Finite sample differentially private confidence intervals

Citation:

Karwa, Vishesh, and Salil Vadhan. “Finite sample differentially private confidence intervals.” In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in Informatics (LIPIcs), 44:1-44:9. Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. ITCS, 2018.
ITCS2018.pdf466 KB
ArXiv2017.pdf523 KB

Abstract:

Version History: Also presented at TPDP 2017. Preliminary version posted as arXiv:1711.03908 [cs.CR].

We study the problem of estimating finite sample confidence intervals of the mean of a normal population under the constraint of differential privacy. We consider both the known and unknown variance cases and construct differentially private algorithms to estimate confidence intervals. Crucially, our algorithms guarantee a finite sample coverage, as opposed to an asymptotic coverage. Unlike most previous differentially private algorithms, we do not require the domain of the samples to be bounded. We also prove lower bounds on the expected size of any differentially private confidence set showing that our the parameters are optimal up to polylogarithmic factors.

Publisher's Version

Last updated on 06/22/2020