λ(D) is useful for regular branching programs (it equals the second eigenvalue
for regular programs), but is of limited use for non-regular branching programs. Our proof uses a
different notion of mixing – collisions: To prove Proposition 3.2, we used the fact that a random
restriction of a non-regular layer will with probability at least 1/2 result in the width of the right
side of the layer being reduced. This is a form of mixing, but it is not captured by λ. Ideally, we
want a notion of mixing that captures both λ and width-reduction under restrictions.

Our proofs combine the techniques of Braverman et al. [9] and those of Brody and Verbin [10]
and Steinberger [39]. We would like to combine them more cleanly – presently the proof is split
into two parts (Proposition 3.2 and Lemma 3.7). This would likely involve developing a deeper
understanding of the notion of mixing.

Our seed length Õ(log3 n) is far from the optimal O(log n). Further improvement would require
some new techniques:

We could potentially relax our notion of Fourier growth to achieve better results. Rather than
bounding Lk(f), it suffices to bound Lk(g), where g approximates f :

Proposition 6.1 ([15, Proposition 2.6]). Let f, f+, f− : {0, 1}n → R satisfy f−(x) ≤ f(x) ≤ f+(x)
for all x and E

U
[f+(U) − f−(U)] ≤ δ. Then any ε-biased distribution X gives

∣∣∣∣EX [f(X)] − E
U

[f(U)]

∣∣∣∣ ≤ δ + ε · max {L(f+), L(f−)} .

The functions f+ and f− are called sandwiching polynomials for f . This notion of sandwiching is
in fact a tight characterisation of small bias [15, Proposition 2.7]. That is, any function f fooled
by all small bias generators has sandwiching polynomials satisfying the hypotheses of Proposition
6.1.

Gopalan et al. [18] use sandwiching polynomials in the analysis of their generator for CNFs. This
allows them to set a constant fraction of the bits at each level of recursion (p = Ω(1)), while we set
a 1/O(log n) fraction at each level. We would like to similarly exploit sandwiching polynomials for
branching programs to improve the seed length of the generator.

A further avenue for improvement would be to modify the generator construction to have Θ(1/p)
levels of recursion, rather than Θ(log(n)/p). This would require a significantly different analysis.
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A Chernoff Bound for Limited Independence

Lemma A.1 (Chernoff Bound for Limited Independence). Let X1 · · ·Xℓ be δ-almost k-wise inde-
pendent random variables with Xi ∈ {0, 1} for all i. Set X =

∑
iXi and µ =

∑
i µi =

∑
i EX

[Xi],

and suppose µi ≤ 1/2 for all i. If k ≤ µ/10 is even, then, for all α ∈ (0, 1),

P
X

[|X − µ| ≥ αµ] ≤
(

20k

α2µ

)⌊k/2⌋
+ 2δ ·

(
ℓ

αµ

)k

.

The following proof is based on [36, Theorem 4]. The only difference is that we extend to almost
k-wise independence from k-wise independence.

Proof. Assume, without loss of generality, that k is even. It is well-known [36, 31, 3] that, if the
Xis are fully independent, then

E
Xi

[
(X − µ)k

]
≤ (20kµ)k/2.

This also holds when the Xis are only k-wise independent, as (X −µ)k is a degree-k polynomial in
the Xis. Here the Xis are δ-almost k-wise independent, which gives

E
Xi

[
(X − µ)k

]
≤ (20kµ)k/2 + 2δℓk.

Thus we can apply Markov’s inequality to obtain the result:

P
X

[|X − µ| ≥ αµ] = P
X

[
(X − µ)k ≥ (αµ)k

]
≤

E
Xi

[
(X − µ)k

]

(αµ)k
≤
(

20kµ

α2µ2

)k/2

+ 2δ

(
ℓ

αµ

)k

.

B First-Order Fourier Coefficients of Branching Programs

Theorem B.1. Let B be a width-w, length-n, read-once, oblivious branching program. Then

∑

i∈[n]

∣∣∣
∣∣∣B̂[{i}]

∣∣∣
∣∣∣
2
≤ O(log n)w−2.

The proof is similar to the proof of the Coin Theorem by Steinberger [39]. The main difference is
that we need a new proof of the collision lemma:

We call a layer Bi of a branching program trivial if L(Bi) = 0 and nontrivial otherwise. We say
that a layer Bi has a collision if there exist two edges with the same label and the same endpoint,
but different start points. All non-permutation layers have a collision. If there is a collision in layer
i, then with probability at least 1/2 a random restriction of layer i reduces the width.
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Lemma B.2 (Collision Lemma). Let f : {0, 1}n → {0, 1} be a function computed by a width-
w ordered branching program B. Then there exists a function g computed by a width-w ordered
branching program B′ such that every nontrivial layer of B′ has a collision and

∑

i

|f̂ [{i}]| ≤
∑

i

|ĝ[{i}]|.

Proof. We will construct B′ by flipping edge labels in B.

Begin by ordering the vertices in each layer by their acceptance probability – that is, the probability
that f(U) = 1 conditioned on passing through that vertex. (If two vertices have the same acceptance
probability order them arbitrarily.) We will flip the edge labels such that for every vertex the 0-edge
leads to a higher-ranked vertex than the 1-edge (or they lead to the same vertex).

Note that flipping the edges in layer i only affects the corresponding Fourier coefficient. Thus we
need only show that flipping the edges in layer i does not decrease |f̂ [i]|.
Fix a layer i. For a vertex u on the left of layer i of B, let u0 and u1 be the vertices led to by the
0- and 1-edges respectively and let pu be the probability that a random walk in B reaches u. For a
vertex v on the right of layer i of B, let qv be the acceptance probability of B under uniform input
conditioned on passing through vertex v. Then

f̂ [{i}] =
1

2

∑

u

pu(qu0
− qu1

).

Flipping edge labels corresponds to flipping the signs of the terms in the above sum. Clearly,
|f̂ [{i}]| is maximised if every term has the same sign. Our choice of flips ensures this is the case,
as qu0

≥ qu1
.

Every nontrivial layer of B must have a collision, as a result of the ordering of edge labels: Consider
a layer i and let v be the highest ranked vertex on its right such that the incoming edges are from
different vertices on the left. Suppose, for the sake of contradiction, that the incoming edges have
different labels. Pick the edge labelled 1 and let u be its start point. Let u0 be the vertex reached
from u by the edge labelled 0. Then, by our choice of labels u0 is ranked higher than u – a
contradiction, as u is the highest ranked vertex with distinct incoming edges.

Define ξ(n,w) to be the maximal first-order Fourier mass of any function computed by a length-n,
width-w, ordered branching program. We follow the structure of Steinberger’s proof [39] to bound
ξ.

Lemma B.3. For all n and w ≥ 3, ξ(n,w) ≤ (2 + 2 log2(n)) · (ξ(n,w − 1) + 1).

Proof. Let B be a length-n, width-w, ordered branching program that maximises the first-order
Fourier mass of the function f it computes. By Lemma B.2, we may assume that every nontrivial
layer of B has a collision. We may assume that there are no trivial layers: otherwise we can remove
them without affecting the Fourier mass.

Let m = ⌈1 + 2 log2 n⌉. Split the first-order Fourier coefficients into m groups of the form

Gi′ = {i ∈ [n] : i mod m = i′}.
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We bound the first-order Fourier mass of each group separately and sum them together. i.e.∑
i∈[n] |f̂ [{i}]| =

∑
i′∈[m]

∑
i∈Gi′

|f̂ [{i}]|. Fix one group G = Gi′ .

We apply a random restriction to B to obtain the function f |G←U computed by the branching
program B|G←U . We have

∑

i∈G

|f̂ [{i}] ≤ E
U

[∑

i∈G

|f̂ |G←U [{i}]|
]
.

So if suffices to bound the first-order Fourier mass of f |G←U .

We claim that B|G←U is a width-(w − 1), ordered branching program with probability at least
1 − n · 21−m. This implies that

E
U

[∑

i∈G

|f̂ |G←U [{i}]|
]
≤ ξ(n,w − 1) + n · 21−w · n ≤ ξ(n,w − 1) + 1.

Thus

∑

i∈[n]

|f̂ [{i}]| ≤
∑

i′∈[m]

E
U


∑

i∈Gi′

| ̂f |Gi′←U [{i}]|


 ≤

∑

i′∈[m]

ξ(n,w − 1) + 1 ≤ m(ξ(n,w − 1) + 1),

as required.

Now to prove the claim: Fix an unrestricted layer i of B|G←U other than the last layer (which can
always be assumed to have width 2 anyway). Layer i is followed by m− 1 restricted layers. With
probability at least 1 − 21−m at least one of these layers will contain a collision, thus reducing the
number of vertices on the right of layer i. A union bound gives the required probability.

Lemma B.4. ξ(n, 2) ≤ 10.

Solving the recurrance for ξ gives ξ(n,w) ≤ O(log n)w−2, as required.

C Optimality of Result

The following result shows that Theorem 3.1 is close to optimal.

Proposition C.1. There exists an infinite family of functions fn : {0, 1}n → {0, 1} and that are
computed by 3OBPs such that the following holds. Let q : N → R be an increasing function with
20 ≤ q(n) ≤ exp(exp(o(

√
log n))). For all sufficiently large n, there exists k ∈ [n] such that

Lk(fn) > q(n) ·
(

log n

20 log log q(n)

)k

.

.

Our main result shows that Lk(fn) ≤ poly(n) ·(O(log n))k. Setting q(n) = poly(n), this proposition
shows that the base O(log n) cannot be improved by more than a log log n factor. The log log n
factor comes from the fact that we allow a polynomial factor q(n) in the bound. If we demand
q(n) = O(1), the base O(log n) is optimal.
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Proof. Let n = m · 2m, where m is an integer. Define fn : {0, 1}n → {0, 1} by

fn(x) =
∏

i∈[2m]


1 −

∏

j∈[m]

xi,j


 ,

where we view x ∈ {0, 1}n as a 2m × m matrix x ∈ {0, 1}2m×m. This is (up to a negation) the
Tribes function [4]. This function can be computed by a 3OBP. Now we show that it has large
Fourier growth.

The Fourier coefficients of fn are given as follows. For s ⊂ [n] (which we identify with s ∈
{0, 1}2m×m),

f̂n[s] =E
U

[f(U)χs(U)]

=E
U


 ∏

i∈[2m]


1 −

∏

j∈[m]

Ui,j


χsi(Ui)




=
∏

i∈[2m]

E
U


χsi(Ui) −

∏

j∈[m]

Ui,jχsi(Ui)




=
∏

i∈[2m]

(
I(si = 0) − 2−m(−1)|si|

)
,

where si = (si,1, si,2, · · · , si,m). The damped Fourier mass is also easy to compute. For p ∈ (0, 1),

Lp(fn) + |f̂n[0]| =
∑

s∈{0,1}2m×m

p|s||f̂n[s]|

=
∑

s∈{0,1}2m×m

∏

i∈[2m]

p|si|
∣∣∣I(si = 0) − 2−m(−1)|si|

∣∣∣

=
∏

i∈[2m]

∑

si∈{0,1}m

p|si|
∣∣∣I(si = 0) − 2−m(−1)|si|

∣∣∣

=
∏

i∈[2m]


1 − 2−m +

∑

si 6=0

p|si|2−m




=
∏

i∈[2m]

(
1 − 2−m + 2−m(1 + p)m − 2−m

)

=

(
1 +

(1 + p)m − 2

2m

)2m

.

Set p = (1 + log(3 + log q(n)))/m. We have

(1 + p)m =

(
1 +

1 + log(3 + log q(n))

m

)m

= e1+log(3+log q(n))(1 − o(1)) ≥ 3 + log q(n)

for sufficiently large m. Thus, for sufficiently large m,

Lp(fn) ≥
(

1 +
(1 + p)m − 2

2m

)2m

− 1 ≥
(

1 +
1 + log q(n)

2m

)2m

− 1 = e1+log q(n)(1− o(1))− 1 ≥ q(n).
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Suppose for the sake of contradiction that Lk(fn) ≤ q(n) · (log n/20 log log q(n))k for all k ∈ [n].
We have

Lp(fn) =
∑

k∈[n]

pkLk(fn) ≤
∑

k∈[n]

(
1 + log(3 + log q(n))

m

)k

·q(n)·
(

log n

20 log log q(n)

)k

≤
∑

k∈[n]

q(n)2−k < q(n),

which is a contradiction.

A more careful analysis gives the following bound.

Proposition C.2. There exists an infinte family of functions fn : {0, 1}n → {0, 1} that are com-
puted by 3OBPs such that, for all k ∈ [n],

Lk(f) ≥ Ω

(
log n

log k

)k

.

Proof. Let n, m, and fn be as in the proof of Proposition C.1. For s ∈ {0, 1}2m×m, denote

ℓ(s) = |{i ∈ [2m] : si 6= 0}| = |{i ∈ [2m] : ∃j ∈ [m] si,j = 1}|.

Then, for all s ∈ {0, 1}n×m, we have

|f̂n[s]| =
∏

i∈[2m]

∣∣∣I(si = 0) − 2−m(−1)|si|
∣∣∣ = (1 − 2−m)2

m−ℓ(s) · (2−m)ℓ(s).

Fix ℓ with k/ℓ ≤ m. Set h = ⌊k/ℓ⌋. Choose i, j ≥ 0 with i + j = ℓ and ih + j(h + 1) = k. Then

Lk(fn) ≥
∑

|s|=k∧ℓ(s)=ℓ

|f̂n[s]|

≥
(

2m

ℓ

)(
m

h

)i( m

h + 1

)j

· (1 − 2−m)2
m−ℓ · (2−m)ℓ

≥
(

2m

ℓ

)ℓ (m
h

)hi( m

h + 1

)(h+1)j

·
(

1 − 1

2m

)2m

·
(

1

2m

)ℓ

≥1

4

(
1

ℓ

)ℓ (m
h

)hi( m

h + 1

)(h+1)j

≥1

4

(
1

ℓ

)ℓ( m

h + 1

)hi+(h+1)j

≥1

4

(
1

ℓ

)ℓ

·
(

m

k/ℓ + 1

)k

.

Suppose k ≤ 2m−1. Setting ℓ = ⌈k/ log2(2k)⌉, we have

Lk(fn) ≥1

4

(
1

ℓ

)ℓ( m

k/ℓ + 1

)k

≥1

4
· 1

22k+2
·
(

m

log2 k + 2

)k

,
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as

log2(ℓℓ) = ℓ log2 ℓ <
k + log2 k

log2 k
log2(k + log2 k) ≤ 2k + 2.

Since m = Θ(log n), this gives the result for k ≤ 2m−1. If k > 2m−1, then log k = Θ(log n) and the
result is trivial.

39


	1 Introduction
	1.1 Pseudorandom Generators for Space-Bounded Computation
	1.2 Fourier Growth of Branching Programs
	1.3 Techniques
	1.4 Organization

	2 Preliminaries
	2.1 Branching Programs
	2.2 Norms
	2.3 Fourier Analysis
	2.4 Small-Bias Distributions
	2.5 Fourier Mass

	3 Fourier Analysis of Width-3 Branching Programs
	3.1 Part 1 – Reduction of Width by Random Restriction
	3.2 Part 2 – Mixing in Width-2
	3.3 Bootstrapping

	4 Pseudorandom Restrictions
	5 The Pseudorandom Generator
	6 Further Work
	A Chernoff Bound for Limited Independence
	B First-Order Fourier Coefficients of Branching Programs
	C Optimality of Result

