Cryptography

Micciancio, Daniele, Shien Jin Ong, Amit Sahai, and Salil Vadhan. “Concurrent zero knowledge without complexity assumptions.” In S. Halevi and T. Rabin, eds., Proceedings of the Third Theory of Cryptography Conference (TCC '06), 3876:1-20. New York, NY, USA: Springer Verlag, Lecture Notes in Computer Science, 2006. Publisher's VersionAbstract

Version History. Full version available at https://eccc.weizmann.ac.il//eccc-reports/2005/TR05-093/ (Attached as ECCC2005).

We provide unconditional constructions of concurrent statistical zero-knowledge proofs for a variety of non-trivial problems (not known to have probabilistic polynomial-time algorithms). The problems include Graph Isomorphism, Graph Nonisomorphism, Quadratic Residuosity, Quadratic Nonresiduosity, a restricted version of Statistical Difference, and approximate versions of the (\(\mathsf{coNP}\) forms of the) Shortest Vector Problem and Closest Vector Problem in lattices. For some of the problems, such as Graph Isomorphism and Quadratic Residuosity, the proof systems have provers that can be implemented in polynomial time (given an \(\mathsf{NP}\) witness) and have \(\tilde{O}(\log n)\) rounds, which is known to be essentially optimal for black-box simulation. To the best of our knowledge, these are the first constructions of concurrent zero-knowledge proofs in the plain, asynchronous model (i.e., without setup or timing assumptions) that do not require complexity assumptions (such as the existence of one-way functions).

Gradwohl, Ronen, Salil Vadhan, and David Zuckerman. “Random selection with an adversarial majority.” In Advances in Cryptology—CRYPTO ‘06, C. Dwork, ed. 4117:409–426. Springer Verlag, Lecture Notes in Computer Science, 2006. Publisher's VersionAbstract

Version History: Full version published in ECCC TR 06-026, February 2006. Updated full version published June 2006.

We consider the problem of random selection, where \(p\) players follow a protocol to jointly select a random element of a universe of size \(n\). However, some of the players may be adversarial and collude to force the output to lie in a small subset of the universe. We describe essentially the first protocols that solve this problem in the presence of a dishonest majority in the full-information model (where the adversary is computationally unbounded and all communication is via non-simultaneous broadcast). Our protocols are nearly optimal in several parameters, including the round complexity (as a function of \(n\)), the randomness complexity, the communication complexity, and the tradeoffs between the fraction of honest players, the probability that the output lies in a small subset of the universe, and the density of this subset.

Nguyen, Minh-Huyen, Shien Jin Ong, and Salil Vadhan. “Statistical zero-knowledge arguments for NP from any one-way function.” In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS ‘06), 3-13. IEEE, 2006. Publisher's VersionAbstract

Version History: Merged with STOC '07 paper of Haitner and Reingold. Also available as a journal version. Full version invited to SIAM J. Computing Special Issue on FOCS ‘06

We show that every language in NP has a statistical zero-knowledge argument system under the (minimal) complexity assumption that one-way functions exist. In such protocols, even a computationally unbounded verifier cannot learn anything other than the fact that the assertion being proven is true, whereas a polynomial-time prover cannot convince the verifier to accept a false assertion except with negligible probability. This resolves an open question posed by Naor et al. (1998). Departing from previous works on this problem, we do not construct standard statistically hiding commitments from any one-way function. Instead, we construct a relaxed variant of commitment schemes called "1-out-of-2-binding commitments," recently introduced by Nguyen et al. (2006)

Sahai, Amit, and Salil Vadhan. “A complete problem for statistical zero knowledge.Journal of the ACM 50, no. 2 (2003): 196-249.Abstract
We present the first complete problem for SZK, the class of (promise) problems possessing statistical zero-knowledge proofs (against an honest verifier). The problem, called STATISTICAL DIFFERENCE, is to decide whether two efficiently samplable distributions are either statistically close or far apart. This gives a new characterization of SZK that makes no reference to interaction or zero knowledge.

 

We propose the use of complete problems to unify and extend the study of statistical zero knowledge. To this end, we examine several consequences of our Completeness Theorem and its proof, such as:

  • A way to make every (honest-verifier) statistical zero-knowledge proof very communication efficient, with the prover sending only one bit to the verifier (to achieve soundness error 1/2).
  • Simpler proofs of many of the previously known results about statistical zero knowledge, such as the Fortnow and Aiello--Håstad upper bounds on the complexity of SZK and Okamoto's result that SZK is closed under complement.
  • Strong closure properties of SZK which amount to constructing statistical zero-knowledge proofs for complex assertions built out of simpler assertions already shown to be in SZK.
  • New results about the various measures of "knowledge complexity," including a collapse in the hierarchy corresponding to knowledge complexity in the "hint" sense.
  • Algorithms for manipulating the statistical difference between efficiently samplable distributions, including transformations which "polarize" and "reverse" the statistical relationship between a pair of distributions.
Sahai, Amit, and Salil Vadhan. “ Manipulating statistical difference.Randomization Methods in Algorithm Design (DIMACS Workshop, December 1997), volume 43 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science 43 (1999): 251-270.Abstract

We give several efficient transformations for manipulating the statistical difference (variation distance) between a pair of probability distributions. The effects achieved include increasing the statistical difference, decreasing the statistical difference, "polarizing" the statistical relationship, and "reversing" the statistical relationship. We also show that a boolean formula whose atoms are statements about statistical difference can be transformed into a single statement about statistical difference. All of these transformations can be performed in polynomial time, in the sense that, given circuits which sample from the input distributions, it only takes polynomial time to compute circuits which sample from the output distributions.

 

By our prior work (see FOCS 97), such transformations for manipulating statistical difference are closely connected to results about SZK, the class of languages possessing statistical zero-knowledge proofs. In particular, some of the transformations given in this paper are equivalent to the closure of SZK under complement and under certain types of Turing reductions. This connection is also discussed briefly in this paper.

Wallner, D., E. Harder, and R. Agee. “Key management for multicast: Issues and architectures.Internet RFC 2627, no. June 1999 (1999).Abstract

This report contains a discussion of the difficult problem of key management for multicast communication sessions.  It focuses on two main areas of concern with respect to key management, which are, initializing the multicast group with a common net key and rekeying the multicast group.  A rekey may be necessary upon the compromise of a user or for other reasons (e.g., periodic rekey).  In particular, this report identifies a technique which allows for secure compromise recovery, while also being robust against collusion of excluded users.  This is one important feature of multicast key management which has not been addressed in detail by most other multicast key management proposals [1,2,4].  The benefits of this proposed technique are that it minimizes the number of transmissions required to rekey the multicast group and it imposes minimal storage requirements on the multicast group.

Goldreich, Oded, Amit Sahai, and Salil Vadhan. “Honest-verifier statistical zero-knowledge equals general statistical zero-knowledge.Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC ‘98) (1998): 399-408.Abstract
We show how to transform any interactive proof system which is statistical zero-knowledge with respect to the honest-verifier, into a proof system which is statistical zero-knowledge with respect to any verifier. This is done by limiting the behavior of potentially cheating verifiers, without using computational assumptions or even referring to the complexity of such verifier strategies. (Previous transformations have either relied on computational assumptions or were applicable only to constant-round public-coin proof systems.)

Our transformation also applies to public-coin (aka Arthur-Merlin) computational zero-knowledge proofs: We transform any Arthur-Merlin proof system which is computational zero-knowledge with respect to the honest-verifier, into an Arthur-Merlin proof system which is computational zero-knowledge with respect to any probabilistic polynomial-time verifier.

A crucial ingredient in our analysis is a new lemma regarding 2-universal hashing functions.

Pages