Law & Policy

Wood, Alexandra, Micah Altman, Aaron Bembenek, Mark Bun, Marco Gaboardi, James Honaker, Kobbi Nissim, David R. OBrien, Thomas Steinke, and Salil Vadhan. “Differential privacy: A primer for a non-technical audience.” Vanderbilt Journal of Entertainment & Technology Law 21, no. 1 (2018): 209-275. Publisher's VersionAbstract

Version History: Preliminary version workshopped at PLSC 2017.

Differential privacy is a formal mathematical framework for quantifying and managing privacy risks. It provides provable privacy protection against a wide range of potential attacks, including those currently unforeseen. Differential privacy is primarily studied in the context of the collection, analysis, and release of aggregate statistics. These range from simple statistical estimations, such as averages, to machine learning. Tools for differentially private analysis are now in early stages of implementation and use across a variety of academic, industry, and government settings. Interest in the concept is growing among potential users of the tools, as well as within legal and policy communities, as it holds promise as a potential approach to satisfying legal requirements for privacy protection when handling personal information. In particular, differential privacy may be seen as a technical solution for analyzing and sharing data while protecting the privacy of individuals in accordance with existing legal or policy requirements for de-identification or disclosure limitation.

This primer seeks to introduce the concept of differential privacy and its privacy implications to non-technical audiences. It provides a simplified and informal, but mathematically accurate, description of differential privacy. Using intuitive illustrations and limited mathematical formalism, it discusses the definition of differential privacy, how differential privacy addresses privacy risks, how differentially private analyses are constructed, and how such analyses can be used in practice. A series of illustrations is used to show how practitioners and policymakers can conceptualize the guarantees provided by differential privacy. These illustrations are also used to explain related concepts, such as composition (the accumulation of risk across multiple analyses), privacy loss parameters, and privacy budgets. This primer aims to provide a foundation that can guide future decisions when analyzing and sharing statistical data about individuals, informing individuals about the privacy protection they will be afforded, and designing policies and regulations for robust privacy protection.

Wood, Alexandra, Micah Altman, Suso Baleato, and Salil Vadhan. Comments on the City of Seattle Open Data Risk Assessment, 2017. Publisher's VersionAbstract
The transparency goals of the open data movement serve important social, economic, and democratic functions in cities like Seattle. At the same time, some municipal datasets about the city and its citizens’ activities carry inherent risks to individual privacy when shared publicly. In 2016, the City of Seattle declared in its Open Data Policy that the city’s data would be “open by preference,” except when doing so may affect individual privacy. To ensure its Open Data program effectively protects individuals, Seattle committed to performing an annual risk assessment and tasked the Future of Privacy Forum (FPF) with creating and deploying an initial privacy risk assessment methodology for open data.This Draft Report provides tools and guidance to the City of Seattle and other municipalities navigating the complex policy, operational, technical, organizational, and ethical standards that support privacyprotective open data programs. Although there is a growing body of research on open data privacy, open data managers and departmental data owners need to be able to employ a standardized methodology for assessing the privacy risks and benefits of particular datasets internally, without a bevy of expert statisticians, privacy lawyers, or philosophers. By following a flexible, risk-based assessment process, the City of Seattle – and other municipal open data programs – can maximize the utility and openness of civic data while minimizing privacy risks to individuals and community concerns about ethical challenges, fairness, and equity.This Draft Report first describes inherent privacy risks in an open data landscape, with an emphasis on potential harms related to re-identification, data quality, and fairness. Accompanying this, the Draft Report includes a Model Open Data Benefit Risk Analysis (MODBRA). The model template evaluates the types of data contained in a proposed open dataset, the potential benefits – and concomitant risks – of releasing the dataset publicly, and strategies for effective de-identification and risk mitigation. This holistic assessment guides city officials to determine whether to release the dataset openly, in a limited access environment, or to withhold it from publication (absent countervailing public policy considerations). The Draft Report methodology builds on extensive work done in this field by experts at the National Institute of Standards and Technology, the University of Washington, the Berkman Klein Center for Internet & Society at Harvard University, and others, and adapts existing frameworks to the unique challenges faced by cities as local governments, technological system integrators, and consumer facing service providers.
Nissim, Kobbi, Aaron Bembenek, Alexandra Wood, Mark Bun, Marco Gaboardi, Urs Gasser, David O'Brien, Thomas Steinke, and Salil Vadhan. “Bridging the gap between computer science and legal approaches to privacy.” Harvard Journal of Law & Technology 31, no. 2 (2017). Publisher's VersionAbstract

Version History: Workshopped at PLSC (Privacy Law Scholars Conference) ‘16.

 

The analysis and release of statistical data about individuals and groups of individuals carries inherent privacy risks, and these risks have been conceptualized in different ways within the fields of law and computer science. For instance, many information privacy laws adopt notions of privacy risk that are sector- or context-specific, such as in the case of laws that protect from disclosure certain types of information contained within health, educational, or financial records. In addition, many privacy laws refer to specific techniques, such as deidentification, that are designed to address a subset of possible attacks on privacy. In doing so, many legal standards for privacy protection rely on individual organizations to make case-by-case determinations regarding concepts such as the identifiability of the types of information they hold. These regulatory approaches are intended to be flexible, allowing organizations to (1) implement a variety of specific privacy measures that are appropriate given their varying institutional policies and needs, (2) adapt to evolving best practices, and (3) address a range of privacy-related harms. However, in the absence of clear thresholds and detailed guidance on making case-specific determinations, flexibility in the interpretation and application of such standards also creates uncertainty for practitioners and often results in ad hoc, heuristic processes. This uncertainty may pose a barrier to the adoption of new technologies that depend on unambiguous privacy requirements. It can also lead organizations to implement measures that fall short of protecting against the full range of data privacy risks.

Altman, Micah, Alexandra Wood, David R. O'Brien, Salil Vadhan, and Urs Gasser. “Towards a modern approach to a privacy-aware government data releases.” Berkeley Technology Law Journal 30, no. 3 (2016): 1967-2072. Publisher's VersionAbstract
Governments are under increasing pressure to publicly release collected data in order to promote transparency, accountability, and innovation. Because much of the data they release pertains to individuals, agencies rely on various standards and interventions to protect privacy interests while supporting a range of beneficial uses of the data. However, there are growing concerns among privacy scholars, policymakers, and the public that these approaches are incomplete, inconsistent, and difficult to navigate. To identify gaps in current practice, this Article reviews data released in response to freedom of information and Privacy Act requests, traditional public and vital records, official statistics, and e-government and open government initiatives. It finds that agencies lack formal guidance for implementing privacy interventions in specific cases. Most agencies address privacy by withholding or redacting records that contain directly or indirectly identifying information based on an ad hoc balancing of interests, and different government actors sometimes treat similar privacy risks vastly differently. These observations demonstrate the need for a more systematic approach to privacy analysis and also suggest a new way forward. In response to these concerns, this Article proposes a framework for a modern privacy analysis informed by recent advances in data privacy from disciplines such as computer science, statistics, and law. Modeled on an information security approach, this framework characterizes and distinguishes between privacy controls, threats, vulnerabilities, and utility. When developing a data release mechanism, policymakers should specify the desired data uses and expected benefits, examine each stage of the data lifecycle to identify privacy threats and vulnerabilities, and select controls for each lifecycle stage that are consistent with the uses, threats, and vulnerabilities at that stage. This Article sketches the contours of this analytical framework, populates selected portions of its contents, and illustrates how it can inform the selection of privacy controls by discussing its application to two real-world examples of government data releases.
O'Brien, David, Jonathan Ullman, Micah Altman, Urs Gasser, Michael Bar-Sinai, Kobbi Nissim, Salil Vadhan, Michael Wojcik, and Alexandra Wood. “Integrating approaches to privacy across the research lifecycle: When is information purely public?Berkman Center Research Publication No. 2015-7, 2015, March. Publisher's VersionAbstract

Version History: Available at SSRN: http://ssrn.com/abstract=2586158.

On September 24-25, 2013, the Privacy Tools for Sharing Research Data project at Harvard University held a workshop titled "Integrating Approaches to Privacy across the Research Data Lifecycle." Over forty leading experts in computer science, statistics, law, policy, and social science research convened to discuss the state of the art in data privacy research. The resulting conversations centered on the emerging tools and approaches from the participants’ various disciplines and how they should be integrated in the context of real-world use cases that involve the management of confidential research data. 

Researchers are increasingly obtaining data from social networking websites, publicly-placed sensors, government records and other public sources. Much of this information appears public, at least to first impressions, and it is capable of being used in research for a wide variety of purposes with seemingly minimal legal restrictions. The insights about human behaviors we may gain from research that uses this data are promising. However, members of the research community are questioning the ethics of these practices, and at the heart of the matter are some difficult questions about the boundaries between public and private information. This workshop report, the second in a series, identifies selected questions and explores issues around the meaning of “public” in the context of using data about individuals for research purposes. 

 

 
 
Wood, Alexandra, David O'Brien, Micah Altman, Alan Karr, Urs Gasser, Michael Bar-Sinai, Kobbi Nissim, Jonathan Ullman, Salil Vadhan, and Michael Wojcik. “Integrating approaches to privacy across the research lifecycle: Long-term longitudinal studies.” Berkman Center Research Publication No. 2014-12, 2014, July. Publisher's VersionAbstract

Version History: Available at SSRN: http://ssrn.com/abstract=2469848.

 

On September 24-25, 2013, the Privacy Tools for Sharing Research Data project at Harvard University held a workshop titled "Integrating Approaches to Privacy across the Research Data Lifecycle." Over forty leading experts in computer science, statistics, law, policy, and social science research convened to discuss the state of the art in data privacy research. The resulting conversations centered on the emerging tools and approaches from the participants’ various disciplines and how they should be integrated in the context of real-world use cases that involve the management of confidential research data. 

This workshop report, the first in a series, provides an overview of the long-term longitudinal study use case. Long-term longitudinal studies collect, at multiple points over a long period of time, highly-specific and often sensitive data describing the health, socioeconomic, or behavioral characteristics of human subjects. The value of such studies lies in part in their ability to link a set of behaviors and changes to each individual, but these factors tend to make the combination of observable characteristics associated with each subject unique and potentially identifiable. 

Using the research information lifecycle as a framework, this report discusses the defining features of long-term longitudinal studies and the associated challenges for researchers tasked with collecting and analyzing such data while protecting the privacy of human subjects. It also describes the disclosure risks and common legal and technical approaches currently used to manage confidentiality in longitudinal data. Finally, it identifies urgent problems and areas for future research to advance the integration of various methods for preserving confidentiality in research data.