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Abstract—We show that every bounded function g :
{0, 1}n → [0, 1] admits an efficiently computable “sim-
ulator” function h : {0, 1}n → [0, 1] such that every
fixed polynomial size circuit has approximately the same
correlation with g as with h. If g describes (up to scaling)
a high min-entropy distribution D, then h can be used
to efficiently sample a distribution D′ of the same min-
entropy that is indistinguishable from D by circuits of
fixed polynomial size.
We state and prove our result in a more abstract setting, in
which we allow arbitrary finite domains instead of {0, 1}n,
and arbitrary families of distinguishers, instead of fixed
polynomial size circuits.
Our result implies (a) the Weak Szemerédi Regularity
Lemma of Frieze and Kannan (b) a constructive version of
the Dense Model Theorem of Green, Tao and Ziegler with
better quantitative parameters (polynomial rather than
exponential in the distinguishing probability), and (c) the
Impagliazzo Hardcore Set Lemma. It appears to be the
general result underlying the known connections between
“regularity” results in graph theory, “decomposition” re-
sults in additive combinatorics, and the Hardcore Lemma
in complexity theory.
We present two proofs of our result, one in the spirit of
Nisan’s proof of the Hardcore Lemma via duality of linear
programming, and one similar to Impagliazzo’s “boosting”
proof. A third proof by iterative partitioning, which gives
the complexity of the simulator to be exponential in the
distinguishing probability, is also implicit in the Green-
Tao-Ziegler proofs of the Dense Model Theorem.

I. INTRODUCTION

In this paper, we provide a new, complexity-theoretic
method for approximating arbitrary functions. Specif-
ically, we show that every bounded function g :
{0, 1}n → [0, 1] can be “simulated” by an efficiently
computable function h : {0, 1}n → [0, 1] in the sense
that no circuit of fixed polynomial size can distinguish
between g and h. The indistinguishability property we
prove between g and h is that every circuit of fixed
polynomial size, say at most s, has approximately the
same correlation with h as it does with g; we allow
the complexity of the “simulator” h to be polynomially
larger than s. When g is a (scaled version of) a high-
min-entropy probability distribution, then h can be used

to construct a “simulator” in the sense usually adopted
in cryptography [GMR], namely an efficient randomized
algorithm whose output distribution is computationally
indistinguishable from g (by circuits of fixed polynomial
size).

The efficient simulation h seems to encode a lot of
useful complexity-theoretic features of the function g.
For example, h can be shown to be essentially the best
efficiently computable approximation of g, and thus the
average-case complexity of g is captured by the dis-
agreement between g and h. In addition, we show how
our efficient simulation theorem rather directly implies
a number of known results in computational complexity,
namely Impagliazzo’s Hardcore Lemma [Imp1], Yao’s
XOR Lemma [Yao], [GNW], and the Dense Model
Theorem of [GT], [TZ], [RTTV], [Gow]. (All of these
are discussed in more detail below, in Section I-B.)
In these applications, much of the computational work
that would normally be done via a “reduction” is now
done by the simulator h, and the proofs are mostly just
calculations.

We state and prove our result in a more general form that
refers to arbitrary domains X (not just {0, 1}n) and arbi-
trary families of distinguishers (not just small circuits).
In this general form, it also implies the Weak Szemerédi
Regularity Lemma of Frieze and Kannan [FK], which
states that every graph can be “(weakly) approximated”
by an object of “complexity” that depends only on the
quality of the approximation and not on the size of
the original graph. In this application, g is taken to be
the adjacency matrix of the original graph, and h is its
“low-complexity” approximation. Indeed, our result can
be viewed as a generalized Weak Regularity Lemma,
which includes both the graph-theoretic and complexity-
theoretic versions as special cases.

We note that many connections between all of these
previous results were already known, and indeed a ver-
sion of our result is implicit in the “Constructive Dense
Model Theorem” of Green, Tao, and Ziegler [GT], [TZ],
but with the complexity of h depending exponentially
on the distinguishing probability (making it less suitable
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for computational complexity purposes). Reingold et
al. [RTTV] showed how to remove this exponential
dependence in the “Dense Model Theorem” (discussed
below), but lost the constructivity which corresponds
to the efficient simulator h. Their proof is inspired
by Nisan’s proof of Impagliazzo’s Hardcore Lemma
[Imp1], and in particular by its use of the min-max
theorem of game theory. (Gowers [Gow] discovered
an essentially identical proof, but casted in a purely
analytic language.) Impagliazzo [Imp2] shows that a
non-constructive Dense Model Theorem can be derived
from a strong form of his Hardcore Lemma (such as the
version proved by Holenstein [Hol]), so that any proof
of the (strong form of) the Hardcore Lemma yields a
non-constructive Dense Model Theorem.

Although non-constructivity seemed inherent in the
proofs of [RTTV], [Imp2], [Gow], both of the proofs we
give for our main theorem are based on proof techniques
previously used for Impagliazzo’s Hardcore Lemma,
namely the min-max theorem of game theory (used in
Nisan’s proof) and boosting algorithms (implicitly used
in Impagliazzo’s original proof [Imp1] and explicitly
used by Klivans and Servedio [KS]). The boosting
proof becomes particularly clean when used to prove
our main theorem, reinforcing the sense that we may
be approaching the “right” unification of these various
important results.

A. Our Main Theorem

We now state our main result precisely, in abstract form.
If F is a family of real-valued functions, we say that
a function h has complexity at most C relative to F if
there are functions f1, . . . , fk ∈ F , k ≤ C such h can
be defined by combining them using at most C of the
following operations: (a) multiplication by a constant,
(b) application of a boolean threshold function, (c) sum,
(d) product.

Theorem 1.1 (Main): Let X be a finite set, µ a proba-
bility distribution over X , F be a collection of functions
f : X → [0, 1], ε > 0 an approximation parameter, and
g : X → [0, 1] an arbitrary bounded function.

Then there is a function h : X → [0, 1] satisfying
Eµ[h] = Eµ[g] that is

1) Efficient relative to F: h has complexity ε−O(1)

relative to F ;
2) Indistinguishable from g by F: for every f ∈ F ,

we have∣∣∣∣ E
x∼µ

[g(x)f(x)]− E
x∼µ

[h(x)f(x)]
∣∣∣∣ ≤ ε

In almost all of our applications of this theorem, µ is the
uniform measure, and this should be assumed whenever

µ is not specified.

We stress that the theorem applies to arbitrary functions
g, including random functions and functions of very
high average-case complexity. If F is defined to be
the set of functions computable by circuits of size s,
then h is computable in size s · ε−O(1). Thus, the
indistinguishability property does not imply that h is
a good approximation of g in the sense of the two
functions agreeing on many inputs, which would be im-
possible if g has high average-case complexity. Rather,
the indistinguishability means that, roughly speaking,
although h may make many mistakes in computing g,
inputs x on which h(x) > g(x) are indistinguishable
from those on which h(x) < g(x) (as can be seen
by noting that the indistinguishability condition can be
rewritten as |E[f(x) · (g(x)− h(x))]| ≤ ε.
Nevertheless, it can be shown that when g is boolean,
h is essentially the best efficiently computable approx-
imation to g. Specifically, for every f ∈ F , Eµ[|f(x)−
g(x)|] ≤ Eµ[|h(x)−g(x)|]/2+ε. Note that there is some
slackness in this comparison, because we lose a factor
of 2 in the error, and h is of higher complexity the func-
tions in F . (For example if F is the family of functions
computable by circuits of size s, then h will have circuit
complexity s · poly(1/ε).) In Proposition 2.3, we give
evidence that this is necessary, showing that h cannot
be of noticeably lower complexity than F .

In additive combinatorics, results like our Main Theo-
rem are stated as decomposition results (cf. Theorem 7.1
in [TZ], the “decomposition” statements in [Gow], or
the examples given in Tao’s tutorial [Tao]). In a “decom-
position” statement of our main theorem, the conclusion
would be that there are two functions h1 : X → [0, 1],
h2 : X → [−1, 1] such that: (1) we can write g =
h1 +h2, (2) h1 has low complexity, and (3) h2 is nearly
orthogonal to all the functions in F , that is, |〈h2, f〉| ≤ ε
for every f ∈ F , where the inner product 〈·, ·〉 is defined
as 〈f, g〉 := Ex∼µ[f(x)g(x)]. The near-orthogonality
condition of h2 can be made cleaner by introducing
the norm ||g||F = minf∈F |Ex∼µ[f(x)g(x)]|. Then
the condition on h2 is simply ||h2||F ≤ ε. We could
state our Main Theorem as a decomposition theorem
by defining h1 := h and h2 := g − h, but the form
stated above is easier to use in our applications.

Proving the Main Theorem: We give two proofs of our
main theorem. One proof uses duality of linear program-
ming and employs the following argument: either there
is a function h̄ that is a convex combination of functions
of complexity O(ε−2) and that is ε/2-indistinguishable
from g by F , or there is a universal distinguisher f̄ that
is a convex combination of functions from F and that
ε/2-distinguishes g from every function h of complexity
O(ε−2). The latter case can be shown to be impossible,
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and so the former must hold; one then shows that h̄ can
be approximated by a function h of complexity Õ(ε−4)
that is ε-indistinguishable from g by F .

The second proof uses a boosting-like argument to
directly construct a function h as required of complexity
O(ε−2).

B. Applications

Efficiently Simulating High-Entropy Distributions: As a
first application of our main result, we discuss how to
efficiently simulate any high-entropy distribution.

Corollary 1.2: Suppose that D is a distribution on
{0, 1}n of arbitrary complexity and min-entropy at least
n− k (i.e. for all x, D(x) ≤ 1/2n−k), and and choose
an arbitrary size parameter s ∈ N and an approximation
parameter ε > 0. Then there is a distribution M over
{0, 1}n of min-entropy at least n− k, such that D and
M are ε-indistinguishable by circuits of size s, and such
that M is samplable and computable by circuits of size
s · poly(ε−1, 2k)).

The fact that M has the same min-entropy as D is
important: without that constraint, the result can simply
be obtained by the probabilistic method, letting M
consist of s · poly(ε−1) random samples from D. (This
was pointed out to us by Elad Verbin.) As with our
main theorem, it would of course be preferable if the
complexity of M were smaller than s, e.g. giving
a simulator of fixed polynomial complexity that that
generates a distribution that is indistinguishable from
D by adversaries of arbitrary polynomial size. However,
this is impossible to achievable in general (similarly to
our main theorem).

Deducing the above from our main theorem is simply
a matter of instantiating F to be the set of functions
computed by small circuits, and of seeing bounded
functions as describing probability distributions. Specif-
ically, we define g(x) := 2n−k · D(x) (notice that we
have 0 ≤ g(x) ≤ 1 because of the assumption on the
min-entropy of D), and apply the main theorem with F
being the class of functions computable by circuits of
size ≤ s and indistinguishability parameter ε′ = ε ·2−k.

If h() is the function that we get from the main theorem,
then define M(x) := 2k−nh(x) and notice that M is
a probability distribution of min-entropy at least n− k,
and that M(x), like h(x), is computable by a circuit
of size O(s · poly(ε−12k)). Also, M is samplable by a
circuit of size O(s·poly(ε−12k)) via rejection sampling
(i.e. uniformly select x R← {0, 1}n and r

R← [0, 1] and
output x if r ≤ h(x), else repeat). To see that M
is indistinguishable from D, observe that for every
function f computable by a circuit of size ≤ s we have

|Px∼D[f(x) = 1]− Px∼M [f(x) = 1]|

=

∣∣∣∣∣∑
x

D(x)f(x)−
∑
x

M(x)f(x)

∣∣∣∣∣
=

∣∣∣∣Ex [2kg(x)f(x)]− E
x

[2kg(x)f(x)]
∣∣∣∣

≤ 2kε

The Weak Szemerédi Regularity Lemma [FK]: This is
a result in graph theory, establishing that every graph
is “approximated” by an object of “complexity” that
depends only on the quality of the approximation and
not on the size of the original graph. Formally, the
lemma states that given a graph G = (V,E) and an
approximation parameter ε, there is a partition of V into
t = 2poly(1/ε) disjoint sets V1, . . . , Vt, such that the par-
tition is “weakly ε-regular.” To define the notion of weak
regularity, define pi,j to be the edge density between the
sets Vi and Vj , that is, pi,j := |edges(Vi, Vj)|/(|Vi| ·
|Vj |), and construct a complete weighted graph G′ over
the vertex set V such that, in G′, the weight of an edge
(u, v), where u ∈ Vi and v ∈ Vj is equal to pi,j . Then
the partition is weakly ε-regular if for every two disjoint
sets of vertices A,B, the number of edges in G between
A and B differs from the total weight of edges in G′

between A and B by at most ε|V |2 in absolute value.
The graph G′ is the “low-complexity approximation”
mentioned above, and indeed the adjacency matrix of
G′ is described by 2poly(1/ε) numbers (the densities
pi,j) and 2poly(1/ε) subsets of V . Such a result can
be proved via a variation of the proof of the orig-
inal Szemerédi Regularity Lemma (which provides a
stronger notion of approximation) [Sze], which proceeds
by iteratively partitioning the set of vertices. Frieze and
Kannan also show how to construct an approximating
weighted graph G′ whose “complexity” is polynomial in
ε−1. (The weight matrix of G′ is a linear combination
of poly(1/ε) “cut matrices” – adjacency matrices of
bipartite complete graphs between two subsets of V ).

We now show how our main theorem also provides an
approximating object of complexity polynomial in ε−1.
This is mostly a matter of translating notation. Given a
graph G = (V,E), we define X to be the set of edges
in a complete graph over V , so that we may see G as
defining a boolean function g : X → {0, 1}; we define
F to contain, for every two disjoint sets of vertices
S, T , a function fS,T : X → {0, 1}, defined to be the
characteristic function of the set of edges having one
endpoint in S and one in T .

Applying the main theorem, we find a function h :
X → [0, 1], which we may see as being a weighted
graph H of “bounded complexity” that approximates G
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in the sense required by the Weak Regularity Lemma,
namely the density of edges between any two disjoint
sets of vertices in H is approximately the same as it
is in G . Moreover, the description of h as a function
of at most k = poly(1/ε) functions fSi,Ti

induces a
natural partition of the vertex set into at most 22k sets
by taking all possible intersections of the sets Si, Ti and
their complements, such that h is constant on the edges
between each pair of parts.

The Impagliazzo Hardcore Lemma [Imp1]: This is a
result in complexity theory stating that if a problem
is hard-on-average in a weak sense on uniformly dis-
tributed inputs, then there is a distribution of high min-
entropy such that the problem is hard-on-average in a
must stronger sense on inputs randomly drawn from this
distribution.

We deduce this lemma from our theorem as follows. We
are given a boolean function g : {0, 1}n → {0, 1} that
is hard-on-average in a weak sense, meaning that every
small circuit errs in computing g on at least a δ fraction
of inputs. We apply the main theorem with F being the
set of all functions computed by small circuits, and we
obtain h (which is computable by a small circuit, albeit
larger than those in F).

Consider now the distribution in which element x has
probability proportional to |g(x) − h(x)|. On the one
hand, since h is an efficient function,

∑
x |g(x) −

h(x)| ≥ δ2n, and so the above distribution is sufficiently
dense, having min-entropy at least log δ2n. On the
other hand, if f is any efficient function in F , the
indistinguishability of g and h can be used to argue
that f has almost no correlation with g over the above
distribution, which is thus a hardcore distribution in
Impagliazzo’s sense.

The Dense Model Theorem: This is a result originating
in the work of Green, Tao and Ziegler [GT], [TZ] in
additive combinatorics stating that if R is a (possibly
very sparse) pseudorandom subset of a set X (in the
usual sense, that every function of low complexity
relative to some family F has approximately the same
average on R as on X), and D is a subset of R
containing a noticeable (say δ) fraction of the elements
of R, then there is a large model set1 M ⊆ X that
contains a noticeable fraction of all the elements of X
and that is indistinguishable from D.2

1Technically, both D and M are distributions rather than sets, and
the statement of the Theorem refers to their min-entropy rather than
theirs size. One could recover a statement about sets by “rounding”
the distribution M to the uniform distribution over a large set.

2In the additive combinatorics literature, this result is referred to
as a “transference” result, because it allow to transfer results that are
known for dense sets of integers to dense subsets of pseudorandom
sets of integers.

The original proof used an iterative partition approach
similar to the proof the Szemerédi Regularity Lemma.
The model set M is explicitly defined in the proof,
and it has complexity exponential in the approximation
parameter 1/ε. (See Theorem 7.1 in [TZ].) The strength
of the pseudorandomness condition required on R is
also exponential in 1/ε. Independently, Gowers [Gow]
and Reingold et al. [RTTV] provided another proof
based on duality of linear programming. The proof is
non-constructive in its definition of the model set M ,
but the strength of the pseudorandomness condition on
R (as discussed in [RTTV]) only needs to be polynomial
in 1/ε. Impagliazzo [Imp2] proved that such a non-
constructive version of the Dense Model Theorem with
polynomial parameters can be derived from a strong
version of the Hardcore Lemma (see below), such as
the one proved by Holenstein [Hol].

From our main theorem, we are able to prove a construc-
tive version in which M is explicitly defined and has
complexity polynomial in 1/ε, and the strength of the
pseudorandomness requirement on R is also polynomial
in 1/ε. Such a Constructive Dense Model Theorem
with polynomial parameters is new. The proof proceeds
roughly as follows. We take g be the characteristic func-
tion of D, and h to be the efficient approximation given
by the Main Theorem, using the uniform distribution on
R as the measure µ. Now, h : X → [0, 1] is defined
over all of X , and because of the pseudorandomness of
R we have

E
x∼X

[h(x)] ≈ E
x∼R

[h(x)] = E
x∼R

[g(x)] = δ.

Suppose now, for simplicity, that h is the characteristic
function of a set M ; then M has size ≈ δ|X|, and the
indistinguishability condition between g and h can be
used to argue that M is indistinguishable from D. In
general, given h we can define a probability distribution
M such that M(x) = h(x)/

∑
x h(x) which has min-

entropy ≈ log(δ|X|) and is indistinguishable from
D. Note that M is samplable and computable in low
complexity.

II. BASIC OBSERVATIONS

In this section, we make a few basic observations
regarding Theorem 1.1.

First, the choice of [0, 1] as a range for g, for h, and
for the functions in F , is not essential, and it would
be equivalent to consider functions ranging in [−1, 1];
the reason is that one can move from one setting to
the other and back via the transformations f ← 1

2 +
1
2f and f ← 1 − 2f which preserve complexity and
indistinguishability (due to the requirement that E[h] =
E[g]). We shall use the [−1, 1] setting in our proofs of
the main theorem.
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The indistinguishability condition of Theorem 1.1 is
stated in terms of the correlations between f and g;
the following lemma shows that, when g is boolean, it
is equivalent to work with `1 distance:

Lemma 2.1: Let X be a finite set, µ a probability
distribution over X , g : X → {−1, 1} a boolean
function, and f, h : X → [−1, 1] bounded functions.
Then

1) Ex∼µ[f(x)g(x)] = 1− Ex∼µ[|f(x)− g(x)|].
2) |Ex∼µ[f(x)g(x)]− Ex∼µ[f(x)h(x)]| =
|Ex∼µ[|f(x)− g(x)|]− Ex∼µ[|f(x)− h(x)|]| .

Proof: Item 1 follows by case analysis on g(x) =
−1 vs. g(x) = 1 for each x separately. Item 2 follows
from Item 1.

Next we show that the simulator h of Theorem 1.1 is the
essentially “best” efficiently computable approximation
to g (up to a factor of 2 in the `1 error).

Lemma 2.2: Let X be a finite domain, µ a probability
distribution over X , g : X → {−1,+1} a boolean func-
tion, F a family of bounded functions f : X → [−1, 1],
and ε > 0. Suppose that h : X → [−1, 1] is such that
for all f ∈ F , we have∣∣∣∣ E

x∼µ
[f(x)g(x)]− E

x∼µ
[f(x)h(x)]

∣∣∣∣ ≤ ε.

Then, for all f ∈ F , we have

E
x∼µ

[|f(x)− g(x)|] ≥ E
x∼µ

[|h(x)− g(x)|]/2− ε/2.

Proof: We omit the input x and the distribution µ
from the notation for readability.

E[|f − g|]
= 1− E[fg] (by Lemma 2.1)
= 1− E[f · (g − h)/2]− E[f · (g + h)/2]
≥ 1− ε/2− E[|g + h|/2]
= 1− ε/2− E[1− |g − h|/2] (g ∈ {±1})
= 1− E[|g − h|]/2− ε/2.

Finally, we show that, in the complexity-theoretic set-
ting, where F consists of all circuits of bounded size,
it is impossible for h to have lower complexity than the
functions in F . This is along the same lines (and in fact
follows from) a similar argument in [TV].

Proposition 2.3: For every n, s ∈ N such that s ≥ n,
there is a function g : {0, 1}n → {−1, 1} such that for
every function h : {0, 1}n → [−1, 1] computable by
a circuit of size s, there is a function f : {0, 1}n →
{−1, 1} computable by a circuit of size s · poly(n) for
which E[fg]− E[fh] ≥ .9.

Proof: Choose g uniformly at random from a
family of t-wise independent hash functions for t =
Õ(s). Then with high probability over the choice of
g, E[gh] ≤ .1 for every function h computable by a
circuit of size s. (This follows from a tail inequality for
t-wise independent hash functions and a union bound
over all circuits of size s.) On the other hand, using
standard hash families (e.g. polynomials of degree at
most t− 1 over GF(2n)), g is computable by a circuit
of size s · poly(n) and hence we can take f = g and
have E[gf ] = 1.

III. THE PROOF VIA DUALITY OF LINEAR
PROGRAMMING

Our first proof of Theorem 1.1 uses duality of linear
programming (or, equivalently, the finite-dimensional
Hahn– Banach Theorem) in the form of the min-max
theorem for two-player zero-sum games. We obtain a
O(ε−4 · log2 ε−1) bound on the complexity of h.

In our proof we shall use twice the following result.

Lemma 3.1: Let X be a finite domain and let µ be a
distribution on X . Let G be a set of bounded functions
g : X → [−1, 1], and let ḡ be a convex combination of
functions from G. Then there are functions g1, . . . , gk ∈
G, for k = O((1/ε2) · log(1/ε)) such that

E
x∼µ

[∣∣∣∣∣g(x)−

(
1
k

∑
i

gi(x)

)∣∣∣∣∣
]
≤ ε

Proof: The convex combination ḡ defines a dis-
tribution on the functions in G. Pick k random
functions picked from G according to this distribu-
tion and let g̃ denote their average. Then for any
fixed x ∈ X , Pg1,...,gk

[|ḡ(x)− g̃(x)| > ε/2] ≤ ε/2
for k = O((1/ε2) log(1/ε)). Thus, by linearity of
expectation Eg1,...,gk

[Px∼µ [|ḡ(x)− g̃(x)| > ε/2]] ≤
ε/2. In particular, there exist some g1, . . . , gk such
that Px∼µ [|ḡ(x)− g̃(x)| > ε/2] ≤ ε/2 and hence
Ex∼µ [|ḡ(x)− g̃(x)|] ≤ ε.
Theorem 3.2: Let X be a finite domain, µ a probability
distribution over X , g : X → [−1, 1] a bounded
function, F a family of bounded functions f : X →
[−1, 1], and ε > 0. Then there is a bounded function
h : X → [−1, 1] such that E[h] = E[g] and

1) h has complexity at most (1/ε)O(1) with respect
to F ;

2) For all f ∈ F ,∣∣∣∣ E
x∼µ

[f(x)g(x)]− E
x∼µ

[f(x)h(x)]
∣∣∣∣ ≤ ε

Proof: Let F ′ be the closure of F under “negation,”
that is, F ′ := {f,−f : f ∈ F}.
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Let t = O((1/ε2)·log(1/ε)) be a parameter that we shall
fix later, and let H be the set of all bounded functions
h : X → [−1, 1] that have complexity at most t with
respect to F ′ and such that E[h] = E[g]. Also, for a
set S of functions, let CH (S) denote the set of convex
combinations of functions in S.

We next use the min-max theorem of two-player zero
sum games, which follows from duality of linear pro-
gramming. Consider a two player zero-sum game, in
which one player picks a function h from H, the other
picks f from F ′, and the payoff is Ex∼µ[f(x)g(x) −
f(x)h(x)]. By the min-max theorem, one of the two
cases must hold:

∃h̄ ∈ CH (H). ∀f ∈ F ′

E
x∼µ

[f(x)g(x)− f(x)h̄(x)] ≤ ε

2
(1)

∃f̄ ∈ CH (F ′). ∀h ∈ H

E
x∼µ

[f̄(x)g(x)− f̄(x)h(x)] >
ε

2
(2)

We argue that, for a proper choice of t, Case (2) is
impossible, and then we use the function h̄ from Case
(1) to construct the function h as required.

Suppose Case (2) holds. Then, by Lemma 3.1, we know
that there are functions f1, . . . , fk, k = O(ε−2 · log ε−1)
such that if we define

f̃(x) :=
1
k

k∑
i=1

fi(x)

we have ∣∣∣∣ E
x∼µ

[f(x)h(x)]− E
x∼µ

[f̃(x)h(x)]
∣∣∣∣

≤ E
x∼µ

[∣∣∣f(x)− f̃(x)
∣∣∣] ≤ ε

10

for every bounded function h. Then, by (2) and the
triangle inequality, we have

∀h ∈ H. E
x∼µ

[
f̃(x)g(x)− f̃(x)h(x)

]
>
ε

2
− 2ε

10
=

3ε
10

Define now f̂ to be equal to f̃ rounded down to the next
multiple of ε/10. Then for every x, |f̃(x) − f̂(x)| ≤
ε/10 and so

∀h ∈ H. E
x∼µ

[
f̂(x)g(x)− f̂(x)h(x)

]
>

ε

10
(3)

and f̂ takes only the values 0, ε/10, 2ε/10, . . . , 1 −
ε/10, 1. For 0 ≤ i ≤ 10/ε, let Si = {x : f̂(x) = iε/10}
be the ith level set of f̂ and let 1Si

be the indicator
function for this set. We define

h(x) :=
10/ε∑
i=0

ci · 1Si
(x) for ci =

(
1
|Si|

∑
z∈Si

g(z)

)

Notice that h has complexity at most max{10/ε, k} =
O((1/ε2) log(1/ε)) with respect to F ′, and that E[h] =
E[g], so that h ∈ H for a sufficiently large choice of t.
Now we see that

E
x∼µ

[
f̂(x)h(x)

]
= E

x∼µ

10/ε∑
i=0

f̂(x) · ci · 1Si
(x)


= E

x∼µ

10/ε∑
i=0

f̂(x) · 1Si(x) · 1
|Si|

∑
z∈Si

g(z)


=

∑
i

P
[
f̂(x) =

iε

10

]
· E
x∼µ

[
f̂(x)g(x)

∣∣∣∣f(x) =
iε

10

]
= E

x∼µ

[
f̂(x)g(x)

]
This is in contradiction to (3), and so Case (2) above is
impossible.

Thus we must be in case 1. That is, there must exist a
function h̄, which is a convex combination of functions
of complexity at most t = O((1/ε2) log(1/ε)) and
satisfies

∀f ∈ F ′. E
x∼µ

[
f(x)g(x)− f(x)h̄(x)

]
≤ ε

2

It follows from Lemma 3.1 that there are functions
h1, . . . , hk, k = O((1/ε2) log(1/ε)) such that if we de-
fine h̃(x) := 1

k

∑
i hi(x), then for all bounded functions

f we have
∣∣∣Ex∼µ [h̄(x)f(x)− h̃(x)f(x)

]∣∣∣ ≤ ε/10.

(Note that we also have E[h̃] = E[g] because each hi
has the same expectation as g.) So we get

∀f ∈ F ′. E
x∼µ

[
f(x)g(x)− f(x)h̃(x)

]
≤ ε

2
+

ε

10
=

3ε
5

. Since F ′ is the closure of F under negation, this is
equivalent to:

∀f ∈ F .
∣∣∣∣ E
x∼µ

[
f(x)g(x)− f(x)h̃(x)

]
≤ 3ε

5

∣∣∣∣
, and the theorem follows by noting that h̃ has com-
plexity at most O((1/ε4) · (log(1/ε))2).

IV. THE PROOF VIA BOOSTING

In this section we give a proof of Theorem 1.1 inspired
by the boosting proof of the Impagliazzo Hardcore
Lemma and by the Frieze-Kannan proof of the Weak
Regularity Lemma. We obtain a complexity bound of
O(ε−2) for h. As explained in Section II, considering
functions ranging over [−1, 1], as we shall do below, is
equivalent to considering functions ranging over [0, 1].

To prove our main theorem, we need to provide a
bounded approximation.

131131



Theorem 4.1: Let X be a finite domain, µ a probability
distribution over X , g : X → [−1, 1] a bounded
function, F a family of bounded functions f : X →
[−1, 1], and ε > 0. Then there is a bounded function
h : X → [−1, 1] such that:

1) h has complexity O(1/ε2) with respect to F .
2) For all f ∈ F ,∣∣∣∣ E

x∼µ
[f(x)g(x)]− E

x∼µ
[f(x)h(x)]

∣∣∣∣ ≤ ε

Remark 4.2: Theorem 1.1 requires Eh = E g, which is
not guaranteed by the above statement. By adding to
F the function 1 which is identically equal to 1, the
indistinguishability condition gives us |E g − Eh| ≤
ε; we can then construct a new function h′ : X →
[−1, 1] whose complexity is only an additive constant
term larger than h and such that E g = Eh′ and that h
and h′ (and thus g and h′) are O(ε)-indistinguishable.
Specifically, we let h′(x) = γ · sign(E g − Eh) + (1−
γ) · h(x), where γ = (E g − Eh)/(sign(E g − Eh) −
Eh) ∈ (0, 1). It can be verified that Eh′ = E g. For the
indistinguishability of h and h′, we note that

E[|h− h′|] = |γ| · E[|sign(E g − Eh)− h|]
= |γ| · |sign(E g − Eh)− Eh|
= |E g − Eh| ≤ ε,

where the second equality follows because sign(E g −
Eh)− h always has the same sign.

Proof: As a warm-up, we give a simpler proof that
does not ensure that the function h is bounded; this is
modelled after an argument of Frieze and Kannan [FK].
Let F ′ be the “closure of F under negation,” that is,
F ′ := F ∪ {−f : f ∈ F}. As in the previous proof,
working with F ′ enables us to remove the absolute
value from the definition of indistinguishability.

We construct h to be the function ht at the end of the
following algorithm.

1) h0 := 0; t := 0
2) while ∃ft+1 ∈ F ′ such that

Ex∼µ[ft+1(x)g(x)]− Ex∼µ[ft+1(x)ht(x)] > ε

a) ht+1 := ht + εft+1

b) t := t+ 1

If the algorithm terminates after T steps, then the out-
put function h satisfies the required indistinguishability
property, and it has complexity at most T relative
to F . (Indeed, it is just a weighted sum of at most
T functions from F .) We show that the algorithm
must terminate within T ≤ ε−2 steps via an “energy
decrease” argument. We define a non-negative energy
function whose value is at most 1 at the beginning, and
which decreases by at least ε2 at each step.

For every time step, define the error function ∆t :=
g− ht, and consider the “energy” Et := Ex∼µ[∆2

t (x)].
At time 0, h = 0, and so ∆t = g, and the energy is
E0 = E[g2] ≤ 1. Going from step t to step t + 1, and
recalling that ht+1 := ht + εft+1, we have

Et − Et+1 = E
[
(g − ht)2 − (g − ht − εft+1)2

]
= E [2 · (g − ht)εft+1]− E

[
ε2f2

t+1

]
≥ 2ε2 − ε2 = ε2,

where the last inequality follows from the hypothesis
that E[(g − ht) · ft+1] > ε and using |ft+1| ≤ 1.

The above construction does not necessarily produce a
bounded function h; after T = ε−2 steps the values of
h = hT can be as large as T · ε = ε−1. We now modify
it to yield a bounded function h. The construction is
exactly the same, except that we treat values larger than
1 (resp., smaller than -1) as 1 (resp., as -1). Specifically,
we have the following algorithm:

1) h0 := 0; s0 := 0; t := 0
2) while ∃ft+1 ∈ F ′ such that

Ex∼µ[ft+1(x)g(x)]− Ex∼µ[ft+1(x)ht(x)] > ε

a) st+1 := st + εft+1

b) ht+1 :=


1 if st+1 > 1
st+1 if st+1 ∈ (−1, 1)
−1 if st+1 < −1

c) t := t+ 1

The algorithm is the same as the previous warm-up
algorithm, except that previously the function h at every
step was just a (weighted) sum of distinguishers, while
now it it is a pointwise truncated version of the sum so
that it is always between −1 and +1.

Note that, if the process stops after T steps, then the
function hT+1 satisfies the second condition by defini-
tion. It only remains to prove that T = O(1/ε2). For the
analysis, we consider the error ∆t(x) := (g(x)−ht(x))
of our bounded function at time t, and define the
overflow function

Ot(x) := (ht(x)− st(x)) ·∆t(x).

The overflow looks at how much, if at all, st and ht
differ, scaled by ∆t(x). We note that the the overflow is
always non-negative, because st(x)−ht(x) > 0 implies
ht(x) = 1 ≥ g(x), and similarly in the case st(x) −
ht(x) < 0.

Finally, define the energy at time t as

Et := E
x∼µ

[
∆2
t (x) + 2Ot(x)

]
Notice that, at all times t, Et ≥ 0, and that, at the
beginning, E0 ≤ 1.
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The proof will now follow from the following claim
about these functions:

Claim 4.3: For all points x ∈ X and for every t

2εft+1(x)∆t(x) ≤ ∆2
t (x)−∆2

t+1(x)

+ 2Ot(x)− 2Ot+1(x) + ε2

We first show how Claim 4.3 implies the theorem. The
condition that at every time step the ft+1 distinguishes
between g and ht implies that Ex∼µ [ft+1(x)∆t(x)] >
ε. Using this and Claim 4.3, we have

Et − Et+1 ≥ ε2

and so, if the process continues for T steps,

1 ≥ E0 − ET ≥ ε2T

which is a contradiction if T > 1/ε2.

We now prove the claim.

Proof (of Claim 4.3): For any function f at x,
we simply write f instead of f(x) in the rest of the
proof. Recall that εft+1 = st+1 − st, that ∆t+1 =
∆t− (ht+1−ht), and that Ot = (ht− st) ·∆t. Proving
the claim is then simply a matter of rearragnging terms
appropriately:

2εft+1∆t

= 2(st+1 − st)∆t

= 2(ht+1 − ht)∆t + 2(st+1 − ht+1)∆t

− 2(st − ht)∆t

= 2(ht+1 − ht)∆t + 2(st+1 − ht+1)∆t+1

− 2(st − ht)∆t + 2(st+1 − ht+1)(∆t −∆t+1)
= 2(ht+1 − ht)∆t − 2Ot+1 + 2Ot

+ 2(st+1 − ht+1)(ht+1 − ht)

We note that

∆2
t −∆2

t+1 + (ht − ht+1)2

= ∆2
t −∆2

t+1 + (∆t −∆t+1)2

= 2(ht+1 − ht)∆t

to obtain

2εft+1∆t = ∆2
t −∆2

t+1 + 2Ot − 2Ot+1

+ 2(st+1 − ht+1)(ht+1 − ht)
+ (ht+1 − ht)2

It remains to prove that

2(st+1 − ht+1)(ht+1 − ht) + (ht+1 − ht)2 ≤ ε2

Observe that (ht+1−ht)2 ≤ ε2, so if the product (st+1−
ht+1)(ht+1 − ht) equals zero we are done. Otherwise,

the only way for (st+1 − ht+1) and (ht+1 − ht) to be
both non-zero is to have |st+1| > 1, |ht+1| = 1, and
|ht| = |st| < 1. In that case,

2(st+1 − ht+1)(ht+1 − ht) + (ht+1 − ht)2

= (st+1 − ht)2 − (st+1 − ht+1)2

≤ (st+1 − ht)2

= (st+1 − st)2 ≤ ε2

V. APPLICATIONS

In this section, we shall use the following definition: a
distribution A has density δ in a distribution B (or A if
δ-dense in B), if ∀x. PA[x] ≤ 1

δ · PB [x].

A. Deriving the Dense Model Theorem

We prove the Dense Model Theorem in the following
formulation:

Theorem 5.1: Let X be a finite universe, F a collection
of bounded functions f : X → [−1, 1], ε > 0 an
accuracy parameter and δ > 0 a density parameter. Let
R,D be distributions over X such that D is δ-dense
in R. Then there exists C = 1/εO(1) such that, if, for
every function f ′ of complexity at most C with respect
to F , we have∣∣∣∣ E

x∼R
[f ′(x)]− E

x∼X
[f ′(x)]

∣∣∣∣ ≤ ε ,
then D has a dense model in X . That is, there exists a
distribution M , which has density at least (δ− ε) in X
such that for all f ∈ F ,∣∣∣∣ E

x∼D
[f(x)]− E

x∼M
[f(x)]

∣∣∣∣ ≤ O(ε/δ)

Proof: We start by defining the function g which
we shall try to approximate.

g(x) =

{
1− 2 δ·PD[x]

PR[x] PR[x] > 0
1 otherwise

Note that if we had uniform distributions over some sets
R and D, with |D| = δ|R| then g would be −1 inside
the set D and 1 outside. The requirement that PD(x) ≤
1
δ · PR(x) ensures that g is bounded between -1 and 1.
We now apply theorem 1.1 to approximate the function
g according to the distribution R. This gives a function
h such that ∀f ∈ F . |Ex∈R[(g(x) − h(x))f(x)]| ≤ ε.
Also h has complexity at most 1/εO(1) with respect to
F .

It shall be more convenient to define the distribution M
by defining a measure ρM (x) = (1− h(x))/2. We will
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then take Px∼M [x] = ρM (x)/(
∑
z ρM (z)). Note that

ρM (x) ∈ [0, 1] for every x since h is bounded between
-1 and 1. To show that the distribution M is dense in
X , we will need to show that

∑
x ρM (x) ≥ (δ− ε)|X|.

This will follow from the facts that the expectation of
h over X is close to its expectation over R, which is in
turn close to the expectation of g over R. We first note
that

E
x∼R

[
1− g(x)

2

]
= E
x∼R

[
δ · PD[x]

PR[x]

]
= δ

where in the last equality, we used the fact that the
support of D is contained in the support of R. This
gives

∣∣∣∣ E
x∼X

[ρM (x)]− δ
∣∣∣∣

=
∣∣∣∣ E
x∼X

[
1− h(x)

2

]
− E
x∼R

[
1− g(x)

2

]∣∣∣∣
≤

∣∣∣∣ E
x∼X

[
1− h(x)

2

]
− E
x∼R

[
1− h(x)

2

]∣∣∣∣
+
∣∣∣∣ E
x∼R

[
1− h(x)

2

]
− E
x∼R

[
1− g(x)

2

]∣∣∣∣
≤ ε

2
+
ε

2
= ε

Hence, we get that
∑
x ρM (x) ≥ (δ − ε)|X|. We also

get that
∑
x ρM (x) ≤ (δ + ε)|X|, which we shall need

below. We next need to show that M and D are indis-
tinguishable by any any f ∈ F . The indistinguishability
of the functions g and h by f gives

∣∣∣∣ E
x∼R

[(g(x)− h(x)f(x)]
∣∣∣∣ ≤ ε

⇒
∣∣∣∣ E
x∼R

[
(1− h(x))f(x)

2
− (1− g(x))f(x)

2

]∣∣∣∣ ≤ ε/2
⇒
∣∣∣∣ E
x∼R

[
(1− h(x))f(x)

2

]
− E
x∼R

[(
δPD[x]
PR[x]

)
f(x)

]∣∣∣∣
≤ ε/2

⇒
∣∣∣∣ E
x∼R

[
(1− h(x))f(x)

2

]
− δ · E

x∼D
[f(x)]

∣∣∣∣ ≤ ε/2
⇒
∣∣∣∣ E
x∼X

[
(1− h(x))f(x)

2

]
− δ · E

x∼D
[f(x)]

∣∣∣∣ ≤ 3ε/2

where the last implication used the fact that h(x) has
low complexity and hence so does f(x)(1 − h(x))/2.
Consequently, its expectations on the distributions R
and X differ by at most ε.

Finally, we consider∣∣∣∣ E
x∼X

[
(1− h(x))f(x)

2

]
− δ · E

x∼M
[f(x)]

∣∣∣∣
=

∣∣∣∣ E
x∼X

[ρM (x)f(x)]− δ · E
x∼M

[f(x)]
∣∣∣∣

=
∣∣∣∣(∑z ρM (z)

|X|

)
E

x∼M
[f(x)]− δ · E

x∼M
[f(x)]

∣∣∣∣
≤ ε

Combining the two bounds and using triangle inequality,
we get ∣∣∣∣δ · E

x∼D
[f(x)]− δ · E

x∼M
[f(x)]

∣∣∣∣ ≤ 5ε
2

which gives |Ex∼D [f(x)]− Ex∼M [f(x)]| ≤ 5ε
2δ as

claimed.

B. Deriving the Impagliazzo Hard-Core Set Lemma

Theorem 5.2: Let F be a family of functions from a
finite domain X to {0, 1} and ε, δ > 0. Then there exists
an s = poly(1/ε, 1/δ) such that if g : X → {0, 1} is a
function, which for all functions f : X → {0, 1} having
complexity at most s w.r.t F , satisfies

Px∼X [f(x) = g(x)] ≤ 1− δ

Then there is a distribution µ which is δ-dense in UX
such that

∀f ∈ F . Px∼µ[f(x) = g(x)] ≤ 1
2

+ ε

Proof Idea: We apply the Theorem 1.1 to g and obtain
an efficiently computable function h that is “indistin-
guishable” from g. We then define the distribution µ so
that µ(x) is proportional to |g(x)−h(x)|. It follows from
the weak average-case hardness of g that |g(x)− h(x)|
is noticeably large on average, and from this we derive
that µ has the required density. The strong average-
case hardness of g on the distribution µ follows from
the indistinguishability condition, a fact that requires a
slightly technical proof based on the following intuition:
suppose h were the characteristic function of a set B,
and let A be the set {x : g(x) = 1}. Then A and B have
the same size since E[g] = E[h], and µ is uniform over
the symmetric difference A∆B. The indistinguishability
condition requires every efficient function f to evaluate
to 1 on approximately the same number of elements in
A and B, and hence approximately the same number
of elements in A − B and B − A. This means that
f correctly computes g in A − B on approximately
as many elements as elements of B − A on which f
incorrectly computer g, and so f computes g correctly
on approximately half the elements of A∆B.
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We now prove the Hardcore Lemma using our Main
Theorem.

Proof (Theorem 5.2): We apply Theorem 1.1 to g,
with the approximation parameter γ := εδ. Theorem 1.1
gives us a function h : X → [0, 1] with complexity at
most poly(1/γ) with respect to F such that

∀f ∈ F . E
x∼X

[f(x) · (g(x)− h(x))] ≤ γ

Let us consider now the “error function” |g(x)−h(x)|.
The assumption that g is weakly hard on average, and
the fact that h has low complexity, imply that the error
must be large on average. In particular, we claim that
by choosing s = poly(1/γ) we must have

E [|g(x)− h(x)|] ≥ δ (4)

Indeed, consider the process of picking a random t in
[0, 1], and defining the function ht(x) so that ht(x) = 1
if h(x) ≥ t and ht(x) = 0 otherwise. Then, for every
choice of t, ht has complexity poly(1/γ), and recalling
that g takes values in {0, 1}, we have

P x∼X,t∼[0,1][ht(x) = g(x)] = E
x∼X

[|g(x)− h(x)|]

In particular there is a fixed t such that

Px∼X [ht(x) = g(x)] ≥ E
x∼X

[|g(x)− h(x)|]

and the claim follows. Let us define the distribution µ
so that the probability of a point x is proportional to
|g(x)− h(x)|. That is

µ(x) :=
|g(x)− h(x)|∑
y |g(y)− h(y)|

Note that µ(x) ≤ 1/(δ|X|) and hence µ has density at
least δ. We now fix a function f ∈ F , and it remains to
estimate Px∼µ[f(x) = g(x)], which equals,

∑
x µ(x) ·

1[f(x)=g(x)] where 1[f(x)=g(x)] is an indicator function.
We will bound this using the identity

|g(x)− h(x)| · 1[f(x)=g(x)]

=
[(
f(x)− 1

2

)
· (g(x)− h(x)) +

1
2
|g(x)− h(x)|

]
To match this with the intuition given earlier, consider
the special case that h(x) is boolean and let A =
{x | g(x) = 1}, B = {x | h(x) = 1}. Then |g(x)−h(x)|
is the characteristic function for A∆B, with g(x)−h(x)
being 1 on A \ B and −1 on B \ A. So, the above
equation (summed over x) says that the number on
points in A∆B on which f(x) = g(x) (counted twice)
equals the number of points in A \ B where f(x) = 1
minus the number of points in B \A where f(x) = 0,
plus the number of points in A∆B. (the general case

can be verified by case analysis on f(x), g(x) ∈ {0, 1}).
This gives

E
x

[
|g(x)− h(x)| · 1[f(x)=g(x)]

]
≤ γ +

1
2 E
x

[|g(x)− h(x)|]

So, finally, recalling that
∑
x |g(x)− h(x)| ≥ δ|X|,

Px∼µ[f(x) = g(x)] =
Ex
[
|g(x)− h(x)| · 1[f(x)=g(x)]

]
Ex [|g(x)− h(x)|]

≤ 1
2

+
γ

δ
≤ 1

2
+ ε

C. Deriving the Yao XOR Lemma

It is also possible to derive the Yao XOR Lemma
from our main result. This is similar to the way the
XOR Lemma is derived from the Hardcore Lemma
(see [Imp1], [GNW]), but somewhat more direct than
combining those earlier arguments with our derivation
of the Hardcore Lemma above. We present the proof in
the full version of the paper.
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[Sze] E. Szemerédi. On sets of integers containing no k
elements in arithmetic progression. Acta Arithmetica,
27:199–245, 1975.

[Tao] T. Tao. Structure and randomness in combinatorics.
In Proceedings of the 48th IEEE Symposium on
Foundations of Computer Science, pages 3–18, 2007.

[TZ] T. Tao and T. Ziegler. The Primes Contain Arbitrarily
Long Polynomial Progressions. Acta Mathematica,
201:213305, 2008.

[TV] L. Trevisan and S. P. Vadhan. Extracting Random-
ness from Samplable Distributions. In Proceedings
of the 41st IEEE Symposium on Foundations of
Computer Science, pages 32–42, 2000.

[Yao] A. C. Yao. Theory and Applications of Trapdoor
Functions. In Proceedings of the 23th IEEE Sym-
posium on Foundations of Computer Science, pages
80–91, 1982.

136136


