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Abstract

We give two new characterizations d(linear) locally testable error-correcting codes in tehs
Cayley graphs oveF5:

1. Alocally testable code is equivalent to a Cayley graphr @ewhose set of generators is signif-
icantly larger tharh, and has no short linear dependencies, but yields a shpaéstetric that
embeds intd; with constant distortion. This extends and gives a conversgresult of Khot and
Naor (2006), which showed that codes with large dual digamply Cayley graphs that have no
low-distortion embeddings int6, .

2. Alocally testable code is equivalent to a Cayley graphr &\ethat has significantly more than
eigenvalues near 1, which have no short linear dependeatiesg them and which “explain” all
of the large eigenvalues. This extends and gives a conveesesticent construction of Barak et al.
(2012), which showed that locally testable codes imply €agraphs that are small-set expanders
but have many large eigenvalues.
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1 Introduction

In this work, we show thalocally testable codeare equivalent t&Cayley graphswith certain properties,
thereby providing a new perspective from which to approaadlgistanding open problems about the achiev-
able parameters of locally testable codes.

Before describing these results, we review the basics &f lootlly testable codes and Cayley graphs.

1.1 Locally Testable Codes

Informally, alocally testable code (LTO3¥ an error-correcting code in which one can distinguisteired
words that are in the code from those that are far from the @yda randomized test that probes only
a few coordinates of the received word. Local testing atgors for algebraic error-correcting codes
(like the Hadamard code and the Reed—Muller code) were oleedl in the literature on program test-
ing [BLR93,/RS96], inspired the development of the field afperty testing[[GGRY8], and played a key
role in the constructions of multi-prover interactive pi®and the proof of the PCP Theorem [BFL91,
[FGLT96,[BFLS91[ AS98. ALM9d]. Indeed, they are considered to be the “combinatorigd”cof PCPs
(cf., [GS06/ BGH 06]), and thus understanding what is possible and impeassilth locally testable codes
can point the way to a similarly improved understanding oPBCSee the surveyis [Tre04, Gdli1l, Ben10].

We focus on the commonly studied case of linear codes ByefThus acodeis specified by a linear
subspace& C F7. n is called theblocklengthof the code, and: = dim(C) is its rate. The minimum
distanceis d = min, 4 ec d(v,y) = mingee_go) 2|, Whered(.,-) denotes Hamming distance apd|
denotes Hamming weight.

A local testerfor C is a randomized algorithrff” that, when given oracle access toegeived word
r € FZ, makes at most a small numbgof queries to symbols of and accepts or rejects.fe C, thenT™
should accept with high probability (completeness), andig “far” from C in Hamming distance, theh”
should reject with high probability (soundness). It wasveian [BHROS] that any tester for a linear code
can be converted into one with the following structure: #tdrl” randomly samples a string < D and
accepts ifx-r = 0, whereD = Dr is some distribution on theual codeC* = {a € F} : a-c = 0V ¢ € C}.
In particular, such a tester has perfect completenessyscadth probability 1 ifr € C). We say the tester
(which is now specified solely b#) hassoundness if for everyr € 7,

Pr [a-r=1]>4d-d(r,C),
a+D

whered(r,C) = min.ec d(r,c). This formulation of soundness is often referred tosasng soundness
in the literature. Weaker formulations of soundness in iteedture only require that the test reject with
good probability whenr is sufficiently far from the code. Typically, we wadt= €2(1/d), whered is the
minimum distance of the code, so that received words atrdist®(d) from C are rejected with constant
probability. If there are received words at distanggl!) from C, then it is common to cap the rejection
probability at a constant (e.g. requiPe,.p[a - 7 = 1] > min{¢ - d(r,C), 1/3}), but we ignore this issue
in the introduction for simplicity.

We are interested in two parameter regimes for LTCs:

Asymptotically Good LTCs Here we seek rate = Q(n), minimum distancel = (n), soundness =
Q(1/d) = Q(1/n), and query complexity = O(1). Unfortunately, we do not know whether such
codes exist — this is the major open problem about LTCs firseddy [GS06] , and it is closely
related to the long-standing open question about whethdr @& constant-query PCPs of linear
length (which would enable proving that various approxioraiproblems require time(™) under



the exponential-time hypothesis). The closest we have i3 construction[[Din07], which has
inverse-polylogarithmic (rather than constant) relatate (i.e.n = k - polylog(k)). A recent result
by Viderman additionally achieves strong soundness [jid13

Constant-distance LTCs Here we are interested in codes where the minimum distaisce fixed constant,
and the traditional coding question is how large the fatean be asm — oc. BCH codes have
(optimal) ratek = n — (d/2) - log n, but do not have any local testability properties. Reed-édul
codes yield the best known locally testable codes in thismegwith ratek = n — O((log n)'°¢¢) and
query complexity; = O(n/d) to achieve soundness= Q(1/d) [BKS*10]H (This query complexity
is optimal, ag2(n/d) queries is needed to detebt2 random corruptions to a codeword with constant
probability.) An open problem is whether rdte= n — ¢, - logn is possible, for some constas
depending only or (but not onn).

In terms of limitations of LTCs, there are a number of ressitsdding light on the structure of an LTC
with good parameters (see the survey [Beén10]), but theresmentially no nontrivial upper-bounds on rate
known for arbitraryF,-linear LTCs.

Instead of bounding the query complexity of our LTCs, it iswenient for us to work witlsmooth LTCs
where we simply require that the tester does not query anycooglinate too often. Formally, a tester,
specified by a distributio® onC*, is e-smoothif for everyi € [n], Pro. p[a; = 1] < e. This is analogous
to the notion of smooth locallgecodablecodes (LDCs) defined by Katz and Trevisan [KTO00]. Like in
the case of LDCs, bounding smoothness is almost equivaldmunding query complexity, where query
complexity ¢ corresponds to smoothne8gq/n) (as would be the case for testers that makeniformly
distributed queries)q In particular, we want the smoothness tosbe O(1/n) in the asymptotically good
regime, and = O(1/d) in the constant-distance regime.

1.2 Cayley Graphs

Cayley graphs are combinatorial structures associatédfinite groups and are useful for applications rang-
ing from pure group theory to reasoning about the mixingsratéviarkov chains to explicit constructions of
expander graphs [Big93, HLWDE6]. In this paper, we focus @ndhse that the group is a finite-dimensional
vector space’ overF,. (SoV = F4 for someh € N.) Given a multisetS C V, the Cayley (multi)graph
Cay(V, S) has vertex seV and edgegz, x + s) for everys € S (with appropriate multiplicities ifS' is

a multiset). Note that this is a|-regular undirected graph, since every elemeny $ its own additive
inverse. If we takeS to be a basis oV, thenCay(V, S) is simply theh-dimensional hypercube, where
h = dim V. We will be interested in the properties of such graphs wis¢is larger thar.

1.3 LTCs and Metric Embeddings of Cayley Graphs

Ouir first result shows that locally testable codes are etgnivao Cayley graphs with low-distortion metric
embeddings intd;. We refer the reader td_[MatD2, Chapter 15] for backgroundnatric embeddings.

This is a case where the rejection probabilities need to ppezhat a constant, since there may be received words atatsta
w(d) fromC.

2An arbitraryg-query LTC can be converted into one thatismooth by discarding coordinates that are queried withadoiity
more thare (and treating them as zero in the tester); the only cost stttansformation is that the distance of the code may deereas
by ¢/, so we can set = O(g/d) and lose only a small constant factor in the distance. Ceplgrans-smooth tester queries at
mosten coordinates in expectation, so we can get a tester with qe@nplexityq = O(en) by discarding tests that query more
thang coordinates. However, the latter transformation costadititiveconstant (namelyn/q) in the soundness probability, and
thus does not presergtrongsoundness.



An embeddingof a metric spacé X, d;) into metric spacd X, ds) with distortion ¢ > 1 is a function
f: X1 — X5 such that for some € R™ and everyr,y € X1, we have

- dl(l’,y) < d2(f($),f(y)) Sc-a- dl(x>y)'

A commonly studied case is Whe¢X 1, d; ) is the shortest-path metrit; on a graphg, and(Xs, ds) is an
¢, metric. Indeed, we will tak¢X, d;) to be the shortest-path metric on a Cayley graph, (&g dz) to
be an/; metric. We will use the well-known characterization/gfmetrics as the cone of the “cut metrics”:
a finite metric spacéXs, d») is an/; metric if and only if there is a constant€ R™ and a distribution?’
on boolean functions oX;, such that for alle, y € Xo, do(x,y) = o Pryp[f () # f(y)]-

Note that the shortest-path metric on the hyperctbe(F3, {e1, ..., e,}) is an¢; metric. Indeed, this
metric is simply the Hamming distaneg andd(z,y) = n - Pr;,[v; # y:]. We show that the existence
of locally testable codes is equivalent to being able to @xprate this property (i.e. have low-distortion
embeddings intd;) even when the number of generators is noticeably larger ihdo avoid trivial ways
of increasing the number of generators (like duplicatingegators, or taking small linear combinations),
we will also require that the generators @rvise linearly independent (i.e. have no linear dependeficy
length smaller thad).

Theorem 1. 1. If there is anFs-linear code of blocklength, rate &, and distancel with ans-smooth
local tester of soundnessthen there is a Cayley gragh = Cay(F%, S) such thatS| = n, h = n—k,
S'is d-wise linearly independent, and the shortest path metrig @mbeds intd@; with distortion at
moste /0.

2. If there is a Cayley grapti = Cay(F%, S) such that/S| = n, S is d-wise linearly independent, and
the shortest path metric o embeds intd; with distortion at most, then there is aff,-linear code
of blocklengthn, rate K = n — h, and distancel with ane-smooth local tester of soundnegsfor
somed ande such that/§ < c.

Note that the theorem provides an exact equivalence betlweally testable codes arfd embeddings
of Cayley graphs, except that the equivalence only presethe ratios/§ rather than the two quantities
separately. It turns out that this ratio is the appropricieameter to measure when considersigpng
soundness. (See Section]3.1.) For weaker notions of sossdme obtain equivalences with weaker notions
of low-distortion embeddings, such as “single-scale erdiveg” (where we replace the requirement that
dao(f(2), f(y)) > adi(x,y) with di(z,y) > D = da(f(x), f(y)) > aD, seelLee05] and references
therein).

The theorem specializes as follows for the two main parammeggmes of interest:

Corollary 2. There is an asymptotically good smooth LTC with strong snessl g = Q(n), d = Q(n),
/6 = O(1)) iff there is a Cayley graply = Cay(F%,S) with |S| = (1 + Q(1))h such thatS is Q(h)-wise
linearly independent and the shortest path metricioembeds intd; with distortionO(1).

Corollary 3. For a constantd, there is a distancéd LTC of blocklengthn with rate & = n — ¢4 logn and
/8 = O(1) iff there is a Cayley graplg = Cay(F%,S) with |S| = 2"/¢¢ such thatS is d-wise linearly
independent and the shortest path metricdbembeds intd; with distortionO(1).

To interpret the theorem, let’s consider what the cond#tion the Cayley grapG mean. The condition
that |S| = n and the elements of are d-wise independent means that locally, in balls of radiushe
graphg looks like then-dimensional hypercube (which embeds idfawvith no distortion). However, it is



squeezed into a hypercube of significantly lower dimengigwhich may make even constant distortion
impossible).

The canonical example of graphs that do not embed well dptare expanders. Specifically, an
regular expander o = 2" vertices with all nontrivial eigenvalues bounded away frbrequires distortion
Q(h/log n) to embed intd;. Roughly speaking, the reason is that by Cheeger’s Indgalithe Expander
Mixing Lemma), cuts cannot distinguish random neighboithégraph from random and independent pairs
of vertices in the graph, and random pairs of vertices aneajly at distance2(h/ log n)E

Thus, saying that a grapfi embeds into/; with constant distortion intuitively means thgtis very
far from being an expander. More precisely, to prove the xigtence of ar/; embedding of distortior
amounts to exhibiting a distributioP.;,.. 0N edges ofj and a distributiorDy,, on pairs of vertices i
such that for every cuf : F¥ — {0,1},

PT (2 y) Detose [f(x) # f(y)] - Pre ) pr, [f(x) # f(y)]
¢ E(Iyyﬂ—pfar [dg (l‘, y)] .

As discussed above, § were an expander, we could take;... to be the uniform distribution on edges
and Dy, to be the uniform distribution on pairs of vertices, and dmda superconstant lower bound on
c. Showing an impossibility result for LTCs amounts to findswgch expander-like distributiorid.... and
Dt in an arbitrary Cayley graph with a large (sizeset ofd-wise linearly independent generatdis

Our construction of a Cayley graph from an LTC in Itein 1 of Tieso[d is a “quotient of hypercube”
construction previously analyzed by Khot and Naor [KNOG}eSifically, they showed that if we start from
a codeC whose dual codé' has large minimum distance, then the resulting Cayley géaguires large
distortion to embed inté,. Our contributions are to show that we can replace the hgsahwith the weaker
condition thatC is not locally testable, and to establish a tight conversedmstructing LTCs from Cayley
graphs with low-distortion embeddings.

1.4 LTCs and Spectral Properties of Cayley Graphs.

In our second result, we show that locally testable codessquivalent to Cayley graphs with spectral
properties similar to thes*noisy hypercube”. We call such graphs derandomized hype

For Cayley graphs oveF, vector spaces (and more generally abelian groups), thdérepecan be
described quite precisely using Fourier analysis. A&ebe the transition matrix for the random walk on
Cay(V, 5), i.e. the adjacency matrix divided bg|. Then, regardless of the choice 8f the eigenvectors
of M are exactly of the formy,(z) = (—1)"®) whereb : V — F, ranges over alF,-linear functions.
(If we pick a basis so tha¥ = F%, then each such linear function is of the fobfx) = >, biz;.) The
eigenvalue of\/ associated withy;, is (1/|S]) - >~ ,cq xs(s). In particular, ifS is a\-biased spacé [NN93]
for A bounded away from 1, then all the nontrivial eigenvaluesshaagnitude at most, and hence the
graphCay(V, S) is an expander. In contrast, for the case of the hyperctibe (ey,...,e,} for a basis
e1,...,ep 0f V), the eigenvalue associated with= (by,...,by) is 1 — 2|b|/h where|b| is the Hamming
weight ofb, so there ar¢”) eigenvalues of valug — 2i/h.

In this section, it will be useful to generalize the notionGayley graph from multisets to distributions
overV. If Sis a distribution ovel, thenCay(V, S) is a weighted graph where we put weight]S = s]
on the edgdz, z + s) for everyz, s € F4. Pr[S = s] is also the(x, z + s) entry of the transition matrix
of the random walk orCay (V, S). Now, the eigenvalues avgb) = E..s[xs(s)]. Here a useful example

3Actually, for Cayley graphs ovef; vector spaces, the bound can be improve@ b/ log(n/h)), using the fact that there are
at most("}) (rather tham') vertices at distancefrom any given vertex.

4



is thee-noisy hypercube, wherg = F} andS = (S4i,..., S;,) has each coordinate independently set to 1
with probability £, and hence the eigenvalues ar®) = (1 — 2¢)!.

Neither the hypercube nor thenoisy hypercube are very good expanders, as they havevaigen of
1—2/h and1 — 2¢, respectively, corresponding to eigenvectggswith [b| = 1 (which in turn correspond to
the “coordinate cuts,” partitioning?% into the setgx : ; = 1} and{x : z; = 0}). However, their spectral
properties do imply that small sets expand well. Indeed,K&talai, and Linial [KKL88] showed that the
indicator vectors of “small” sets i} are concentrated on the eigenvectggsvhere|b| is large, and hence
small sets expand well in both the hypercube amisy hypercube (where “small” {%|'~() in the case
of the hypercube, and(|)|) in the case of the-noisy hypercube).

Our spectral characterization of locally testable codes ifollows.

Theorem 4. There is anF,-linear code of blocklength, rate k, and distancel with an e-smooth local
tester of soundnegsif and only if there is a Cayley grapf = Cay (F%, D) (for some distributiorD onF5)
and asetS = {b,...,b,} of linear maps; : F} — F, satisfying:

1. A=n—k

2. Sis d-wise linearly independent
3. Ab;) >1—2fori=1,...,n.
4

. For every linear map : F} — Fy, A\(b) < 1 — 26 - rankg(b), whererankg(b) = min{|T| : T C

S,b = ZieT bi}'
Let's compare these properties with those of éh@oisy hypercube. Recall that, in thenoisy hyper-
cube, the coordinate cuts= {ey, ..., ey} are linearly independent and all give eigenvalues -ef2e. And

for everyb, A\(b) = (1 — 2¢)ltl = (1 — 2¢)rarks(®) = 1 — Q(e - rankg(b)) (providedrankg(b) < O(1/¢)).

Like in our metric embedding result, the main differenceehisrthat we are asking for the sgeto be of
size larger tham (while retainingd-wise independence among the generators), so we need &ezsguany
large eigenvalues into a low-dimensional space. One retsarthese spectral properties are interesting is
that they imply that the grap@i is a small-set expander for sets of sjg&/ exp(d)(see Lemm&al8).

One direction of the above theorem (from LTCs to Cayley gsqjihextracted from the work of Barak
et al. [BGHT12], who used locally testable codes (in the constant distaegime) to construct small-set
expanders that have a large number of large eigenvaluesfgastion of the numbeH = 2" of vertices).
Such graphs provide barriers to improving the analysis @fAtora—Barak—Steurer algorithm for approxi-
mating small-set expansion and unique garhes [ABS10], amd aleo used by Barak et dl. [BGHZ] to
construct improved integrality gap instances for semidefiprogramming relaxations of the unique games
problem. Our contribution is showing that the connection ba reversed, when formulated appropriately
(in terms of spectral properties rather than small-set esipa).

We can specialize Theorelm 4 to the two parameter regimese@est to us (see Corollaries]16 and
[I7 in Sectiori 44 for precise statements). The existenceyshptotically good smooth LTCs with strong
soundness is equivalent to the existence of Cayley graplisevhigenvalue spectrum resembles ithe
dimensional Boolean hypercube (for eigenevalues in thgeréins, 1]) but where the number of vertices
is 21=2MW)n _|n the constant! regime, the existence df,n — ¢4logn,d]s LTCs blocklengthn with
smoothness = O(1/d), and soundness= Q(1/d) is equivalent to the existence of Cayley graphs whose
eigenvalue spectrum resembles thdimensional Boolean hypercube (for eigenvalues in thgeén5, 1])
but where the number of verticesri&:.



Like our metric embedding result, Theoréin 4 and its cori@fahave analogues for weaker notions of
soundness for the locally testable codes. Specificallyp Hechanges in a way that is analogous to the
soundness condition, for example only requiring th@dd) is small whernrankg(b) is large.

1.5 Perspective

For many of the problems about constructing codes or Caylaghg studied in theoretical computer sci-
ence, the main challenge is finding explicit construction. Indeed, we know that a randomly chosen code
has good rate and distance and that a randomly chosen setavhts yields a Cayley graph with high ex-
pansion, and much of the research on these topics is aimedhat to match these parameters with efficient
deterministic algorithms.

Locally testable codes (and the equivalent types of Caytaplts that we formulate) are intriguing in
that they combine properties of random objects (such as fisgance) with very non-random properties (the
existence of a local tester). Thus the major open questsuth(as whether there are asymptotically good
LTCs) areexistential— do there even exist objects with the given parametersydégss of the complexity
of constructing them?

Our hope is that the alternative characterizations deeelap this paper will be useful in approaching
some of these existential questions, either positively. (By using graph operations to construct Cayley
graphs with the properties discussed above, analogoudfieics construction of LTCs [Mei09]) or nega-
tively (e.g. by reasoning about expander-like subgraplagfey graphs, as discussed above in Settidn 1.3).

The connection between metric embeddings and local téstatiives a new perspective on existing
results in this area, for instance we use it to give a simplé-based proof of the non-embeddability result
of Khot and Naor([KNO6] (see Section B.2). Similarly, the neation to derandomized hypercubes has been
used by [[BGH 12,[KM13] to construct improved integrality gap instances emidefinite programming
relaxations of combinatorial optimization problems.

2 Locally Testable Codes revisited

In this section we reformulate the properties of Locallytdbe Codes in terms of cosets, which makes our
equivalences easier to show.

Recall that a local tester for dn, k, d]» binary linear code is specified by a a distributio® on C*.
The testeD is e-smooth if for everyi € [n], Proplai = 1] < e. Forv € F} letd(v,C) = min.ec d(v, ¢)
andRej(v, D) = Pryepla - v = 1]. We say thaD has soundnessif Rej(v, D) > dd(v,C) for all v € F5.

We say that aifn, &, d]» linear code ig¢, §)-locally testable if it has a test@ which has smoothnessand
soundness. By considering received words at distaricom the code, we get < Rej(e;, D) < . The
upper bound is an easy consequence of the smoothnessy,ldealvanty = Q(¢).

Givenv € V, letv € V/C denote the coset df containing it. Letf = {é,...,é,} denote the coset
representatives of the basis vectf¢s, . . ., e, }. Theé;s are not independent ovég, indeed we have

Z e =0 < Z e, €C
€8 €S
Hence the shortest non-trivial linear dependence is of megactlyd.
Forv € V/C, there could be several ways to write it as a linear comtinativere. We have

@zZéi — U+Ze¢€C

1€S5 €S



Hence if we definei(v,C) = d(v,C) for anyv € v (the exact choice does not matter), it follows that
d(v,C) = rankg(v). Similarly, for everyc € C, v € V anda € C*, a(v) = a(v + ¢). Hence

Rej (U> D) = Rej(v +c D) (1)

This lets us defin®ej(v, D) = Rej(v, D) for anyv € v.

We can now rephrase smoothness and soundness in terms fegesentatives.

Pr [o; = 1] = Pr [a(e;) = 1] = Rej(é;, D) (2)
a+D a+D

ThusD is e-smooth if everye; is rejected with probability at most

We say a seb of vectors in arff,-linear space ig-wise independent if every C S where|T'| < d is
linearly independent ovéf,. For a set of vector§ = {s1, ..., s, } which span a spacg, we userankg(t)
for t € T to denote the smallegt such that can be expressed as the sumkofectors fromS. With this
notation,D has soundnessif for every v € V/C such thatank; > d’, Rej(v) > od’.

We summarize these observations in the following lemma:

Lemma 5. LetC be an[n, k], code and leD be a tester foC.

« C has distancel! iff the set€ is d-wise independent.

* The testemD is e-smooth iffRej(¢é;, D) < e for all i € [n].

» Forv € V/C, d(v,C) = rankg(v). HenceD has soundnessiff for everys € V/C,
Rej(v,D) > 0 - rankg(v)

3 Locally Testable Codes and Metric Embeddings

Let S = {s1,...,5,} C F% be set ofn > h generators off} that ared-wise independent. Lef =
Cay(F%, S) be the Cayley graph whose edges correspond to the. Seite graphg can be naturally associ-
ated with a cod€g which consists of all vectors = (cy,...,c,) such thaty . ¢;s; = 0. It is easy to see
thatCg is an[n,n — h, d]s linear code.

Similarly, one can start from am, k, d|, linear codeC and construct a Cayley gragly on Fg‘k. We
take the vertex set to 3€; /C. We add an edgér, y) if there existz € z andy € y such thad(z,y) = 1.
It is easy to see that is equivalent to takifg= {e1,...,¢€,}, and this set igi-wise independent by the
distance property af.

It is easy to see that this construction inverts the prevamunstruction. Henceforth we will fix a code
and a graply that can be derived from one another. The vertex sétisfgiven byV (G) = F4 /C and the
edge sef?(G) by {z,z + ¢;} for z € F} /C andi € [n].

Lemma 6. Letdg denote the shortest path metric GnWe have
dg(Z,y) = dg(T +7,0) = d(z +y,C)
Proof: If dg(z,y) < dthen there exist§’ C [n| of sized such that
J=Z+> & = T+I=) ¢
JET JET

henced(z + ,C) < d. Similarly, if d(z + y,C) < d, that gives am—y path of lengthd in G. n
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An /1-embedding of the shortest path metficon the graplg is a distributionilD over Boolean functions
f:V(G) =Fy/C — {£1}. The distancé(z, y) between a pair of vertices andy under this embedding
is

6(z,y) = Pr [f(z) # (1))

feD

We define the stretch of an edg@e, y) to be the ratio)(z, y)/d(z,y). The distortioncp of the embedding
D is the ratio of the maximum to the minimum stretch of any pawvestices. It is given by

- maxz ey (g) 0(Z,¥)/dg (7, )
P ing, 0(2,9)/dg (7, 7)

It follows by the triangle inequality that the stretch is nmaized by some edge. Hence we get

op = maXzev(g),icin) (7,7 + &)
ming , 6(Z,9)/dg(Z,7)

(3)

The minimumc achieved over alf;-embeddings of is denoted:; (G).

Definition 7. An embeddin@ of G = Cay(F}, S) into ¢; is linear if D is supported on functiong, (z) =
(—1)2®) wherea is anFy-linear function onV (G).

The space of linear functions @ /C is isomorphic taZ+. In a linear embedding, we have
5(£7§):: ;Z%JX&(E):#:XQ(gH
Pr [xa(@+7) # 1

=46(z +7,0)

Thus, the distancé is invariant under shifting in linear embeddings, just like shortest path distandeg.
Indeed, the next lemma shows that we can replace any emigdolglnlinear embedding without increasing
the distortion.

Lemma 8. There is a linear embeddinB of G into ¢; achieving distortion:; (G).

To prove this lemma, we set up some machinery. fetFy/C — {£1} be a Boolean function on
[F7 /C. We can extend to a function on all off by settingf(z) = f(z). (We will henceforth switch freely
between both notions). The resulting function is invariamtler cosets af, which implies that its Fourier
spectrum is supported @h-. Hence we have

f@) = 3 fla)yal)

acCt

Further, we havé"_ .. f(a)? = 1.
We now proceed to the proof of Lemina 8.



Proof: Given an arbitrary distributio® on Boolean functions, we define a new distributidhon functions
where we sample € F% uniformly at randomf € D, and return the functiorf’ : F} — {+1} defined by
f(z) = f(xz + a). We will show that, < cp.

Letd'(z,y) = Prpep[f'(x) # f'(y)]. We have

y@w%iﬂﬁkgﬂw+®#f@+aﬂ

= Eqerp f%g,[f(w +a) # f(y+a)]
= Eaerp [0(z + a,y + a)].
Let a; anday be the values of that minimize and maximizé&(z + a, y + a) respectively. Then
S(x+ar,y+a) <8(z,y) <oz +az,y+az)

Hence we have

5(‘T+alay+al) < 5/($,y) < 5(‘T+a27y+a2)
d(x +ay,y+ar) ~ dx,y) ~ dx+ a2,y + a2)

since all the denominators are equal. But this implies that

min (@.y) > min o(,y)

x,y d($7 y) a Y d(;l;’ y) ’

§'(z,y) oz, y)

<
Ty dley) e d(y)
and hence
Y , § Z,
cpr = . d((x 5)) sy dEx Z% =

- 5 (z, . o(x,
mlnmvy d((x,;;)) mlnx’y d%:&z;

Next we show that there is a linear embeddiPgwith distortioncpr = cpr. The embedding is simple
to describe: we first samplg € D, we then sample,, € C* with probability f(«)?. We denote this



distribution onC* by f2. Note that
& (z,y) = aeﬁg,gvep[f(w +a) # f(y +a)]
gPaers[l — flo+ a)f(+ )

= Efep 5

:EfGD ;EaEF§|: (Zf onw'i‘a)(z.f Xﬁy+a)>:|]
aeCt pecCt

=Efep |5 ( Z f (7)xp (?J)Eaemg [Xa(a)XB(a)])]

a,BeCt

= Efep % (1 — Z f(a)2Xa($)Xa(y))]
i acCt

By | T el >xa<y>]

2
| aeCt
P [e% (0%
= Pr, Prxa(@) # xa()
=d"(z,y).
From this it follows that’, = ¢, < cp.
The lemma follows by takin@® to be the/; embedding ofj that minimizes distortion. "

We now prove the main result of this section.
Theorem 9. We haver; (G) < ciff there exists arfe, §)-tester forC whered > ¢/c.

Proof: For linear embeddings, we can use shift invariance to sfyngiie expression for distortion. Sing2
is a distribution orC*, we can view it as a tester far. Note thatRej(z, D) = 6(7,0). Recall by Equation

(&)

maXzev(g),icln] 6(Z, T + &)
minr,y 5(‘f> g)/dg (3_37 g)

We can usé(z,y) = 6(Z + y,0) = Rej(z + g, D) to rewrite this as

Cp =

max;c(, Rej(€;, D)
ep = L (4)
miniGV(g) RGJ (‘%7 D)/d('@7 O)

Given a linear embedding specified by a distributrihat gives distortiorep, we viewD as a tester.
By definition, it has smoothnesgsfor

£ > max Rej(e;, D) (5)
1€|n
and has soundnesgdor
§ < R D)/d(z,0 6
i ej(z,D)/d(z,0) (6)

10



since any such satisfies the condition
Rej(z, D) > dd(z,0).

By takinge, § to satisfy Equationis]5 arid 6 with equality, we get ¢/cp.
In the other direction, assume we havé=ad)-tester forC whered > ¢/c. Note thats, § must satisfy
Equation$ b andl6. Plugging these into Equadltion 4, we get
max;e |, Rej (&, D)

cp = <

- — — <ec.
minzey(g) Rei (7, D)/d(, 0)

£
5

3.1 Boosting the soundness

Theoreni® implies the existance of @nd)-tester forC, where

€

c1(9)

While this is the best ratio possible betweesndd, Theoreni D does not seem to guarantee the right absolute
values for them. In this section, we show that one can achliiégdy repeating the tests. First, we identify
the right absolute values.

Let ¢ denote the covering radius 6f and letz be a codeword at distan¢drom C. Since

<d<e.

1 > Rej(z, D) > ot

we getd < 1/t. Given this upper bound, we would liketo be©(1/t) andé to be©(1/(c1(G)t)). We show
that this is possible, with a small loss in constants (whiehde not attempt to optimize).

Theorem 10. There is a(1/(4t), 1/(16¢; (G)t))-tester forC.

We defer the proof of this result to Appendix A.
Note that ifd = Q(n), thend andt differ by a constant factor. However, whén= o(n), it could be
thatt = w(d). In this case, we could relax the soundness requirementdaisiat distance (d) as follows:

N {5d(m,C) if d(z,C)
C

Rej(z, D) > .
A@P) 21 5 if d(z,C)

<d
>d

It is possible to get such a tester where O(1/d), § = Q(1/(c1(G)d)) using the same argument as above,
but replacing with d. We omit the details.

3.2 Relation to previous work

This equivalence allows us to reformulate results aboutdinGhe language of metric embeddings and vice
versa. We present two examples where we feel such reforiongadre particularly interesting.

11



Embedding lower bounds from dual distance: Khot and Naor show the following lower bound for
c1(G) in terms of its dual distance.

Theorem 11. [KNO6, Theorem 3.4] Lef be an[n,n — h|; code and let be the associated Cayley graph.
Letd" denote its dual distance. Then

h
>0 (dt——M—
)20 (¢ )

In the setting wheré,/n = Q(1) (which is necessary to have constant relative distancis)gthes a
lower bound of2(d*). Thus their result can be seen as the embedding analogue fshit of BenSasson
et al. [BHRO5], who showed that the existence of low-weiglhdlccodewords is a necessary condition for
local testability. Our results allow for a simple alternatproof of Theorerh 11.

Proof of Theoreri Z11By Theoren{®, there exists(a, d)-testerD so thatc; (G) = €/6. We may assume
without loss of generality tha is supported on non-zero code-word<’ih, each of which is of weight at
leastd", so we have > d* /n.

As in Sectiori 311, we hawe < 1/t wheret is the covering radius af. We lower bound by a standard

volume argument:
t
h
gn—h., [ I o f (N
t;(ﬂ)— - <1og<n/h>>

dt .k
> —t = .
S Q<d nlog(n/m)

So we have

c1(G) >

SR

O

Lower bounds for basis testers: A basis tester for a code is a testerD which is supported on a basis
for C. Ben-Sasson et al. showed a strong lower bound for suchigd¢B®GK"10]. Their main result when
restated in our notation says:

Theorem 12. [BSGK'10, Theorem 5] Le€ be an[n, k, d]; code with an(e, §)-basis tester. Then
e _ kd
- >
6~ 3n

If Cis anin, k, d], code, a basis tester fGryields an embedding intg: — k)-dimensional space. Hence
their result implies that any linear embedding®f/C into (n — k)-dimensional space requires distortion
Q(kd/n) (even thoughFy/C has dimensiom — k as a vector space ovék), and hence low-distortion
embeddings must have larger support. Note that since ouctied from arbitrary embeddings to linear
embeddings could blow up the support, this does not implynélai bound for arbitrary embeddings.

4 Locally Testable Codes and Derandomized Hypercubes

4.1 Derandomized Hypercubes

We consider Cayley graphs over groups of characterdsticet A = F for someh > 0. A distribution D
over A gives rise to a weighted gragitay (A, D) where the weight of edgey, 5) equalsD(« + ).

12



The symmetry of Cayley graphs makes it easy to compute tiggneectors and eigenvalues explic-
itly. Let A* denote the space of all linear functiohs .A — F,. The characters of the group are in
1-1 correspondence with linear functions:€ .4* corresponds to a charactgr : A — {£1} given by
xo(a) = (—1)Y@). The eigenvectors afay (A, D) are precisely the charactefg; }c.4-. The correspond-
ing eigenvalues are given byb) = E,cp[xs(a)].

As mentioned earlier, the Cayley graphs we are interestedrirbe viewed as derandomizations of the
e-noisy hypercube, which retain many of the nice spectrapgrites of the Boolean hypercube. Before
defining them formally, we list these properties that we wdike preserved (at least approximately).

1. Large Eigenvalues.There are: “top” eigenvectors ., }"_, whose eigenvalues satisiye;) > 1—e.

2. Linear Independence. The linear functiongley, ..., e, } corresponding to the top eigenvectors are
linearly independent ovefs,.

3. Spectral Decay.Fora € A*,if a = Y, g e;, then(a) < (1 —¢)!5.

We are interested in Cayley graphs whose threshold naiskpossibly (much) larger thaf. But this
means that the corresponding dual vectors which lie in theesgd* of dimensionh < n can no longer be
linearly independent. So we relax the Linear Independenoeiton, and only ask that there should be no
shortlinear dependencies between these vectors. The SpectayBendition will stay the same, except
that we need to modify the notion of rank to account for linggpendencies.

Definition 13. Let Cay(.A, D) be a Cayley graph on the groud = F4. Letp,v € [0,1] andd €
{1,...,n}. LetB* = {by,...,b,} be ad-wise independent set of generators 4t of cardinality n.
We say tha3* is a (i1, v)-spectrum generator foCay (A, D) if it satisfies the following properties:

* Large Eigenvalues.\(b) > 1 — y for everyb € B*.
* Spectral Decay.For a € A*, A\(a) <1 — v - rankp«(a).

Note that any set of generatdfs for A* gives us some values of d, x andv. We would liken, d to
be large. Also, applying the Spectral decay conditioh /5%, we see that

1—p<Ab)<1-v

hencey > v. Ideally, we would like them to be within a constant factoeath other.

We refer to such graphs as “derandomized hypercubes”. Tdsomneis that if there is a generating set
of sizen which is significantly larger than the dimensianthen the resulting graph has spectral properties
that resemble the dimensional hypercube, although it has obfy < 2" vertices. Every Cayley graph
Cay(A, D) together with a generating sBt gives us a derandomized hypercube, the parametels:, v
tell us how good the derandomization is (just like any c6dend dual distributiorD gives us local tester,
whose quality is governed by the parameters it achieves).

4.2 Derandomized hypercubes from Locally Testable Codes

Barak et al. proposed the following construction of Deranted Hypercubes from any Locally Testable
Code [BGH"12]. GivenC which is an[n, k, d]» linear code with a local testép, they consider the Cayley
graphC(C*+,D) onCt = F;“k whose edge weights are distributed accordingpto

13



Theorem 14. LetC be an[n, k, d]2 linear code ford > 3, and letD be an(e, ¢)-tester forC. There exists a
d-wise independent sétof sizen which is a(2¢, 26)-spectrum generator fatay(C+, D).

Proof. Observe thatC+)* = V/C. This is because eachc V defines a linear function of* given by
v(a) = a(v), andv, v’ define the same function iff the lie in the same coset.of

We take = {é1,...,é,} to be the cosets corresponding to the received weyds . , ¢,,. By Lemma
[, sinceC has distancel, the setf is d-wise independence. We will show that it i5(2e, 26)-spectrum
generator folCay (C+, D).

We bound the eigenvalues using the correspondence betlveespectrum ofCay(C+, D) and the
soundness of the testér established by Barak et al.. Fore V/C, let x; and A\(v) denote the corre-
sponding eigenvalue. [BGHLZ, Lemma 4.5] says that

A(v) =1 —2Rej(v, D). (7)

» Smoothness implies Large Eigenvalue8y Lemmd’5 the smoothness BfimpliesRej(é;, D) < e.
By Equatiorly,

A(e;) =1 —2Rej(e;, D) > 1 — 2e.

« Soundness implies Spectral decayFix v € V/C so thatrankg: () > d’. By Lemmalb, the
soundness db impliesRej(v, D) > dd’. By Equatiorl¥,

A(®) =1 —2Rej(v,D) <1 —24d'.

4.3 Locally Testable Codes from Derandomized Hypercubes

We show how to start from a Cayley graph gn= F% and a set of generators fot* and get a locally
testable code from it. Our construction takes a Cayley gfaph(.A, D’) and a(d, i1, v)-spectrum generator
B*.

We define the locally testable codéoy specifying the dual codg" and the testeP. We view elements
a € A as messages, and embed them Ffaising the map

fla) = (bi(a),..., bn(@)). (8)

SinceB* generatesd*, the mappingf is injective. Its image is &-dimensional subspace Bf, which we
denote byC*. The LTC will beC, which is the dual o€. The distributionD’ on A induces a distribution
D = f(a)aep ONCH, which is the tester fof.

Theorem 15. LetCay(A = F}, D’) be a Cayley graph and |&8* = {b;, ..., b,} be ad-wise independent
(11, v)-spectrum generator for it. Lef be the dual of the code specified by Equafibn 8. Tées an
[n,n — h,d]s linear code andD is a (u/2, v/2)-tester forC.

Proof. It is clear thatC! is an[n, h]» code, and henc@ is an[n,n — h], code. Recall thaf : A — C* is
an isomorphism. Sincg}/C = (C*)*, f induces an isomorphism : A* — F%/C, with property that for
a € A*anda € A,

9(a)(f(@)) = a(e). (9)



We observe thaj(b;) = €;, since

ei(f(a)) = ei- fla) = bi(a).

Since3* is d-wise independent, so & which by Lemmab implies that has distancd. This also implies
that for anya € A*,

a= Zbi <~ g(a) = Zéi
€S €S

Hence by Lemm@&l5, we havég(a),C) = rankp-(a). We can now deduce the local testabilitybfrom
the spectral properties &f*.

» Large Eigenvalues Imply Smoothnessin order to bound the smoothness@fwe need to bound

Rej(es, D) = Pr [+ f(a) = 1] = P [bi(a) = 1]

We have

which implies that

» Spectral decay implies soundness.

Considers € F3/C such thatd(v,C) > d'. Letv = g(a) for a € A*, so thatrankg-(g(a)) > d'.
From the spectral decay property8f,

1—vd > Ma) = Eqep/[(-1)*¥] =1—-2 Pr [a(a) = 1]

hence

The soundness of the tester follows by noting that

Rej(5,D) = Pr [g(a) - f(@) = 1] = Pr fo(a) =1]

4.4 Some consequences of this equivalence

This equivalence lets us reformulate questions regardiiigslas questions regarding the existence of certain
families of derandomized hypercubes.

Corollary 16. There exists an asymptotically good family of coflgs} whereC,, has blocklengtm and is
(O(1/n),Q(1/n))-locally testable iff for infintitely many there exists a Cayley graphy, = Cay(F5, D)
and a set3* of generators fo(F%)* such that
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* the elements df* are (poh)-wise independent fqgr, > 0,
e |B*| > pihfor p; > 1,
* B*isan(O(1/h),(1/h))-spectrum generator fagy,.

Corollary 17. Letd > 3. There exists an asymptotic family of codes,} where(C,, has parameters
[n,n — cqlogn,d], and is (g, 2(e))-locally testable iff for infinitely many: there exists a Cayley graph
Gy = Cay(F:, D) and a set3* of generators foF4)* such that

* the elements df* are d-wise independent,
. ’B*‘ > 2h/cd’
» B*is an(e, Q(e))-spectrum generator fag,.

Next we show that derandomized hypercubes are small-sandrps. We say that a regular gragh
with n vertices is &, ¢)-expander if for every sef of at mostrn vertices, at least a fractiopof the edges
incident toS leaves (i.e. are on the boundary betwegrand.S).

The following lemma says that if a graph ha$av) spectrum generator, then it is(a ¢)-expander
for appropriately chosen and¢. The lemma is proved in [BGHLZ]. Since our terminology and notation
is different, we present a proof of the Lemma in Apperidix B.

Lemma 18. [BGH'12] Let G = Cay(A, D) be a Cayley graph on the groud = F%. Let B* be a
d-wise independent set which is(a, v)-spectrum generator fo6;. ThenG is a (7, ¢,) expander for
¢y = vd/4 — 3271/4,

To interpret the expansion bound, think ef/4 = (1) (we can assume that the graphs obtained
from LTCs have this property, since this is analogous torgathat words at distanc#/4 are rejected with
constant probability). So if we take = exp(—d), then¢, = Q(1). A particularly interesting instantiation
of this bound is obtained by combining Corolléry 17 and Lerfii@a

Corollary 19. For d > 3, suppose there exists an asymptotic family of cddg$ whereC,, has parameters
[n,n — cqlogn,d]s and is(O(1/d),$2(1/d))-locally testable. There for infinitely mariy there exists a
Cayley graphg;, = Cay(F%, D) such thagy, is (O(97%), Q(1))-expander and hag"/“« eigenvalues greater
thanl — O(1/d).

In contrast, Arora et al [ABS10] showed thatdf is an (7, 2(1))-expander, then there are at most
n@() /7 eigenvalues greater than— e. Their bound implies that the gragh, obtained in Corollary 119
can have at most®("/4) eigenvalues greater than— O(1/d). If there exist LTCs where; = O(d), the
resulting graphgj;, would meet the ABS bound. The only lower bound we know ofdpis c¢; > d/2 by
the Hamming bound.
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A Proof of Theorem[10

Let D denote the distribution o6 where we samplé independent codewords accordingand add
them. We claim that for suitablé bothe andd scale by roughly a factor af

Lemma 20. Let/ be such that

14 forall z € Fy/C.

1
~ 4Rej(z, D)
ThenD® is an (¢, §¢/2)-tester forC.

Proof: The testetD®’ is anfs-smooth tester by the union bound. Its soundness can bezadaly noting
that

1 — 2Rej(z, D) = (1 — 2Rej(Z, D))"
Using the bound o#d to truncate the RHS, we get

Rej(z, DP) > gRej(i,D) > %d(@,o). (10)

We use this to prove Theordml10.

Proof of Theorerh J0We start with ar(e, §)-tester wheré > /¢ (G). If § exceeds the claimed bound, we
are already done. Assume this is not true, so

1 1
[ — < < —
T Q) °= c(9)0 < 15,

Since the covering radius tswe have that for every € FZ,
Rej(z,D) <te <1/16

Let¢ = [1/(4te)] so that
1 1
<< —,
8te = T 4dte

By Lemmd20,D®* has smoothness where

1

F<pe < —
T
and soundnes® where )

5 > e o
- 8te Cl(G) - 16tCl(G).

06 >

N | —
N | —
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B Proof of Lemmal[l8

We first show the follow hypercontractive inequality:

Claim 21. Let B = {b,...,b,} C F} be (4d + 1)-wise independent. For every functigh: F} — R
defined as

f(l‘) - Z f(S)HXbZ(‘T)7

SClnlSI<d  i€S

we have

Proof: Letg:[F3 — R be

The statement is proved by the stand&g4)-hypercontractive inequality (applied tofunction) and the
observation that

E,[f(2))] = Bylyw) = Y f(5)7

SClnl,|S|<d
and

E.[f(2)'] = Eylg(y)'] = > F(81)£(52)£(S5)f(Sa).

We now proceed to prove Lemrnal 18.

Proof of Lemm&I8For any two functionsf, g : F2 — R, define their inner-product as

(f,9) = Eyepy [/ (2)g(2)]
and thep-norm of f to be
2\ VP
1l = (Bocrpf@?)
For every functionf : Iﬁ‘g — R with Fourier expansion
f@) =" faxa(z)

ang

let

f<d/4(x) = Z faXa(x)a

a:rankgx (a)<d/4

@ = Y faxa(@).

a:rankgx (a)>d/4
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Fix a setS C F4. LetT = u(S) be the volume oF. Let1s(x) = 1,cs be the indicator functio. Note
that || 15|/, = 7 for everyp > 1. We will lower bound the expansioh(S) = 1 — (15, G1s)/7, which is
the fraction of the edges incident &bleavingS. Observe that

(1s,G1s) = (15, G1Y*) + (15, G157, (11)
The first term in theRHS of (1) is upper bounded as
(16, G15"") = IsllaysIG15 a < 11 lass - V3Tl 1s]l2 = V371
by Holder's inequality and Claim21. The second term inTi&S of (I1)) is upper bounded as
(15,G15"") < (1= vd/4)|1s]3 = (1 - vd/4)r.

In all, we have

(1s,G1s)
T

B(S) =1 > 1 - V3PV~ (1 - vd/4) = vd/d — V3TV,
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